Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization  

DOE Green Energy (OSTI)

Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

Murray, Nathan E.

2012-03-12T23:59:59.000Z

2

Condition Monitoring of Wind Turbines  

Science Conference Proceedings (OSTI)

Based on industry experience, after four years of operation, failures of wind turbine gearboxes, generators, and other major components become common, and each failure typically requires major repairs and/or component replacement. Wind project owners and operators who apply lube oil monitoring, vibration-signature analysis, and other condition monitoring technology can expect to detect subtle changes in machine condition that often lead to major failures if left unrepaired. The estimated cost savings of ...

2006-03-27T23:59:59.000Z

3

Wind Turbine Drivetrain Condition Monitoring - An Overview  

DOE Green Energy (OSTI)

This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

Sheng, S; Veers, P.

2011-10-01T23:59:59.000Z

4

Wind Turbine Generator Condition Monitoring via the Generator Control Loop.  

E-Print Network (OSTI)

??This thesis focuses on the development of condition monitoring techniques for application in wind turbines, particularly for offshore wind turbine driven doubly fed induction generators.… (more)

ZAGGOUT, MAHMOUD,NOUH

2013-01-01T23:59:59.000Z

5

Turbine Condition Assessment and Monitoring Methodology  

Science Conference Proceedings (OSTI)

This report provides a broad overview of the process of steam turbine condition assessment and on-line monitoring (OLM). Describing the traditional approaches to condition assessment and the advanced techniques for automated OLM will encourage readers to consider strategies in their own organizations for applying the best features of each approach. Although new commercially available OLM systems have powerful data processing techniques, the equipment still requires a great deal of subject matter expertis...

2004-12-22T23:59:59.000Z

6

Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)  

DOE Green Energy (OSTI)

This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

Sheng, S.

2011-08-01T23:59:59.000Z

7

Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)  

DOE Green Energy (OSTI)

High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

Sheng, S.; Yang, W.

2013-07-01T23:59:59.000Z

8

Characteristics of Wind Turbines Under Normal and Fault Conditions: Preprint  

SciTech Connect

This paper investigates the characteristics of a variable-speed wind turbine connected to a stiff or weak grid under normal and fault conditions and the role of reactive power compensation.

Muljadi, E.; Butterfield, C. P.; Parsons, B.; Ellis, A.

2007-02-01T23:59:59.000Z

9

Wind Turbine Drivetrain Condition Monitoring (Presentation)  

DOE Green Energy (OSTI)

This presentation details the Gearbox Reliability Collaborative Condition Monitoring program at NREL.

Sheng, S.

2011-10-01T23:59:59.000Z

10

Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis  

DOE Green Energy (OSTI)

The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

Sheng, S.

2012-07-01T23:59:59.000Z

11

Condition based management of gas turbine engine using neural networks.  

E-Print Network (OSTI)

??This research work is focused on the development of the hybrid neural network model to asses the gas turbine’s compressor health. Effects of various gas… (more)

Muthukumar, Krishnan.

2008-01-01T23:59:59.000Z

12

Future of Condition Monitoring for Wind Turbines - Q & A | OpenEI...  

Open Energy Info (EERE)

Turbines - Q & A Home > Future of Condition Monitoring for Wind Turbines Content Group Activity By term Q & A Feeds Question Post date Answers Searching for Data Sets on existing...

13

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban  

E-Print Network (OSTI)

Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

Tullis, Stephen

14

Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint  

DOE Green Energy (OSTI)

To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

Yang, W.; Sheng, S.; Court, R.

2012-08-01T23:59:59.000Z

15

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Future of Condition Monitoring for Wind Turbines Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of...

16

Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)  

SciTech Connect

Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

Clifton, A.

2012-12-01T23:59:59.000Z

17

Turbine Vanes and Endwalls with Realistic Surface Conditions  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanes and Endwalls with Vanes and Endwalls with Realistic Surface Conditions SCIES Project 03-01-SR110 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (7/1/2003, 36 Month Duration) $572,385 Total Contract Value ($572,385 DOE) PI: Karen A. Thole Co-PI: David G. Bogard Graduate Research Assistants: Nicholas Cardwell Patricia Demling Narayan Sundaram Scot Wye Gas Turbine Needs * Account for the effects of roughness from particle deposition and corrosion resulting from the use of synfuels * Account for the effects of blocked holes and gap leakages on predicting airfoil temperatures Overall Project Objectives * Determine effects of flow leakages at component interfaces occurring due to expansions/contractions

18

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

19

Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing  

DOE Green Energy (OSTI)

This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

2011-10-01T23:59:59.000Z

20

Wind turbine aerodynamics using ALE---VMS: validation and the role of weakly enforced boundary conditions  

Science Conference Proceedings (OSTI)

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE---VMS formulation of aerodynamics, based on the Navier---Stokes equations of incompressible flows, is employed in conjunction ... Keywords: ALE---VMS, Finite elements, NREL 5MW offshore, NREL Phase VI, Weakly enforced essential boundary conditions, Wind turbine aerodynamics

Ming-Chen Hsu; Ido Akkerman; Yuri Bazilevs

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam Turbine Valve Actuator Condition Assessment: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators. It covers the actuators that are typically found on the turbines of the two major U.S. original equipment manufacturers (OEMs), as well as those of several non-U.S. OEMs. The scope encompasses both mechanical hydraulic control (MHC) and electronic hydraulic control (EHC) types of hydraulic ...

2013-07-25T23:59:59.000Z

22

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Groups > Groups > Future of Condition Monitoring for Wind Turbines Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You...

23

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Future of Condition Monitoring for Wind Turbines > Posts by term Content Group Activity By term Q & A Feeds Groups Menu You must login in order to post into this group. Recent...

24

Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques  

SciTech Connect

The wind industry has experienced premature turbine component failures during the past years. With the increase in turbine size, these failures, especially those found in the major drivetrain components, i.e. main shaft, gearbox, and generator, have become extremely costly. Given that the gearbox is the most costly component in the drivetrain to fix, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC) to determine the causes for premature gearbox failures and subsequently, recommend improvements to gearbox design, manufacture, and operational practices. The GRC has two identical test gearboxes, which are planned for a dynamometer and a field test, respectively.

Sheng, S.; Oyague, F.; Butterfield, S.

2010-08-01T23:59:59.000Z

25

Field Assessment of Wind Turbine Condition Monitoring Technology  

Science Conference Proceedings (OSTI)

This report describes the implementation of an oil particle countingcondition monitoring system on three Vestas V47 wind turbines at the Tennessee Valley Authority's Buffalo Mountain wind energy project. The data collected during operation of the system in 2006 are examined and interpreted.

2009-08-28T23:59:59.000Z

26

Future of Condition Monitoring for Wind Turbines | OpenEI Community  

Open Energy Info (EERE)

Future of Condition Monitoring for Wind Turbines Future of Condition Monitoring for Wind Turbines Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Oeir Try supergen-wind (http://www.... Posted by: Oeir 25 Nov 2013 - 14:25 JaredHall Searching for Data Sets on existing turbines with various sensors Posted by: JaredHall 30 Jul 2013 - 01:34 In order to test our hypothesis and aid in our building of next-gen condition/health monitoring software for wind turbines we are searching for data sets (Scada or othewise) from exisiting installations.... Group links This group has no group-specific links. Groups Menu You must login in order to post into this group. Recent content Try supergen-wind (http://www....

27

Summary of Investigations of the Use of Modified Turbine Inlet Conditions in a Binary Power Plant  

SciTech Connect

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

Mines, Gregory Lee

2000-09-01T23:59:59.000Z

28

Summary of investigations of the use of modified turbine inlet conditions in a binary power plant  

DOE Green Energy (OSTI)

Investigators at the Idaho National Engineering and Environmental Laboratory (INEEL) are developing technologies that will enhance the feasibility of generating electrical power from a hydrothermal resource. One of the concepts investigated is the use of modified inlet conditions in geothermal binary power plant turbines to increase the power generation. An inlet condition of interest allows the expanding vapor to enter the two-phase region, a mode of operation typically avoided because of concern that condensate would form and damage the turbine, degrading performance. INEEL investigators postulated that initially a supersaturated vapor would be supported, and that no turbine damage would occur. This paper summarizes the investigation of these expansions that began with testing of their condensation behavior, and culminated with the incorporation of these expansions into the operation of several commercial binary plant turbines.

G. L. Mines

2000-09-24T23:59:59.000Z

29

Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines  

Science Conference Proceedings (OSTI)

The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

2000-06-05T23:59:59.000Z

30

Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

DOE Green Energy (OSTI)

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

31

Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines  

SciTech Connect

The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

Wei Qiao

2012-05-29T23:59:59.000Z

32

Investigation of Various Condition Monitoring Techniques Based on a Damaged Wind Turbine Gearbox  

DOE Green Energy (OSTI)

This paper is a continuation of a 2009 paper presented at the 7th International Workshop on Structural Health Monitoring that described various wind turbine condition-monitoring techniques. This paper presents the results obtained by various condition- monitoring techniques from a damaged Gearbox Reliability Collaborative test gearbox.

Sheng, S.

2011-10-01T23:59:59.000Z

33

Wind Turbines Under Atmospheric Icing Conditions - Ice Accretion Modeling, Aerodynamics, and Control Strategies for Mitigating Performance Degradation.  

E-Print Network (OSTI)

??This thesis presents a combined engineering methodology of ice accretion, airfoil data, and rotor performance analysis of wind turbines subject to moderate atmospheric icing conditions.… (more)

Brillembourg, Dwight

2013-01-01T23:59:59.000Z

34

Combustion Turbine Combined Cycle Technology Developments, Reliability Issues, and Related Market Conditions: EPRI Gas Turbine Exper ience and Intelligence Report  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine (CT) plant owners, operators, and project developers. The "EPRI Gas Turbine Experience and Intelligence Report" (GTE&IR) provides concise, well-organized, up-to-date technical, strategic, and business information for combustion turbine (CT) power producers. This technical report assembles all of the content from the most recent three years of GTE&IR (seven editions) into a single docu...

2001-12-04T23:59:59.000Z

35

Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions  

E-Print Network (OSTI)

This paper provides detailed comparisons of chemical reaction mechanisms of H2 applicable at high preheat temperatures and pressures relevant to gas turbine and particularly Alstom's reheat gas turbine conditions. It is shown that the available reaction mechanisms exhibit large differences in several important elementary reaction coefficients. The reaction mechanisms are assessed by comparing ignition delay and laminar flame speed results obtained from CHEMKIN with available data, however, the amount of data at these conditions is scarce and a recommended candidate among the mechanisms can presently not be selected. Generally, the results with the GRI-Mech and Leeds mechanisms deviate from the Davis, Li, O'Conaire, Konnov and San Diego mechanisms, but there are also significant deviations between the latter five mechanisms that altogether are better adapted to hydrogen. The differences in ignition delay times between the dedicated hydrogen mechanisms (O'Conaire, Li and Konnov) range from approximately a maxim...

Weydahl, Torleif; Seljeskog, Morten; Haugen, Nils Erland L

2011-01-01T23:59:59.000Z

36

Apparatus and method for controlling steam turbine operating conditions during starting and loading  

SciTech Connect

A steam turbine-generator system is described which consists of: a high-pressure steam turbine; a reheat turbine; a boiler including means for heating stem for delivery to the high-pressure steam turbine and a boiler reheat portion for reheating an exhaust steam from the high-pressure steam turbine for delivery to the reheat turbine; main valve means for admitting steam from the boiler to the high-pressure steam turbine; an intercept control valve for admitting steam from the boiler reheat portion to the reheat turbine; means for maintaining at least a selectable predetermined pressure in the boiler reheat portion; a reheater bypass assembly connected between a high-pressure turbine exhaust line of the high-pressure steam turbine and a reheat turbine inlet line of the reheat turbine, the reheater bypass assembly bypassing the reheat portion and the intercept control valve; a check valve in the high-pressure turbine exhaust line downstream of the reheater bypass assembly; and the check valve including means for preventing a flow of steam from the high-pressure turbine exhaust line to the reheat portion while an exhaust pressure of steam from the high-pressure steam turbine is less than the selectable predetermined pressure, whereby exhaust steam from the high pressure steam turbine passes through the reheater bypass assembly directly to the reheat turbine without passing through and reheat portion during at least a portion of a startup cycle.

Dimitroff, V.T. Jr.; Wagner, J.B.

1986-07-08T23:59:59.000Z

37

Combustion Turbine Experience and Intelligence Reports: 2004 Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in the new e...

2005-03-23T23:59:59.000Z

38

Combustion Turbine Experience and Intelligence Report: 2003: Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Markets Conditions  

Science Conference Proceedings (OSTI)

The deregulation of power generation markets worldwide presents both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive Combustion Turbine/Combined Cycle (CT/CC) program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely, concise manner is key to delivering benefits in t...

2004-01-28T23:59:59.000Z

39

turbine | OpenEI Community  

Open Energy Info (EERE)

turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

40

Published in `AI Communications 9 journal', pp1-17. Published by IOS Press (1996) TIGERTM: Knowledge Based Gas Turbine Condition Monitoring  

E-Print Network (OSTI)

: Knowledge Based Gas Turbine Condition Monitoring Dr. Robert Milne and Dr. Charlie Nicol Intelligent, 11 Colon, Barcelona, 08222 Terrassa. Spain 1. INTRODUCTION Given the critical nature of gas turbines and increasing the availability of the gas turbine. Routine preventative maintenance techniques have been used

Travé-Massuyès, Louise

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterization of Fish Passage Conditions through the Fish Weir and Turbine Unit 1 at Foster Dam, Oregon, Using Sensor Fish, 2012  

SciTech Connect

This report documents investigations of downstream fish passage research involving a spillway fish weir and turbine passage conditions at Foster Dam in May 2012.

Duncan, Joanne P.

2013-02-01T23:59:59.000Z

42

Combustion Turbine Experience and Intelligence Report: 2002: Combustion Turbine/Combined Cycle Technology Developments, Reliability Issues, and Related Market Conditions  

Science Conference Proceedings (OSTI)

Deregulating power generation markets worldwide present both business opportunities and challenges for combustion turbine plant owners, operators, and project developers. EPRI's comprehensive CT/CC program provides a range of tools, methodologies, and approaches to help owner/operators and project developers face these challenges and prosper in this evolving marketplace. Access to this resource base in a timely manner is key to delivering benefits in the new electricity marketplace. The EPRI "CT Experien...

2002-11-14T23:59:59.000Z

43

Characterizing Inflow Conditions Across the Rotor Disk of a Utility-Scale Wind Turbine (Poster)  

DOE Green Energy (OSTI)

Multi-megawatt utility-scale wind turbines operate in a turbulent, thermally-driven atmosphere where wind speed and air temperature vary with height. Turbines convert the wind's momentum into electrical power, and so changes in the atmosphere across the rotor disk influence the power produced by the turbine. To characterize the inflow into utility scale turbines at the National Wind Technology Center (NWTC) near Boulder, Colorado, NREL recently built two 135-meter inflow monitoring towers. This poster introduces the towers and the measurements that are made, showing some of the data obtained in the first few months of operation in 2011.

Clifton, A.; Lundquist, J. K.; Kelley, N.; Scott, G.; Jager, D.; Schreck, S.

2012-01-01T23:59:59.000Z

44

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

2008-03-05T23:59:59.000Z

45

Research on 2MW Wind Turbine in the Three Conditions of Modal Analysis Based on ANSYS  

Science Conference Proceedings (OSTI)

In order to prevent a phenomenon of the working wind tower turbine's dumping and fracture, we had done the modal analysis for wind power tower in this paper. by introducing FEA(Finite Element Analysis) methods, the finite element model, simulating actual ... Keywords: Wind turbine towers, Tower model, FEA, Displacement, Equivalent stress

Zhang Penglin; Cao Li

2012-10-01T23:59:59.000Z

46

Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude  

E-Print Network (OSTI)

detection in a Doubly-Fed Induction Generator (DFIG) based wind turbine for stationary and nonstationary cases. Index Terms--Wind turbine, DFIG, fault detection, diagnosis, amplitude modulation, Hilbert and maintaining older system, becomes more costly and challenging with obsolescence of key components. DFIG

Paris-Sud XI, Université de

47

EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS  

E-Print Network (OSTI)

Wind energy is considered as the most viable renewable energy options. In a renewable energy system more energy from the wind. One of the options is to use the variable speed wind turbine-speed wind turbine system for transient studies are discussed in this paper. The performance of wind energy

48

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

49

Assessment of Supervisory Control and Data Acquisition Data Mining for Wind Turbine Condition Monitoring and Performance Improvement  

Science Conference Proceedings (OSTI)

As the wind industry grows and matures, many of the larger wind turbines (2 MW and above) are being outfitted with sophisticated condition-monitoring systems (CMSs), supplied either by the original equipment manufacturer or through a third party to reduce failures, decrease maintenance downtime, and improve reliability. Such systems use vibration sensors in key positions and lubrication oil analysis, with costs of the hardware relatively high, and suffer from spurious alarms. The lifetime cost-benefit ra...

2011-11-08T23:59:59.000Z

50

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

SciTech Connect

Laboratory experiments were conducted at gas turbine and atmospheric conditions (0.101 < P{sub 0} < 0.810 MPa, 298 < T{sub 0} < 580K, 18 < U{sub 0} < 60 m/s) to characterize the overall behaviors and emissions of the turbulent premixed flames produced by a low-swirl injector (LSI) for gas turbines. The objective was to investigate the effects of hydrogen on the combustion processes for the adaptation to gas turbines in an IGCC power plant. The experiments at high pressures and temperatures showed that the LSI can operate with 100% H{sub 2} at up to {phi} = 0.5 and has a slightly higher flashback tolerance than an idealized high-swirl design. With increasing H{sub 2} fuel concentration, the lifted LSI flame begins to shift closer to the exit and eventually attaches to the nozzle rim and assumes a different shape at 100% H{sub 2}. The STP experiments show the same phenomena. The analysis of velocity data from PIV shows that the stabilization mechanism of the LSI remains unchanged up to 60% H{sub 2}. The change in the flame position with increasing H{sub 2} concentration is attributed to the increase in the turbulent flame speed. The NO{sub x} emissions show a log linear dependency on the adiabatic flame temperature and the concentrations are similar to those obtained previously in a LSI prototype developed for natural gas. These results show that the LSI exhibits the same overall behaviors at STP and at gas turbine conditions. Such insight will be useful for scaling the LSI to operate at IGCC conditions.

Cheng, R. K.; Littlejohn, D.; Strakey, P.A.; Sidwell, T.

2008-03-05T23:59:59.000Z

51

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 130 C. K.Journal of Engineering for Gas Turbines and Power, 130 (2) (of Engineering for Gas Turbines and Power-Transactions of

Cheng, R. K.

2009-01-01T23:59:59.000Z

52

Laboratory Investigations of a Low-Swirl Injector with H2 and CH4 at Gas Turbine Conditions  

E-Print Network (OSTI)

of Engineering for Gas Turbines and Power, 130 C. K. Chan,support of the U.S. DOE Turbines program is also gratefullyof Engineering for Gas Turbines and Power, 130 (2) (2008)

Cheng, R. K.

2009-01-01T23:59:59.000Z

53

Turbine power plant with back pressure turbine  

SciTech Connect

A combined gas/steam turbine power plant is disclosed including a gas turbine having a combustion chamber and a steam turbine driven by steam generated with heat from the combustion gases of the gas turbine. The steam is utilized in a technological process downstream of the steam turbine. Relatively small fluctuations in back pressure are compensated by varying a delivery of fuel to the combustion chamber. Relatively large fluctuations in back pressure are compensated by supplying live steam directly to the technological process downstream of the steam turbine. Various devices are provided for conditioning the steam prior to being supplied to the technological process.

Kalt, J.; Kehlhofer, R.

1981-06-23T23:59:59.000Z

54

Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements  

Science Conference Proceedings (OSTI)

Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

2007-10-01T23:59:59.000Z

55

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

56

Characterization of Fish Passage Conditions through a Francis Turbine and Regulating Outlet at Cougar Dam, Oregon, Using Sensor Fish, 2009–2010  

Science Conference Proceedings (OSTI)

Fish passage conditions through a Francis turbine and a regulating outlet (RO) at Cougar Dam on the south fork of the McKenzie River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions encountered during passage via specific routes. The RO investigation was performed in December 2009 and the turbine evaluation in January 2010, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision, strike, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Cougar Dam indicates that the RO passage route through the 3.7-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine passage. Compared to mainstem Columbia River passage routes, none of the Cougar Dam passage routes as tested are safe for juvenile salmonid passage.

Duncan, Joanne P.

2011-05-23T23:59:59.000Z

57

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

58

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

59

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

60

Turbine Imaging Technology Assessment  

DOE Green Energy (OSTI)

The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

Moursund, Russell A.; Carlson, Thomas J.

2004-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas Turbine Condition Monitoring and Predictive Maintenance Capability Analysis Between Aviation and Power Generation Industries  

Science Conference Proceedings (OSTI)

This study compares and contrasts aviation and power generation condition monitoring and fault diagnosis. The report provides an overview of the technology, process, sensor suite and decision-making processes for both industries. The study highlights the level of decision automation and the structure to automatically initiate a maintenance process in aviation as one of the key differences between the two industries. This automation has important potential cost and operational benefits for the power gener...

2007-12-21T23:59:59.000Z

62

Characterization of Fish Passage Conditions through a Francis Turbine, Spillway, and Regulating Outlet at Detroit Dam, Oregon, Using Sensor Fish, 2009  

Science Conference Proceedings (OSTI)

Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike, collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.

Duncan, Joanne P.; Carlson, Thomas J.

2011-05-06T23:59:59.000Z

63

Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006  

DOE Green Energy (OSTI)

This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

Schulz, M. J.; Sundaresan, M. J.

2006-08-01T23:59:59.000Z

64

The Effect of Higher Hydrocarbons on the Ignition Delay of Natural Gas Fuels at Gas Turbine Conditions  

Science Conference Proceedings (OSTI)

This investigation focuses on studying autoignition of fuels primarily used for stationary gas turbine operation today and others that are garnering interest for future use. Most stationary gas turbine engines operate today on natural gas. Natural gas can either come from domestic or foreign sources. Natural gas from foreign sources is typically imported as a chilled liquid, so it is commonly referred to as liquefied natural gas (LNG). Variations in fuel characteristics at the source, coupled with fuel q...

2009-12-11T23:59:59.000Z

65

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

66

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

67

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

68

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

69

Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies  

SciTech Connect

This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

Jacobson, Paul T. [Electric Power Research Institute; Amaral, Stephen V. [Alden Research Laboratory; Castro-Santos, Theodore [U.S. Geological Survey; Giza, Dan [Alden Research Laboratory; Haro, Alexander J. [U.S. Geological Survey; Hecker, George [Alden Research Laboratory; McMahon, Brian [Alden Research Laboratory; Perkins, Norman [Alden Research Laboratory; Pioppi, Nick [Alden Research Laboratory

2012-12-31T23:59:59.000Z

70

Advanced Gas Turbine Guidelines: Hot Gas Path Parts Condition and Remaining Life Assessment for GE 7FA in Baseload Operation  

Science Conference Proceedings (OSTI)

Based on two years experience operating four advanced gas turbines (AGT) General Electric MS 7221 FA at Martin CC of Florida Power & Light (FP&L), this guideline describes the operating and maintenance philosophy used for baseload AGT units and the integrity of the hot path components and their remaining life. The guideline will assist utilities operating the GE MS 7221FA class AGT plan inspections and comparisons with other units in this class.

1997-04-16T23:59:59.000Z

71

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

72

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

73

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

74

Numerical and Experimental Analysis of Multi-Stage Axial Turbine Performance at Design and Off-Design Conditions  

E-Print Network (OSTI)

Computational fluid dynamics or CFD isan importanttool thatis used at various stages in the design of highly complex turbomachinery such as compressorand turbine stages that are used in land and air based power generation units. The ability of CFD to predict the performance characteristics of a specific blade design is challenged by the need to use various turbulence models to simulate turbulent flows as well as transition models to simulate laminar to turbulent transition that can be observed in various turbomachinery designs. Moreover, CFD is based on numerically solving highly complex differential equations, which through the use of a grid to discretize the geometry introduces numerical errors. Allthese factors combine to challenge CFD’s role as a predictor of blade performance. It has been generallyfound that CFD in its current state of the art is best used to compare between various design points and not as a pure predictor of performances. In this study the capability of CFD, and turbulence modeling, in turbomachinery based geometry is assessed.Three different blade designs are tested, that include an advanced two-stage turbine blade design, a three stage 2D or cylindrical design and finally a three stage bowed stator and rotor design. Allcases were experimentally tested at the Texas A&Muniversity Turbomachinery Performance and Flow Research Laboratory (TPFL).In all cases CFD provided good insights into fundamental turbomachinery flow physics, showing the expected improvement from using 2D cylindrical blades to 3D bowed blade designs in abating the secondary flow effects which are dominant loss generators.However, comparing experimentally measured performance results to numerically predicted shows a clear deficiency, where the CFD overpredicts performance when compared to experimentallyobtained data, largely underestimating the various loss mechanisms. In a relative sense, CFD as a tool allows the user to calculate the impact a new feature or change can have on a baseline design. CFD will also provide insight into what are the dominant physics that explain why a change can provide an increase or decrease in performance. Additionally,as part of this study, one of the main factors that affect the performance of modern turbomachinery is transition from laminar to turbulent flow.Transition is an influential phenomena especially in high pressure turbines, and is sensitive to factors such asupstream incidentwake frequency and turbulence intensity.A model experimentally developed, is implemented into a CFD solver and compared to various test results showing greater capability in modeling the effects of reduced frequency on the transition point and transitional flow physics. This model is compared to industry standard models showing favorable prediction performance due to its abilityto account for upstream wake effects which most current model are unable to account for.

Abdelfattah, Sherif Alykadry

2013-08-01T23:59:59.000Z

75

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

76

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

77

Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis  

E-Print Network (OSTI)

composite layups in cold conditions, the testing program at L'Ecole de Technologie Superi´eure (ETS

Victoria, University of

78

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

79

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

80

Modeling of Proposed Changes to SIUC Central Heating, Air-Conditioning, and Power Plant Incorporating Variable Frequency Drive (VFD) and High Efficiency Turbine.  

E-Print Network (OSTI)

??Currently, the Southern Illinois University Carbondale (SIUC) power plant produces steam at high pressure to drive a high pressure (HP) turbine to make a portion… (more)

Su, Heyin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

82

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

83

A simulation-based planning system for wind turbine construction  

Science Conference Proceedings (OSTI)

Wind turbine construction is a challenging undertaking due to the need to lift heavy loads to high locations in conditions of high and variable wind speeds. These conditions create great risks to contractors during the turbine assembly process. This ...

Dina Atef; Hesham Osman; Moheeb Ibrahim; Khaled Nassar

2010-12-01T23:59:59.000Z

84

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

85

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

86

The Production of Advanced Turbine Blades from P/M Superalloy ...  

Science Conference Proceedings (OSTI)

Introduction. The continual increase in the severity of gas turbine operating conditions has led to a progressive replacement of forged turbine blades from the first.

87

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

88

Heat transfer and film-cooling for the endwall of a first stage turbine vane  

E-Print Network (OSTI)

the turbine. Turbine inlet conditions in a gas turbine engine gen- erally consist of temperature and velocityHeat transfer and film-cooling for the endwall of a first stage turbine vane Karen A. Thole of the airfoils. One means of preventing degradation in the turbine is to film-cool components whereby coolant

Thole, Karen A.

89

Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation  

Science Conference Proceedings (OSTI)

The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

2011-09-15T23:59:59.000Z

90

The effects of manufacturing variability on turbine vane performance  

E-Print Network (OSTI)

Gas turbine vanes have airfoil shapes optimized to deliver specific flow conditions to turbine rotors. The limitations of the manufacturing process with regards to accuracy and precision mean that no vane will exactly match ...

Duffner, John D

2008-01-01T23:59:59.000Z

91

The effects of manufacturing variability on turbine vane performance  

E-Print Network (OSTI)

Gas turbine vanes have airfoil shapes optimized to deliver specific flow conditions to turbine rotors. The limitations of the manufacturing process with regards to accuracy and precision mean that no vane will exactly match ...

Duffner, John D.

92

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

93

www.cesos.ntnu.no Author Centre for Ships and Ocean Structures Offshore Wind Turbine Operation  

E-Print Network (OSTI)

1 www.cesos.ntnu.no Author ­ Centre for Ships and Ocean Structures Offshore Wind Turbine Operation Structures Outline · Introduction · Wind Turbine Operational Conditions · Wind Turbine Operation under Atmospheric Icing · Wind Turbine Operation under Fault Condition · Conclusions www.cesos.ntnu.no M. Etemaddar

Nørvåg, Kjetil

94

Single Rotor Turbine  

DOE Patents (OSTI)

A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

Platts, David A. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

95

Turbine protection system for bypass operation  

SciTech Connect

In a steam turbine installation having a high pressure turbine, a steam generator is described for providing steam to the turbine, at least a lower pressure turbine, a reheater in the steam path between the high and lower pressure turbines, and a steam bypass path for bypassing the turbines, the high pressure turbine having a one-way check valve in its output steam line to prevent bypass steam from entering its output. The improvement described here consists of: (A) a second bypass path for passing steam around the high pressure turbine; (B) the second bypass path including, (i) steam jet compressor means including two input sections and an output section, with one input section being connected to the high pressure turbine output, the other input section being connected to receive steam from the steam generator and the output section being connected to the input of the reheater, (ii) valving means for controlling the steam supply from the steam generator to the steam jet compressor means; and (C) control means responsive to an output condition at the high pressure turbine output for controlling the valving means.

Silvestri, G.J. Jr.

1986-03-18T23:59:59.000Z

96

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

97

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

98

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

99

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

100

Method for detecting gas turbine engine flashback  

SciTech Connect

A method for monitoring and controlling a gas turbine, comprises predicting frequencies of combustion dynamics in a combustor using operating conditions of a gas turbine, receiving a signal from a sensor that is indicative of combustion dynamics in the combustor, and detecting a flashback if a frequency of the received signal does not correspond to the predicted frequencies.

Singh, Kapil Kumar; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin Paul

2012-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

102

Cost Benefit Evaluation of HP Turbine Admission Schemes  

Science Conference Proceedings (OSTI)

The scheme used to position the control valves that admit steam to high-pressure turbines has a direct effect on the turbine’s performance. This report describes the two most common admission schemes, partial and full arc, and discusses their effects on heat rate, reliability, and cost versus benefit under different loading conditions and modes of operation.BackgroundHistorically, most steam turbines in coal-fired power plants operated in a ...

2012-12-14T23:59:59.000Z

103

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

104

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic conditions with turbine models covering the range of scales important for wind plant dynamics to help address the impacts that upwind turbines have on turbines in their wake and give greater insight into overall wind

105

Topping Turbines: Adding New Life to Older Plants  

E-Print Network (OSTI)

An existing power plant can be repowered at a modest investment cost through a topping turbine installation. Essentially, this consists of replacing the existing old, low pressure boilers with new, high pressure boilers and adding a new, high pressure, non-condensing turbine (topping turbine) . The high pressure steam generated in the new boilers is supplied to the throttle of the high pressure turbine and exhausted at the pressure required by the existing, old, low pressure, condensing turbines. The exhaust from the topping turbine is then supplied to the throttle of the existing turbines. The additional capacity results from the kilowatts generated in the topping turbine while reducing the steam pressure from the throttle to the exhaust conditions. Also, because this steam is not condensed, there is no loss of the latent heat of condensation of the steam to the condenser circulating water. Consequently, the thermal efficiency of the cycle is considerably enhanced.

Cadrecha, M.

1984-01-01T23:59:59.000Z

106

The Mechanical Property Response of Turbine Disks Produced ...  

Science Conference Proceedings (OSTI)

turbine under extreme operating conditions. In this investigation, the powder UDIMETB Alloy 720 was produced using an advanced gas atomization nozzle in.

107

Turbine power plant system  

SciTech Connect

A turbine power plant system consisting of three sub-systems; a gas turbine sub-system, an exhaust turbine sub-system, and a steam turbine sub-system. The three turbine sub-systems use one external fuel source which is used to drive the turbine of the gas turbine sub-system. Hot exhaust fluid from the gas turbine sub-system is used to drive the turbines of the exhaust turbine sub-system and heat energy from the combustion chamber of the gas turbine sub-system is used to drive the turbine of the steam turbine sub-system. Each sub-system has a generator. In the gas turbine sub-system, air flows through several compressors and a combustion chamber and drives the gas turbine. In the exhaust turbine sub-system, hot exhaust fluid from the gas turbine sub-system flows into the second passageway arrangement of first and fourth heat exchangers and thus transfering the heat energy to the first passageway arrangement of the first and fourth heat exchangers which are connected to the inlets of first and second turbines, thus driving them. Each turbine has its own closed loop fluid cycle which consists of the turbine and three heat exchangers and which uses a fluid which boils at low temperatures. A cooler is connected to a corresponding compressor which forms another closed loop system and is used to cool the exhaust fluid from each of the two above mentioned turbines. In the steam turbine sub-system, hot fluid is used to drive the steam turbine and then it flows through a fluid duct, to a first compressor, the first fluid passageway arrangement of first and second heat exchangers, the second passageway of the first heat exchanger, the combustion chamber of the gas turbine where it receives heat energy, and then finally to the inlet of the steam turbine, all in one closed loop fluid cycle. A cooler is connected to the second passageway of the second heat exchanger in a closed loop fluid cycle, which is used to cool the turbine exhaust.

Papastavros, D.

1985-03-05T23:59:59.000Z

108

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

109

Simulating Collisions for Hydrokinetic Turbines  

SciTech Connect

Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

2013-10-01T23:59:59.000Z

110

Influence of refraction on wind turbine noise  

E-Print Network (OSTI)

A semi-empirical method is applied to calculate the time-average sound level of wind turbine noise generation and propagation. Both are affected by wind shear refraction. Under upwind conditions the partially ensonified zone separates the fully ensonified zone (close to the turbine) and the shadow zone (far away from the turbine). Refraction is described in terms of the wind speed linear profile fitted to the power law profile. The rotating blades are treated as a two-dimensional circular source in the vertical plane. Inside the partially ensonified zone the effective A-weighted sound power decreases to zero when the receiver moves from the turbine toward the shadow zone. The presented results would be useful in practical applications to give a quick estimate of the effect of refraction on wind turbine noise.

Makarewicz, Rufin

2013-01-01T23:59:59.000Z

111

Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbines Wind Turbines July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an...

112

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

113

MHK Technologies/Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WWTurbine has developed and introduced a new commercially viable system for the extraction of Potential and Kinetic Energy from large fast moving water currents for conversion into Electric Energy Mooring Configuration Monopile Optimum Marine/Riverline Conditions min current velocity of 2 m s Technology Dimensions Technology Nameplate Capacity (MW) 0 5 3 0 MW Device Testing

114

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

115

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

116

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

117

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

118

The wind turbine  

Science Conference Proceedings (OSTI)

In this paper we present the modeling of a wing turbine, using the Euler Lagrange method and circuits theory. We get the mathematical equation (modeling) that describes the wind turbine and we simulate it using the mathlab program. Keywords: modeling, simulation, wind turbine

José De Jesús Rubio Avila; Andrés Ferreira Ramírez; Genaro Deloera Flores; Martín Salazar Pereyra; Fernando Baruch Santillanes Posada

2008-07-01T23:59:59.000Z

119

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

120

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

122

NEXT GENERATION TURBINE PROGRAM  

SciTech Connect

The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

William H. Day

2002-05-03T23:59:59.000Z

123

Combustion Turbine Experience and Intelligence Report: 2012  

Science Conference Proceedings (OSTI)

This report provides funders of the New Combustion Turbine/Combined-Cycle Plant Design and Technology Selection program (P80) with an overview of current industry trends and market conditions, new gas turbine designs and equipment, and an update on greenhouse gas control options for combined-cycle power plants.BackgroundThe relatively ample supply and low price of natural gas in North America, along with the retirement of coal-fired fossil plants, is leading ...

2012-12-31T23:59:59.000Z

124

Combustion Turbine Diagnostic Health Monitoring: Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM)  

Science Conference Proceedings (OSTI)

The industry-wide transition to condition-based maintenance strategies has prompted development of sophisticated, automated condition assessment tools. The Combustion Turbine Performance and Fault Diagnostic Module (CTPFDM) presented in this report is the second of a suite of intelligent software tools being developed by EPRI and the U.S. Department of Energy (DOE) National Energy Technology Laboratory as part of the Combustion Turbine Health Management (CTHM) System. The CTHM System will offer a signifi...

2004-03-17T23:59:59.000Z

125

Geothermal turbine installation  

SciTech Connect

A geothermal turbine intallation in which high-pressure steam is separated from geothermal steam, which is a mixture of steam and water, with the high pressure steam connected to a high pressure turbine. Low pressure steam produced by flashing the hot water component of the geothermal steam is introduced to a low pressure turbine which is constructed and operates independently of the high pressure turbine. The discharge steam from the high pressure turbine is introduced to a steam condenser operating at a low vacuum while discharge steam from the low pressure turbine is introduced into a steam condenser operating at a high vacuum. The cooling water system of the high and low pressure condensers are connected in series with one another. A maximum power increase is obtained if the flow rates of the high and low pressure steams at the extraction ports of the high and low pressure turbines are made substantially equal to one another.

Nishioka, R.

1983-01-04T23:59:59.000Z

126

Stream-injected free-turbine-type gas turbine  

SciTech Connect

This patent describes an improvement in a free turbine type gas turbine. The turbine comprises: compressor means; a core turbine mechanically coupled with the compressor means to power it; a power turbine which is independent from the core turbine; and a combustion chamber for providing a heated working fluid; means for adding steam to the working fluid; means for providing a single flow path for the working fluid, first through the core turbine and then through the power turbine. The improvement comprises: means for preventing mismatch between the core turbine and the compressor due to the addition of steam comprising coupling a variable output load to the compressor.

Cheng, D.Y.

1990-02-13T23:59:59.000Z

127

Wind and solar powered turbine  

SciTech Connect

A power generating station having a generator driven by solar heat assisted ambient wind is disclosed. A first plurality of radially extending air passages direct ambient wind to a radial flow wind turbine disposed in a centrally located opening in a substantially disc-shaped structure. A solar radiation collecting surface having black bodies is disposed above the first plurality of air passages and in communication with a second plurality of radial air passages. A cover plate enclosing the second plurality of radial air passages is transparent so as to permit solar radiation to effectively reach the black bodies. The second plurality of air passages direct ambient wind and thermal updrafts generated by the black bodies to an axial flow turbine which also derives additional motive power from the air mass exhausted by the radial flow turbine. The rotating shaft of the turbines drive the generator. The solar and wind driven power generating system operates in electrical cogeneration mode with a fuel powered prime mover. The system is particularly adapted to satisfy the power requirements of a relatively small community located in a geographic area having favorable climatic conditions for wind and solar powered power generation.

Wells, I.D.; Holmes, M.; Kohn, J.L.

1984-02-28T23:59:59.000Z

128

Ceramic vane demonstration in an industrial turbine  

SciTech Connect

A DOE program with Allison Engine Co. will demonstrate ceramic vanes in an industrial turbine. First-stage ceramic vanes and metallic mounts are to be designed, fabricated, and operated in a short-term engine test (up to 50 hr). The vanes and mounts will then be retrofitted into an existing turbine for operation at a commercial site for up to 8000 hr. They have been designed. Thermal and stress analyses of the vanes have calculated acceptable fast fracture stress levels and probabilities of survival > 99.99% for turbine continuous power and emergency shutdown (thermal shock) conditions. Max calculated steady-state stress is 169 MPa at 1182 C, so currently available ceramics appear to provide acceptable fast fracture strengths for use in industrial turbines. Long-term materials test will evaluate the lifetimes and retained strength of ceramics at stress and temperature levels in the range calculated from the ceramic vane analyses. Results of these tests will support on which vane material will be used in the long duration turbine demonstration. A successful demonstration could provide a basis for incorporating first-stage ceramic vanes into current generation industrial turbines and also the introduction of ceramic airfoils into downstream rows of future high temperature Advanced Turbine System (ATS) engines.

Wenglarz, R.A.; Calcuttawala, S.M.; Pope, J.E.

1997-04-01T23:59:59.000Z

129

Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling  

Science Conference Proceedings (OSTI)

In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

2011-01-04T23:59:59.000Z

130

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

131

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01T23:59:59.000Z

132

The turbine that goes anywhere * Vestas OptiSpeed  

E-Print Network (OSTI)

V52-850 kW The turbine that goes anywhere #12;* Vestas OptiSpeed® is not available in the USA configuration of the V52 make this turbine an excellent choice for all kinds of wind conditions. In addition to see why Vestas has erected more V52s than any other turbine in its portfolio ­ approximately 2,100

Furlong, Cosme

133

PowerJet Wind Turbine Project  

SciTech Connect

PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

Bartlett, Raymond J

2008-11-30T23:59:59.000Z

134

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

135

Ten years with turbine metering  

SciTech Connect

The operation and performance experience in using 110 turbine meters to monitor the gas flow in turbines used on natural gas pipelines are discussed. Information is included on turbine meter selection, installation, calibration, performance testing, failures, and maintenance. (LCL)

Judd, H.C.

1980-01-01T23:59:59.000Z

136

Synthesis of Sensor Fish Data for Assessment of Fish Passage Conditions at Turbines, Spillways, and Bypass Facilities – Phase 1: The Dalles Dam Spillway Case Study  

DOE Green Energy (OSTI)

This report summarizes the characterization of spillway passage conditions at The Dalles Dam in 2006 and the effort to complete a comprehensive database for data sets from The Dalles Dam spillway Sensor Fish and balloon-tagged live fish experiments. Through The Dalles Dam spillway case study, Pacific Northwest National Laboratory (PNNL) researchers evaluated the database as an efficient means for accessing and retrieving system-wide data for the U.S Army Corps of Engineers (USACE).

Deng, Zhiqun; Serkowski, John A.; Fu, Tao; Carlson, Thomas J.; Richmond, Marshall C.

2007-12-31T23:59:59.000Z

137

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

138

Gas Turbine Optimum Operation.  

E-Print Network (OSTI)

??Many offshore installations are dependent on power generated by gas turbines and a critical issue is that these experience performance deterioration over time. Performance deterioration… (more)

Flesland, Synnøve Mangerud

2010-01-01T23:59:59.000Z

139

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

140

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Syngas Particulate Deposition and Erosion at the Leading Edge of a Turbine Blade with Film Cooling Virginia Tech Danesh Tafti Project Dates: 812007 - 9302010 Area of...

142

Hermetic turbine generator  

DOE Patents (OSTI)

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

143

Real time wind turbine simulator.  

E-Print Network (OSTI)

??A novel dynamic real-time wind turbine simulator (WTS) is developed in this thesis, which is capable of reproducing dynamic behavior of real wind turbine. The… (more)

Gong, Bing

2007-01-01T23:59:59.000Z

144

NETL: Turbine Projects - Efficiency Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Improvemenet Turbine Projects Efficiency Improvemenet Advanced Hot Section Materials and Coatings Test Rig DataFact Sheets System Study for Improved Gas Turbine...

145

Annual Report: Turbines (30 September 2012)  

SciTech Connect

The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

Alvin, Mary Anne [NETL] [NETL; Richards, George [NETL] [NETL

2012-09-30T23:59:59.000Z

146

System and method for individually testing valves in a steam turbine trip control system  

SciTech Connect

This patent describes a steam turbine power plant. It comprises: a steam generator; a steam turbine adapted to receive steam form the steam generator; a throttle valve for regulating the flow of the steam received by the steam turbine; and an electro-hydraulic trip control system for causing the throttle valve to close when a predetermined condition has been reached.

Hurley, J.D.

1992-07-28T23:59:59.000Z

147

Model and Seismic Analysis of Large-scale Wind Turbine Tower Structure  

Science Conference Proceedings (OSTI)

The working condition of wind turbine tower structure with a massive engine room and revolving wind wheels is very complex. The paper simplify the wind turbine tower model with finite element analysis software --ANSYS, completed modal analysis firstly, ... Keywords: wind turbine tower, model analysis, resonance, time-history analysis, dynamic

Xiang Liu; Jiangtao Kong

2012-05-01T23:59:59.000Z

148

Management and Conservation Article Behavioral Responses of Bats to Operating Wind Turbines  

E-Print Network (OSTI)

for in the testing phase for wind turbines. However, reproducing the actual conditions may be challenging maintenance case. A socket is a location in a system (in the wind turbine) where a single instance of the item term viability. Furthermore, the reliability of wind turbines turned out to be different from what

Holberton, Rebecca L.

149

Research on Fault Diagnosis of Wind Turbine Based on WPA and RF  

Science Conference Proceedings (OSTI)

To enable efficient operation in wind turbine, it is necessary to grip the working condition of all key parts in wind turbine and correctly to minimize the maintain time and fees caused by mechanical failure which leads to suspending. In this paper, ... Keywords: wind turbine, fault diagnosis, wavelet packet analysis, random forest

Liu Hui; Wang Chao; Yan Wenjun

2012-04-01T23:59:59.000Z

150

AIAA-2003-0694 QUANTIFICATION OF PROCESSING PARAMETERS FOR WIND TURBINE  

E-Print Network (OSTI)

AIAA-2003-0694 QUANTIFICATION OF PROCESSING PARAMETERS FOR WIND TURBINE BLADES Douglas Cairns, John of processing techniques and can be useful to wind turbine blade manufacturers to prepare processing conditions-3]. This is a consequence of the typical material architectures that are used in wind turbine blades. Figure 1

151

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

152

Gas turbine diagnostic system  

E-Print Network (OSTI)

In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

Talgat, Shuvatov

2011-01-01T23:59:59.000Z

153

Turbine disc sealing assembly  

SciTech Connect

A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

Diakunchak, Ihor S.

2013-03-05T23:59:59.000Z

154

Gas turbine engines  

SciTech Connect

A core engine or gas generator is described for use in a range of gas turbine engines. A multi-stage compressor and a single stage supersonic turbine are mounted on a single shaft. The compressor includes a number of stages of variable angle and the gas generator has an annular combustion chamber.

MacDonald, A.G.

1976-05-18T23:59:59.000Z

155

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

156

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

157

Ceramic Cerami Turbine Nozzle  

SciTech Connect

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Boyd, Gary L. (Alpine, CA)

1997-04-01T23:59:59.000Z

158

Ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

Shaffer, J.E.; Norton, P.F.

1996-12-17T23:59:59.000Z

159

Defining the normal turbine inflow within a wind park environment  

DOE Green Energy (OSTI)

This brief paper discusses factors that must be considered when defining the [open quotes]normal[close quotes] (as opposed to [open quotes]extreme[close quotes]) loading conditions seen in wind turbines operating within a wind park environment. The author defines the [open quotes]normal[close quotes] conditions to include fatigue damage accumulation as a result of: (1) start/stop cycles, (2) emergency shutdowns, and (3) the turbulence environment associated with site and turbine location. He also interprets [open quotes]extreme[close quotes] loading conditions to include those events that can challenge the survivability of the turbine.

Kelley, N.D.

1993-06-01T23:59:59.000Z

160

Defining the normal turbine inflow within a wind park environment  

DOE Green Energy (OSTI)

This brief paper discusses factors that must be considered when defining the {open_quotes}normal{close_quotes} (as opposed to {open_quotes}extreme{close_quotes}) loading conditions seen in wind turbines operating within a wind park environment. The author defines the {open_quotes}normal{close_quotes} conditions to include fatigue damage accumulation as a result of: (1) start/stop cycles, (2) emergency shutdowns, and (3) the turbulence environment associated with site and turbine location. He also interprets {open_quotes}extreme{close_quotes} loading conditions to include those events that can challenge the survivability of the turbine.

Kelley, N.D.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

162

Performance and market evaluation of the bladeless turbine  

SciTech Connect

The three-inch diameter prototype bladeless turbine was tested with air over a range of inlet pressures from 20 to 100 psia and speeds of 10, 20, 30 and 40 thousand rpm. The peak efficiency of 22.5 percent was recorded at a pressure of 98 psia and a speed of 40,000 rpm. Efficiency increased slightly with speed and inlet pressure over the range of test conditions. The test program was somewhat hindered by mechanical failures. The turbine bearings in particular were unreliable, with two instances of outright failure and numerous cases of erratic performance. A model of the bladeless turbine was developed to aid in interpreting the experimental results. A macroscopic approach, incorporating several favorable assumptions, was taken to place a reasonable upper bound on turbine efficiency. The model analytically examines the flow through the air inlet nozzles and the interaction between the fluid jet and the turbine blades. The analysis indicates that the maximum possible efficiency of a tangential flow turbine with straight axial blades is 50 percent. This is a direct consequence of turning the fluid only 90 degrees relative to the turbine blade. The adoption of the bladeless turbine as the expander in an Organic Rankine Cycle (ORC) will depend to a great extent on the efficiency of the turbine. The market potential for ORC technology will also impact the adoption of the bladeless turbine. Other expanders have demonstrated efficiencies of 60 to 80% in ORC systems. The Gamell turbine had a peak test efficiency of 22.5% and a maximum theoretical efficiency of 50%. Costs of the turbine are highly uncertain, relying to a great extent on cost reductions achieved through quantity production and through learning.

Garrett-Price, B.A.; Barnhart, J.S.; Eschbach, E.J.

1982-10-01T23:59:59.000Z

163

Gas turbine combustor transition  

DOE Patents (OSTI)

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

164

Gas turbine combustor transition  

DOE Patents (OSTI)

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

165

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

1997-07-08T23:59:59.000Z

166

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

167

Turbine blade vibration dampening  

DOE Patents (OSTI)

The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

1997-07-08T23:59:59.000Z

168

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

169

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

170

Wind Turbine Acoustic Noise A white paper  

E-Print Network (OSTI)

Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

Massachusetts at Amherst, University of

171

Real-time wind turbine emulator suitable for power quality and dynamic control studies, MASc Thesis  

E-Print Network (OSTI)

Abstract — Wind turbines are increasingly becoming significant components of power systems. To evaluate competing wind energy conversion technologies, a real-time Wind Turbine Emulator, which emulates the dynamic torque produced by an actual turbine has been developed. This is necessary since the real world performance of a wind turbine, subjected to variable wind conditions is more difficult to evaluate than a standard turbine generator system operating in near steady state. This emulator is capable of reproducing both the static and dynamic torque of an actual wind turbine. It models the torque oscillations caused by wind shear, tower shadow, and the obvious pulsations caused by variable wind speed. Also included are the dynamic effects of a large turbine inertia. This emulator will allow testing without the costly construction of the actual turbine blades and tower to determine the strengths and weaknesses of competing energy conversion and control technologies.

Dale S. L. Dolan; Student Member; P. W. Lehn; Member Ieee

2005-01-01T23:59:59.000Z

172

Designing an ultrasupercritical steam turbine  

Science Conference Proceedings (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

173

Plant Guide to Turbine Disk Rim Inspection  

Science Conference Proceedings (OSTI)

Steam turbine disk rims are one of the most highly stressed areas of the rotor. Periodic inspection of the rims provides information on the operability of the rotor, including the identification of conditions that could result in catastrophic failure of the rotor.

2006-12-18T23:59:59.000Z

174

Monitoring system improves maintenance for North Sea industrial gas turbines  

SciTech Connect

A change in maintenance emphasis and installation of a computerized condition-monitoring system for Type-H industrial gas turbines on Ekofisk platforms have led to more efficient use of manpower and more-productive machinery.

Cullen, J.P. (Phillips Petroleum Co., Tanager (NO))

1988-10-24T23:59:59.000Z

175

Microsoft Word - Turbine Imaging RM TLG.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

quantify fish injury mechanisms, there is a need to observe fish interacting with structural elements and hydraulic conditions in turbines. 1.2 Goals and Objectives The goal of...

176

Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines: Preprint  

DOE Green Energy (OSTI)

This paper examines the aeroelastic stability of a 5-MW conceptual wind turbine mounted on a floating barge and presents results for onshore and offshore configurations for various conditions.

Bir, G.; Jonkman, J.

2007-08-01T23:59:59.000Z

177

Program to develop advanced gas turbine systems  

SciTech Connect

The need for an advanced turbine program for land-based engines has been broadly recognized in light of reductions in military funding for turbines, rapid growth in the sale of gas turbines for utility and industrial usage, and the fierce competition with off-shore manufacturers. Only with Government support can US manufacturers meet rapidly changing market conditions such as increased emissions requirements and lower capital cost requirements. In light of this, ATS planning was requested by Congress in the fiscal year (FY) 92 appropriations and is included in thee Energy Policy Act of 1992. The program budget has increased rapidly, with the FY 94 budget including. over $28 million for ATS program activities. The Natural Gas Strategic Plan and Multi-Year Program Crosscut Plan, 1993--1998, includes the ATS program as part of the overall DOE plan for natural gas-related research and development (R&D) activities. Private sector support for the program is sufficient. Three open meetings have been held during the last 2 years to provide an opportunity for industry suggestions and comments. As the result of a public review of the program plan held June 4, 1993, in Pittsburgh, 46 letters of support were received from industry, academia, and others. Gas turbines represent the fastest growing market segment in electrical and cogeneration markets, with over 60 percent of recent installations based on gas turbines. Gas turbine systems offer low installation and operating costs, low emissions (currently with add-on equipment for non-attainment areas), and quick installation (1--2 years). According to the Annual Energy Outlook 1993, electricity and natural gas demand should both grow substantially through 2010. Natural gas-fired gas turbine systems continue to be the prime candidates for much of both new and retrofit capacity in this period. Emissions requirements continue to ratchet downward with single-digit NO{sub x} ppM required in several non-attainment areas in the US

Webb, H.A. [USDOE Morgantown Energy Technology Center, WV (United States); Parks, W.P. [USDOE, Washington, DC (United States)

1994-07-01T23:59:59.000Z

178

Coupled Dynamic Analysis of Multiple Unit Floating Offshore Wind Turbine  

E-Print Network (OSTI)

In the present study, a numerical simulation tool has been developed for the rotor-floater-tether coupled dynamic analysis of Multiple Unit Floating Offshore Wind Turbine (MUFOWT) in the time domain including aero-blade-tower dynamics and control, mooring dynamics and platform motion. In particular, the numerical tool developed in this study is based on the single turbine analysis tool FAST, which was developed by National Renewable Energy Laboratory (NREL). For linear or nonlinear hydrodynamics of floating platform and generalized-coordinate-based FEM mooring line dynamics, CHARM3D program, hull-riser-mooring coupled dynamics program developed by Prof. M.H. Kim’s research group during the past two decades, is incorporated. So, the entire dynamic behavior of floating offshore wind turbine can be obtained by coupled FAST-CHARM3D in the time domain. During the coupling procedure, FAST calculates all the dynamics and control of tower and wind turbine including the platform itself, and CHARM3D feeds all the relevant forces on the platform into FAST. Then FAST computes the whole dynamics of wind turbine using the forces from CHARM3D and return the updated displacements and velocities of the platform to CHARM3D. To analyze the dynamics of MUFOWT, the coupled FAST-CHARM3D is expanded more and re-designed. The global matrix that includes one floating platform and a number of turbines is built at each time step of the simulation, and solved to obtain the entire degrees of freedom of the system. The developed MUFOWT analysis tool is able to compute any type of floating platform with various kinds of horizontal axis wind turbines (HAWT). Individual control of each turbine is also available and the different structural properties of tower and blades can be applied. The coupled dynamic analysis for the three-turbine MUFOWT and five-turbine MUFOWT are carried out and the performances of each turbine and floating platform in normal operational condition are assessed. To investigate the coupling effect between platform and each turbine, one turbine failure event is simulated and checked. The analysis shows that some of the mal-function of one turbine in MUFOWT may induce significant changes in the performance of other turbines or floating platform. The present approach can directly be applied to the development of the remote structural health monitoring system of MUFOWT in detecting partial turbine failure by measuring tower or platform responses in the future.

Bae, Yoon Hyeok

2013-05-01T23:59:59.000Z

179

Numerical simulation and prediction of loads in marine current turbine full-scale rotor blades.  

E-Print Network (OSTI)

??Marine current turbines are submerged structures and subjected to loading conditions from both the currents and wave effects. The associated phenomena posed significant challenge to… (more)

Senat, Junior.

2011-01-01T23:59:59.000Z

180

Microsoft PowerPoint - 2010-10-20-Gas_Turbine_Review-ju_fld_rjs  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen Development of validated high hydrogen syngas kinetic mechanism at pressures of gas turbine conditions * Development of computationally efficient, reduced kinetic...

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Adaptive simulation of gas turbine performance  

SciTech Connect

A method is presented allowing the simulation of gas turbine performance with the possibility of adapting to engine particularities. Measurements along the gas path are used, in order to adapt a given performance model by appropriate modification of the component maps. The proposed method can provide accurate simulation for engines of the same type, differing due to manufacturing or assembly tolerances. It doesn't require accurate component maps, as they are derived during the adaptation process. It also can be used for health monitoring purposes, introducing thus a novel approach for component condition assessment. The effectiveness of the proposed method is demonstrated by application to an industrial gas turbine.

Stamatis, A.; Mathioudakis, K.; Papailiou, K.D. (Ethnikon Metsovion Polytechneion, Athens (Greece))

1990-04-01T23:59:59.000Z

182

Dynamic stall on wind turbine blades  

DOE Green Energy (OSTI)

Dynamic loads must be predicted accurately in order to estimate the fatigue life of wind turbines operating in turbulent environments. Dynamic stall contributes to increased dynamic loads during normal operation of all types of horizontal-axis wind turbine (HAWTs). This report illustrates how dynamic stall varies throughout the blade span of a 10 m HAWT during yawed and unyawed operating conditions. Lift, drag, and pitching moment coefficients during dynamics stall are discussed. Resulting dynamic loads are presented, and the effects of dynamic stall on yaw loads are demonstrated using a yaw loads dynamic analysis (YAWDYN). 12 refs., 22 figs., 1 tab.

Butterfield, C.P.; Simms, D.; Scott, G. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Hansen, A.C. [Utah Univ., Salt Lake City, UT (United States)] [Utah Univ., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

183

NETL: Turbines Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive Archive KEY: News News & Features Events Events Publications Publications Archive 09.26.2013 Publications The 2013 Hydrogen Turbine Program Portfolio has been posted to the Reference Shelf. 08.15.2013 News DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. 07.15.2013 News NETL Innovations Recognized with R&D 100 Awards Two technologies advanced by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) in collaboration with strategic partners have been recognized by R&D Magazine as among the 100 most technologically significant products introduced into the commercial marketplace within the past year.

184

Micro Turbine Generator Program  

Science Conference Proceedings (OSTI)

A number of micro turbines generators have recently been announced as currently commercially available for sale to customers, such as end users, utilities, and energy service providers. Manufacturers and others are reporting certain performance capabilities ...

Stephanie L. Hamilton

2000-01-01T23:59:59.000Z

185

NETL: Turbines - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

- Catalytic Combustion PDF-855KB 41892 - Praxair Final Report - Low NOx Fuel Flexible Gas Turbine PDF-214KB 42176 - GT 2006 Annual Report PDF-504KB 42495 - UTEP H2 Kinetics...

186

Turbines in the sky  

SciTech Connect

Gas turbines are being investigated as power sources for the proposed Star Wars weapons flatforms. The gas turbine engine offers the best opportunity for exploiting the high-temperature potential of both nuclear and chemical combustion. The use of mature gas turbine technology and existing materials would result in highly reliable PCUs capable of meeting SDI's requirements. However, operation under the temperature limits imposed by existing materials would result in a prohibitively heavy system. Cooled blades would somewhat increase temperature capability; however the turbine's mass, though reduced, would still be unacceptably large. The greatest improvements would result from the ability to operate at temperatures of up to 2000 K, pressures up to 14 MPa, and stress up to 690 MPa.

Boyle, R.V.; Riple, J.C.

1987-07-01T23:59:59.000Z

187

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

188

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for ‘green’ energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

189

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1996-01-30T23:59:59.000Z

190

Turbine nozzle positioning system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

Norton, P.F.; Shaffer, J.E.

1996-01-30T23:59:59.000Z

191

SPACE HANDBOOK TURBINES  

SciTech Connect

Turbine specific weight vs. power plant output was investigated for rubidium, potassium, and sodium at several inlet temperatures to obtain order of magnitude performance and weight of possible nuclear power plant systems. (W.L.H.)

Grimaldi, J.

1960-08-29T23:59:59.000Z

192

Gas turbine noise control  

Science Conference Proceedings (OSTI)

The use of gas turbine powered generators and pumping stations are likely to increase over the next two decades. Alternative fuel systems utilizing fluidized coal beds are likely in the near future

Louis A. Challis and Associates Pty. Ltd.

1979-01-01T23:59:59.000Z

193

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

194

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

195

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

196

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

197

Assessment of turbine generator technology for district heating applications  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of large cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. The performance of the 250 MW district heating turbine as applied to meet the heat load duration curve for Minneapolis--St. Paul area is analyzed, and associated fuel savings are estimated.

Oliker, I.

1978-09-01T23:59:59.000Z

198

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

199

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. June 26, 2013 Radial-Radial Single Rotor Turbine A rotor for use in...

200

UNSTEADY SIMULATION OF FLOW IN MICRO VERTICAL AXIS WIND TURBINE  

E-Print Network (OSTI)

Though wind turbines and windmills have been used for centuries, the application of aerodynamics technology to improve reliability and reduce costs of wind-generated energy has only been pursued in earnest for the past 40 years. Today, wind energy is mainly used to generate electricity. Wind is a renewable energy source. Power production from wind turbines is affected by certain conditions: wind speed, turbine speed, turbulence and the changes of wind direction. These conditions are not always optimal and have negative effects on most turbines. The present turbine is supposed to be less affected by these conditions because the blades combine a rotating movement around each own axis and around the nacelle’s one. Due to this combination of movements, flow around this turbine can be more highly unsteady, because of great blade stagger angles. The turbine has a rotor with three straight blades of symmetrical airfoil. Paper presents unsteady simulations that have been performed for one wind velocity, and different initial blades stagger angles. The influence of interaction of blades is studied for one specific constant rotational speed among the four rotational speeds that have been studied.

A. C. Bayeul-lainé; G. Bois

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

202

Using Machine Learning to Create Turbine Performance Models (Presentation)  

DOE Green Energy (OSTI)

Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to explore atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that of the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data is required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of different turbulence and shear at the new site, compared to the test site.

Clifton, A.

2013-04-01T23:59:59.000Z

203

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS ? PROJECT SUMMARY  

Science Conference Proceedings (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach ?1425-1760?C (?2600-3200?F) with pressures of ?300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require (1) durable thermal barrier coatings (TBCs), (2) high temperature creep resistant metal substrates, and (3) effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in the TBCs and aerothermal cooling. To support the advanced turbine technology development, the Office of Research and Development (ORD) at National Energy Technology Laboratory (NETL) has continued its collaborative research efforts with the University of Pittsburgh and West Virginia University, while working in conjunction with commercial material and coating suppliers. This paper presents the technical accomplishments that were made during FY09 in the initial areas of advanced materials, aerothermal heat transfer and non-destructive evaluation techniques for use in advanced land-based turbine applications in the Materials and Component Development for Advanced Turbine Systems project, and introduces three new technology areas ? high temperature overlayer coating development, diffusion barrier coating development, and oxide dispersion strengthened (ODS) alloy development that are being conducted in this effort.

M. A. Alvin

2010-06-18T23:59:59.000Z

204

Turbine inner shroud and turbine assembly containing such inner shroud  

DOE Patents (OSTI)

A turbine inner shroud and a turbine assembly. The turbine assembly includes a turbine stator having a longitudinal axis and having an outer shroud block with opposing and longitudinally outward facing first and second sides having open slots. A ceramic inner shroud has longitudinally inward facing hook portions which can longitudinally and radially surround a portion of the sides of the outer shroud block. In one attachment, the hook portions are engageable with, and are positioned within, the open slots.

Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Corman, Gregory Scot (Ballston Lake, NY); Dean, Anthony John (Scotia, NY); DiMascio, Paul Stephen (Clifton Park, NY); Mirdamadi, Massoud (Niskayuna, NY)

2001-01-01T23:59:59.000Z

205

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

206

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

207

Gas generator and turbine unit  

SciTech Connect

A gas turbine power unit is disclosed in which the arrangement and configuration of parts is such as to save space and weight in order to provide a compact and self-contained assembly. An air-intake casing supports the upstream end of a gas generator, the down-stream end of which is integral with a power turbine. The stator casing of the turbine is connected to a cone thermally insulated and completely inserted into any exhaust casing having a vertical outlet, wherein the turbine exhaust is conveyed into the exhaust casing by an annular diffusing cone. The turbine casing is supported on four legs. In addition, the turbine rotor and thus the turbine shaft are overhangingly supported by an independent structure, the weight of which bears on the machine base outside the exhaust casing and away of the power turbine space.

Vinciguerra, C.

1984-12-11T23:59:59.000Z

208

Ceramics for ATS industrial turbines  

DOE Green Energy (OSTI)

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

209

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

210

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

211

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

212

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

213

Cavitation Erosion of Francis Turbines  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation ...

214

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

215

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

216

Wind turbine spoiler  

DOE Patents (OSTI)

An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

Sullivan, William N. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

217

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

1995-01-01T23:59:59.000Z

218

Gas turbine sealing apparatus  

DOE Patents (OSTI)

A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

2013-02-19T23:59:59.000Z

219

Turbine nozzle attachment system  

DOE Patents (OSTI)

A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

Norton, P.F.; Shaffer, J.E.

1995-10-24T23:59:59.000Z

220

Applications: Wind turbine structural health  

E-Print Network (OSTI)

of turbine system management. The data obtained from this multi-scale sensing capability will be fullyCapability Applications: Wind turbine structural health monitoring Individual turbine maintenance for active control in the field Limit damage propagation and maintenance costs Maximize return

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

222

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

223

Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant  

SciTech Connect

The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow.

Bardia, A.

1980-02-01T23:59:59.000Z

224

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

225

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1982-01-01T23:59:59.000Z

226

Velocity pump reaction turbine  

DOE Patents (OSTI)

An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

House, Palmer A. (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

227

Vertical axis wind turbines  

DOE Patents (OSTI)

A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

2011-03-08T23:59:59.000Z

228

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02T23:59:59.000Z

229

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

230

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

231

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

232

Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint  

DOE Green Energy (OSTI)

Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

2011-12-01T23:59:59.000Z

233

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

234

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

that the average turbine’s rotor swept area has increasedthe average turbine hub height and rotor diameter also6. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2012-01-01T23:59:59.000Z

235

Aeroengine turbine exhaust gas temperature prediction using process support vector machines  

Science Conference Proceedings (OSTI)

The turbine exhaust gas temperature (EGT) is an important parameter of the aeroengine and it represents the thermal health condition of the aeroengine. By predicting the EGT, the performance deterioration of the aeroengine can be deduced in advance and ... Keywords: aeroengine, condition monitoring, process support vector machines, time series prediction, turbine exhaust gas temperature

Xu-yun Fu, Shi-sheng Zhong

2013-07-01T23:59:59.000Z

236

A Dynamometer for an Ocean Turbine Prototype: Reliability through Automated Monitoring  

Science Conference Proceedings (OSTI)

An ocean turbine extracts the kinetic energy from ocean currents to generate electricity. Machine Condition Monitoring(MCM) / Prognostic Health Monitoring (PHM) systems allow for self-checking and automated fault detection, and are integral in the construction ... Keywords: sensor fusion, dynamometer, ocean turbine, condition monitoring, predictive health monitoring

Janell Duhaney; Taghi M. Khoshgoftaar; John C. Sloan; Bassem Alhalabi; Pierre P. Beaujean

2011-11-01T23:59:59.000Z

237

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Basics Wind Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

238

Wind Turbine Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbine Basics Turbine Basics Wind Turbine Basics July 30, 2013 - 2:58pm Addthis Energy 101: Wind Turbines Basics This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines. Horizontal Axis Turbines Horizontal axis turbines are the most common turbine configuration used today. They consist of a tall tower, atop which sits a fan-like rotor that faces into or away from the wind, a generator, a controller, and other components. Most horizontal axis turbines built today are two- or three-bladed. Horizontal axis turbines sit high atop towers to take advantage of the

239

Infrared Probe for Application to Steam Turbine Blade Vibration Detection  

Science Conference Proceedings (OSTI)

Technology for non-contacting steam turbine blade tip vibration measurement has advanced to the point of being a viable tool for risk management in situations where turbine blade high-cycle vibration occurs as a result of operating parameters or blade condition. This report describes the development and prototype testing of a new type of blade tip time-of-arrival sensing system for use with commercial signal processing systems.

2004-12-16T23:59:59.000Z

240

NETL: Turbine Projects - Cost Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Reduction Cost Reduction Turbine Projects Cost Reduction Single Crystal Turbine Blades Enhancing Gas Turbine Efficiency Data/Fact Sheets Enabling and Information Technologies to Increase RAM of Advanced Powerplants Data/Fact Sheets Development of NDE Technology for Environmental Barrier Coating and Residual Life Estimation Data/Fact Sheets Welding and Weld Repair of Single Crystal Gas Turbine Alloy Data/Fact Sheets Combustion Turbine Hot Section Coating Life Management Data/Fact Sheets On-Line Thermal Barrier Coating Monitor for Real-Time Failure Protection and Life Maximization Data/Fact Sheets On-Line Thermal Barrier Coating [PDF] Advanced Monitoring to Improve Combustion Turbine/Combined Cycle RAM Data/Fact Sheets Advanced Monitoring to Improve Combustion Turbine [PDF]

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Turbine vane structure  

DOE Patents (OSTI)

A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

Irwin, John A. (Greenwood, IN)

1980-08-19T23:59:59.000Z

242

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-12-31T23:59:59.000Z

243

Advanced turbine systems program  

SciTech Connect

In accordance with the goals of the DOE program, improvements in the gas turbine are the primary focus of Allison activity during Phase I. To this end Allison conducted a survey of potentially applicable gas turbine cycles and selected the advanced combined cycle as reference system. Extensive analysis of two versions of the advanced combined cycle was performed against the requirement for a 60% thermal efficiency (LHV) utility-sized, natural gas fired system. This analysis resulted in technology requirements for this system. Additional analysis determined emissions potential for the system, established a coal-fueled derivative system and a commercialization plan. This report deals with the technical requirements for a system that meets the thermal efficiency goal. Allison initially investigated four basic thermodynamic cycles: Humid air turbine, intercalate-recuperated systems, advanced combined cycle, chemically recuperated cycle. Our survey and cycle analysis indicated that au had the potential of reaching 60% thermal efficiency. We also concluded that engine hot section technology would be a critical technology regardless of which cycle was chosen. Based on this result Allison chose to concentrate on the advanced combined cycle. This cycle is well known and understood by the utility turbine user community and is therefore likely to be acceptable to users.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1992-01-01T23:59:59.000Z

244

Temperature stratified turbine compressors  

SciTech Connect

A method and apparatus for improving the efficiency of a compressor of a gas turbine engine is disclosed. The inlet gas entering the compressor is stratified into two portions of different temperatures. The higher temperature gas is introduced adjacent the outer tipe of the compressor blades to reduce the relative Mach number of the flow at the area.

Earnest, E.R.; Passinos, B.

1979-01-09T23:59:59.000Z

245

Turbine Inflow Characterization at the National Wind Technology Center  

Science Conference Proceedings (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

246

Turbine Inflow Characterization at the National Wind Technology Center: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

2012-01-01T23:59:59.000Z

247

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

248

MATERIALS AND COMPONENT DEVELOPMENT FOR ADVANCED TURBINE SYSTEMS  

Science Conference Proceedings (OSTI)

Future hydrogen-fired or oxy-fuel turbines will likely experience an enormous level of thermal and mechanical loading, as turbine inlet temperatures (TIT) approach 1425-1760ºC with pressures of 300-625 psig, respectively. Maintaining the structural integrity of future turbine components under these extreme conditions will require durable thermal barrier coatings (TBCs), high temperature creep resistant metal substrates, and effective cooling techniques. While advances in substrate materials have been limited for the past decades, thermal protection of turbine airfoils in future hydrogen-fired and oxy-fuel turbines will rely primarily on collective advances in TBCs and aerothermal cooling. To support the advanced turbine technology development, the National Energy Technology Laboratory (NETL) at the Office of Research and Development (ORD) has initiated a research project effort in collaboration with the University of Pittsburgh (UPitt), and West Virginia University (WVU), working in conjunction with commercial material and coating suppliers, to develop advanced materials, aerothermal configurations, as well as non-destructive evaluation techniques for use in advanced land-based gas turbine applications. This paper reviews technical accomplishments recently achieved in each of these areas.

M. A. Alvin

2009-06-12T23:59:59.000Z

249

Midwest Consortium for Wind Turbine Reliability and Optimization  

SciTech Connect

This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

Scott R. Dana; Douglas E. Adams; Noah J. Myrent

2012-05-11T23:59:59.000Z

250

Identification of Wind Turbine Response to Turbulent Inflow Structures: Preprint  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory conducted an experiment to obtain detailed wind measurements and corresponding wind turbine measurements in order to establish a causal relationship between coherent turbulent structures and wind turbine blade fatigue loads. Data were collected for one entire wind season from October 2000 to May 2001. During this period, the wind turbine operated under atmospheric conditions that support the formation of coherent turbulent structures 31% of the time. Using the equivalent fatigue load parameter as a measure of wind turbine blade fatigue and using statistical measures of the turbulent fluctuations of the wind, general correlation between the turbulence and the wind turbine response is shown. Direct correlation cannot be resolved with 10-minute statistics for several reasons. Multiple turbulent structures can exist within a 10-minute record, and the equivalent fatigue load parameter is essentially a 10-minute statistic that cannot estimate turbine response to individual turbulent structures. Large-magnitude turbulent fluctuations in the form of instantaneous Reynolds stresses do not necessarily correspond directly to large-magnitude blade root moment amplitudes. Thus, additional work must be done to quantify the negative turbine response and to correlate this response to turbulent inflow parameters over time scales less than 10 minutes.

Hand, M. M.; Kelley, N. D.; Balas, M. J.

2003-06-01T23:59:59.000Z

251

Metallurgical Guidebook for Steam Turbine Rotors and Discs, Volume 1: Chemistry, Manufacturing, Service Degradation, Life Assessment , and Repair  

Science Conference Proceedings (OSTI)

This guide is a compilation of information concerning steam turbine rotors and discs. Due to the variety of operating temperatures and conditions involved, factors such as material composition, manufacturing and heat treatment condition methods, and property requirements may differ from one steam turbine to another. Specifically, this guide addresses turbine rotor and disc materials used, vintages, manufacturing history, quality conditions, and chemical and mechanical properties, and it provides utility ...

2009-12-23T23:59:59.000Z

252

International Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report reviews the state of the art in materials usage for steam turbine valves manufactured and used in Europe and looks at materials options for the higher-temperature applications now being considered for advanced high-efficiency power plants. The emphasis is on valves for extreme service conditions (high temperatures, pressures, and flow rates), of which bypass valves represent a good example. Some consideration is also given to degradation and failure mechanisms. In focusing on practices outsid...

2011-09-27T23:59:59.000Z

253

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

254

Turbine blade tip gap reduction system  

DOE Patents (OSTI)

A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

Diakunchak, Ihor S.

2012-09-11T23:59:59.000Z

255

SMART POWER TURBINE  

SciTech Connect

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

256

Operating Modes of a Teeter-Rotor Wind Turbine  

DOE Green Energy (OSTI)

We examine the operating modes of a two-bladed teetered wind turbine. Because of the gyroscopic asymmetry of its rotor, this turbine's dynamics can be quite distinct from those of a turbine with three or more blades. This asymmetry leads to system equations with periodic coefficients that are solved using the Floquet approach to extract the correct modal parameters. The system equations are derived using a simple analytical model with four degrees of freedom: cacelle yaw, rotor teeter, and flapping associated with each blade. Results confirm that the turbine modes become more dominated by the centrifugal and gyroscopic effects as the rotor speed increases. They gyroscopic effect may also cause dynamic instability. Under certain design conditions, yaw and teeter modal frequencies may coalesce.

Bir, G. S. (National Renewable Energy Laboratory); Stol, K. (University of Colorado at Boulder)

1999-02-25T23:59:59.000Z

257

Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage  

Science Conference Proceedings (OSTI)

A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to the incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.

Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.; Stephenson, John R.; Pflugrath, Brett D.; Welch, Abigail E.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

2012-02-01T23:59:59.000Z

258

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

259

Gas turbine cooling system  

SciTech Connect

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

260

Turbine seal assembly  

SciTech Connect

A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

Little, David A.

2013-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas turbine sealing apparatus  

SciTech Connect

A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

Marra, John Joseph; Wessell, Brian J.; Liang, George

2013-03-05T23:59:59.000Z

262

Multiple piece turbine airfoil  

SciTech Connect

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09T23:59:59.000Z

263

Gas turbines for the future  

SciTech Connect

Utility gas turbine technology has been advancing fairly rapidly, one reason being that it shares in the benefits of the research and development for aviation gas turbines. In general, turbine progress is characterized by large, incremental advances in performance. At intervals of approx. 15 yr, new-generation turbines are introduced, refined, and eventually installed in relatively large numbers. A new generation of turbines is being readied for the market that will have power ratings into the 130- to 150-MW range (simple cycle), significantly higher than the 70 to 100 MW now in service. When the new turbines are installed in combined-cycle plants, the efficiency levels are expected to rise from the present value of approx. 42% higher heating value to approx. 46%.

Cohn, A.

1987-01-01T23:59:59.000Z

264

Snubber assembly for turbine blades  

DOE Patents (OSTI)

A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

Marra, John J

2013-09-03T23:59:59.000Z

265

Gas turbine premixing systems  

SciTech Connect

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

266

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01T23:59:59.000Z

267

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08T23:59:59.000Z

268

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

269

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

270

Tornado type wind turbines  

DOE Patents (OSTI)

A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

Hsu, Cheng-Ting (Ames, IA)

1984-01-01T23:59:59.000Z

271

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

272

OVERLAY COATINGS FOR GAS TURBINE AIRFOILS  

E-Print Network (OSTI)

of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,OVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone1970, p. 545. R. Krutenat, Gas Turbine Materials Conference

Boone, Donald H.

2013-01-01T23:59:59.000Z

273

Howden Wind Turbines Ltd | Open Energy Information  

Open Energy Info (EERE)

Howden Wind Turbines Ltd Jump to: navigation, search Name Howden Wind Turbines Ltd Place United Kingdom Sector Wind energy Product Howden was a manufacturer of wind turbines in the...

274

NREL: Wind Research - Advanced Research Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Turbines Two 440 foot meteorological towers are upwind of two research wind turbines. Two 600-kW Westinghouse turbines at the NWTC are used to test new control...

275

Theory and Performance of Tesla Turbines  

E-Print Network (OSTI)

camera. Bottom: tested turbine rotor housing diameter isfound in Figure 1.1. The turbine rotor consists of severalpower was reached. The turbine rotor and nozzle can be seen

Romanin, Vincent D.

2012-01-01T23:59:59.000Z

276

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

277

NETL Publications: 2012 University Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory Presentation PDF-7.41MB South Coast AQMD's Gas Turbine Experience-Regulations and Operations Mohsen Nazemi, Deputy Executive Officer,...

278

Engines, turbines and compressors directory  

SciTech Connect

This book is a directory of engines, turbines and compressors. It adds and deletes compressor engines in use by the gas industry.

1989-01-01T23:59:59.000Z

279

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

Hossein Ghezel-Ayagh

2003-05-23T23:59:59.000Z

280

Operation of Mammoth Pacific`s MP1-100 turbine with metastable, supersaturated expansions  

SciTech Connect

INEL`s Heat Cycle Research project continues to develop a technology base for increasing use of moderate-temperature hydrothermal resources to generate electrical power. One concept is the use of metastable, supersaturated turbine expansions. These expansions support a supersaturated working fluid vapor; at equilibrium conditions, liquid condensate would be present during the turbine expansion process. Studies suggest that if these expansions do not adversely affect the turbine performance, up to 8-10% more power could be produced from a given geothermal fluid. Determining the impact of these expansions on turbine performance is the focus of the project investigations being reported.

Mines, G.L.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GE Upgrades Top Selling Advanced Gas Turbine  

Science Conference Proceedings (OSTI)

Oct 30, 2009 ... According to GE, a typical power plant operating two new 7FA gas turbines with a single steam turbine in combined cycle configuration would ...

282

Westwind Wind Turbines | Open Energy Information  

Open Energy Info (EERE)

Westwind Wind Turbines Jump to: navigation, search Name Westwind Wind Turbines Place Northern Ireland, United Kingdom Zip BT29 4TF Sector Wind energy Product Northern Ireland based...

283

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of mid-range industrial gas turbine systems. ...

2012-11-30T23:59:59.000Z

284

NREL: Awards and Honors - North Wind 100/20 Wind Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

North Wind 100/20 Wind Turbine North Wind 100/20 Wind Turbine Developers: Gerry Nix and Brian Smith, National Renewable Energy Laboratory; Johnathan Lynch, Clint Coleman, Garrett Bywaters, and Rob Roland, Norhtern Power Systems; Dr. David Bubenheim and Michael Flynn, NASA Ames Research Center; and John Rand, National Science Foundation. The North Wind 100/20 Wind Turbine is a state-of-the-art wind turbine that is ideal for extreme cold conditions perfect for remote locations that may be off-grid or local-grid. The numeric designations represent the North Wind's capacity, 100-kilowatts (which is enough energy for 25-50 homes), and 20-meter diameter blades. The size of the North Wind 100/20 is unique, fitting an important market niche between large and small turbines. Large turbines (400-kilowatts and

285

Turbulence-Turbine Interaction: The Basis for the Development of the TurbSim Stochastic Simulator  

DOE Green Energy (OSTI)

A combination of taller wind turbines with more flexible rotors and towers operating in turbulent conditions that are not well understood is contributing to much higher than anticipated maintenance and repairs costs and is associated with lower energy production. This report documents evidence of this and offers the turbine designers an expanded tool that resolves many of these shortcomings.

Kelley, N. D.

2011-11-01T23:59:59.000Z

286

Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives  

Science Conference Proceedings (OSTI)

This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. ... Keywords: Dynamical constraint, Integrated design, Non-linear optimization, Wind turbine

Davide Aguglia; Philippe Viarouge; René Wamkeue; Jérôme Cros

2010-10-01T23:59:59.000Z

287

Wake Characteristics of the MOD-2 Wind Turbine at Medicine Bow, Wyoming  

SciTech Connect

The present paper summarizes results obtained from profile measurements of the MOD-2 wind turbine wake at Medicine Bow, Wyoming. Vertical profiles of wind speed, potential temperature, and turbulence at 3 and 7 rotor diameters downstream of the turbine, taken under near neutral or slightly stable atmospheric conditions, are presented.

Jacobs, E. W.; Kelley, N. D.; McKenna, H. E.; Birkenheuer, N. B.

1984-11-01T23:59:59.000Z

288

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

289

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

290

Advanced turbine systems study system scoping and feasibility study  

SciTech Connect

United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

1993-04-01T23:59:59.000Z

291

Gas Turbine Procurement: 1988 Workshop  

Science Conference Proceedings (OSTI)

Specifying the levels of reliability and availability needed for new gas turbines or combined-cycle plants can help utilities meet plant operating requirements. Equipment specifiers can use information presented in this workshop to help them formulate more effective specifications for new gas turbine generating equipment.

1989-04-06T23:59:59.000Z

292

Aero Turbine | Open Energy Information  

Open Energy Info (EERE)

Aero Turbine Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine Energy Company Location Riverside County CA Coordinates 33.7437°, -115.9925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7437,"lon":-115.9925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Gas turbines face new challenges  

SciTech Connect

Gas turbines continue to increase the electric power generation market in both the peaking and the intermediate load categories. With the increase in unit size and operating efficiencies. capital costs per kilowatt are reduced. Clean fuels---gas, light oil, or alcohol-type fuel--are needed for the gas turbines. The most efficient method of power generation is now attained from gas turbines, but the shortage of clean fuels looms. Manufacturers are anticipating the availability of clean fuels and continue working on the development of high- pressure, high-temperature turbines. In the near-term, increased efficiency is sought by making use of the turbine exhaust heat. involving combined or regenerative cycles. (MCW)

Papamarcos, J.

1973-12-01T23:59:59.000Z

294

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

295

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

296

Probabilistic fatigue methodology and wind turbine reliability  

DOE Green Energy (OSTI)

Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

Lange, C.H. [Stanford Univ., CA (United States)

1996-05-01T23:59:59.000Z

297

Searching for Data Sets on existing turbines with various sensors | OpenEI  

Open Energy Info (EERE)

Searching for Data Sets on existing turbines with various sensors Searching for Data Sets on existing turbines with various sensors Home > Groups > Future of Condition Monitoring for Wind Turbines In order to test our hypothesis and aid in our building of next-gen condition/health monitoring software for wind turbines we are searching for data sets (Scada or othewise) from exisiting installations. Anyone can help? Submitted by JaredHall on 30 July, 2013 - 01:34 1 answer Points: 0 Try supergen-wind (http://www.supergen-wind.org.uk/) Oeir on 25 November, 2013 - 14:25 Groups Menu You must login in order to post into this group. Recent content Try supergen-wind (http://www.... Searching for Data Sets on existing turbines with various sensors Group members (1) Managers: JaredHall 429 Throttled (bot load) Error 429 Throttled (bot load)

298

Yale ME Turbine Test cell instructions Background  

E-Print Network (OSTI)

Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

Haller, Gary L.

299

AIAA 20033698 Aircraft Gas Turbine Engine  

E-Print Network (OSTI)

AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

Stanford University

300

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Coating Development for Gas Turbine Components  

Science Conference Proceedings (OSTI)

Sacrificial, oxidation-resistant coatings on turbine blades in high-firing temperature gas turbines are wearing out at an unacceptably rapid rate, resulting in excessive downtime and repair costs for turbine operators. This report summarizes the results of an exploratory development project that assessed the feasibility of decelerating the degradation rate of an MCrAlY coating on several turbine blade alloys.

2000-08-01T23:59:59.000Z

302

Coatings for gas turbines; Specialized coatings boost, maintain turbine efficiency  

SciTech Connect

Airlines have been coating their jet engines for the past 30 years, thereby avoiding corrosion, erosion and wear. More recently, operators of mechanical-drive gas turbines have come to realize the value of coatings as a way to keep down costs. This paper describes specialized coatings technology which has evolved for gas turbines. Coatings have been designed for specific areas and even specific components within the turbine. Because operators must often request these coatings when buying new equipment or at overhaul, a basic understanding of the technology is presented.

1988-10-01T23:59:59.000Z

303

A Methodology for Assessment of Wind Turbine Noise Generation  

E-Print Network (OSTI)

The detailed analysis of a series of acoustic measurements taken near several large wind turbines (100 kWand above) has identified the maximum acoustic energy as being concentrated in the low-frequency audible and subaudible ranges, usually less than 100 Hz. These measurements have also shown any reported community annoyance associated with turbine operations has often been related to the degree of coherent impulsiveness present and the subsequent harmonic coupling of acoustic energy to residential structures. Thus, one technique to assess the annoyance potential of a given wind turbine design is to develop a method which quantifies this degree of impulsiveness or coherency in the radiated acoustic energy spectrum under a wide range of operating conditions. Experience has also shown the presence of annoying conditions is highly time dependent and nonstationary, and, therefore, any attempts to quantify or at least classify wind turbine designs in terms of their noise annoyance potential must be handled within the proper probabilistic framework. A technique is described which employs multidimensional, joint probability analysis to establish the expected coincidence of acoustic energy levels in a contiguous sequence of octave frequency bands which have been chosen because of their relationship to common structural resonant frequencies in residential buildings. Evidence is presented to justify the choice of these particular bands. Comparisons of the acoustic performance and an estimate of the annoyance potential of several large wind turbine designs using this technique is also discussed.

N. D. Kelley; R. R. Hemphill; M. E. Mckenna

1981-01-01T23:59:59.000Z

304

Basic Integrative Models for Offshore Wind Turbine Systems  

E-Print Network (OSTI)

This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions were modeled using apparent fixity level, Randolph elastic continuum, and modified cone models. The offshore wind turbine structures were developed using a finite element formulation. A two-bladed 3.0 megawatt (MW) and a three-bladed 1.5 MW capacity wind turbine were studied using a variety of design load, and soil conditions scenarios. Aerodynamic thrust loads were estimated using the FAST Software developed by the U.S Department of Energy’s National Renewable Energy Laboratory (NREL). Hydrodynamic loads were estimated using Morison’s equation and the more recent Faltinsen Newman Vinje (FNV) theory. This research study addressed two of the important design constraints, specifically, the angle of the support structure at seafloor and the horizontal displacement at the hub elevation during dynamic loading. The simulation results show that the modified cone model is stiffer than the apparent fixity level and Randolph elastic continuum models. The effect of the blade pitch failure on the offshore wind turbine structure decreases with increasing water depth, but increases with increasing hub height of the offshore wind turbine structure.

Aljeeran, Fares

2011-05-01T23:59:59.000Z

305

Energy harvesting to power sensing hardware onboard wind turbine blade  

SciTech Connect

Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Faringolt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

306

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

307

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

308

H gas turbine combined cycle  

SciTech Connect

A major step has been taken in the development of the Next Power Generation System--``H`` Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1,430 C (2,600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The ``H`` Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

Corman, J.

1995-12-31T23:59:59.000Z

309

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

310

Shaken, not stirred: The recipe for a fish-friendly turbine  

SciTech Connect

It is generally agreed that injuries and mortalities among turbine-passed fish can result from several mechanisms, including rapid and extreme water pressure changes, cavitation, shear, turbulence, and mechanical injuries (strike and grinding). Advances in the instrumentation available for monitoring hydraulic conditions and Computational Fluid Dynamics (CFD) techniques now make it possible both to estimate accurately the levels of these potential injury mechanisms in operating turbines and to predict the levels in new turbine designs. This knowledge can be used to {open_quotes}design-out{close_quotes} the most significant injury mechanisms in the next generation of turbines. However, further improvements in turbine design are limited by a poor understanding of the levels of mechanical and hydraulic stresses that can be tolerated by turbine-passed fish. The turbine designers need numbers (biological criteria) that define a safety zone for fish within which pressures, shear forces, cavitation, and chance of mechanical strike are all at acceptable levels for survival. This paper presents the results of a literature review of fish responses to the types of biological stresses associated with turbine passage, as studied separately under controlled conditions in the laboratory rather than in combination at field sites. Some of the controlled laboratory and field studies reviewed here were bioassays carried out for reasons unrelated to hydropower production. Analysis of this literature was used to develop provisional biological criteria for hydroelectric turbine designers. These biological criteria have been utilized in the U.S. Department of Energy`s Advanced Hydropower Turbine System (AHTS) Program to evaluate the results of conceptual engineering designs and the potential value of future turbine models and prototypes.

Cada, G.F.

1997-03-01T23:59:59.000Z

311

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

312

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

313

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .Wind Turbine . . . . . . . . . . . . . . . . . . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

314

Gamesa Wind Turbines Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Turbines Pvt Ltd Jump to: navigation, search Name Gamesa Wind Turbines Pvt. Ltd. Place Chennai, Tamil Nadu, India Sector Wind energy Product Chennai-based wind turbine...

315

Experimental Study of Stability Limits for Slender Wind Turbine Blades.  

E-Print Network (OSTI)

??There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine… (more)

Ladge, Shruti

2012-01-01T23:59:59.000Z

316

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

317

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

2.2.1 Turbine Description . . . . . . . . . . . . . . . . .112 4.2 Description of Turbine . . . . . . . . . . . . . . .3.2.1 Description of Test Wind Turbine . . . . . .

Prowell, I.

2011-01-01T23:59:59.000Z

318

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

319

Numerical Study of the Effects of Atmospheric and Wake Turbulence on Wind Turbine Dynamics  

SciTech Connect

Although the atmospheric sciences community has been studying the effects of atmospheric stability and surface roughness on the planetary boundary layer for some time, their effects on wind turbine dynamics have not been well studied. In this study, we performed numerical experiments to explore some of the effects of atmospheric stability and surface roughness on wind turbine dynamics. We used large-eddy simulation to create atmospheric winds and compute the wind turbine flows, and we modeled the wind turbines as revolving and flexible actuator lines coupled to a wind turbine structural and system dynamic model. We examined the structural moments about the wind turbine blade, low-speed shaft, and nacelle; power production; and wake evolution when large 5-MW turbines are subjected to winds generated from low- and high-surface roughness levels representative of offshore and onshore conditions, respectively, and also neutral and unstable atmospheric conditions. In addition, we placed a second turbine 7 rotor diameters downwind of the first one so that we could explore wake effects under these different conditions. The results show that the turbulent structures generated within the atmospheric boundary layer wind simulations cause isolated loading events at least as significant as when a turbine is waked by an upwind turbine. The root-mean-square (RMS) turbine loads are consistently larger when the surface roughness is higher. The RMS blade-root out-of-plane bending moment and low-speed shaft torque are higher when the atmospheric boundary layer is unstable as compared with when it is neutral. However, the RMS yaw moments are either equal or reduced in the unstable case as compared with the neutral case. For a given surface roughness, the ratio of power produced by the downwind turbine relative to that of the upwind turbine is 15-20% higher when the conditions are unstable as compared with neutral. For a given atmospheric stability, this power ratio is 10% higher with the onshore roughness value versus the offshore one. The main conclusion is that various coherent turbulent structures that form under different levels of atmospheric stability and surface roughness have important effects on wind turbine structural response, power production, and wake evolution.

Churchfield, M. J.; Lee, S.; Michalakes, J.; Moriarty, P. J.

2012-01-01T23:59:59.000Z

320

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

322

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine 1 Numerical and Experimental Study of Mixing Processes Associated with Hydrogen and High Hydrogen Content Fuels University of California -- Irvine Vincent McDonell Project Dates: 10/1/2008 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this comprehensive research is to evaluate methods for characterizing fuel profiles of coal syngas and high hydrogen content (HHC) fuels and the level of mixing, and apply these methods to provide detailed fuel concentration profile data for various premixer system configurations relevant for turbine applications. The specific project objectives include: (1) Establish and apply reliable, accurate measurement methods to establish instantaneous and time averaged fuel

323

Multiple piece turbine blade  

Science Conference Proceedings (OSTI)

A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

Kimmel, Keith D (Jupiter, FL)

2012-05-29T23:59:59.000Z

324

Wind turbine rotor aileron  

DOE Patents (OSTI)

A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

1994-06-14T23:59:59.000Z

325

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

1999-07-20T23:59:59.000Z

326

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

2000-01-01T23:59:59.000Z

327

Turbine blade cooling  

DOE Patents (OSTI)

A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

Staub, F.W.; Willett, F.T.

1999-07-20T23:59:59.000Z

328

Evaluation of Turbine Vanes and Endwalls with Realistic Surface...  

NLE Websites -- All DOE Office Websites (Extended Search)

GE, Pratt & Whitney, and Rolls-Royce have participated in this project Evaluation of Turbine Vanes and Endwalls with Realistic Surface Conditions 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20...

329

Feedwater Pump Turbine Controls and Oil System Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to personnel involved in the mechanical hydraulic controls (MHCs) of the feedwater pump turbine (FWPT), its associated components, and inherent oil system, including good maintenance practices, condition monitoring, predictive and preventive maintenance techniques, probable failure modes, and troubleshooting guidance. The guide was developed to provide maintenance and troubleshooting information as well as a basic background in mechanical hydraulic controls.

2001-12-20T23:59:59.000Z

330

An Algorithm for Identification of Reduced-Order Dynamic Models of Gas Turbines  

Science Conference Proceedings (OSTI)

Model based approaches show a lot of advantages for fault detection and condition monitoring. Particularly, it is true in employing reduced order models for real-time parameter identification and output prediction of gas turbines. Many algorithms have ...

Xuewu Dai; Tim Breikin; Hong Wang

2006-08-01T23:59:59.000Z

331

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

Science Conference Proceedings (OSTI)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total ...

Albert J. Juhasz / Jerzy Sawicki

2005-01-01T23:59:59.000Z

332

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network (OSTI)

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic environments. To account for the influence of environmental factors, we employ a conditional approach by modeling the expectation or distribution of response of interest, be it the structural load or power output, conditional on a set of environmental factors. Because of the different nature associated with the two types of responses, our methods also come in different forms, conducted through two studies. The first study presents a Bayesian parametric model for the purpose of estimating the extreme load on a wind turbine. The extreme load is the highest stress level that the turbine structure would experience during its service lifetime. A wind turbine should be designed to resist such a high load to avoid catastrophic structural failures. To assess the extreme load, turbine structural responses are evaluated by conducting field measurement campaigns or performing aeroelastic simulation studies. In general, data obtained in either case are not sufficient to represent various loading responses under all possible weather conditions. An appropriate extrapolation is necessary to characterize the structural loads in a turbine’s service life. This study devises a Bayesian spline method for this extrapolation purpose and applies the method to three sets of load response data to estimate the corresponding extreme loads at the roots of the turbine blades. In the second study, we propose an additive multivariate kernel method as a new power curve model, which is able to incorporate a variety of environmental factors in addition to merely the wind speed. In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, with comparatively less frequency, wind speed and direction. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of the power output. It is able to capture the nonlinear relationships between environmental factors and wind power output, as well as the high-order inter- action effects among some of the environmental factors. To illustrate the application of the new power curve model, we conduct case studies that demonstrate how the new method can help with quantifying the benefit of vortex generator installation, advising pitch control adjustment, and facilitating the diagnosis of faults.

Lee, Giwhyun

2013-08-01T23:59:59.000Z

333

Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes  

DOE Green Energy (OSTI)

This report discusses the causes for premature wind turbine gearbox failure and determining a method for revealing the missing loading conditions relevant to the gearbox design process.

Oyague, F.

2009-02-01T23:59:59.000Z

334

Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater  

SciTech Connect

An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

Luongo, M.C.

1975-08-12T23:59:59.000Z

335

CFD modeling of a gas turbine combustor from compressor exit to turbine inlet  

SciTech Connect

Gas turbine combustor CFD modeling has become an important combustor design tool in the past few years, but CFD models are generally limited to the flow field inside the combustor liner at the diffuser/combustor annulus region. Although strongly coupled in reality, the two regions have rarely been coupled in CFD modeling. A CFD calculation for a full model combustor from compressor diffuser exit to turbine inlet is described. The coupled model accomplishes the following two main objectives: (1) implicit description of flow splits and flow conditions for openings into the combustor liner, and (2) prediction of liner wall temperatures. Conjugate heat transfer with nonluminous gas radiation (appropriate for lean, low emission combustors) is utilized to predict wall temperatures compared to the conventional approach of predicting only near wall gas temperatures. Remaining difficult issues such as generating the grid, modeling swirler vane passages, and modeling effusion cooling are also discussed.

Crocker, D.S.; Nickolaus, D.; Smith, C.E. [CFD Research Corp., Huntsville, AL (United States)

1999-01-01T23:59:59.000Z

336

Flow visualization study of the MOD-2 wind turbine wake  

DOE Green Energy (OSTI)

The specific objectives of the study reported were: to determine the geometry of the MOD-2 wind turbine wake in terms of wake height and width as a function of downstream distance under two conditions of atmospheric stability; to estimate the mean velocity deficit at several downstream stations in the turbine wake; and to investigate the behavior of the rotor-generated vortices, particularly their configuration and persistence. The background of the wake problem is briefly examined, including a discussion of the critical issues that the flow visualization study addresses. Experimental techniques and data analysis methods are described in detail. (LEW)

Liu H.T.; Waite, J.W.; Hiester, T.R.; Tacheron, P.H.; Srnsky, R.A.

1983-06-01T23:59:59.000Z

337

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Turbine Oil Lube Notes Compilation  

Science Conference Proceedings (OSTI)

This report is a special compilation of the EPRI Nuclear Maintenance Applications Center's (NMAC's) "Lube Notes" articles (extracted from "Lube Notes Compilation, 1989-2001 (Report Number 1006848)) that relate specifically to the topic of turbine oils.

2002-11-25T23:59:59.000Z

339

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

340

SERI advanced wind turbine blades  

DOE Green Energy (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rim seal for turbine wheel  

SciTech Connect

A turbine wheel assembly includes a disk having a plurality of blades therearound. A ceramic ring is mounted to the housing of the turbine wheel assembly. A labyrinth rim seal mounted on the disk cooperates with the ceramic ring to seal the hot gases acting on the blades from the disk. The ceramic ring permits a tighter clearance between the labyrinth rim seal and the ceramic ring.

Glezer, Boris (Del Mar, CA); Boyd, Gary L. (Alpine, CA); Norton, Paul F. (San Diego, CA)

1996-01-01T23:59:59.000Z

342

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extension—the operation of an asset beyond the nominal design life—is just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

343

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

344

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

345

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

346

DOE's Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

This paper discusses the Advanced Turbine Systems (ATS) Program, which is necessary to achieve METC's vision for future IGCC systems. This major new program is a cooperative effort in which DOE's Office of Fossil Energy (FE) and Office of Conservation and Renewable Energy (CE) are joining forces with the private sector to develop ultra-high efficiency gas turbine systems. A goal of this Program is to have a utility-size gas turbine with a 60 percent efficiency (lower heating value basis (LHV)) ready for commercialization by the year 2002. (While this paper focuses on utility-size turbines which are the primary interest of this audience, an ultra-high efficiency, industrial-size gas turbine will also be developed in the ATS Program with a comparable improvement in efficiency.) Natural gas is the target fuel of the Program, a recognition by DOE that natural gas will play a significant role in supplying future power generation needs in the US. However, to insure that the US has fuel supply options, ATS designs will be adaptable to coal and biomass fuels. Therefore, the ATS Program will directly benefit IGCC and other advanced coal based power generation systems. Cost and efficiency improvements in the turbine system as well as in the gasification and gas stream cleanup plant sections will enable IGCC to reach a cost target of $1,000--$1,280/kW and an efficiency goal of 52 percent (higher heating value basis (HHV)) in the post-2000 market.

Bechtel, T.F.; Bajura, R.A.; Salvador, L.A.

1993-01-01T23:59:59.000Z

347

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

348

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

349

U.S. Department of Energy Wind Turbine Development Projects  

DOE Green Energy (OSTI)

This paper provides an overview of wind-turbine development activities in the Unites States and relates those activities to market conditions and projections. Several factors are responsible for a surge in wind energy development in the United States, including a federal production tax credit, ''green power'' marketing, and improving cost and reliability. More development is likely, as approximately 363 GW of new capacity will be needed by 2020 to meet growing demand and replace retiring units. The U.S. Department of Energy (DOE) is helping two companies develop next-generation turbines intended to generate electricity for $0.025/kWh or less. We expect to achieve this objective through a combination of improved engineering methods and configuration advancements. This should ensure that wind power will compete effectively against advanced combined-cycle plants having projected generating costs of $0.031/kWh in 2005. To address the market for small and intermediate-size wind turbines, DOE is assisting five companies in their attempts to develop new turbines having low capital cost and high reliability. Additional information regarding U.S. wind energy programs is available on the internet site www.nrel.gov/wind/. E-mail addresses for the turbine manufacturers are found in the Acknowledgements.

Migliore, P. G. (National Renewable Energy Laboratory); Calvert, S. D. (U.S. Department of Energy)

1999-04-26T23:59:59.000Z

350

ALCF Research Aimed at Safer, Cleaner Combustion for Gas Turbines | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Aimed at Safer, Cleaner Combustion for Gas Turbines Research Aimed at Safer, Cleaner Combustion for Gas Turbines December 3, 2013 Printer-friendly version Researchers from the Swiss Federal Institute of Technology (ETHZ) and the Argonne Leadership Computing Facility (ALCF) are using supercomputers to advance the development of safer and cleaner gas turbine engines by studying the operating conditions that can lead to a potentially dangerous phenomenon called autoignition. This phenomenon, which involves the spontaneous ignition of a combustible mixture without an external ignition source, can result in a premature combustion event, called flashback, that causes significant damage to the gas turbine. Understanding autoignition is critical to the design of turbines that operate with novel combustion strategies, such as lean

351

Tower Design Load Verification on a 1-kW Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbine testing at the National Wind Technology Center (NWTC) has been done to characterize both tower top loads and thrust loads for small wind turbines, which is part of an ongoing effort to model and predict small wind turbine behavior and the resulting stresses imposed on the supporting tower. To these ends, a 1-kW furling wind turbine mounted on a 10-meter tower was instrumented and monitored via a data acquisition system for nearly a year. This test was conducted to verify the design loads as predicted by the simple design equations provided in the draft revision of the International Electrotechnical Commission (IEC) Small Wind Turbine Safety Standard 61400-02 CDV (hereafter called ''the draft Standard''). Data were captured for several operating conditions covered by the draft Standard. This paper addresses the collected data and what conclusions can be made from it.

Prascher, D.; Huskey, A.

2004-11-01T23:59:59.000Z

352

An examination of wake effects and power production for a group of large wind turbines  

DOE Green Energy (OSTI)

Data from a group of three MOD-2 wind turbines and two meteorological towers at Goodnoe Hills were analyzed to evaluate turbine power output and wake effects (losses in power production due to operation of upwind turbines), and atmospheric factors influencing them. The influences of variations in the ambient wind speed, wind direction, and turbulence intensity were the primary factors evaluated. Meteorological and turbine data collected at the Goodnoe Hills site from April 1 to October 17, 1985, were examined to select the data sets for these analyses. Wind data from the two meteorological towers were evaluated to estimate the effect of a wake from an upwind turbine on the wind flow measured at the downwind tower. Maximum velocity deficits were about 25% and 12% at downwind distances of 5.8 and 8.3 rotor diameters (D), respectively. However, the maximum deficits at 5.8 D were about 14/degree/ off the centerline orientation between the turbine and the tower, indicating significant wake curvature. Velocity deficits were found to depend on the ambient wind speed, ranging from 27% at lower speeds (15 to 25 mph) to 20% at higher speeds (30 to 35 mph). Turbulence intensity increases dramatically in the wake by factors of about 2.3 and 1.5 over ambient conditions at 5.8 D and 8.3 D, respectively. An analysis of the ambient (non-wake) power production for all three turbines showed that the MOD-2 power output depends, not only on wind speed, but also on the turbulence intensity. At wind speeds below rated, there was a dramatic difference in turbine power output between low and high turbulence intensities for the same wind speed. One of the turbines had vortex generators on the blades. This turbine produced from 10% to 13% more power than the other two turbines when speeds were from 24 to 31 mph. 11 refs., 21 figs., 2 tabs.

Elliott, D.L.; Buck, J.W.; Barnard, J.C.

1988-04-01T23:59:59.000Z

353

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

354

Gas turbine engine braking and method  

SciTech Connect

A method is described of decelerating a ground vehicle driven by a gas turbine engine having a gas generator section and a free turbine output power section driven by a gas flow from the gas generator section, comprising the steps of: altering the incidence of gas flow from the gas generator section onto the free turbine section whereby said gas flow opposes rotation of the free turbine section; increasing gas generator section speed; and subsequent to said altering and increasing steps, selectively mechanically interconnecting said gas generator and free turbine sections whereby the rotational inertia of the gas generator section tends to decelerate the free turbine section.

Mattson, G.; Woodhouse, G.

1980-07-01T23:59:59.000Z

355

An examination of loads and responses of a wind turbine undergoing variable-speed operation  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is to show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.

Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

1996-11-01T23:59:59.000Z

356

Advanced Turbine Systems program  

SciTech Connect

Allison draws the following preliminary conclusions from this preliminary design effort: (1) All cycles investigated require a high temperature turbine capability to be developed under ATS. (2) The HAT and intercooled chemical recuperation cycles compete in only a narrow sector of the industrial engine market. This is the result of the complexity and water usage of the HAT cycle and the limitation of the chemical recuperation cycle to applications where natural gas is readily available. (3) From a cycle point of view, the ICR and chemical recuperation cycles are similar. Both optimize at fairly low compressor pressure ratios ({approximately}15) because both want high temperature in the exhaust to optimize the recuperation process. Excess steam production with the chemical recuperation process makes it somewhat doubtful that the two recuperation processes are interchangeable from a hardware point of view. Allison intends to perform a global optimization on this cycle during Phase 2 of ATS. (4). There appears to be no substitute for the simple cycle with steam generation in the cogen-steam market since steam is, by definition, a valuable product of the cycle.

Wilkes, C.; Mukavetz, D.W.; Knickerbocker, T.K.; Ali, S.A.

1993-11-01T23:59:59.000Z

357

Airfoils for wind turbine  

DOE Patents (OSTI)

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01T23:59:59.000Z

358

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

359

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

360

118 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 58, NO. 1, JANUARY 2011 Experimental Validation of a Marine Current Turbine  

E-Print Network (OSTI)

, Calpine Gilroy Cogen, L.P. filed a petition with the California Energy Commission (Energy Commission on the Project's S-100 General Electric Frame 7 Gas Turbine Generator (S-100 gas turbine). These changes will update the Conditions of Certification in the 1995 California Energy Commission (Energy Commission

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES  

E-Print Network (OSTI)

APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

362

A Dynamic Wind Turbine Simulator of the Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

To study dynamic performances of wind turbine generator system (WTGS), and to determine the control structures in laboratory. The dynamic torque generated by wind turbine (WT) must be simulated. In there paper, a dynamic wind turbine emulator (WTE) is ... Keywords: dynamic wind turbine emulation, wind shear, tower shadow, torque compensation

Lei Lu; Zhen Xie; Xing Zhang; Shuying Yang; Renxian Cao

2012-01-01T23:59:59.000Z

363

Turbine-Turbine Interaction and Performance Detailed (Fact Sheet), NREL Highlights, Science  

DOE Green Energy (OSTI)

Next-generation modeling capability assesses wind turbine array fluid dynamics and aero-elastic simulations.

Not Available

2011-05-01T23:59:59.000Z

364

Analysis of binary vapor turbines  

DOE Green Energy (OSTI)

The effect the binary mixture has on the turbine is examined in terms of design and cost. Several flow theories for turbines and turbine blading are reviewed. The similarity method, which uses dimensionless parameters, is used in determining rotative speeds and diameters for a variety of inlet temperatures and exit pressures. It is shown that the ratio of exit to inlet specific volume for each component in the mixture is the same for each specie. The specific volume ratio constraints are combined with the temperature equalities, the condenser pressure, and the total inlet entropy to form the constraints necessary to determine the exit state uniquely in an isentropic expansion. The non-isentropic exit state is found in a similar manner. The expansion process is examined for several cases and compared with the expansion of a single component vapor. Finally, in order to maintain high efficiency and to meet the criteria which makes the similarity method valid at high inlet temperatures, turbine multistaging is examined and a sample case is given for a two stage turbine.

Bliss, R.W.; Boehm, R.F.; Jacobs, H.R.

1976-12-01T23:59:59.000Z

365

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

366

Reliability Assessment of North American Steam Turbines  

Science Conference Proceedings (OSTI)

This survey provides statistics related to the reliability and maintenance of fossil-fueled steam turbines in the continental United States. The analysis focuses primarily on active turbines larger than 200 MW.

2002-04-24T23:59:59.000Z

367

Maglev Wind Turbine Technologies | Open Energy Information  

Open Energy Info (EERE)

Maglev Wind Turbine Technologies Maglev Wind Turbine Technologies Jump to: navigation, search Name Maglev Wind Turbine Technologies Place Sierra Vista, Arizona Zip 85635 Sector Wind energy Product The new company employs magnetic levitation (Maglev) technology in its wind turbines, which it says will have a longer life span, be cheaper to build, and produce 1GW of energy each. References Maglev Wind Turbine Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maglev Wind Turbine Technologies is a company located in Sierra Vista, Arizona . References ↑ "Maglev Wind Turbine Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Maglev_Wind_Turbine_Technologies&oldid=348578"

368

Radial-Radial Single Rotor Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine Radial-Radial Single Rotor Turbine A rotor for use in turbine applications. Available for thumbnail of Feynman Center (505) 665-9090 Email Radial-Radial Single Rotor Turbine A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power. U.S. Patent No.: 7,044,718 (DOE S-100,626) Patent Application Filing Date: July 8, 2003 Patent Issue Date: May 16, 2006 Licensing Status: Available for Express Licensing (?). View terms and a sample license agreement.

369

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

370

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

371

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

372

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

373

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

374

Method of optimizing the efficiency of a steam turbine power plant  

SciTech Connect

A method is disclosed for improving the operational efficiency of a steam turbine power plant by governing the adjustment of the throttle steam pressure of a steam turbine at a desired power plant output demand value. In the preferred embodiment, the impulse chamber pressure of a high pressure section of the steam turbine is measured as a representation of the steam flow through the steam turbine. At times during the operation of the plant at the desired output demand value, the throttle pressure is perturbed. The impulse chamber pressure is measured before and after the perturbations of the throttle pressure. Because changing thermodynamic conditions may occur possibly as a result of the perturbations and provide an erroneous representation of the steam flow through the turbine, the impulse chamber pressure measurements are compensated for determined measurable thermodynamic conditions in the steam turbine. A compensated change in impulse chamber pressure measurement in a decreasing direction as a result of the direction of perturbation of the steam throttle pressure may indicate that further adjustment in the same direction is beneficial in minimizing the steam flow through the steam turbine at the desired plant output demand value. The throttle steam pressure adjustment may be continually perturbed in the same direction until the compensated change in impulse chamber pressure before and after measurements falls below a predetermined value, whereby the steam flow is considered substantially at a minimum for the desired plant output demand value.

Silvestri, G.J.

1981-11-03T23:59:59.000Z

375

Environmental Coatings For Gas Turbine Engine Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Environmental Coatings For Gas Turbine Engine Applications. Author(s), Ming Fu, Roger Wustman, Jeffrey Williams, Douglas Konitzer.

376

Aircraft Gas Turbine Blade and Vane Repair  

Science Conference Proceedings (OSTI)

Gas turbine blades experience dimensional .... platinum applied in separate gas phase or electroplating ..... surfaces are natural consequences of fluoride.

377

Industrial gas turbines with subatmospheric expansion  

SciTech Connect

A modification is proposed to the basic Brayton cycle, by coupling the gas turbine with a jet pump. This allows subatmospheric pressure to exist at the exit of the turbine, a bigger turbine ratio and, hence, a higher efficiency. The jet pump operates with steam, produced from pressurized water heated by the exhaust gasses of the gas turbine. A simple configuration of the coupling is studied in detail.

Georgiou, D.P. (Patras Univ. (Greece))

1988-01-01T23:59:59.000Z

378

Advances in Hydroelectric Turbine Manufacturing and Repair  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Sponsorship ...

379

ADVANCED TURBINE SYSTEMS PROGRAM  

Science Conference Proceedings (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

380

TGM Turbines | Open Energy Information  

Open Energy Info (EERE)

TGM Turbines TGM Turbines Jump to: navigation, search Name TGM Turbines Place Sertaozinho, Sao Paulo, Brazil Zip 14175-000 Sector Biomass Product Brazil based company who constructs and sells boilers for biomass plants. Coordinates -21.14043°, -48.005154° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-21.14043,"lon":-48.005154,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vertical axis wind turbine airfoil  

DOE Patents (OSTI)

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18T23:59:59.000Z

382

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

383

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

384

Offshore Wind Turbines: Some Technical Challenges  

E-Print Network (OSTI)

1 Offshore Wind Turbines: Some Technical Challenges Prof. Guy Houlsby FREng Oxford University House engineers concerned with installation of offshore wind turbines. The author is Professor of Civil solved, a DTI and EPSRC-sponsored research programme on foundations for wind turbines will be briefly

Houlsby, Guy T.

385

Satoshi Hada Department of Gas Turbine Engineering,  

E-Print Network (OSTI)

Satoshi Hada Department of Gas Turbine Engineering, Mitsubishi Heavy Industries, Ltd., Takasago must be prevented by developing envi- ronmentally friendly power plants. Industrial gas turbines play a major role in power generation with modern high temperature gas turbines being applied in the gas

Thole, Karen A.

386

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

387

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

388

Radial-radial single rotor turbine  

SciTech Connect

A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

Platts, David A. (Los Alamos, NM)

2006-05-16T23:59:59.000Z

389

Scale Model Turbine Missile Casing Impact Tests  

Science Conference Proceedings (OSTI)

This report describes three 1/5-scale-model turbine missile impact experiments performed to provide benchmark data for assessing turbine missiles effects in nuclear plant design. The development of an explosive launcher to accelerate the turbine missile models to the desired impact velocities is described. A comparison of the test results with those from full-scale experiments demonstrates scalability.

1982-12-01T23:59:59.000Z

390

Experimental and analytical research on the aerodynamics of wind driven turbines. Final report  

DOE Green Energy (OSTI)

This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

Rohrbach, C.; Wainauski, H.; Worobel, R.

1977-12-01T23:59:59.000Z

391

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

392

Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade  

E-Print Network (OSTI)

that the average turbine’s rotor swept area has increasedthe average turbine hub height and rotor diameter also4. Average Turbine Capacity, Hub Height, and Rotor Diameter

Bolinger, Mark

2013-01-01T23:59:59.000Z

393

Multi-hazard Reliability Assessment of Offshore Wind Turbines  

E-Print Network (OSTI)

A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines. The proposed probabilistic models are developed starting from a commonly accepted deterministic model and by adding correction terms and model errors to capture respectively, the inherent bias and the uncertainty in developed models. A Bayesian approach is then used to assess the model parameters incorporating the information from virtual experiment data. The database of virtual experiments is generated using detailed three-dimensional finite element analyses of a suite of typical offshore wind turbines. The finite element analyses properly account for the nonlinear soil-structure interaction. Separate probabilistic demand models are developed for three operational/load conditions including: (1) operating under day-to-day wind and wave loading; (2) operating throughout earthquake in presence of day-to-day loads; and (3) parked under extreme wind speeds and earthquake ground motions. The proposed approach gives special attention to the treatment of both aleatory and epistemic uncertainties in predicting the demands on the support structure of wind turbines. The developed demand models are then used to assess the reliability of the support structure of wind turbines based on the proposed damage states for typical wind turbines and their corresponding performance levels. A multi-hazard fragility surface of a given wind turbine support structure as well as the seismic and wind hazards at a specific site location are incorporated into a probabilistic framework to estimate the annual probability of failure of the support structure. Finally, a framework is proposed to investigate the performance of offshore wind turbines operating under day-to-day loads based on their availability for power production. To this end, probabilistic models are proposed to predict the mean and standard deviation of drift response of the tower. The results are used in a random vibration based framework to assess the fragility as the probability of exceeding certain drift thresholds given specific levels of wind speed.

Mardfekri Rastehkena, Maryam 1981-

2012-12-01T23:59:59.000Z

394

Adaptive Control of a Utility-Scale Wind Turbine Operating in Region 3  

Science Conference Proceedings (OSTI)

Many challenges exist for the efficient and safe operation of wind turbines due to the difficulty in creating accurate models of their dynamic characteristics and the turbulent conditions in which they operate. A promising new area of wind turbine research is the application of adaptive control techniques, which are well suited to problems where the plant model is not well known and the plant operating conditions are unpredictable. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed and reject step disturbances, which model the uniform wind disturbance across the wind turbine rotor. The control objective is accomplished by collectively pitching the turbine blades. To improve controller performance, we use an extension of the Direct Model Reference Adaptive Control (DMRAC) approach to regulate turbine rotational speed and to accommodate step disturbances. The turbine simulation models the Controls Advanced Research Turbine (CART) of the National Renewable Energy Laboratory in Golden, Colorado. The CART is a utility-scale wind turbine that has a well-developed and extensively verified simulator. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. In the simulations, the adaptive pitch controller showed improved generator speed regulation in Region 3 when compared with the baseline PI pitch controller. The adaptive controller demonstrated robustness to modeling errors and changes in system parameters.

Frost, S. A.; Balas, M. J.; Wright, A. D.

2009-01-01T23:59:59.000Z

395

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

396

Small Wind Turbine Testing and Applications Development  

Science Conference Proceedings (OSTI)

Small wind turbines offer a promising alternative for many remote electrical uses where there is a good wind resource. The National Wind Technology Center (NWTC) of the National Renewable Energy Laboratory helps further the role that small turbines can play in supplying remote power needs. The NWTC tests and develops new applications for small turbines. The NWTC also develops components used in conjunction with wind turbines for various applications. This paper describes wind energy research at the NWTC for applications including battery charging stations, water desalination/purification, and health clinics. Development of data acquisition systems and tests on small turbines are also described.

Corbus, D.; Baring-Gould, I.; Drouilhet, S.; Gevorgian, V.; Jimenez, T.; Newcomb, C.; Flowers, L.

1999-09-14T23:59:59.000Z

397

NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

Not Available

2012-01-01T23:59:59.000Z

398

Closed-cycle gas turbine chemical processor  

SciTech Connect

A closed-cycle gas turbine chemical processor separates the functions of combustion air and dilution fluid in a gas turbine combustor. The output of the turbine stage of the gas turbine is cooled and recirculated to its compressor from where a proportion is fed to a dilution portion of its combustor and the remainder is fed to a chemical recovery system wherein at least carbon dioxide is recovered therefrom. Fuel and combustion air are fed to a combustion portion of the gas turbine combustor. In a preferred embodiment of the invention, the gas turbine is employed to drive an electric generator. A heat recovery steam generator and a steam turbine may be provided to recover additional energy from the gas turbine exhaust. The steam turbine may be employed to also drive the electric generator. additional heat may be added to the heat recovery steam generator for enhancing the electricity generated using heat recovery combustors in which the functions of combustion and dilution are separated. The chemical recovery system may employ process steam tapped from an intermediate stage of the steam turbine for stripping carbon dioxide from an absorbent liquid medium which is used to separate it from the gas stream fed to it. As the amount of carbon dioxide in the fuel fed to the chemical processor increases, the amount of process steam required to separate it from the absorbent fluid medium increases and the contribution to generated electricity by the steam turbine correspondingly decreases.

Stahl, C. R.

1985-07-16T23:59:59.000Z

399

Electronic fuel control system for gas turbine  

SciTech Connect

A method is described for monitoring gas turbine operating temperatures and rotational velocity for producing one of a group of fuel control signals for controlling the fuel input rate to the gas turbine. The method consists of: monitoring turbine inlet temperatures through respective sensors for the gas turbine, averaging the turbine inlet temperatures to produce an average turbine inlet temperature signal, monitoring a gas generator inlet temperature sensor of the gas turbine for producing a gas generator inlet temperature signal, generating a speed signal proportional to the rotational velocity of the gas turbine, combining the gas generator inlet temperature signal with the speed signal to produce a first function signal, applying the first function signal to a stored data set to produce a second function signal, the stored data set related to performance characteristics of the gas turbine, and comparing the turbine inlet temperature signal to the second function signal to produce a difference signal therefrom, the difference signal serving as a fuel control signal for the gas turbine.

Nick, C.F.

1986-04-22T23:59:59.000Z

400

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Single condenser arrangement for side exhaust turbine  

SciTech Connect

This patent describes a large-scale power generating apparatus for converting steam energy into electrical energy. It comprises: a large turbine capable of converting steam energy into mechanical energy; a large generator for converting mechanical energy into electrical energy; a shaft disposed in and axially connecting the turbine and the generator, the shaft capable of being turned by steam energy in the turbine; a single condenser connected to the turbine and capable of drawing steam out of the turbine and condensing steam to water, the single condenser disposed alongside the turbine; and a low foundation which supports the turbine and the generator and a slab which supports the low foundation and the single condenser.

Stock, A.L.

1989-09-19T23:59:59.000Z

402

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

403

Aerodynamic interference between two Darrieus wind turbines  

DOE Green Energy (OSTI)

The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

1981-04-01T23:59:59.000Z

404

Gas Turbine Procurement: 1987 Workshop  

Science Conference Proceedings (OSTI)

By properly specifying a gas turbine unit, a utility buyer can avoid engine system configurations that could contribute to forced outages, long downtimes, and less than satisfactory starting reliability. A 1987 EPRI workshop identified factors that can assist utilities in specifying these systems to obtain high reliability, availability, and maintainability.

1988-03-23T23:59:59.000Z

405

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

406

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

407

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

408

Gas turbine intake air quality  

SciTech Connect

This report presents the results of preliminary research intended to evaluate the causes and effects of compressor fouling on pipeline gas turbines. A literature search and field-experience survey of pipeline operators provides the basis for the conclusions and recommendations.

Lawson, C.C.

1988-01-01T23:59:59.000Z

409

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

410

High temperature turbine engine structure  

DOE Patents (OSTI)

A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

Boyd, Gary L. (Tempe, AZ)

1990-01-01T23:59:59.000Z

411

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

412

Gas Turbine Considerations in the Pulp and Paper Industry  

E-Print Network (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena. Large quantities of process steam and electrical energy are required per unit of production. The pulp and paper industry has recognized the thermodynamic benefits and potentially attractive economics of developing power generation as an integral part of their power plant systems. The large requirements for process steam combined with process by-products and wood wastes make steam turbines a serious consideration in plant locations where suitable economic conditions are present. And many systems incorporating a wide variety of steam turbine types have been installed and are contributing toward profitable operations. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened the interest in power generation in the pulp and paper industry, as well as others. A strategic review of these issues creates the opportunity to favorably position the pulp and paper industry for the coming century. The industry has also become aware that gas turbine-based cogeneration systems can frequently be highly desirable relative to their traditional steam turbine approach.

Anderson, J. S.; Kovacik, J. M.

1990-06-01T23:59:59.000Z

413

Baseline Gas Turbine Development Program twelfth quarterly progress report  

DOE Green Energy (OSTI)

Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. The endurance engine was modified to incorporate a power turbine drive to the regenerators in order to simulate free rotor (upgraded) conditions. A portable baseline engine fixture complete with controls, intake, exhaust, and transmission is being assembled for odor evaluation. An additional 502 engine hours were accumulated on ceramic regenerators and seals. No core or seal failures were experienced during engine test. Initial fixture tests of zirconia seals show torque levels comparable with nickle oxide seals against the same matrix. An ambient compensation schedule was devised for the upgraded engine integrated control, and the integrated control system specifications were updated. A proposed hydromechanical automotive continuously variable ratio transmission (CVT) was evaluated and approved for preliminary development. Tests of heat rejection to the oil for lined versus linerless insulated engine assemblies indicated no heat loss penalty in omitting the metal liners. A study was made of various power turbine rotor assemblies and a final design was selected. Optimization studies of the two-stage power turbine reduction gears and regenerator spur and worm gears were completed. Initial tests on the fixture for simulating the scaled S-26 upgraded burner have begun.

Schmidt, F W; Wagner, C E

1975-10-31T23:59:59.000Z

414

System for minimizing valve throttling losses in a steam turbine power plant  

SciTech Connect

A system which integrates the controls of a steam turbine power plant for minimizing power plant energy losses substantially caused by steam flow valve throttling is disclosed. The steam turbine power plant includes boiler pressure controls for controlling the boiler throttle pressure of a steam producing boiler and turbine-generator controls for positioning a plurality of turbine steam admission values to regulate the steam flow conducted through a steam turbine which governs the electrical energy generated by an electrical generator at a desired power generation level. The turbine-generator controls predetermine a plurality of valve position states to establish a predetermined valve grouping sequential positioning pattern for the steam admission valves to regulate steam flow through the steam turbine across the range of power generation, each predetermined state substantially corresponding to a minimum of valve throttling losses. The steam admission valves may be positioned at a present valve position state, which is other than one of the predetermined states, as a result of a change in desired power generation level. The disclosed system responds to this condition by governing the boiler pressure controls to adjust the boiler throttle pressure at a desired rate and in a direction to cause steam admission valves to be repositioned according to the sequential positioning pattern to a selected one of the predetermined efficient valve position states. The repositioning of the steam admission valves is performed by maintaining the generated energy substantially at the new desired power generation level.

Stern, L.P.; Johnson, S.J.

1979-12-18T23:59:59.000Z

415

Wind turbine generator with improved operating subassemblies  

DOE Patents (OSTI)

A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

1985-01-01T23:59:59.000Z

416

Structural health monitoring of wind turbines  

DOE Green Energy (OSTI)

To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.

Simmermacher, T.; James, G.H. III.; Hurtado, J.E.

1997-09-01T23:59:59.000Z

417

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

418

Advanced turbine cooling, heat transfer, and aerodynamic studies  

DOE Green Energy (OSTI)

The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

Han, Je-Chin; Schobeiri, M.T. [Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

419

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

420

Airfoil for a turbine of a gas turbine engine  

SciTech Connect

An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.

Liang, George (Palm City, FL)

2010-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

422

Investigation of aerodynamic braking devices for wind turbine applications  

DOE Green Energy (OSTI)

This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

Griffin, D.A. [R. Lynette & Associates, Seattle, WA (United States)

1997-04-01T23:59:59.000Z

423

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

424

Turbine-Generator Auxiliary Systems, Volume 5: Main and Feedpump Turbine Trip Systems  

Science Conference Proceedings (OSTI)

This report describes the trip systems for the mechanical hydraulic control (MHC) and electrohydraulic control (EHC) main turbine and feedpump turbines for the General Electric (GE) and Siemens Westinghouse (SW) units in the United States.

2009-12-23T23:59:59.000Z

425

Definition: Turbine | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Dictionary.png Turbine A device or machine that converts the kinetic energy of a fluid (air, water, steam or other gases) to mechanical energy.[1][2] View on Wikipedia Wikipedia Definition Related Terms Electric generator, Electricity, Electricity generation, energy, bioenergy References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=T ↑ http://www1.eere.energy.gov/site_administration/glossary.html Retriev LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ed from "http://en.openei.org/w/index.php?title=Definition:Turbine&oldid=493149" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

426

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

427

Gas turbine vane platform element  

SciTech Connect

A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

Campbell, Christian X. (Oviedo, FL); Schiavo, Anthony L. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL

2012-08-28T23:59:59.000Z

428

Enhancing gas-turbine performance  

SciTech Connect

According to one report, around 80% of the large frame-size industrial and utility gas turbines (GTs) in service throughout the world were installed between 1965 and 1975. Because of substantial technology advancements since their commissioning, these older units make ideal candidates for capacity enhancements through such options as steam or water injection, inlet-air cooling, steam-cycle addition, hot-gas-path component uprates, and in the case of combined-cycles, supplementary firing of the heat-recovery steam generator (HRSG). This article reports that many gas-turbine owners are searching for upgrades that will enhance capacity or thermal efficiency--or both. Uprating hot-gas-path components is perhaps the most popular option, but economic evaluations must account for shortened hot-section life and higher O and M costs.

Swanekamp, R.

1995-09-01T23:59:59.000Z

429

21st century advanced hydropower turbine system  

DOE Green Energy (OSTI)

While hydropower turbine manufacturers have incrementally improved turbine technology to increase efficiency, the basic design concepts haven`t changed for decades. These late 19th and early 20th century designs did not consider environmental effects, since little was known about environmental effects of hydropower at the time. The U.S. Department of Energy (DOE) and the hydropower industry recognize that hydropower plants have an effect on the environment and there is a great need to bring turbine designs into the 21st century. DOE has issued a request for proposals (RFP) that requested proposers to discard conventional thinking, search out innovative solutions, and to visualize innovative turbines designed from a new perspective. This perspective would look at the {open_quotes}turbine system{close_quotes} (intake to tailrace) which will balance environmental, technical, and economic considerations. This paper describes the DOE Advanced Hydropower Turbine System Program.

Brookshier, P.A.; Flynn, J.V.; Loose, R.R.

1995-11-01T23:59:59.000Z

430

On the Fatigue Analysis of Wind Turbines  

DOE Green Energy (OSTI)

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

Sutherland, Herbert J.

1999-06-01T23:59:59.000Z

431

Cooling scheme for turbine hot parts  

DOE Patents (OSTI)

A closed-loop cooling scheme for cooling stationary combustion turbine components, such as vanes, ring segments and transitions, is provided. The cooling scheme comprises: (1) an annular coolant inlet chamber, situated between the cylinder and blade ring of a turbine, for housing coolant before being distributed to the turbine components; (2) an annular coolant exhaust chamber, situated between the cylinder and the blade ring and proximate the annular coolant inlet chamber, for collecting coolant exhaust from the turbine components; (3) a coolant inlet conduit for supplying the coolant to said coolant inlet chamber; (4) a coolant exhaust conduit for directing coolant from said coolant exhaust chamber; and (5) a piping arrangement for distributing the coolant to and directing coolant exhaust from the turbine components. In preferred embodiments of the invention, the cooling scheme further comprises static seals for sealing the blade ring to the cylinder and flexible joints for attaching the blade ring to the turbine components.

Hultgren, Kent Goran (Winter Park, FL); Owen, Brian Charles (Orlando, FL); Dowman, Steven Wayne (Orlando, FL); Nordlund, Raymond Scott (Orlando, FL); Smith, Ricky Lee (Oviedo, FL)

2000-01-01T23:59:59.000Z

432

Transportable Combustion Turbine Demonstration Project  

Science Conference Proceedings (OSTI)

New York State Electric and Gas Corporation (NYSEG) installed a 7.15-MW Solar® Taurus™ 70 (nominal 7 MW) gas combustion turbine (CT) at its State Street substation in Auburn, New York. As a demonstration project supported through EPRI's Tailored Collaboration (TC) program, it is intended to aid in better understanding the "complete picture" for siting this particular technology as a distributed resource (DR).

2001-12-14T23:59:59.000Z

433

Steam Turbine Materials and Corrosion  

Science Conference Proceedings (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

434

Steam Turbine Materials and Corrosion  

E-Print Network (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60 % efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Gordon R. Holcomb; Derek Hsu

2007-01-01T23:59:59.000Z

435

High Temperature Capabililty and Innovative Cooling with a Spar and Shell Turbine Blade - Florida Turbine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Capability and Temperature Capability and Innovative Cooling with a Spar and Shell Turbine Blade-Florida Turbine Technologies Background Florida Turbine Technologies, Inc. (FTT) is currently developing advanced aerothermal technologies centered on spar and shell airfoil concepts meant to provide highly durable turbine components that require the lowest cooling flow possible. The spar-shell system represents a unique opportunity for the use of advanced, high-temperature materials

436

Comparing Single and Multiple Turbine Representations in a Wind Farm Simulation: Preprint  

SciTech Connect

This paper compares single turbine representation versus multiple turbine representation in a wind farm simulation.

Muljadi, E.; Parsons, B.

2006-03-01T23:59:59.000Z

437

Advanced turbine systems program overview  

SciTech Connect

The US Department of Energy`s (DOE) Office of Fossil Energy and Office of Energy Efficiency & Renewable Energy are jointly supporting a program to develop Advanced Turbine Systems (ATS). Demonstrations of commercial prototypes will be completed by the year 2000 for both utility- and industrial-scale applications. The program is primarily directed toward natural gas utilization, but eventual application of the technology to coal-fired systems is not overlooked. In major procurements, contractors are required to address (in paper studies though not in testing) the eventual adaptation of their systems to coal firing. Implementation of the program is proceeding well. Phase 1 systems studies have been completed, and Phase 2 concept development has been underway for about a year. Release of solicitation for Phase 3 proposals has been announced for July, 1994. This phase of the program will see teams led by turbine manufacturers move into full scale testing of critical components. Generic research and development has been proceeding in parallel with the major development effort. METC has started testing in their Advanced Turbine Combustion test facility, and Oak Ridge National Laboratory has initiated a materials test program. The industry/university consortium established by the South Carolina Energy Research and Development Center has completed their second round of university awards, with 23 university projects now underway.

Webb, H.A.

1994-10-01T23:59:59.000Z

438

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

439

Lightning protection system for a wind turbine  

DOE Patents (OSTI)

In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

Costin, Daniel P. (Chelsea, VT); Petter, Jeffrey K. (Williston, VT)

2008-05-27T23:59:59.000Z

440

Method and apparatus for wind turbine braking  

DOE Patents (OSTI)

A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

2009-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gas Turbine Repair Guidelines: Alstom GT26  

Science Conference Proceedings (OSTI)

For more than a decade, the Electric Power Research Institute (EPRI) has been developing gas turbine hot section component repair and coating guidelines to assist utilities and power generators in the refurbishment of these critical and expensive parts. Utilities, generators, and repair vendors have used these guidelines to perform repairs on turbine blades, vanes, and combustion hardware. The guidelines in this volume address the specific features of the Alstom GT26 gas turbine.

2011-11-03T23:59:59.000Z

442

Certification testing for small wind turbines  

DOE Green Energy (OSTI)

This paper describes the testing procedures for obtaining type certification for a small wind turbine. Southwest Windpower (SWWP) is seeking type certification from Underwriters Laboratory (UL) for the AIR 403 wind turbine. UL is the certification body and the National Renewable Energy Laboratory (NREL) is providing technical assistance including conducting the certification testing. This is the first small turbine to be certified in the US, therefore standards must be interpreted and test procedures developed.

Corbus, D.; Link, H.; Butterfield, S.; Stork, C.; Newcomb, C.

1999-10-20T23:59:59.000Z

443

Steam Turbine Electronic Overspeed Protection System  

Science Conference Proceedings (OSTI)

BackgroundThe risk of turbine-generator destructive overspeed can be mitigated by employing protection systems that act to rapidly isolate the steam supply in the event of separation from the grid. These systems are the final line of defense against overspeed, and they are deployed separately from the systems used to control turbine load and speed during synchronized operation. Most steam turbines in operation today were commissioned with a mechanical trip device that ...

2013-12-23T23:59:59.000Z

444

Small Wind Research Turbine: Final Report  

DOE Green Energy (OSTI)

The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

Corbus, D.; Meadors, M.

2005-10-01T23:59:59.000Z

445

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

Utility Scale Wind Turbine,” with a preliminary author lista Utility Scale Wind Turbine” with a preliminary author listUtility Scale Wind Turbine Including Operational E?ects” with a preliminary author list

Prowell, I.

2011-01-01T23:59:59.000Z

446

Dynamic analysis of a 5 megawatt offshore floating wind turbine  

E-Print Network (OSTI)

1985. 23. Hau, E. Wind Turbines: Fundamentals, Technologies,for Floating Offshore Wind Turbines. Tech. no. NREL/CP-500-Full-scale Floating Wind Turbine." Statoil, 14 Oct. 2009.

Harriger, Evan Michael

2011-01-01T23:59:59.000Z

447

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

Bloomberg NEF”). 2011c. Wind Turbine Price Index, Issue V.Hand, A. Laxson. 2006. Wind Turbine Design Cost and Scalingof a Multi-MegaWatt Wind Turbine. ” Renewable Energy, vol.

Bolinger, Mark

2012-01-01T23:59:59.000Z

448

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

of Turbine Rotor . . . . . . . . . . . . . . 3.9 Results ofA. C. (2006). “WindPACT turbine rotor design study. ” ReportA. C. (2006). “WindPACT turbine rotor design study. ” Report

Prowell, I.

2011-01-01T23:59:59.000Z

449

Large Diameter 718 Ingots for Land-Based Gas Turbines  

Science Conference Proceedings (OSTI)

h'ew high efficiency land based gas turbines made by General Electric ... Materials used for turbine rotors in land-based gas turbines have typically been CrMoV ...

450

Automatic Detection of Wind Turbine Clutter for Weather Radars  

Science Conference Proceedings (OSTI)

Wind turbines cause contamination of weather radar signals that is often detrimental and difficult to distinguish from cloud returns. Because the turbines are always at the same location, it would seem simple to identify where wind turbine ...

Kenta Hood; Sebastián Torres; Robert Palmer

2010-11-01T23:59:59.000Z

451

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

452

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

453

Major Corrosion Problems in Steam Turbines  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

454

Water turbine system and method of operation  

DOE Patents (OSTI)

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2011-05-10T23:59:59.000Z

455

Water turbine system and method of operation  

DOE Patents (OSTI)

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

Costin, Daniel P. (Montpelier, VT)

2009-02-10T23:59:59.000Z

456

Land-based turbine casting initiative  

DOE Green Energy (OSTI)

To meet goals for the ATS program, technical advances developed for aircraft gas turbine engines need to be applied to land-based gas turbines. These advances include directionally solidified and single crystal castings, alloys tailored to exploit these microstructures, complex internal cooling schemes, and coatings. The proposed program to scale aircraft gas turbine casting technology up to land based gas turbine size components is based on low sulfur alloys, casting process development, post-cast process development, and establishing casting defect tolerance levels. The inspection side is also discussed.

Mueller, B.A.; Spicer, R.A. [Howmet Corp., Whitehall, MI (United States)

1995-12-31T23:59:59.000Z

457

Idaho National Laboratory - Hydropower Program: Advanced Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

while essentially emission-free, can have undesirable environmental effects, such as fish injury and mortality from passage through turbines, as well as detrimental changes in...

458

CFD Modelling of Generic Gas Turbine Combustor.  

E-Print Network (OSTI)

??New computational methods are continuously developed in order to solve problems in different engineering fields. One of these fields is gas turbines, where the challenge… (more)

KHODABANDEH, AMIR

2011-01-01T23:59:59.000Z

459

WEB RESOURCE: Chromalloy Gas Turbine Corporation - TMS  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... Chromalloy Gas Turbine Corporation is a pioneer in the high temperature coating of jet aircraft engine vanes and blades. Through ...

460

Gas Turbine Plant Modeling for Dynamic Simulation.  

E-Print Network (OSTI)

?? Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A… (more)

Endale Turie, Samson

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine in-flow conditions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heat Transfer In Turbine Mid Structures.  

E-Print Network (OSTI)

??In order to estimate the life time of a cooled gas turbine component, knowledge of the heat transfer is essential in order to predict the… (more)

Abou-Taouk, Abdallah

2006-01-01T23:59:59.000Z

462

Baldrige Award Recipients--Solar Turbines (1998)  

Science Conference Proceedings (OSTI)

... for new turbine equipment to a position of strong global market leadership ... market, industry, and regulatory developments from all parts of the globe. ...

2012-11-30T23:59:59.000Z

463

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

464

The Economic Optimization of Wind Turbine Design .  

E-Print Network (OSTI)

??This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and… (more)

Schmidt, Michael Frank

2007-01-01T23:59:59.000Z

465

Low Cost Powder Metal Turbine Components  

Science Conference Proceedings (OSTI)

Driving down processing costs on military and commercial aerospace ... studies using production alloys to turbine disk property results will be presented.

466

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept, ultra...