National Library of Energy BETA

Sample records for turbine energy output

  1. Aero Turbine | Open Energy Information

    Open Energy Info (EERE)

    Aero Turbine Jump to: navigation, search Name Aero Turbine Facility Aero Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AeroTurbine...

  2. Western Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine Jump to: navigation, search Name: Western Turbine Place: Aurora, Colorado Zip: 80011 Sector: Wind energy Product: Wind Turbine Installation and Maintainance. Coordinates:...

  3. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update

  4. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce...

  5. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  6. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  7. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of

  8. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  9. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  10. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  11. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  12. GC China Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    GC China Turbine Corp Jump to: navigation, search Name: GC China Turbine Corp Place: Wuhan, Hubei Province, China Sector: Wind energy Product: China-base wind turbine manufacturer....

  13. Howden Wind Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    Howden Wind Turbines Ltd Jump to: navigation, search Name: Howden Wind Turbines Ltd Place: United Kingdom Sector: Wind energy Product: Howden was a manufacturer of wind turbines in...

  14. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  15. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  16. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. This video highlights the various parts and mechanisms of a modern wind turbine. Text Version Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as

  17. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 101: Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern

  18. Middelgrunden Wind Turbine Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Middelgrunden Wind Turbine Cooperative Jump to: navigation, search Name: Middelgrunden Wind Turbine Cooperative Place: Copenhagen, Denmark Zip: 2200 Sector: Wind energy Product:...

  19. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  20. Maglev Wind Turbine Technologies | Open Energy Information

    Open Energy Info (EERE)

    Maglev Wind Turbine Technologies Jump to: navigation, search Name: Maglev Wind Turbine Technologies Place: Sierra Vista, Arizona Zip: 85635 Sector: Wind energy Product: The new...

  1. Pioneer Asia Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Asia Wind Turbines Jump to: navigation, search Name: Pioneer Asia Wind Turbines Place: Madurai, Tamil Nadu, India Zip: 625 002 Sector: Wind energy Product: Madurai-based wind...

  2. MHK Technologies/Blue Motion Energy marine turbine | Open Energy...

    Open Energy Info (EERE)

    Blue Motion Energy marine turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Blue Motion Energy marine turbine.jpg Technology Profile...

  3. Energy 101: Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines Energy 101: Wind Turbines July 30, 2010 - 10:47am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs On Tuesday, the Department announced a $117 million loan guarantee through for the Kahuku Wind Power Project in Hawaii. That's a major step forward for clean energy in the region, as it's expected to supply clean electricity to roughly 7,700 households per year, and it also invites a deceptively simple question: how exactly do wind turbines

  4. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  5. Archbold Local Schools Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Archbold Local Schools Wind Turbine Jump to: navigation, search Name Archbold Local Schools Wind Turbine Facility Archbold Local Schools Wind Turbine Sector Wind energy Facility...

  6. Conneaut Middle School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Conneaut Middle School Wind Turbine Jump to: navigation, search Name Conneaut Middle School Wind Turbine Facility Conneaut Middle School Wind Turbine Sector Wind energy Facility...

  7. International Turbine Research Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Research Wind Farm Jump to: navigation, search Name International Turbine Research Wind Farm Facility International Turbine Research Sector Wind energy Facility Type...

  8. Conneaut Wastewater Facility Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wastewater Facility Wind Turbine Jump to: navigation, search Name Conneaut Wastewater Facility Wind Turbine Facility Conneaut Wastewater Facility Wind Turbine Sector Wind energy...

  9. City of Medford Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Medford Wind Turbine Jump to: navigation, search Name City of Medford Wind Turbine Facility City of Medford Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  10. New England Tech Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Tech Wind Turbine Jump to: navigation, search Name New England Tech Wind Turbine Facility New England Tech Wind Turbine Sector Wind energy Facility Type Small Scale Wind Facility...

  11. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  12. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Hole Research Center Wind Turbine Jump to: navigation, search Name Woods Hole Research Center Wind Turbine Facility Woods Hole Research Center Wind Turbine Sector Wind energy...

  13. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  14. Liberty Turbine Test Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Turbine Test Wind Farm Jump to: navigation, search Name Liberty Turbine Test Wind Farm Facility Liberty Turbine Test Sector Wind energy Facility Type Commercial Scale Wind Facility...

  15. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50ラ500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  16. TGM Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Name: TGM Turbines Place: Sertaozinho, Sao Paulo, Brazil Zip: 14175-000 Sector: Biomass Product: Brazil based company who constructs and sells...

  17. Earth Turbines Inc | Open Energy Information

    Open Energy Info (EERE)

    Earth Turbines Inc Place: Hinesburg, Vermont Zip: 5461 Sector: Wind energy Product: Start-up company developing small-scale wind technology for the residential and commercial...

  18. Nature's Classroom Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgwindex.php?titleNature%27sClassroomWindTurbine&oldid585985...

  19. Sandia Energy - Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Home Energy Nuclear Energy News Energy Efficiency News & Events Sandia's Brayton-Cycle Turbine Boosts Small Nuclear...

  20. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  1. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  2. Energy 101: Wind Turbines - 2014 Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbines - 2014 Update Energy 101: Wind Turbines - 2014 Update Addthis Description See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Topic Wind Text Version Below is the text version for the

  3. Capstone Turbine Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Project Capstone Turbine Project February 5, 2016 - 9:00am Addthis C370 Production Concept Layouts C370 Production Concept Layouts The standard small turbines currently on the market have little or no heat recovery capability and use conventional high temperature nickel alloys that limit engine efficiency. Significant amounts of energy could be saved if technologies were available to allow operation at higher temperatures with substantial heat recovery. To address this

  4. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  5. Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2010-11-23

    Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

  6. Intelligent Wind Turbine Program - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Find More Like This Return to Search Intelligent Wind Turbine Program Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryA unique LANL research team composed of world experts in structural health monitoring, modeling and simulation, and prognostic decision making has established a strong capability in wind energy research. The intelligent wind-turbine project has resulted in a U.S. patent application and copyrighted software,

  7. Renewable Devices Swift Turbine Ltd | Open Energy Information

    Open Energy Info (EERE)

    Swift Turbine Ltd Jump to: navigation, search Name: Renewable Devices Swift Turbine Ltd Place: Edinburgh, Scotland, United Kingdom Zip: EH26 0PH Sector: Wind energy Product:...

  8. Indian Wind Turbine Manufacturers Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Turbine Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

  9. Iskra Wind Turbine Manufacturers Ltd | Open Energy Information

    Open Energy Info (EERE)

    Iskra Wind Turbine Manufacturers Ltd Jump to: navigation, search Name: Iskra Wind Turbine Manufacturers Ltd Place: Nottingham, United Kingdom Sector: Wind energy Product: Iskra...

  10. Dongfang Steam Turbine Works DFSTW | Open Energy Information

    Open Energy Info (EERE)

    Turbine Works DFSTW Jump to: navigation, search Name: Dongfang Steam Turbine Works (DFSTW) Place: Deyang, Sichuan Province, China Zip: 618000 Sector: Wind energy Product:...

  11. Danish Wind Turbine Owners Association | Open Energy Information

    Open Energy Info (EERE)

    Turbine Owners Association Jump to: navigation, search Name: Danish Wind Turbine Owners' Association Place: Aarhus C, Denmark Zip: DK-8000 Sector: Wind energy Product: Danish Wind...

  12. MHK Technologies/EnCurrent Turbine | Open Energy Information

    Open Energy Info (EERE)

    EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy...

  13. FloDesign Wind Turbine Corporation | Open Energy Information

    Open Energy Info (EERE)

    FloDesign Wind Turbine Corporation Jump to: navigation, search Name: FloDesign Wind Turbine Corporation Place: Massachusetts Zip: 1095 Sector: Wind energy Product:...

  14. Gamesa Wind Turbines Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gamesa Wind Turbines Pvt Ltd Jump to: navigation, search Name: Gamesa Wind Turbines Pvt. Ltd. Place: Chennai, Tamil Nadu, India Sector: Wind energy Product: Chennai-based wind...

  15. Built-Environment Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Turbines Jump to: navigation, search Built-environment wind turbine projects are wind energy projects that are constructed on, in, or near buildings. These projects present an...

  16. Three D Metals Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Three D Metals Wind Turbine Jump to: navigation, search Name Three D Metals Wind Turbine Facility Three D Metals Wind Turbine Sector Wind energy Facility Type Small Scale Wind...

  17. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect (OSTI)

    Carlson, Clinton P; Schichting, Alexander D; Quellette, Scott; Farinholt, Kevin M; Park, Gyuhae

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  18. Wind Turbine Tower for Storing Hydrogen and Energy - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Wind Turbine Tower for Storing Hydrogen and ...

  19. Turbine Support | Open Energy Information

    Open Energy Info (EERE)

    data from Skystream wind turbines. You can obtain a FREE preprogrammed Raspberry Pi computer to read and send data to OpenEI from at Kansas State University. See the...

  20. Adaptive Pitch Control for Variable Speed Wind Turbines - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Wind Energy Energy Analysis Energy Analysis Find More Like This Return to Search Adaptive Pitch Control for Variable Speed Wind Turbines National Renewable Energy ...

  1. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck Engine Presentation given at the 16th ...

  2. Sandia Energy - Developing a Fast-Running Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing a Fast-Running Turbine Wake Model Home Renewable Energy Energy Water Power News News & Events Developing a Fast-Running Turbine Wake Model Previous Next Developing a...

  3. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  4. Category:Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind turbine Jump to: navigation, search Pages in category "Wind turbine" This category contains only the following page. W Wind turbine Retrieved from "http:en.openei.orgw...

  5. Capstone Turbine Corp | Open Energy Information

    Open Energy Info (EERE)

    Turbine Corp Jump to: navigation, search Name: Capstone Turbine Corp Place: Chatsworth, California Zip: 91311 Product: Capstone Turbine Corp produces low-emission microturbine...

  6. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  7. SwanTurbines | Open Energy Information

    Open Energy Info (EERE)

    SwanTurbines Jump to: navigation, search Name: SwanTurbines Place: United Kingdom Product: SwanTurbines is developing a tidal stream turbine. The company is currently working on a...

  8. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  9. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    % Wind Energy by 2030 Chapter 2: Wind Turbine Technology Summary Slides Anatomy of a 1.5-MW wind turbine Nacelle enclosing: * Low-speed shaft * Gearbox * Generator, 1.5 MW * ...

  10. Yituo Made Wind Turbine Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yituo Made Wind Turbine Co Ltd Jump to: navigation, search Name: Yituo-Made Wind Turbine Co. Ltd. Place: Luoyang, Henan Province, China Zip: 471003 Sector: Wind energy Product: A...

  11. Sandia Energy - Sandia Releases Open-Source Hydrokinetic Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases Open-Source Hydrokinetic Turbine Design Model, CACTUS Home Renewable Energy Energy Water Power News News & Events Computational Modeling & Simulation Sandia Releases...

  12. Wind Turbine Showcased in Energy Department Headquarters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Turbine Showcased in Energy Department Headquarters Wind Turbine Showcased in Energy Department Headquarters February 26, 2016 - 9:23am Addthis A Pika Energy wind turbine is the newest addition to the Department of Energy's headquarters lobby in Washington, D.C. | Photo by Mike Mueller, The Hannon Group A Pika Energy wind turbine is the newest addition to the Department of Energy's headquarters lobby in Washington, D.C. | Photo by Mike Mueller, The Hannon Group Unlike utility-scale

  13. Lithium-Ion Ultracapacitors integrated with Wind Turbines Power Conversion Systems to Extend Operating Life and Improve Output Power Quality

    SciTech Connect (OSTI)

    Adel Nasiri

    2012-05-23

    In this project we designed and modeled a system for a full conversion wind turbine and built a scaled down model which utilizes Lithium-Ion Capacitors on the DC bus. One of the objectives is to reduce the mechanical stress on the gearbox and drivetrain of the wind turbine by adjusting the torque on generator side according to incoming wind power. Another objective is to provide short-term support for wind energy to be more テδεつεδづつ「テδεつづδづつテδεつづδづつ徃rid friendlyテδεつεδづつ「テδεつづδづつテδεつづδづつ in order to ultimately increase wind energy penetration. These supports include power smoothing, power ramp rate limitation, low voltage ride through, and frequency (inertia) support. This research shows how energy storage in small scale and in an economical fashion can make a significant impact on performance of wind turbines. Gearbox and drivetrain premature failures are among high cost maintenance items for wind turbines. Since the capacitors are directly applied on the turbine DC bus and their integration does not require addition hardware, the cost of the additional system can be reasonable for the wind turbine manufacturers and utility companies.

  14. Westwind Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    Ireland based small scale wind turbine manufacturer which originally started in Australia. References: Westwind Wind Turbines1 This article is a stub. You can help OpenEI...

  15. Infinity Turbine LLC | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin-based small turbine manufacturer focusing on small-scale binary turbine manufacturing. Coordinates: 43.07295, -89.386694 Show Map Loading map......

  16. MHK Technologies/Zero Impact Water Current Turbine | Open Energy...

    Open Energy Info (EERE)

    Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp...

  17. NASA Building 12 Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    in December 2014, the NASA Building 12 installation consists of four Urban Green Energy Eddy GT turbines. The project was constructed as part of a larger Building 12...

  18. Wind Turbine Blade Testing System Using Base Excitation - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Wind Turbine Blade Testing System Using Base ... Recently, there has been a rapidly growing demand for renewable energy, including wind ...

  19. How Do Wind Turbines Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources ツサ Energy Basics ツサ How Do Wind Turbines Work? How Do Wind Turbines Work? Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click on the image to see an animation of wind at work. Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor

  20. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    and Aircraft Industries (Technical Report) | SciTech Connect Technical Report: Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries Citation Details In-Document Search Title: Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries The purpose of this project was to develop surface treatments which will inhibit the formation of ice on turbine blades and propellers. ORNL worked with Piedmont Propulsion

  1. Animation: How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Animation: How a Wind Turbine Works Animation: How a Wind Turbine Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player A wind turbine works on a simple principle. This animation shows how energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Wind turbines are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more above

  2. The Inside of a Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Inside of a Wind Turbine The Inside of a Wind Turbine 1 of 17 Tower: 2 of 17 Tower: Made from tubular steel (shown here), concrete, or steel lattice. Supports the structure of the turbine. Because wind speed increases with height, taller towers enable turbines to capture more energy and generate more electricity. Generator: 3 of 17 Generator: Produces 60-cycle AC electricity; it is usually an off-the-shelf induction generator. High-speed shaft: 4 of 17 High-speed shaft: Drives the generator.

  3. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Does a Wind Turbine Work? How Does a Wind Turbine Work? How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor Tower Nacelle

  4. How a Wind Turbine Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Wind Turbine Works How a Wind Turbine Works June 20, 2014 - 9:09am Addthis How does a wind turbine work? Previous Next Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity. Click NEXT to learn more. Blades Rotor Low Speed Shaft Gear Box High Speed Shaft Generator Anemometer Controller Pitch System Brake Wind Vane Yaw Drive Yaw Motor

  5. Marine Current Turbines Ltd | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Zip: BS34 8PD Sector: Marine and Hydrokinetic Product: Developer of tidal stream turbine technology for exploiting flowing water in general and tidal streams in...

  6. Distributed Wind Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Image: Nathan Broaddus, Cultivate Photography Multimedia Design 9 of 11 A sailboat features a 160 W wind turbine. Image: Ken Portolese, Primus Wind Power 10 of 11 Several ...

  7. Avista Turbine Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    Power, Inc Jump to: navigation, search Name: Avista Turbine Power, Inc Place: Washington Phone Number: 800.936.6629 Website: www.avistacorp.comhomePages Twitter:...

  8. Turbine Electric Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Power Inc Jump to: navigation, search Name: Turbine Electric Power Inc Sector: Vehicles Product: US-based, holder of the 'exclusive worldwide rights' to install, sell,...

  9. Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Water Wall Turbine Region: Canada Sector: Marine and Hydrokinetic Website: www.wwturbine.com This company is listed in the Marine and Hydrokinetic...

  10. Golden Turbines LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Golden Turbines LLC Address: 280 Meadow Ash Dr Lewis Center Zip: 43035 Region: United States Sector: Marine and Hydrokinetic Year Founded:...

  11. Community Wind Handbook/Research Turbine Models | Open Energy...

    Open Energy Info (EERE)

    as how much energy you plan to produce. While consumers are free to choose any turbine model or type, it is important to know that many resources are available to help you...

  12. Mid-Size Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    search A Vergnet GEV MP C 275-kW turbine at the Sandywoods Community, Rhode island. Photo from Stefan DominioniVergnet S.A., NREL 26490. The U.S. Department of Energy defines...

  13. Building the Basic PVC Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Basic PVC Wind Turbine Building the Basic PVC Wind Turbine Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary This plan shows how to make a rugged and inexpensive classroom wind turbine that can be used for lab bench-based blade design experiments. While a few specialized parts are needed (a hub and DC motor), the rest of the components are easily found at most hardware stores. Curriculum Technology, Science

  14. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  15. Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Information Advanced Research The American Recovery and Reinvestment Act (ARRA) funds gas turbine technology research and development to improve the efficiency, emissions, and ...

  16. Holy Name Central Catholic School Wind Turbine | Open Energy...

    Open Energy Info (EERE)

    Name Central Catholic School Wind Turbine Jump to: navigation, search Name Holy Name Central Catholic School Wind Turbine Facility Holy Name Central Catholic School Wind Turbine...

  17. Sandia Energy - Power Production Started on All Three SWiFT Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Production Started on All Three SWiFT Turbines Home Renewable Energy Energy SWIFT Facilities Partnership News Wind Energy News & Events Power Production Started on All Three...

  18. Department of Energy to Invest up to $4 Million for Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up to 4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to 4 Million for Wind Turbine Blade Testing Facilities June 25, 2007 - 2:07pm Addthis ...

  19. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Find More Like This Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable Energy Laboratory Contact NREL About This Technology...

  20. AFCEE MMR Turbines | Open Energy Information

    Open Energy Info (EERE)

    the Environment Energy Purchaser Distributed generation - net metered Location Camp Edwards Sandwich MA Coordinates 41.75754733, -70.54557323 Show Map Loading map......

  1. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex ...

  2. Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms is Demonstrated | Department of Energy Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated August 17, 2015 - 10:04am Addthis Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Alana Duerr Alana Duerr Ph.D., Ocean Engineer (New West Technologies) More than 4,000 gigawatts of estimated

  3. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its challenges, and path forward PDF icon 20percent_summary_chap2.pdf More Documents & Publications 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Testing, Manufacturing, and Component Development Projects Offshore Wind Projects

  4. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meet Certification Requirements | Department of Energy Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements October 1, 2015 - 1:04pm Addthis Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office On October 1, the Energy

  5. MHK Technologies/Open Centre Turbine | Open Energy Information

    Open Energy Info (EERE)

    Centre Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group...

  6. Minnkota Power Cooperative Wind Turbine (Petersburg) | Open Energy...

    Open Energy Info (EERE)

    Minnkota Power Cooperative Wind Turbine (Petersburg) Jump to: navigation, search Name Minnkota Power Cooperative Wind Turbine (Petersburg) Facility Minnkota Power Cooperative Wind...

  7. Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Dongqi Wind Turbine Blade Engineering Co Ltd Jump to: navigation, search Name: Tianjin Dongqi Wind Turbine Blade Engineering Co Ltd Place: Tianjin Municipality, China Sector: Wind...

  8. MHK Technologies/MRL Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here Axial Flow Turbine Technology...

  9. Wuxi Bamboo Wind Turbine Blade Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Bamboo Wind Turbine Blade Technology Co Ltd Jump to: navigation, search Name: Wuxi Bamboo Wind Turbine Blade Technology Co Ltd Place: Wuxi, Jiangsu Province, China Sector: Wind...

  10. MHK Technologies/Turbines OWC | Open Energy Information

    Open Energy Info (EERE)

    Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Description The patent pending Neo Aerodynamic turbine invented by Phi...

  11. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  12. MHK Technologies/Scotrenewables Tidal Turbine SRTT | Open Energy...

    Open Energy Info (EERE)

    Tidal Turbine SRTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Scotrenewables Tidal Turbine SRTT.jpg Technology Profile Primary...

  13. MHK Technologies/Tidal Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Turbine.jpg Technology Profile Primary Organization Aquascientific Project(s)...

  14. MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    Cross flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization...

  15. MHK Technologies/Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Type Click...

  16. Beijing Goldwind Kechuang Wind Turbine Manufacturer | Open Energy...

    Open Energy Info (EERE)

    Goldwind Kechuang Wind Turbine Manufacturer Jump to: navigation, search Name: Beijing Goldwind Kechuang Wind Turbine Manufacturer Place: Beijing, Beijing Municipality, China Zip:...

  17. MHK Technologies/THOR Ocean Current Turbine | Open Energy Information

    Open Energy Info (EERE)

    THOR Ocean Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage THOR Ocean Current Turbine.jpg Technology Profile Primary...

  18. MHK Technologies/Gorlov Helical Turbine | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine.jpg Technology Profile Primary Organization GCK...

  19. MHK Technologies/Rotech Tidal Turbine RTT | Open Energy Information

    Open Energy Info (EERE)

    Rotech Tidal Turbine RTT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rotech Tidal Turbine RTT.jpg Technology Profile Primary Organization...

  20. MHK Technologies/Anaconda bulge tube drives turbine | Open Energy...

    Open Energy Info (EERE)

    Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile...

  1. MHK Technologies/Tidal Stream Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Stream Turbine.jpg Technology Profile Primary Organization StatoilHydro co owned...

  2. MHK Technologies/Savanious Turbine | Open Energy Information

    Open Energy Info (EERE)

    Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged...

  3. MHK Technologies/Benkatina Turbine | Open Energy Information

    Open Energy Info (EERE)

    Benkatina Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Benkatina Turbine.jpg Technology Profile Primary Organization Leviathan...

  4. MHK Technologies/SeaUrchin Vortex Reaction Turbine | Open Energy...

    Open Energy Info (EERE)

    SeaUrchin Vortex Reaction Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaUrchin Vortex Reaction Turbine.jpg Technology Profile...

  5. MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...

  6. MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy...

    Open Energy Info (EERE)

    Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile...

  7. Vykson Formerly Turbine Developments NI Ltd | Open Energy Information

    Open Energy Info (EERE)

    Vykson Formerly Turbine Developments NI Ltd Jump to: navigation, search Name: Vykson (Formerly Turbine Developments (NI) Ltd) Place: Canterbury, England, United Kingdom Zip: BR6...

  8. MHK Technologies/Wells Turbine for OWC | Open Energy Information

    Open Energy Info (EERE)

    Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro...

  9. MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information

    Open Energy Info (EERE)

    Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary...

  10. MHK Technologies/The Davis Hydro Turbine | Open Energy Information

    Open Energy Info (EERE)

    turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is...

  11. Wind Turbine System State Awareness - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic wind loading. ...

  12. MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information

    Open Energy Info (EERE)

    Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal...

  13. Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Access Better Wind Resources and Reduce Costs | Department of Energy .8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs Energy Department Awards $1.8 Million to Develop Wind Turbine Blades to Access Better Wind Resources and Reduce Costs September 15, 2015 - 9:00am Addthis The Energy Department today announced the selection of two organizations to develop larger wind turbine blades that can take advantage of better wind resources and can lower costs.

  14. Turbine FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine FAQs faq-header-big.jpg TURBINES - BASICS Q: What is a turbine? A: A turbine is a mechanical device that extracts energy from a fluid flow and turns it into useful work. A combustion turbine is a type of turbine that converts the chemical energy in fossil fuels into mechanical energy by extracting energy from the hot combustion gases. The mechanical energy can then be used to generate electricity or as a power source for industrial processes. For further information, see: - The Gas

  15. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center. The turbine will be the fourth multimegawatt wind turbine to be

  16. Photo of the Week: Argonne's 10 kW Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power generated by this 10 kW wind turbine helps scientists and engineers study the interaction of wind energy, electric vehicle charging and grid technology. The turbine is also estimated to offset more than 10 metric tons of greenhouse gas emissions annually. Learn more about <a href="http://www.anl.gov/energy/renewable-energy"

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas ...

  18. Success Story: Capstone Turbine Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is the text version for the Capstone Turbine Corportation video. The words Clean ... We use micro turbine technology to provide the power behind the generator. The Video cuts ...

  19. File:Wind-turbine-economics-student.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-student.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-student.pdf Size of this preview: 463 599...

  20. File:Wind-turbine-economics-teacher.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-teacher.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-teacher.pdf Size of this preview: 463 599...

  1. File:Wind-turbine-economics-lp.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-lp.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-lp.pdf Size of this preview: 463 599 pixels. Other...

  2. MHK Technologies/HydroCoil Turbine | Open Energy Information

    Open Energy Info (EERE)

    HydroCoil Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroCoil Turbine.jpg Technology Profile Primary Organization HydroCoil...

  3. How Does a Wind Turbine Work? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work? How Does a Wind Turbine Work? Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Wind turbines operate on a simple principle. This...

  4. Trends in gas turbine development

    SciTech Connect (OSTI)

    Day, W.H.

    1999-07-01

    This paper represents the Gas Turbine Association's view of the gas turbine industry's R and D needs following the Advanced Turbine Systems (ATS) Program which is funded by the U.S. Department of Energy (DOE). Some of this information was discussed at the workshop Next Generation Gas Turbine Power Systems, which was held in Austin, TX, February 9--10, 1999, sponsored by DOE-Federal Energy Technology Center (FETC), reference 1. The general idea is to establish public-private partnerships to reduce the risks involved in the development of new technologies which results in public benefits. The recommendations in this paper are focused on gas turbines > 30 MW output. Specific GTA recommendations on smaller systems are not addressed here. They will be addressed in conjunction with DOE-Energy Efficiency.

  5. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  6. U.S. Department of Energy Celebrates New DOE 1.5 Research Wind Turbine -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL U.S. Department of Energy Celebrates New DOE 1.5 Research Wind Turbine November 10, 2009 Boulder, Colorado - Officials from the U.S. Department of Energy (DOE) today joined industry representatives and managers from DOE's National Laboratories to celebrate the latest tool to advance the Department's wind energy research: a state-of-the-art wind turbine installed at DOE's National Wind Technology Center (NWTC), at the National Renewable Energy Laboratory, near Boulder.

  7. MHK Technologies/Denniss Auld Turbine | Open Energy Information

    Open Energy Info (EERE)

    and reliability and reduces the need for maintenance. The turbine uses a sensor system with a pressure transducer that measures the pressure exerted on the ocean floor by...

  8. Sandia Energy - Sandia Develops Tool to Evaluate Wind-Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Impacts Previous Next Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts Our nation relies upon a network of radars across the country to support the...

  9. MHK Technologies/SmarTurbine | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage SmarTurbine.jpg Technology Profile Primary Organization Free Flow Power Corporation Project(s) where this technology is utilized *MHK Projects...

  10. An exploration of wind energy and wind turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that effect wind turbine design. Explain the goals of the following lab experiments. Review what practices make for good experimental design and the need to control...

  11. MHK Technologies/Cross Flow Turbine | Open Energy Information

    Open Energy Info (EERE)

    Flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Marine Renewable Technologies Technology...

  12. MHK Technologies/GreenFlow Turbines | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Gulfstream Technologies Technology Type Click here Cross Flow Turbine Technology Description Targeted at commercial sites with large water flow...

  13. Micro Hydro Kinetic Turbines from Smart Hydro Power | Open Energy...

    Open Energy Info (EERE)

    Hydro Kinetic Turbines from Smart Hydro Power Jump to: navigation, search << Return to the MHK database homepage Tauchturbine.jpg Technology Profile Project(s) where this...

  14. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  15. Eagles are Making Wind Turbines Safer for Birds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eagles are Making Wind Turbines Safer for Birds Eagles are Making Wind Turbines Safer for Birds March 16, 2016 - 10:38am Addthis Video by Simon Edelman, Energy Department. | Footage courtesy of the National Renewable Energy Laboratory and RES Americas. Kelly Yaker National Renewable Energy Laboratory How does it work? Researchers at NREL teamed with industry to study the flight patterns of two eagles. The data will help the companies develop systems to detect birds and prevent collisions with

  16. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect (OSTI)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to 窶徘ush or pull窶 air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  17. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction

    SciTech Connect (OSTI)

    None

    2008-02-01

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  18. EA-1923: Green Energy School Wind Turbine Project on Saipan, Commonwealth of the Northern Mariana Islands

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to provide funding for the Green Energy School Project which partially consists of eight 20 kW wind turbines at the Saipan Southern High School.

  19. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  20. Utility-Scale Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    turbines as greater than 1 megawatt. This technology class includes land-based and offshore wind projects. 1 Learn more about utility-scale wind at the links below....

  1. MHK Technologies/Sabella subsea tidal turbine | Open Energy Informatio...

    Open Energy Info (EERE)

    surface. These turbines are stabilised by gravity andor are anchored according to the nature of the seafloor. They are pre-orientated in the direction of the tidal currents, and...

  2. Sandia Energy - CFD-Populated Empirical Turbine Wake Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters that effect tidal turbine wakes, such as yaw angle to incident flow and vertical blockage ratio, may be incorporated as part of future revisions of the CFD populated...

  3. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced ... Given a natural gas cost of 8.00MMBtu and a boiler effciency of 80%, the fuel-related ...

  4. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine-Turbine Interaction - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  5. Wind Turbine Blade Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabric Wind Turbine Blade Design Offers Clean Energy Click to email this to a friend ... Fabric Wind Turbine Blade Design Offers Clean Energy Today, conventional wind turbine ...

  6. METHOD OF MEASURING THE INTEGRATED ENERGY OUTPUT OF A NEUTRONIC CHAIN REACTOR

    DOE Patents [OSTI]

    Sturm, W.J.

    1958-12-01

    A method is presented for measuring the integrated energy output of a reactor conslsting of the steps of successively irradiating calibrated thin foils of an element, such as gold, which is rendered radioactive by exposure to neutron flux for periods of time not greater than one-fifth the mean life of the induced radioactlvity and producing an indication of the radioactivity induced in each foil, each foil belng introduced into the reactor immediately upon removal of its predecessor.

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2014 (Btu per Kilowatthour) Prime Mover Coal Petroluem Natural Gas Nuclear 2007 Steam Generator 10,158 10,398 10,440 10,489 Gas Turbine -- 13,217 11,632 -- Internal Combustion -- 10,447 10,175 -- Combined Cycle W 10,970 7,577 -- 2008 Steam Generator 10,138 10,356 10,377 10,452 Gas Turbine -- 13,311 11,576 -- Internal Combustion -- 10,427 9,975 -- Combined Cycle W 10,985 7,642 -- 2009 Steam Generator 10,150 10,349 10,427 10,459

  8. Innovative turbine concepts for open-cycle OTEC (ocean thermal energy conversion)

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This report summarizes the results of preliminary studies conducted to identify and evaluate three innovative concepts for an open-cycle ocean thermal energy conversion (OTEC) steam turbine that could significantly reduce the cost of OTEC electrical power plants. The three concepts are (1) a crossflow turbine, (2) a vertical-axis, axial-flow turbine, and (3) a double-flow, radial-inflow turbine with mixed-flow blading. In all cases, the innovation involves the use of lightweight, composite plastic blading and a physical geometry that facilitates efficient fluid flow to and from the other major system components and reduces the structural requirements for both the turbine or the system vacuum enclosure, or both. The performance, mechanical design, and cost of each of the concepts are developed to varying degrees but in sufficient detail to show that the potential exists for cost reductions to the goals established in the US Department of Energy's planning documents. Specifically, results showed that an axial turbine operating with 33% higher steam throughput and 7% lower efficiency than the most efficient configuration provides the most cost-effective open-cycle OTEC system. The vacuum enclosure can be significantly modified to reduce costs by establishing better interfaces with the system. 33 refs., 26 figs., 11 tabs.

  9. Wind turbine tower for storing hydrogen and energy

    DOE Patents [OSTI]

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  10. Wind Turbine Structural Health Monitoring - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryLANL researchers are developing unique sensors in tandem with proprietary high-fidelity finite element models as well as the LANL WindBlade modeling and simulation capability that couples aeroelastic dynamic force loads with atmospheric wind conditions and system environment. The LANL Intelligent Wind Turbine Program is seeking dialogue with potential industrial

  11. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as...

  12. Wind Turbines of Ohio LLC | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Agriculture; Energy provider: power production; Installation; Maintenance and repair Phone Number: 330-502-1250 Website: www.windturbinesofohio.com...

  13. tidal turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tidal turbines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  14. Adaptive pitch control for variable speed wind turbines - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal 174,136 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Adaptive pitch control for

  15. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  16. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  17. MHK Technologies/Underwater Electric Kite Turbines | Open Energy...

    Open Energy Info (EERE)

    Chitokoloki Project *MHK ProjectsCoal Creek Project *MHK ProjectsHalf Moon Cove Tidal Project *MHK ProjectsIndian River Tidal Hydrokinetic Energy Project *MHK Projects...

  18. Property:WindTurbineManufacturer | Open Energy Information

    Open Energy Info (EERE)

    + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm +...

  19. Big Windy (Great Escape Restaurant Turbine) | Open Energy Information

    Open Energy Info (EERE)

    :"","icon":"","group":"","inlineLabel":"","visitedicon":"" References "Wind Energy Data and Information Gateway (WENDI)" Retrieved from "http:en.openei.orgw...

  20. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors...

  1. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving...

  2. MHK Technologies/Open HydroTurbine | Open Energy Information

    Open Energy Info (EERE)

    CrestEnergy Project(s) where this technology is utilized *MHK ProjectsPaimpol Brehat tidal farm Technology Resource Click here CurrentTidal Technology Description See Open...

  3. Meteorological aspects of siting large wind turbines

    SciTech Connect (OSTI)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  4. US Department of Energy wind turbine candidate site program: the regulatory process

    SciTech Connect (OSTI)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  5. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  6. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  7. Gas turbine CHP leads Italy`s energy drive

    SciTech Connect (OSTI)

    Jeffs, E.

    1995-11-01

    When Italy abandoned its nuclear power program, it was the signal for the electricity market to open to industrial CHP and independent power production. This move raised energy efficiency and cut pollution, as a prelude to the privatization of the electric utility system. The Privatization of ENEL, the National Electricity Authority, is expected to happen next year, but not before a significant component of independent power generation is already in place. ENEL itself was only created in 1963 and some of the former power companies have reemerged as the leading IPP`s. Although combined cycle and IPP capacity is only 5000 MW, it is expected to increase to 15,000 MW by the year 2000. In abandoning nuclear power, Italy may have given up on an unquestionably clean thermal energy source, but an intensive drive into private power with combined cycle, repowering, and industrial CHP schemes is achieving some worthwhile improvements in energy efficiency, and a cleaner environment than what went before. 3 figs., 1 tab.

  8. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  9. NREL Advances Feedforward Control in Turbines (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers use lidar and feedforward algorithms to improve rotor speed regulation and reduce costs of maintenance and operation. Controlling rotor speed in response to changes in wind conditions is imperative to capturing the maximum amount of energy with minimal structural loading for the least cost. Current technology uses a feedback controller on the turbine to sense wind conditions and make turbine adjustments accordingly. However, there may be a time delay between the controller sensing a

  10. NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE).

  11. Wind Turbine Condition Monitoring, Reliability Database, and O&M Research Update (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Gearbox Reliability Database, Condition Monitoring, and O&M Research Update Shawn Sheng GRC Annual Meeting 2015 February 17-18, 2015 Golden, Colorado Photo by Dennis Schroeder, NREL 21883 NREL/PR-5000-63868 NATIONAL RENEWABLE ENERGY LABORATORY Reliability Database 2 * Partners: - More than 20 partners, including turbine and gearbox original equipment manufacturers (OEMs), gearbox rebuild shops, wind plant owner/operators, and consulting companies - Assets represented by

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels, January 2013-December 2014 Coal Natural Gas Petroleum Period Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Steam Turbine Internal Combustion Engine Steam Turbine Petroleum Liquids Fired Combustion Turbine Internal Combustion Engine Annual Factors 2013 59.7% 48.2% 4.9% 10.6% 6.1% 12.1% 0.8% 2.2% 2014 61.0% 48.3% 5.2% 10.4% 8.5% 12.5% 1.1% 1.4% Year 2013 January 61.2% 46.3% 3.6% 7.3% 4.6% 10.0%

  13. Fish-Friendly Turbine Making a Splash in Water Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish-Friendly Turbine Making a Splash in Water Power Fish-Friendly Turbine Making a Splash in Water Power October 21, 2011 - 10:29am Addthis A computer simulation of the Alden Fish-Friendly Turbine. A computer simulation of the Alden Fish-Friendly Turbine. Rajesh Dham Hydropower Technology Team Lead How does it work? The Alden turbine has three blades, no gaps, is bigger and rotates more slowly than typical hydro turbines. At peak performance, an Alden turbine should convert about 94 percent of

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  16. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented in this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed...

  18. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are...

  19. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade...

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all ...

  6. Innovation Impact, Wind: NREL Collaborative Improves the Reliability of Wind Turbine Gearboxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Improves the Reliability of Wind Turbine Gearboxes Gearbox failures have a significant impact on the cost of wind farm operations. To help minimize gearbox failures, in 2007 the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which consists of manufacturers, owners, researchers, and consultants. The GRC was funded by the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. Gearbox deficiencies are the

  7. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines

    SciTech Connect (OSTI)

    2009-06-01

    This factsheet describes a research project whose goal is to test and substantiate erosion-resistant (ER) nanocoatings for application on compressor airfoils for gas turbine engines in both industrial gas turbines and commercial aviation.

  8. File:Getting-to-know-your-turbine.pdf | Open Energy Information

    Open Energy Info (EERE)

    turbine.pdf Jump to: navigation, search File File history File usage Metadata File:Getting-to-know-your-turbine.pdf Size of this preview: 463 599 pixels. Other resolution: 464...

  9. File:Wind-turbine-economics-lp-HS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-lp-HS.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-lp-HS.pdf Size of this preview: 463 599 pixels....

  10. File:Getting-to-know-your-turbine-HS.pdf | Open Energy Information

    Open Energy Info (EERE)

    turbine-HS.pdf Jump to: navigation, search File File history File usage Metadata File:Getting-to-know-your-turbine-HS.pdf Size of this preview: 463 599 pixels. Other resolution:...

  11. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements

    Broader source: Energy.gov [DOE]

    NREL has awarded four subcontracts to manufacturers of small and mid-size wind turbines to improve their turbine design and manufacturing processes while reducing costs and improving efficiency as...

  12. Midwest Consortium for Wind Turbine Reliability and Optimization

    SciTech Connect (OSTI)

    Scott R. Dana; Douglas E. Adams; Noah J. Myrent

    2012-05-11

    This report provides an overview of the efforts aimed to establish a student focused laboratory apparatus that will enhance Purdue's ability to recruit and train students in topics related to the dynamics, operations and economics of wind turbines. The project also aims to facilitate outreach to students at Purdue and in grades K-12 in the State of Indiana by sharing wind turbine operational data. For this project, a portable wind turbine test apparatus was developed and fabricated utilizing an AirX 400W wind energy converter. This turbine and test apparatus was outfitted with an array of sensors used to monitor wind speed, turbine rotor speed, power output and the tower structural dynamics. A major portion of this project included the development of a data logging program used to display real-time sensor data and the recording and creation of output files for data post-processing. The apparatus was tested in an open field to subject the turbine to typical operating conditions and the data acquisition system was adjusted to obtain desired functionality to facilitate use for student projects in existing courses offered at Purdue University and Indiana University. Data collected using the data logging program is analyzed and presented to demonstrate the usefulness of the test apparatus related to wind turbine dynamics and operations.

  13. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    SciTech Connect (OSTI)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J.

    2015-05-07

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare the effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau窶鏑ifshitz窶敵ilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2004 through 2014 (Mills per Kilowatthour) Operation Maintenance Year Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale 2004 8.97 3.13 3.83 4.27 5.38 2.96 2.76 2.14 2005 8.26 3.21 3.95 3.69 5.27 2.98 2.73 1.89 2006 9.03 3.57 3.76 3.51 5.69 3.19 2.70 2.16 2007 9.54 3.63 5.44 3.26 5.79 3.37 3.87 2.42 2008 9.89 3.72 5.78 3.77 6.20

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2014 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Sulfur Dioxide Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Tangential Firing Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Distillate Fuel Oil* DFO Source: 2, Table 3.1-2a, 3.4-1 & 1.3-1 Lbs per MG

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Tangential Boiler All Other Boiler Types Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Firing Boiler Fluidized Bed Firing Boiler Stoker Boiler Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Combustion Turbine Internal Combustion Engine

  18. Improved photovoltaic energy output for cloudy conditions with a solar tracking system

    SciTech Connect (OSTI)

    Kelly, Nelson A.; Gibson, Thomas L.

    2009-11-15

    This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost. (author)

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2014 and 2013 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 11,742.0 11,720.9 1,110.1

  20. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  1. Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbines

    SciTech Connect (OSTI)

    Alman, David; Marcio, Duffles

    2014-02-05

    The objective of this Stage Gate IV project was to test and substantiate the viability of an erosion?resistant nanocoating for application on compressor airfoils for gas turbines in both industrial power generation and commercial aviation applications. To effectively complete this project, the National Energy Technology Laboratory痴 Office of Research & Development teamed with MDS Coating Technologies Inc. (MCT), Delta Air Lines ? Technical Operations Division (Delta Tech Ops), and Calpine Corporation. The coating targeted for this application was MCT痴 Next Generation Coating, version 4 (NGC?v4 ? with the new registered trademark name of BlackGoldョ). The coating is an erosion and corrosion resistant composite nanostructured coating. This coating is comprised of a proprietary ceramic?metallic nano?composite construction which provides enhanced erosion resistance and also retains the aerodynamic geometry of the airfoils. The objective of the commercial aviation portion of the project was to substantiate the coating properties to allow certification from the FAA to apply an erosion?resistant coating in a commercial aviation engine. The goal of the series of tests was to demonstrate that the durability of the airfoils is not affected negatively with the application of the NGC v4 coating. Tests included erosion, corrosion, vibration and fatigue. The results of the testing demonstrated that the application of the coating did not negatively impact the properties of the blades, especially fatigue performance which is of importance in acceptance for commercial aviation applications. The objective of the industrial gas turbine element of the project was to evaluate the coating as an enabling technology for inlet fogging during the operation of industrial gas turbines. Fluid erosion laboratory scale tests were conducted to simulate inlet fogging conditions. Results of these tests indicated that the application of the erosion resistant NGC?v4 nanocoating improved the resistance to simulated inlet fogging conditions by a factor of 10 times. These results gave confidence for a field trial at Calpine痴 power plant in Corpus Christi, TX, which commenced in April 2012. This test is still on?going as of November 2013, and the nanocoated blades have accumulated over 13,000 operational hours on this specific power plant in approximately 19 months of operation.

  2. Energy Department Awards $1.8 Million to Develop Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technological innovations such as taller wind turbine towers and larger rotors can more efficiently capture the stronger and more consistent wind resources typically found at ...

  3. MHK Projects/Contra Rotating Marine Turbine CoRMaT | Open Energy...

    Open Energy Info (EERE)

    Contra Rotating Marine Turbine CoRMaT < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps...

  4. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  5. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

  6. Effects of Tidal Turbine Noise on Fish Hearing and Tissues - Draft Final Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Snohomish Public Utility District No.1 plans to deploy two 6 meter OpenHydro tidal turbines in Admiralty Inlet in Puget Sound, under a FERC pilot permitting process. Regulators and stakeholders have raised questions about the potential effect of noise from the turbines on marine life. Noise in the aquatic environment is known to be a stressor to many types of aquatic life, including marine mammals, fish and birds. Marine mammals and birds are exceptionally difficult to work with for technical and regulatory reasons. Fish have been used as surrogates for other aquatic organisms as they have similar auditory structures. This project was funded under the FY09 Funding Opportunity Announcement (FOA) to Snohomish PUD, in partnership with the University of Washington - Northwest National Marine Renewable Energy Center, the Sea Mammal Research Unit, and Pacific Northwest National Laboratory. The results of this study will inform the larger research project outcomes. Proposed tidal turbine deployments in coastal waters are likely to propagate noise into nearby waters, potentially causing stress to native organisms. For this set of experiments, juvenile Chinook salmon (Oncorhynchus tshawytscha) were used as the experimental model. Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study was performed during FY 2011 to determine if noise generated by a 6-m diameter OpenHydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. Naturally spawning stocks of Chinook salmon that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/Chinook/CKPUG.cfm); the fish used in this experiment were hatchery raised and their populations are not in danger of depletion. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Experimental results indicate that non-lethal, low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  7. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  8. SAS Output

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Other Energy Sources include batteries, hydrogen, purchased steam, sulfur, tire-derived fuels and other miscellaneous energy sources. In 2011, EIA corrected the NAICS codes of ...

  9. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006

    SciTech Connect (OSTI)

    Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

    2008-02-01

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  10. Testimonials - Partnerships in R&D - Capstone Turbine Corporation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capstone Turbine Corporation Testimonials - Partnerships in R&D - Capstone Turbine Corporation Addthis Text Version The words Office of Energy Efficiency and Renewable Energy U.S. ...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  12. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  13. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  14. Testing Small Wind Turbines at the National Renewable Energy Laboratory (NREL) (Poster)

    SciTech Connect (OSTI)

    Bowen, A.; Huskey, A.; Hur, J.; Jager, D.; van Dam, J.; Smith, J.

    2010-05-01

    Poster presented at the AWEA 2010 conference illustrates NREL's testing of five small wind turbines in the first round of its independent testing project. Tests include power performance, noise, duration, safety and function, and power quality (where applicable).

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,940,247 15,610,335 4,694,565 42,789 592,559 2005 21,350,382 15,397,688 5,339,188 42,931 570,574 2006 21,059,972 15,211,077 5,250,336 41,612 556,948 2007 21,363,588 15,436,110 5,371,039 42,523 513,916 2008 21,051,706 15,189,050

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398

  16. Method for enhancing low frequency output of impulsive type seismic energy sources and its application to a seismic energy source for use while drilling

    DOE Patents [OSTI]

    Radtke, Robert P; Stokes, Robert H; Glowka, David A

    2014-12-02

    A method for operating an impulsive type seismic energy source in a firing sequence having at least two actuations for each seismic impulse to be generated by the source. The actuations have a time delay between them related to a selected energy frequency peak of the source output. One example of the method is used for generating seismic signals in a wellbore and includes discharging electric current through a spark gap disposed in the wellbore in at least one firing sequence. The sequence includes at least two actuations of the spark gap separated by an amount of time selected to cause acoustic energy resulting from the actuations to have peak amplitude at a selected frequency.

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report" and predecessor form(s) including U.S. Energy Information Administration, Form EIA-906, "Power Plant Report;" and Form ...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Industrial Sector, 2004 - 2014 (Thousand Megawatthours) Generation at Utility Scale Facilities Distributed Generation Net Generation From ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Demand-Side Management Program Annual Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Potential Peak Load Reduction (MW) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) 2004 52,663 14,272 1,966 20,997 9,263 54,629 23,535 2005 59,000 15,394 930 21,259 10,341 59,930 25,735 2006 63,076 16,006 790

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Demand-Side Management Program Incremental Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Potential Peak Load Reduction (MW) Actual Peak Load Reduction (MW) Energy Savings (Thousand MWh) Actual Peak Load Reduction (MW) 2004 4,532 1,727 36 3,064 1,163 4,569 2,890 2005 5,879 1,705 137 2,223 1,162 6,016 2,867 2006 5,394 1,268 99 2,817 1,690

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Reliability web page: http:www.eia.govcneafelectricitypageeia411eia411.html Projected data are updated annually. Net Energy for Load represents net Balancing...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Net Generation by Energy Source: Residential Sector, 2014 ... Distributed Generation Period Estimated Distributed Solar ... WWithheld to avoid disclosure of individual company data. ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Generation Estimated Total Solar Generation Annual Totals 2004 0 0 0 ... WWithheld to avoid disclosure of individual company data. Sources: U.S. Energy Information ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Plants Report; and Federal Energy Regulatory Commission, FERC ... generation and distributed solar photovoltaic capacity are based on data from Form EIA-826, Form EIA-861 ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Total (All Sectors), ... Hydroelectric Conventional Solar Renewable Sources Excluding ... Notes: Beginning with 2001 data, non-biogenic municipal ...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3.A. Net Generation by Energy Source: Independent Power ... Hydroelectric Conventional Solar Renewable Sources Excluding ... Notes: Beginning with 2001 data, non-biogenic municipal ...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Commercial Sector, 2004 ... Hydroelectric Conventional Solar Renewable Sources Excluding ... Notes: Beginning with 2001 data, non-biogenic municipal ...

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Net Generation by Energy Source: Electric Utilities, 2004 ... Hydroelectric Conventional Solar Renewable Sources Excluding ... Notes: Beginning with 2001 data, non-biogenic municipal ...

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2004 through 2014 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur ...

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    data, and refuse recovery." "- No data reported." "Note: Totals may not equal sum of components because of independent rounding." "Source: U.S. Energy Information ...

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Average recovery percentage represents the percentage of coal that can be recovered from ... reported geographic area." "Source: U.S. Energy Information Administration Form EIA-7A, ...

  12. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural

  13. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy Preprint M. Beam, B. Kline, B. Elbing, W. Straka, and A. Fontaine Pennsylvania State University M. Lawson, Y. Li, and R. Thresher National Renewable Energy Laboratory M. Previsic Re Vision Consulting, LLC To be presented at the 32 nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013) Nantes, France June 9-14, 2013 Conference Paper NREL/CP-5000-58092 February 2013 NOTICE

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1,118 4,978 5,113 0 0 All Energy Sources Utility Scale ... 0 0 Estimated Distributed Solar Photovoltaic Distributed ... W Withheld to avoid disclosure of individual company data. ...

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    10,364.7 2 3.1 96 10,361.6 Solar Thermal and Photovoltaic ... -- -- -- -- -- -- Other Energy Sources 9 109.6 2 1.0 7 ... Notes: These data reflect plans as of December 31, 2014 Coal ...

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources ... Producers, Non-Combined Heat and Power Plants 2004 100 173 355 1 29 457 478 5 2 2005 ...

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Excludes mines producing less than 25,000 short tons, which are not required to provide data and refuse recovery." "Source: U.S. Energy Information Administration Form EIA-7A, ...

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding refuse recovery and mines producing less than 25,000 short tons, which are not ... of independent rounding." "Source: U.S. Energy Information Administration Form EIA-7A, ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity and Net Summer Capacity of Operable Cooling Systems, by Energy Source and Cooling System Type, 2004 - 2014 Once-Through Cooling Systems Recirculating Cooling Systems Cooling Ponds Dry Cooling Systems Hybrid Wet and Dry Cooling Systems Other Cooling System Types Energy Source Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer Capacity (MW) Quantity Associated Net Summer

  20. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    SciTech Connect (OSTI)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  1. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction of combined cycle cost from the baseline. A customer advisory board was instituted during Phase 1 to obtain important feedback regarding the future direction of the project. he technologies being developed for the Hydrogen Turbine will also be utilized, as appropriate, in the 2010 time frame engine and the FutureGen Plant. These new technologies and concepts also have the potential to accelerate commercialization of advanced coal-based IGCC plants in the U. S. and around the world, thereby reducing emissions, water use, solid waste production and dependence on scarce, expensive and insecure foreign energy supplies. Technology developments accomplished in Phase 1 provide a solid foundation for ensuring successful completion in Phase 2 and providing that the challenging program goals will be achieved.

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Major U.S. Coal Producers, 2014" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",189531,19 2,"Arch Coal Inc",135801,13.6 3,"Cloud Peak Energy",85794,8.6 4,"Alpha Natural Resources",80153,8 5,"Murray Energy Corp",62815,6.3 6,"Alliance Resource Partners LP",40964,4.1 7,"Westmoreland Coal Company",35580,3.6

  3. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    7.A. Net Energy for Load by North American Electric Reliability Corporation Assessment Area, 2004 - 2014, Actual Net Energy (Thousands of Megawatthours) Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2004 220,335 292,725 2,313,180 553,236 283,646 274,760 -- -- 152,975 -- -- 856,734 191,829 289,146 682,053 3,797,439 2005 226,544 303,607 2,385,461 -- -- --

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Net Summer Capacity Using Primarily Renewable Energy Sources and by State, 2014 and 2013 (Megawatts) Summer Capacity at Utility Scale Facilities Distributed Capacity Summer Capacity From Utility Scale Facilities and Distributed Capacity Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Estimated Distributed Solar Photovoltaic Capacity Estimated Total Solar Photovoltaic Capacity Estimated Total Solar

  5. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  6. Jet spoiler arrangement for wind turbine

    DOE Patents [OSTI]

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  7. Power Performance Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune; Curtis, Amy

    2015-08-11

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL). This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  8. Power Quality Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, Ismael; Hur, Jerry; Thao, Syhoune

    2015-08-20

    The U.S. Department of Energy (DOE) acquired and installed a 1.5-megawatt (MW) wind turbine at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory. This turbine (hereafter referred to as the DOE 1.5) is envisioned to become an integral part of the research initiatives for the DOE Wind Program, such as Atmosphere to Electrons (A2e). A2e is a multiyear DOE research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. For more information, visit http://energy.gov/eere/wind/atmosphere-electrons. To validate new and existing high-fidelity simulations, A2e must deploy several experimental measurement campaigns across different scales. Proposed experiments include wind tunnel tests, scaled field tests, and large field measurement campaigns at operating wind plants. Data of interest includes long-term atmospheric data sets, wind plant inflow, intra-wind plant flows (e.g., wakes), and rotor loads measurements. It is expected that new, high-fidelity instrumentation will be required to successfully collect data at the resolutions required to validate the high-fidelity simulations.

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Demand-Side Management Program Annual Effects by Program Category, by Sector, 2004 through 2012 (Table Discontinued) Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 59,000 2006 21,150 28,720 13,155 50 63,076 2007 22,772 30,359 14,038 108 67,278 2008 25,396 34,634 14,766 75 74,871 2009 27,395 34,831 14,610 76 76,912 2010 32,150 37,416 17,259 89 86,914 2011 46,790

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Demand-Side Management Program Incremental Effects by Program Category, by Sector, 2004 through 2012 (Table Discontinued) Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2004 1,827 1,812 894 -- 4,532 2005 2,249 2,559 1,071 -- 5,879 2006 2,127 2,281 986 -- 5,394 2007 3,659 2,830 1,178 13 7,680 2008 4,568 4,383 1,477 1 10,428 2009 5,030 4,959 2,918 1 12,907 2010 6,492 5,325 1,771 5 13,592 2011 9,989 8,166 3,261 6 21,421 2012 9,531

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Energy Efficiency Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Incremental Annual Savings - Energy Savings (MWh) 2013 11,031,419 10,478,997 3,141,213 29,894 24,681,523 2014 11,442,191 11,928,895 3,074,819 19,316 26,465,221 Incremental Annual Savings - Peak Demand Savings (MW) 2013 6,812 11,319 1,463 5 19,599 2014 3,031 2,920 564 2 6,517 Incremental Costs - Customer Incentive (thousand dollars) 2013 1,252,085 1,274,406 345,676 5 2,872,171

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Energy Efficiency - Life Cycle Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Life Cycle Savings - Energy Savings (MWh) 2013 84,525,515 128,026,835 38,500,862 448,421 251,464,746 2014 100,729,499 149,493,353 39,631,016 287,925 290,141,793 Life Cycle Savings - Peak Demand Savings (MW) 2013 44,351 70,979 19,524 6 134,861 2014 17,911 46,600 12,248 2 76,760 Life Cycle Costs - Customer Incentive (thousand dollars) 2013 2,698,741 2,875,605 455,357

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Demand Response - Yearly Energy and Demand Savings Category, by Sector, 2013 through 2014 Year Residential Commercial Industrial Transportation Total Number of Customers Enrolled 2013 8,419,233 611,826 155,893 398 9,187,350 2014 8,603,402 605,094 57,129 4 9,265,629 Energy Savings (MWh) 2013 799,743 486,348 115,895 1 1,401,987 2014 881,563 462,337 92,549 -- 1,436,449 Potential Peak Demand Savings (MW) 2013 7,003 5,124 14,800 168 27,095 2014 8,118 6,215 16,505 353 31,191 Actual Peak Demand

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Existing Capacity by Energy Source, 2014 (Megawatts) Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1,145 325,831.5 299,094.2 300,699.8 Petroleum 3,573 46,897.8 41,135.4 44,739.7 Natural Gas 5,727 495,120.2 432,150.3 464,784.7 Other Gases 93 2,227.6 1,914.3 1,889.9 Nuclear 99 103,860.4 98,569.3 100,610.3 Hydroelectric Conventional 4,029 78,792.9 79,677.3 79,090.6 Wind 1,032 65,300.1 64,231.5 64,325.1 Solar Thermal and Photovoltaic

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Capacity Additions, Retirements and Changes by Energy Source, 2014 (Count, Megawatts) Generator Additions Generator Retirements Energy Source Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Coal 1 106.2 52.0 52.0 53 5,083.4 4,489.7 4,552.3 Petroleum 28 62.2 62.0 62.0 55 1,261.0 1,018.6 1,120.0 Natural Gas 92 9,275.2 8,300.8 8,849.5 87 4,184.5 3,834.4 3,918.8

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    8.1. Average Operating Heat Rate for Selected Energy Sources, 2004 through 2014 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2004 10331 10571 8647 10428 2005 10373 10631 8551 10436 2006 10351 10809 8471 10435 2007 10375 10794 8403 10489 2008 10378 11015 8305 10452 2009 10414 10923 8160 10459 2010 10415 10984 8185 10452 2011 10444 10829 8152 10464 2012 10498 10991 8039 10479 2013 10459 10713 7948 10449 2014 10428 10814 7907 10459 Coal includes anthracite, bituminous,

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Utility Scale Facility Net Generation from Nuclear Energy by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage Change

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Utility Scale Facility Net Generation from Other Energy Sources by State, by Sector, 2014 and 2013 (Thousand Megawatthours) All Sectors Electric Power Sector Commercial Sector Industrial Sector Electric Utilities Independent Power Producers Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Generation at Utility Scale Facilities Census Division and State Year 2014 Year 2013 Percentage

  19. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  20. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  1. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect (OSTI)

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  2. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  3. new wind-turbine controls algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... variable-pitch Vestas V27 turbines and two 60 m anemometer ...

  4. Free Flow Power Partners to Improve Hydrokinetic Turbine Performance...

    Energy Savers [EERE]

    to evaluate and optimize the technical and environmental performance and cost factors of its hydrokinetic SmarTurbines(tm)-turbines that generate energy from free-flowing rivers. ...

  5. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable ...

  6. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants, by State, 2013 and 2014 (Thousand Metric Tons) Census Division and State Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 30,810 33,437 21 31 34 37 Connecticut 8,452 8,726 2 3 8 9 Maine 3,403 3,675 10 12 8 9 Massachusetts 12,917 14,735 6 11 13 14 New Hampshire 3,458 3,447 3 3 4 5 Rhode Island 2,566 2,838 0.09

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Demand-Side Management Program Direct and Indirect Costs, 2004 through 2012 (Thousand Dollars) (Table Discontinued) Year Energy Efficiency Load Management Direct Cost Indirect Cost Total Cost 2004 910,816 510,281 1,421,097 132,295 1,560,578 2005 1,180,576 622,287 1,802,863 127,925 1,939,115 2006 1,270,602 663,980 1,934,582 128,886 2,072,962 2007 1,677,969 700,362 2,378,331 160,326 2,604,711 2008 2,137,452 836,359 2,973,811 181,843 3,186,742 2009 2,221,480 944,261 3,165,741 394,193 3,607,076

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electric Power Industry - Electricity Purchases, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2005 2,760,043 3,250,298 12,201 69,744 6,092,285 2006 2,605,315 2,793,288 26,628 77,353 5,502,584 2007 2,504,002 2,805,833 24,942 76,646 5,411,422 2008 2,483,927 3,024,730 25,431 78,693 5,612,781 2009 2,364,648 2,564,407 27,922 71,669 5,028,647 2010 2,353,086 3,319,211 23,976 73,861 5,770,134

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Electric Power Industry - Electricity Sales for Resale, 2004 through 2014 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2014 and 2013 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 4,577.6 4,403.4 22,853.0 23,564.2 1,775.4 1,753.4 3.0 3.0 4,046.3 4,645.4 52.9 52.9 33,308.2 34,422.3

  12. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  13. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  14. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmoreツツサ specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.ツォツless

  15. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Keller, J.; Lacava, W.; Austin, J.; Nejad, A.; Halse, C.; Bastard, L.; Helsen, J.

    2015-02-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential designparameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  16. 2015 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany - Sandia Energy Energy ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  17. Scaled Wind Farm Technology (SWIFT) Facility Wind Turbine Controller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SWIFT) Facility Wind Turbine Controller Ground Testing - Sandia Energy Energy Search Icon ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  18. Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark - Sandia Energy Energy Search ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  19. Advanced horizontal axis wind turbines in windfarms

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The wind turbine section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  20. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  1. NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability - News Releases | NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with partners from the Electric Power Research Institute and the University of Colorado have completed a comprehensive study to understand how wind power technology can assist the power grid by controlling the active power output being placed onto the system. The rest of the power

  2. Displacement of diesel fuel with wind energy in rural Alaskan villages. Final progress and project closeout report

    SciTech Connect (OSTI)

    Meiners, Dennis; Drouhilet, Steve; Reeve, Brad; Bergen, Matt

    2002-03-11

    The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.

  3. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  4. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  5. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  6. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect (OSTI)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  7. Investigation of vortex generators for augmentation of wind turbine power performance

    SciTech Connect (OSTI)

    Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

    1996-12-01

    This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

  8. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Pao, L. Y.; Fleming, P.; Ela, E.

    2015-02-01

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC tracking performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there is sufficient wind resource available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.

  9. NREL Wind Turbine Design Codes Certified - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Design Codes Certified August 2, 2005 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) announced today that its wind turbine design codes-termed FAST and ADAMS-can now be used for worldwide turbine certification. Through a joint effort by the NREL and Germanischer Lloyd (GL) of Hamburg, Germany, the world's foremost certifying body for wind turbines, both codes were approved for calculating onshore wind turbine loads for design and

  10. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  11. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  12. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  13. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  14. Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Turbine Loads Database - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  15. Developing Biological Specifications for Fish Friendly Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Specifications for Fish Friendly Turbines The U.S. Department of Energy's ... which environmen- tal attributes, such as entrainment survival for fish, are emphasized. ...

  16. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

  17. Lidar for Turbine Control: March 1, 2005 - November 30, 2005

    SciTech Connect (OSTI)

    Harris, M.; Hand, M.; Wright, A.

    2006-01-01

    This study explores the potential of a turbine-mounted laser anemometer to enhance capabilities for wind energy production.

  18. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  19. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  20. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect (OSTI)

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  1. NREL Controllable Grid Interface for Testing MW-Scale Wind Turbine

    Office of Scientific and Technical Information (OSTI)

    Controllable Grid Interface for Testing MW-Scale Wind Turbine Generators (Poster) McDade, M.; Gevorgian, V.; Wallen, R.; Erdman, W. 17 WIND ENERGY WIND TURBINE TESTING;...

  2. Thermo-fluid dynamic design study of single and double-inflow radial and single-stage axial steam turbines for open-cycle thermal energy conversion net power-producing experiment facility in Hawaii

    SciTech Connect (OSTI)

    Schlbeiri, T. . Dept. of Mechanical Engineering)

    1990-03-01

    The results of the study of the optimum thermo-fluid dynamic design concept are presented for turbine units operating within the open-cycle ocean thermal energy conversion (OC-OTEC) systems. The concept is applied to the first OC-OTEC net power producing experiment (NPPE) facility to be installed at Hawaii's natural energy laboratory. Detailed efficiency and performance calculations were performed for the radial turbine design concept with single and double-inflow arrangements. To complete the study, the calculation results for a single-stage axial steam turbine design are also presented. In contrast to the axial flow design with a relatively low unit efficiency, higher efficiency was achieved for single-inflow turbines. Highest efficiency was calculated for a double-inflow radial design, which opens new perspectives for energy generation from OC-OTEC systems.

  3. Envision Energy | Open Energy Information

    Open Energy Info (EERE)

    Product: Jiangsu-based wind turbine manufacturer focused on research & development, manufacturing, sales and maintenance of wind turbine generators. References: Envision Energy1...

  4. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  5. Companies Selected for Small Wind Turbine Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Selected for Small Wind Turbine Project For more information contact: Terry Monrad (303) 972-9246 Golden, Colo., Nov. 27, 1996 -- In an effort to develop cost-effective, low-maintenance wind turbine systems, the Department of Energy's National Renewable Energy Laboratory (NREL) has selected four companies to participate in the Small Wind Turbine Project. The four companies are Windlite Co., Mountain View, Calif.; World Power Technologies, Duluth, Minn.; Cannon/Wind Eagle Corp.,

  6. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  7. NREL Readies New Wind Turbine Drivetrain for Commercialization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Readies New Wind Turbine Drivetrain for Commercialization NREL Readies New Wind Turbine Drivetrain for Commercialization May 18, 2015 - 3:52pm Addthis Illustration of a wind turbine drivetrain with a transparent case that shows the internal gears. In February, engineers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) assembled the innovative, medium-speed, medium-voltage wind turbine drivetrain that was the result of a study funded by DOE's

  8. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  9. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  10. Sandia Energy サ Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-Turbine Blade Flaw Detection Experiments in Denmark http:energy.sandia.govsandia-wind-turbine-blade-flaw-detection-experiments-in-denmark http:energy.sandia.gov...

  11. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  12. Wind Turbine Radar Interference Mitigation Working Group Releases New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Wind Turbine Radar Interference Mitigation Working Group Releases New Report Wind Turbine Radar Interference Mitigation Working Group Releases New Report February 10, 2016 - 2:48pm Addthis While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar systems. As advances in wind technology enable turbines to be deployed in new regions of the country, the probability for wind

  13. SNL Wake Imaging System Solves Wind Turbine Wake Formation Mysteries

    Broader source: Energy.gov [DOE]

    Although wind energy researchers cannot see the airflow around wind turbines, they know that wakes shed from upstream wind turbines lead to reduced power production and increased loading on downstream turbines, driving up the cost of energy. To gain a better understanding of wind turbine wakes, researchers at SNL are developing the SNL Wake Imaging System (SWIS) to provide detailed wake velocity data in the field.

  14. Effects of Changing Atmospheric Conditions on Wind Turbine Performance (Poster)

    SciTech Connect (OSTI)

    Clifton, A.

    2012-12-01

    Multi-megawatt, utility-scale wind turbines operate in turbulent and dynamic winds that impact turbine performance in ways that are gradually becoming better understood. This poster presents a study made using a turbulent flow field simulator (TurbSim) and a Turbine aeroelastic simulator (FAST) of the response of a generic 1.5 MW wind turbine to changing inflow. The turbine power output is found to be most sensitive to wind speed and turbulence intensity, but the relationship depends on the wind speed with respect to the turbine's rated wind speed. Shear is found to be poorly correlated to power. A machine learning method called 'regression trees' is used to create a simple model of turbine performance that could be used as part of the wind resource assessment process. This study has used simple flow fields and should be extended to more complex flows, and validated with field observations.

  15. Siting: Wind Turbine/Radar Interference Mitigation (TSPEAR &...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... Twitter Google + Vimeo GovDelivery SlideShare Siting: Wind TurbineRadar Interference ...

  16. Wind Turbine Manufacturers in the U. S.: Locations and Local...

    Wind Powering America (EERE)

    Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Wind Turbine Manufacturers in the U.S.: Locations and Local Impacts WINDPOWER 2010 Conference...

  17. Development of the helical reaction hydraulic turbine. Final...

    Office of Scientific and Technical Information (OSTI)

    helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998 Gorlov, A. 16 TIDAL AND WAVE POWER; 17 WIND ENERGY; 13 HYDRO ENERGY; PROGRESS REPORT;...

  18. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  19. Advanced Combustion Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Turbines The Advanced Turbines program at NETL is focused on R&D activities to develop technologies that will accelerate turbine performance and efficiency beyond current state-of-the-art and reduce the risk to market for novel and advanced turbine-based power cycles. Advanced Combustion Turbines for Combined Cycle Applications area is focused on components and combustion systems for advanced combustion turbines in combined cycle operation that can achieve greater than 65 %

  20. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology ... could result in a 4 - 6 percent gain in overall system efficiency. ...

  1. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  2. Mechanical Loads Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    SciTech Connect (OSTI)

    Santos, Rick; van Dam, Jeroen

    2015-07-16

    The objective of the test was to obtain a baseline characterization of the mechanical loads of the DOE 1.5 wind turbine located at NREL. The test was conducted in accordance with the International Electrotechnical Commission (IEC) Technical Specification, IEC 61400-13 Wind Turbine Generator Systems 窶 Part 13: Measurement of mechanical loads; First Edition 2001-06 [1]. The National Wind Technology Center (NWTC) at NREL conducted this test in accordance with its quality system procedures so that the final test report meets the full requirements of its accreditation by the American Association for Laboratory Accreditation (A2LA). NREL窶冱 quality system requires that all applicable requirements specified by A2LA and International Standards Organization/IEC 17025 be met or to note any exceptions in the test report.

  3. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  4. Steam turbine materials and corrosion

    SciTech Connect (OSTI)

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy痴 Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760ーC. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  5. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  6. Federal Interagency Wind Turbine Radar Interference Mitigation Strategy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Interagency Wind Turbine Radar Interference Mitigation Strategy Federal Interagency Wind Turbine Radar Interference Mitigation Strategy Cover of the Federal Interagency Wind Turbine Radar Interference Mitigation Strategy report Wind development located within the line of sight of radar systems can cause clutter and interference, which at some radars has resulted in significant performance degradation. As wind turbines continue to be installed, and as advances in wind

  7. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  8. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    SciTech Connect (OSTI)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  9. Turbines News | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Breakthrough Could Improve Turbine Performance, Reduce Carbon Emissions from Power Plants April 26, 2016 Research supported by the Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has led to a discovery that could significantly increase the efficiency of turbines in fossil fuel electricity generation. This breakthrough could reduce carbon dioxide (CO2) emissions from power plants and help drive the clean energy economy in the U.S. Technology Transfer Initiative -

  10. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    turbines, and illustrates how the various components work to capture and convert wind energy to electricity. http:energy.goveerevideosenergy-101-wind-turbines-2014-update...

  11. turbine | OpenEI Community

    Open Energy Info (EERE)

    turbine Home Future of Condition Monitoring for Wind Turbines Description: Research into third party software to aid in the development of better CMS in order to raise turbine...

  12. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  13. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  14. Sandia Energy サ Conferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 2015 Wind Turbine Blade Manufacture Conference-Dusseldorf, Germany http:energy.sandia.gov2015-wind-turbine-blade-manufacture-conference-dusseldorf-ge...

  15. Sandia Energy サ Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rspace-warning-area-established-to-aid-research-explorationfeed 0 Sandia Wind-Turbine Blade Flaw Detection Experiments in Denmark http:energy.sandia.govsandia-wind-turbine-bla...

  16. Sandia Energy サ Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Wind-Turbine Blade Design for the National Rotor Testbed http:energy.sandia.govaerodynamic-wind-turbine-blade-design-for-the-national-rotor-testbed http:...

  17. Saxovent | Open Energy Information

    Open Energy Info (EERE)

    established in 1997 and executes national and international wind farm projects with turbines of various output classes. References: Saxovent1 This article is a stub. You can...

  18. AEO2014: Preliminary Industrial Output

    U.S. Energy Information Administration (EIA) Indexed Site

    are run for the ratio of gross output (production) and demand computed from Input-Output basis * Major drivers: capacity utilization, interest rates, relative prices, ...

  19. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect (OSTI)

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  20. How Does a Wind Turbine Work?

    Broader source: Energy.gov [DOE]

    Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to...

  1. Sandia Modifies Delft3D Turbine Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifies Delft3D Turbine Model - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. 50MW extreme-scale turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MW extreme-scale turbine - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Wind Turbine Safety and Function Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    van Dam, J.; Baker, D.; Jager, D.

    2010-02-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, four turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests that were performed on the turbines, including power performance, duration, noise, and power quality tests. Test results provide manufacturers with reports that can be used for small wind turbine certification. The test equipment includes an ARE 442 wind turbine mounted on a 100-ft free-standing lattice tower. The system was installed by the NWTC Site Operations group with guidance and assistance from Abundant Renewable Energy.

  4. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate communityツ痴 standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmoreツツサ all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.ツォツless

  5. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume II ... The report was prepared by Arthur D. Little for Lockheed Martin Energy Research ...

  6. Testimonials- Partnerships in Battery Technologies- Capstone Turbine Corporation

    Broader source: Energy.gov [DOE]

    Robert Gleason, Senior Vice President of Product Development for Capstone Turbine Corporation describes the benefits of a strategic partnership with the U.S. Department of Energy.

  7. Testimonials- Partnerships in R&D- Capstone Turbine Corporation

    Broader source: Energy.gov [DOE]

    Darren Jamison, President and CEO of Capstone Turbine Corporation, shares his experience of partnering with the U.S. Department of Energy.

  8. Wind Turbine Radar Interference Mitigation Working Group Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 10, 2016 - 2:48pm Addthis While wind energy presents many benefits, spinning wind turbines can interfere with weather, air traffic control, and air surveillance radar ...

  9. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  10. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - ... CO2 Geothermal Natural Gas Safety, Security & Resilience of the ...

  11. Nordic Turbines Inc formerly Vista Dorada Corporation | Open...

    Open Energy Info (EERE)

    Sector: Wind energy Product: Massachusetts-based manufacturer of large scale two-blade wind turbines. Coordinates: 45.751935, -120.902959 Show Map Loading map......

  12. "Fish Friendly" Hydropower Turbine Development and Deployment. Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    Dixon, D.

    2011-10-01

    This report presents the results of a collaborative research project funded by the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and hydropower industry partners with the objective of completing the remaining developmental engineering required for a 窶彷ish-friendly窶 hydropower turbine called the Alden turbine.

  13. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  14. Using Machine Learning to Create Turbine Performance Models (Presentation)

    SciTech Connect (OSTI)

    Clifton, A.

    2013-04-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to explore atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that of the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data is required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of different turbulence and shear at the new site, compared to the test site.

  15. Simulating Turbine-Turbine Interaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management ...

  16. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy窶冱 University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  17. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  18. Types of Hydropower Turbines

    Broader source: Energy.gov [DOE]

    There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water窶排eferred to as "head"窶蚤nd the flow,...

  19. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Main Bearing Dynamics in Three-Point Suspension Drivetrains for Wind Turbines; National Wind Technology Center (NWTC), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sethuraman, Latha; Guo, Yi; Sheng, Shuangwen

    2015-05-18

    This work discusses the dynamics of main bearing behavior in three-point suspension drivetrains for wind turbines. Three failure mitigation approaches and preliminary results are presented.

  1. DOE Technology Successes - "Breakthrough" Gas Turbines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Successes - "Breakthrough" Gas Turbines DOE Technology Successes - "Breakthrough" Gas Turbines For years, gas turbine manufacturers faced a barrier that, for all practical purposes, capped power generating efficiencies for turbine-based power generating systems. The barrier was temperature. Above 2300 degrees F, available cooling technologies were insufficient to protect the turbine blades and other internal components from heat degradation. Since higher

  2. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  3. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  4. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine窶冱 innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine窶冱 unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  5. Sliding vane geometry turbines

    DOE Patents [OSTI]

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  6. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Permitting Standards North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a...

  8. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  9. Lessons Learned: Milwaukee窶冱 Wind Turbine Project

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Community and Renewable Energy Success Stories webinar series titled Wind Energy in Urban Environments. This presentation describes a mid-size wind turbine installation near downtown Milwaukee, Wisconsin.

  10. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect (OSTI)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  11. Turbine Imaging Technology Assessment

    SciTech Connect (OSTI)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  12. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  13. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  14. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enter terms Search Showing 1 - 10 of 23 results. Video Energy 101: Wind Turbines- 2014 Update The video highlights the basic principles at work in wind turbines, and...

  15. MLS Group | Open Energy Information

    Open Energy Info (EERE)

    Webster (Houston), Texas Zip: 77598 Sector: Wind energy Product: Designs and makes pitch control systems for wind turbines and wind turbine brakes in US and UK under license...

  16. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ideas for building turbines and teacher handouts are included in this document and at the Web site. http:energy.goveereeducationdownloadswind-turbine-blade-design Current...

  17. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ideas for building turbines and teacher handouts are included in this document and at the Web site. http:energy.goveereeducationdownloadswind-turbine-blade-design previous 1...

  18. Magwind LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Sector: Wind energy Product: Inventor of the Mag-Wind vertical axis wind turbine (VAWT) for building installations. The turbines are manufactured under contract at the...

  19. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  20. LGC Skyrota | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Northern Ireland-based producer of small wind turbines and maintenance company for large turbines. References: LGC Skyrota1 This article is a stub. You...

  1. Sandia Energy サ Computational Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new-crew-database-receives-first-set-of-datafeed 0 Aerodynamic Wind-Turbine Blade Design for the National Rotor Testbed http:energy.sandia.govaerodynamic-wind-turbin...

  2. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  3. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Energy Savers [EERE]

    Department of Energy Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind

  4. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  5. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  6. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -energy-wind-turbines Download Scale Models and Wind Turbines As wind turbines and wind farms become larger to take advantage of the economies of scale and increased wind speeds at...

  7. Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006

    SciTech Connect (OSTI)

    Mikhail, A.

    2009-01-01

    This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

  8. Comparison of Wind-Turbine Aeroelastic Codes Used for Certification: Preprint

    SciTech Connect (OSTI)

    Buhl, M. L., Jr.; Manjock, A.

    2006-01-01

    NREL created aeroelastic simulators for horizontal-axis wind turbines accepted by Germanischer Lloyd (GL) WindEnergie GmbH for manufacturers to use for on-shore wind turbine certification.

  9. Built Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy窶冱 National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  10. Report on Wind Turbine Subsystem Reliability - A Survey of Various Databases (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secretary of Energy Advisory Board Report of the Task Force on Next Generation High Performance Computing August 18, 2014 U.S. Department of Energy 1 Final Version for Approval Charge to the SEAB High Performance Computing Task Force ......................................................... 4 Executive Summary ...................................................................................................................... 4 Key Findings

  11. Optimizing Dam Operations for Power and for Fish: an Overview of the US Department of Energy and US Army Corps of Engineers ADvanced Turbine Development R&D. A Pre-Conference Workshop at HydroVision 2006, Oregon Convention Center, Portland, Oregon July 31, 2006

    SciTech Connect (OSTI)

    Dauble, Dennis D.

    2006-08-01

    This booklet contains abstracts of presentations made at a preconference workshop on the US Department of Energy and US Army Corps of Engineers hydroturbine programs. The workshop was held in conjunction with Hydrovision 2006 July 31, 2006 at the Oregon Convention Center in Portland Oregon. The workshop was organized by the Corps of Engineers, PNNL, and the DOE Wind and Hydropower Program. Presenters gave overviews of the Corps' Turbine Survival Program and the history of the DOE Advanced Turbine Development Program. They also spoke on physical hydraulic models, biocriteria for safe fish passage, pressure investigations using the Sensor Fish Device, blade strike models, optimization of power plant operations, bioindex testing of turbine performance, approaches to measuring fish survival, a systems view of turbine performance, and the Turbine Survival Program design approach.

  12. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  13. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  14. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ ツ望 803,754 5,302,890 37,398 4

  15. Exhaust system for use with a turbine and method of assembling same

    DOE Patents [OSTI]

    Dalsania, Prakash Bavanjibhai; Sadhu, Antanu

    2015-08-18

    An exhaust system for use with a steam turbine is provided. An exhaust hood includes an input and an output, the input receiving fluid from the steam turbine. The exhaust hood includes a first side wall that extends between the input and the output. The first side wall includes an aperture. An ejector is coupled to the exhaust hood. The ejector includes inlets and an outlet. At least one of the inlets receives fluid from the exhaust hood via the aperture.

  16. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  17. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Flume Studies | Department of Energy Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river

  18. Acoustic Array Development for Wind Turbine Noise Characterization

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Acoustic Array Development for Wind Turbine Noise Characterization Citation Details In-Document Search Title: Acoustic Array Development for Wind Turbine Noise Characterization This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team

  19. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  20. Abstract - This paper describes the latest generic wind turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract - This paper describes the latest generic wind turbine generator models of types 3 and 4 developed for implementation in the Western Electricity Coordinating Council (WECC) base cases. Key Words - Generic wind turbine models, wind power. I. INTRODUCTION Recognizing the need for transient stability models suitable for representing different types of wind turbine generators (WTGs), WECC, through its Renewable Energy Modeling Task Force (REMTF), has been leading a concerted effort to

  1. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  2. Small Wind Guidebook/What Size Wind Turbine Do I Need | Open...

    Open Energy Info (EERE)

    & OUTREACHSmall Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Energy Department Accepting Small Business Grant Applications for Low-Head Hydropower Turbines and MHK Monitoring Systems

    Broader source: Energy.gov [DOE]

    The Energy Department began accepting applications on November 24 for its FY 2015 Phase 1 grant topics, including two Water Power Program topics, under the Small Business Innovation Research (SBIR) and Technology Transfer (STTR) programs.

  4. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  7. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  8. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  9. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  10. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  11. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  12. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  13. Advanced Control Design and Testing for Wind Turbines at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Laboratory: Preprint | Department of Energy Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint To be presented at the World Renewable Energy Congress VIII; Denver, Colorado; August 29 - September 3, 2004 PDF icon 36118.pdf More Documents & Publications SMART Wind Turbine Rotor: Data Analysis and Conclusions SMART Wind

  14. Erosion-Resistant Nanocoatings for Improved Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines Erosion-Resistant Nanocoatings for Improved Energy Efficiency in Gas Turbine Engines PDF icon ...

  15. MICROCOMP output file

    Energy Savers [EERE]

    59 Department of Energy ツァ 1021.102 PART 1021-NATIONAL ENVIRON- MENTAL POLICY ACT IMPLE- MENTING PROCEDURES Subpart A-General Sec. 1021.100 Purpose. 1021.101 Policy. 1021.102 Applicability. 1021.103 Adoption of CEQ NEPA regulations. 1021.104 Definitions. 1021.105 Oversight of Agency NEPA activi- ties. Subpart B-DOE Decisionmaking 1021.200 DOE planning. 1021.210 DOE decisionmaking. 1021.211 Interim actions: Limitations on ac- tions during the NEPA process. 1021.212 Research, development,

  16. MICROCOMP output file

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    65-OCT. 5, 1999 NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2000 VerDate 12-OCT-99 23:18 Oct 28, 1999 Jkt 079139 PO 00065 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL065.106 APPS24 PsN: APPS24 113 STAT. 512 PUBLIC LAW 106-65-OCT. 5, 1999 Public Law 106-65 106th Congress An Act To authorize appropriations for fiscal year 2000 for military activities of the Depart- ment of Defense, for military construction, and for defense activities of the Depart- ment of Energy, to prescribe personnel

  17. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantisツョ Current Plane (窶廚-Plane窶) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  18. Final Report - Certifying the Performance of Small Wind Turbines

    SciTech Connect (OSTI)

    Sherwood, Larry

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 窶 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  19. Wind Turbine Micropitting Workshop: A Recap

    SciTech Connect (OSTI)

    Sheng, S.

    2010-02-01

    Micropitting is a Hertzian fatigue phenomenon that affects many wind turbine gearboxes, and it affects the reliability of the machines. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The U.S. Department of Energy has made a commitment to improving wind turbine reliability and the National Renewable Energy Laboratory (NREL) has started a gearbox reliability project. Micropitting as an issue that needed attention came to light through this effort. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of the issue by acknowledged experts, NREL hosted a wind turbine micropitting workshop, which was held at the National Wind Technology Center in Boulder, Colorado, on April 15 and 16, 2009.

  20. Hydrogen for Energy Storage Analysis Overview (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  1. Turbine disc sealing assembly

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  2. Duration Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2013-06-01

    This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small wind turbines. Five turbines were tested at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of round one of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality. Test results will provide manufacturers with reports that can be used to fulfill part of the requirements for small wind turbine certification. The test equipment included a grid-connected Ventera Energy Corporation VT10 wind turbine mounted on an 18.3-m (60-ft) self-supporting lattice tower manufactured by Rohn.

  3. Annual Report: Turbines (30 September 2012)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2012-09-30

    The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ソス Development and design of aerothermal and materials concepts in FY12-13. ソス Design and manufacturing of these advanced concepts in FY13. ソス Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

  4. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  5. Search results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the wind energy unit. http:energy.goveereeducationdownloadsexploration-wind-energy-wind-turbines Download Energy in Today's Global Society Energy is an abstract concept that...

  6. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E.; Norton, Paul F.

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  7. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  8. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L.

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  9. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  10. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  11. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  12. Aeroelastic Modeling of Large Off-shore Vertical-axis Wind Turbines: Development of the Offshore Wind Energy Simulation Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Forum & Expo | Department of Energy Aerodyne Research Inc. Wins SBIR/STTR Business of the Year at Small Business Forum & Expo Aerodyne Research Inc. Wins SBIR/STTR Business of the Year at Small Business Forum & Expo October 10, 2014 - 10:01am Addthis Charles Kolb of Aerodyne Research Inc. accepts the SBIR/STTR Business of the Year Award from Kevin Knobloch, DOE Chief of Staff (l), and John Hale III, Director of DOE's Office of Small and Disadvantaged Business Utilization

  13. SPATIALLY-EXPLICIT BAT IMPACT SCREENING TOOL FOR WIND TURBINE SITING

    SciTech Connect (OSTI)

    Versar, Inc.; Exponent, Inc.

    2013-10-28

    As the U.S. seeks to increase energy production from renewable energy sources, development of wind power resources continues to grow. One of the most important ecological issues restricting wind energy development, especially the siting of wind turbines, is the potential adverse effect on bats. High levels of bat fatality have been recorded at a number of wind energy facilities, especially in the eastern United States. The U.S. Department of Energy contracted with Versar, Inc., and Exponent to develop a spatially-explicit site screening tool to evaluate the mortality of bats resulting from interactions (collisions or barotrauma) with wind turbines. The resulting Bat Vulnerability Assessment Tool (BVAT) presented in this report integrates spatial information about turbine locations, bat habitat features, and bat behavior as it relates to possible interactions with turbines. A model demonstration was conducted that focuses on two bat species, the eastern red bat (Lasiurus borealis) and the Indiana bat (Myotis sodalis). The eastern red bat is a relatively common tree-roosting species that ranges broadly during migration in the Eastern U.S., whereas the Indiana bat is regional species that migrates between a summer range and cave hibernacula. Moreover, Indiana bats are listed as endangered, and so the impacts to this species are of particular interest. The model demonstration used conditions at the Mountaineer Wind Energy Center (MWEC), which consists of 44 wind turbines arranged in a linear array near Thomas, West Virginia (Tucker County), to illustrate model functions and not to represent actual or potential impacts of the facility. The turbines at MWEC are erected on the ridge of Backbone Mountain with a nacelle height of 70 meters and a collision area of 72 meters (blade height) or 4,071 meters square. The habitat surrounding the turbines is an Appalachian mixed mesophytic forest. Model sensitivity runs showed that bat mortality in the model was most sensitive to perceptual range and flying height. The BVAT model demonstration found that after 30 model iterations, Red bats suffered greater rates of mortality (i.e., 2.5 times the number of bats killed per 10-day period) than Indiana bats, primarily resulting from the higher flying height of the red bat. The model described in this report is a first release. There are opportunities to expand and enhance the model in the future. For example, additional focus on the model experience would include adding project level saving/loading, integrating the outputs (trajectory mapping) into the main output window, and providing tools for preparing habitat maps. In addition to the model framework, the actual modeling options could be enhanced by adding associative learning (including additional behavioral states), adding additional movement models, and exploring the information transfer among bats. Ultimately, this standalone model could be integrated into ArcGIS as a plugin.

  14. Xanthus Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xanthus Energy Ltd Place: Wales, United Kingdom Sector: Wind energy Product: UK-based offshore wind turbine manufacturer. References: Xanthus Energy Ltd1 This article is a...

  15. Madison, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    BEST Energies Inc Biodiesel Systems LLC Focus On Energy Great Lakes Biofuels LLC Infinity Turbine LLC PrairieFire BioFuels Cooperative Silatronix Virent Energy Systems Inc...

  16. Suzlon Wind Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Corp Jump to: navigation, search Name: Suzlon Wind Energy Corp Place: Chicago, Illinois Zip: 60631 Product: Regional office of turbine manufacturer, Suzlon Energy....

  17. Prudent Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100084 Sector: Renewable Energy Product: Beijing-based developer of energy storage units designed for use with renewable energy generators such as turbines...

  18. New Siemens Research Turbine - time lapse

    SciTech Connect (OSTI)

    2009-01-01

    The National Renewable Energy Laboratory (NREL) and Siemens Energy Inc. recently commissioned a new 2.3 megawatt Siemens wind turbine at NREL's National Wind Technology Center. This video shows a time lapse of the installation. The turbine is the centerpiece of a multi-year project to study the performance and aerodynamics of a new class of large, land-based machines 窶 in what will be the biggest government-industry research partnership for wind power generation ever undertaken in the U.S.

  19. Wenzhou Huali Windpower | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 325000 Sector: Wind energy Product: Wenzhou Huali Windpower is a wind turbine and wind turbine parts company based in Wenzhou, Zhejiang Province. Coordinates:...

  20. ENERCON GmbH | Open Energy Information

    Open Energy Info (EERE)

    search Name: ENERCON GmbH Place: Bremen, Bremen, Germany Zip: D-28199 Sector: Wind energy Product: Fully integrated wind turbine manufacturer. Enercon produces turbine...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated capacity of one...

  2. An assessment of the economic impact of the wind turbine supply chain in Illinois

    SciTech Connect (OSTI)

    Carlson, J. Lon; Loomis, David G.; Payne, James

    2010-08-15

    The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

  3. American Superconductor Corporation | Open Energy Information

    Open Energy Info (EERE)

    in use of superconducting materials to increase the power output of wind turbines. 2 Business Model License its technology to partners, such as Sinovel Wind Group Co....

  4. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  5. Geothermal rotary separator turbine: wellhead power system tests at Milford, Utah

    SciTech Connect (OSTI)

    Hughes, E.E.

    1983-08-01

    Through development of a separator/expander engine EPRI is improving the efficiency of single flash geothermal power systems. Under cost-shared contracts with Biphase Energy Systems and Utah Power and Light Company (UP and L), a wellhead power generating system has been built and tested. The wellhead unit has been operated for 4000 hours at Roosevelt Hot Springs near Milford, Utah. Phillips Petroleum Company operates the geothermal field at this site. The rotary separator turbine (RST) is a separating expander that increases the resource utilization efficiency by extracting power upstream of a steam turbine in either a 1-stage or 2-stage flash power system. The first power output was achieved October 28, 1981, six weeks after arrival of the RST at the site. The RST system produced 3270 MWh(e) gross and 2770 MWh(e) net to the UP and L grid. Total equivalent power produced by the wellhead RST (actual power output of the RST plus the power obtainable from the steam flow out of the RST) is 15 to 20 percent above the power that would be produced by an optimum 1-stage direct flash plant operated on the same geothermal well.

  6. Laboratory Demonstration of a New American Low-Head Hydropower Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Office presentation icon 68b_hydrogreen_small_hydro_ch_11.ppt More Documents & Publications Real World Demonstration of a New American Low-Head Hydropower Unit Turbine Aeration Physical Modeling and Software Design Scalable Low-head Axial-type Venturi-flow

  7. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  8. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  9. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  10. Double-rotor rotary engine and turbine

    SciTech Connect (OSTI)

    Lin, A.S.

    1990-04-03

    This patent describes a double-rotor engine. It comprises: a base; a housing rotatably mounted to the base and forming a radial cylinder; an output shaft rotatably mounted concentric with the housing and having an arm rigidly extending therefrom within the housing; a piston slidingly engaging the cylinder and forming a combustion chamber with the cylinder; means for admitting a fuel-air mixture into the cylinder; means for releasing combustion products from the cylinder following operation of the expanding means; turbine means operatively connected between the base and the housing, the turbine means providing a torque reaction against the housing in response to flow of the combustion products from the releasing means; and stop means on the shaft for limiting the relative movement between the shaft and the housing.

  11. Duration Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  12. Safety and Function Test Report for the SWIFT Wind Turbine

    SciTech Connect (OSTI)

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Safety and Function testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, duration, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  13. Wind Turbine Wake-Redirection Control at the Fishermen's Atlantic City Windfarm: Preprint

    SciTech Connect (OSTI)

    Churchfield, M.; Fleming, P.; Bulder, B.; White, S.

    2015-05-06

    In this paper, we will present our work towards designing a control strategy to mitigate wind turbine wake effects by redirecting the wakes, specifically applied to the Fishermen窶冱 Atlantic City Windfarm (FACW), proposed for deployment off the shore of Atlantic City, New Jersey. As wind turbines extract energy from the air, they create low-speed wakes that extend behind them. Full wake recovery Full wake recovery to the undisturbed wind speed takes a significant distance. In a wind energy plant the wakes of upstream turbines may travel downstream to the next row of turbines, effectively subjecting them to lower wind speeds, meaning these waked turbines will produce less power.

  14. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  15. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  16. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  17. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  18. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  19. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  20. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.