Powered by Deep Web Technologies
Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of environmentally advanced hydropower turbine system design concepts  

DOE Green Energy (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

2

Rampressor Turbine Design  

DOE Green Energy (OSTI)

The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

Ramgen Power Systems

2003-09-30T23:59:59.000Z

3

Development of a low swirl injector concept for gas turbines  

E-Print Network (OSTI)

Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

2000-01-01T23:59:59.000Z

4

Loads Analysis of Several Offshore Floating Wind Turbine Concepts  

SciTech Connect

This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

Robertson, A. N.; Jonkman, J. M.

2011-10-01T23:59:59.000Z

5

A design concept for Caltech  

SciTech Connect

This article describes cogeneration at the California Institute of Technology (Caltech). 800 KW of electricity is generated by a back-pressured steam turbine using high pressure steam from existing boilers. The exhaust steam is sent to the campus' 345 KPa (50PSIG) steam system. There are ongoing plans to generate the high pressure steam using the hot exhaust gases from a 4 MW gas turbine. Caltech has found the first phase (the back-pressured steam turbine) of their cogeneration project cost effective. This article discusses the economic concept and performance of this first phase and also discusses the anticipated economic performance of the second phase (the gas turbine). Caltech's cost effective cogeneration facility was designed to interface with a plant that has existed for thirteen years.

Hife, R.R.; Fielding, G.M.

1985-07-01T23:59:59.000Z

6

Pilot Scale Tests Alden/Concepts NREC Turbine  

SciTech Connect

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

7

Pilot Scale Tests Alden/Concepts NREC Turbine  

DOE Green Energy (OSTI)

Alden Research Laboratory, Inc. has completed pilot scale testing of the new Alden/Concepts NREC turbine that was designed to minimize fish injury at hydropower projects. The test program was part of the U.S. Department of Energy's Advanced Hydropower Turbine Systems Program. The prototype turbine operating point was 1,000 cfs at 80ft head and 100 rpm. The turbine was design to: (1) limit peripheral runner speed; (2) have a high minimum pressure; (3) limit pressure change rates; (4) limit the maximum flow shear; (5) minimize the number and total length of leading blade edges; (6) maximize the distance between the runner inlet and the wicket gates and minimize clearances (i.e., gaps) between other components; and (7) maximize the size of flow passages.

Thomas C. Cook; George E.Hecker; Stephen Amaral; Philip Stacy; Fangbiao Lin; Edward Taft

2003-09-30T23:59:59.000Z

8

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY  

E-Print Network (OSTI)

A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

9

Development of a low swirl injector concept for gas turbines  

SciTech Connect

This paper presents a demonstration of a novel lean premixed low-swirl injector (LSI) concept for ultra-low NOx gas turbines. Low-swirl flame stabilization method is a recent discovery that is being applied to atmospheric heating equipment. Low-swirl burners are simple and support ultra-lean premixed flames that are less susceptible to combustion instabilities than conventional high-swirl designs. As a first step towards transferring this method to turbines, an injector modeled after the design of atmospheric low-swirl burner has been tested up to T=646 F and 10 atm and shows good promise for future development.

Cheng, R.K.; Fable, S.A.; Schmidt, D; Arellano, L.; Smith, K.O.

2000-09-01T23:59:59.000Z

10

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

11

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

12

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

13

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

14

Applications: Wind turbine and blade design  

E-Print Network (OSTI)

Capability Applications: Wind turbine and blade design optimization Energy production enhancement Summary: As the wind energy industry works to provide the infra- structure necessary for wind turbine develops a means to aug- ment power production with wind-derived energy. Turbines have become massive

15

Designing an ultrasupercritical steam turbine  

Science Conference Proceedings (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

16

Wind Turbine Design Innovations Drive Industry Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Innovations Drive Industry Transformation For more than 20 years, the National Renewable Energy Laboratory (NREL) has helped GE and its predecessors achieve...

17

The Economic Optimization of Wind Turbine Design .  

E-Print Network (OSTI)

??This thesis studies the optimization of a variable speed, three blade, horizontal-axis wind turbine. The design parameters considered are the rotor diameter, hub height and… (more)

Schmidt, Michael Frank

2007-01-01T23:59:59.000Z

18

Hydrodynamic design of axial hydraulic turbines  

Science Conference Proceedings (OSTI)

This paper presents a complete methodology of the hydrodynamic design for the runner of axial hydraulic turbines (Kaplan) using the finite element method. The procedure starts with the parametric design of the meridian channel. Next, the stream traces ... Keywords: QTurbo3D, axial hydraulic turbines, design, meridian channel, runner blade

Daniel Balint; Viorel Câmpian

2011-04-01T23:59:59.000Z

19

Open cycle - OTEC turbine design  

Science Conference Proceedings (OSTI)

The design of a low-pressure, open cycle ocean thermal energy conversion system (OTEC) is described. Near-surface ocean water at 80 F is allowed to expand in a one-half psi evaporator for passage through a turbine cold water (40 F), pumped upward from a 3,000 ft depth, is used to recondense the steam. Plans for a 2.5-3 MWe prototype plant, as a proof-of-principle project for a 100 MWe plant, include seawater pumps driven off the generator shaft, potable water as a by-product of the condensor, ease of access for O and M, and an integrated, gear-driven deaerator system with reinjection into the warm seawater discharge. An inlet flow of 3,000,000 cu ft/sec, a single stage vertical turbine with 40 ft fiber reinforced composite blades, 200 rpm operation on a 65 ft diameter disk, and an overall efficiency of 3% are features of the 100 MWe plant. A flowfield analysis, a velocity triangle analysis, and a structural dynamics analysis are outlined, along with materials applications and manufacturing process considerations in blade design. The 3MWe OTEC will be one-sixth the size of a 100MWe OTEC.

Coleman, W.H. (Westinghouse Electric Corp., Lester, PA); Rogers, J.D. (TM Development, Inc., Chester, PA); Thompson, D.F. (Delaware University, Newark, DE)

1981-01-01T23:59:59.000Z

20

The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration  

E-Print Network (OSTI)

This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas turbine. Several modifications to the gas turbine (Brayton Cycle) and the effects of cycle parameters such as pressure ratio and turbine inlet temperature are discussed. Steams injected cycles are examined and the concept of the ECSI gas turbine is introduced. The discussion includes criteria for selecting a suitable heat exchanger and considerations for start-up cycles. The feasibility of the concept and discussion of problem areas in the prototype are discussed.

Boyce, M. P.; Meher-Homji, C.; Ford, D.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced wind turbine design studies: Advanced conceptual study. Final report  

DOE Green Energy (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

22

Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design  

E-Print Network (OSTI)

It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only. Since a high second-law efficiency of a gas-turbine engine is necessary to have high overall system efficiency, the decision maker may thus make use of the procedure presented in this work to quickly identify those gas-turbine engines that could be good candidates for combined-cycle operation.

Huang, F. F.; Naumowicz, T.

2001-05-01T23:59:59.000Z

23

Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report  

SciTech Connect

The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

Smith, M J; Suo, M

1981-04-01T23:59:59.000Z

24

Generic turbine design study. Final report  

SciTech Connect

The purpose of Task 12, Generic Turbine Design Study was to develop a conceptual design of a combustion turbine system that would perform in a pressurized fluidized bed combustor (PFBC) application. A single inlet/outlet casing design that modifies the W251B12 combustion turbine to provide compressed air to the PFBC and accept clean hot air from the PFBC was developed. Performance calculations show that the net power output expected, at an inlet temperature of 59{degrees}F, is 20,250 kW.

1993-06-01T23:59:59.000Z

25

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind… (more)

Gong, W.

2011-01-01T23:59:59.000Z

26

Advanced turbine systems: Studies and conceptual design  

SciTech Connect

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

27

Wind Turbine Design Cost and Scaling Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Turbine Design Cost Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Technical Report NREL/TP-500-40566 December 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Wind Turbine Design Cost and Scaling Model L. Fingersh, M. Hand, and A. Laxson Prepared under Task No. WER6.0703 Technical Report NREL/TP-500-40566 December 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

28

Using partial safety factors in wind turbine design and testing  

DOE Green Energy (OSTI)

This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

Musial, W.D.; Butterfield, C.

1997-09-01T23:59:59.000Z

29

Market penetration of wind turbine concepts over the years Anca D. Hansen1  

E-Print Network (OSTI)

speed wind turbine concept with partial-scale power converter (DFIG) This configuration denotes the variable speed controlled wind turbine with doubly fed induction generator (DFIG) and pitch control

30

Program on Technology Innovation: Redesign of the Alden/Concepts NREC Helical Turbine for Increased Power Density and Fish Survival  

Science Conference Proceedings (OSTI)

A pilot version of the Alden / Concepts NREC hydroturbine successfully reduced fish mortality, but did not produce enough power to be commercially competitive. This report describes the development of a new design for the scroll case of the turbine that doubles the flow without increasing the footprint of the scroll case. Increasing the flow through the turbine increases the power that may be extracted by the runner.

2007-03-29T23:59:59.000Z

31

Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept  

E-Print Network (OSTI)

307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

Ray, Asok

32

Micro-turbine design point definition using optimization techniques.  

E-Print Network (OSTI)

??During a gas turbine development phase an important engineer task is to find the appropriate engine design point that meet all required specifications. This task… (more)

Diogo Ferraz Cavalca

2012-01-01T23:59:59.000Z

33

An evolutionary environment for wind turbine blade design  

Science Conference Proceedings (OSTI)

The aerodynamic design of wind turbine blades is carried out by means of evolutionary techniques within an automatic design environment based on evolution. A simple, fast, and robust aerodynamic simulator is embedded in the design environment to predict ...

V. Díaz Casás; F. Lopez Peña; A. Lamas; R. J. Duro

2005-06-01T23:59:59.000Z

34

Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002  

DOE Green Energy (OSTI)

This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

Poore, R.; Lettenmaier, T.

2003-08-01T23:59:59.000Z

35

Design and evaluation of small water turbines. Final report  

Science Conference Proceedings (OSTI)

An evaluation was made of the design and hydromechanical performance characteristics for three basic turbine types: axial flow (Jonval), inward radial flow (Francis) and crossflow (Banki). A single commercially available turbine representative of each type and within the appropriate power range (microhydro designs to their full performance potential.

Marquis, J.A.

1983-02-17T23:59:59.000Z

36

Design of high-efficiency turbomachinery and gas turbines  

SciTech Connect

The present treatment of pump, compressor, and turbine turbomachinery emphasizes thermodynamics, design methods, and the use that can be made of relatively simple rules for the choosing of cycle types, vector diagrams, blading types, heat exchanger configurations, etc. Gas dynamics are treated to the virtual exclusion of mechanical design considerations, although a brief historical account of the family of turbomachine systems notes gradual structural as well as thermodynamic and gas dynamic refinements. The complete systems described and analyzed include aircraft, marine, and electrical power generation gas turbines, steam turbines, and hydraulic pumps and turbines. Both axial and centrifugal flow turbomachine types are considered. 112 references.

Wilson, D.G.

1984-01-01T23:59:59.000Z

37

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics; March 27, 2000 to December 31, 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29439 1 * NREL/SR-500-29439 Kevin Smith Global Energy Concepts LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2001 * NREL/SR-500-29439 WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor, and Blade Logistics March 27, 2000 to December 31, 2000 Kevin Smith Global Energy Concepts LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

38

Design of wind turbines with Ultra-High Performance Concrete  

E-Print Network (OSTI)

Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

Jammes, François-Xavier

2009-01-01T23:59:59.000Z

39

Assessment of a water-cooled gas-turbine concept. Final report  

SciTech Connect

A program for development of Ultra-High Temperature (UHT) 2800/sup 0/F firing temperature, water-cooled turbine technology began in 1967. In 1973 it was decided to design and build a full-scale gas turbine to demonstrate the feasibility and evaluate the performance and economics of a complete utility-size machine. The preliminary design phase, performed from June 1974 to March 1975 is reported here with information on the definition of the baseline cycle for the UHT machine in a combined cycle power plant; turbine aerodynamics; design of turbine, its cooling system, and the combustor; materials selection; controls; cost estimates; heat flux experiments, and program planning. (LCL)

1975-08-01T23:59:59.000Z

40

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT Turbine Rotor WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah Subcontract Report NREL/SR-500-32495 Revised April 2006 WindPACT Turbine Rotor Design Study June 2000 - June 2002 D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering Salt Lake City, Utah NREL Technical Monitor: A. Laxson Prepared under Subcontract No. YAT-0-30213-01 Subcontract Report NREL/SR-500-32495 Revised April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Parametric Physics Based Creep Life Prediction Approach to Gas Turbine Blade Conceptual Design .  

E-Print Network (OSTI)

??The required useful service lives of gas turbine components and parts are naturally one of the major design constraints limiting the gas turbine design space.… (more)

Smith, Marcus Edward Brockbank

2008-01-01T23:59:59.000Z

42

Advanced Turbine Systems Program industrial system concept development  

DOE Green Energy (OSTI)

Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

Gates, S.

1995-12-31T23:59:59.000Z

43

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

44

Analysis of a radial-outflow reaction turbine concept for geothermal application  

SciTech Connect

The radial-outflow reaction turbine, a pure-reaction turbine designed to improve the conversion efficiency of geothermal energy into electrical power is described. It also has potential as a total-flow turbine for low-temperature water. The principle of incomplete expansion can be used to obtain a reduction in turbine size when the turbine exhausts into a low-pressure condenser. And, by adding this turbine to single- and two-stage flashed-steam systems, the conversion efficiency of systems utilizing low- and high-energy wellhead sources, respectively can be improved. The Appendix outlines the analysis of the radial-outflow reaction turbine and leads to an expression for engine efficiency.

House, P.A.

1978-05-25T23:59:59.000Z

45

Architecting a plug-in based steam turbine design tool  

Science Conference Proceedings (OSTI)

At a leading manufacturer of equipment for power generation, the engineers currently design a steam turbine, a key component of a power plant, using a large number of disjoint legacy tools written mostly in Fortran; These tools encapsulate significant ... Keywords: dynamic graph, eclipse rcp, osgi, turbine engineering

Stefanos Zachariadis; Tim Cianchi

2011-05-01T23:59:59.000Z

46

Design Concepts for a Superconducting Cable  

Science Conference Proceedings (OSTI)

Superconducting cables carry higher currents and, depending upon the design, can experience substantially lower transmission losses than conventional cables. This report discusses previous approaches to designing superconducting cables, describes the technical issues that must be considered when designing a high-temperature superconductor (HTS) cable, and presents several design concepts for an HTS cable.

1994-09-28T23:59:59.000Z

47

Design and fabrication of a composite wind turbine blade  

SciTech Connect

This paper describes the design considerations leading to the innovative combination of materials used for the MOD-I wind turbine generator rotor and the fabrication processes which were required to accomplish it.

Brown, R.A. (Boeing Engineering and Construction, Seattle, WA); Haley, R.G.

1980-01-01T23:59:59.000Z

48

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

1996-12-31T23:59:59.000Z

49

Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology  

SciTech Connect

This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

2006-03-01T23:59:59.000Z

50

Design, Construction, and Preliminary Validation of the Turbine Reacting Flow Rig.  

E-Print Network (OSTI)

??This thesis presents the design, construction and partial operation of the Turbine Reacting Flow Rig (TuRFR), which is a high temperature turbine vane test facility… (more)

Cramer, Klaron Nathanael

2009-01-01T23:59:59.000Z

51

A Progress Report on the Characterization and Modeling of a Very Flexible Wind Turbine Design  

DOE Green Energy (OSTI)

The combination of increasing turbine rotor diameters and the desire to achieve long lifetimes has placed increased emphasis on understanding the response of flexible turbine structures in a turbulent inflow environment. One approach to increase fatigue lifetimes has been to design structures that can either shed or adequately absorb turbulent loads through the use of flexible rotors and support towers, and hubs and nacelles that exhibit multiple degrees of angular freedom. The inevitable result in such designs is a substantial increase in dynamic complexity. In order to develop a sufficient knowledge of such concepts, extensive measurements coupled with detailed analytical simulations of a flexible turbine design are required. The Wind Eagle 300 turbine, with its lightweight flexible rotor and hub, meets these criteria and is currently being investigated. In this paper we discuss a few early results from our recently completed field measurement effort. We found that the turbine rotor response was dominated by a once-per-revolution oscillation that was responsible for large cyclic variations in the output power. The available evidence points to a rotor imbalance related to structural differences in one of the blades and misalignment of the pitch angles. We also compared the variation in mean out-of-plane bending loads with wind speed with a conventional rigid hub design.

Kelley, N. D.; Wright, A. D.; Osgood, R. M.

1998-11-02T23:59:59.000Z

52

Design and evaluation of small water turbines. Final report  

DOE Green Energy (OSTI)

An evaluation was made of the design and hydromechanical performance characteristics for three basic turbine types: axial flow (Jonval), inward radial flow (Francis) and crossflow (Banki). A single commercially available turbine representative of each type and within the appropriate power range (<5hp) was obtained for evaluation. Specific turbine selections were based on price, availability and suitability for operation at heads of 50 feet or less and flows under 2 cubic feet per second. In general, the peak operating efficiencies of each unit tended to be lower than anticipated, falling in the range of 40 to 50%. With sufficient flow, however, significant useful power outputs up to 3 hp were obtained. While the radial flow turbine (a centrifugal pump operated as a turbine) had the lowest initial unit cost, the axial and cross flow designs exhibited more stable operation, particularly under transient loadings. The crossflow turbine had the added advantage that it was essentially self-cleaning. With further developmental effort and appropriate design modifications it should be possible to bring each of these microhydro designs to their full performance potential.

Marquis, J.A.

1983-02-17T23:59:59.000Z

53

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

54

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

55

Helium turbine design for a 1000 MWe gas-cooled fast breeder reactor with closed gas turbine cycle  

SciTech Connect

This report deals exclusively with the preliminary design of a double-flooded helium turbine for a 1000 MWe gas-cooled fast breeder reactor. The influence is studied of several parameters, such as hub ratio, exit angle of the turbine wheel and inlet angle of the guide wheel, on the designed size of the turbine and the centrifugal stress of the blading, in order to get a survey which is helpful in the preliminary design.

Savatteri, C.

1973-02-15T23:59:59.000Z

56

Test evaluation of a laminated wood wind turbine blade concept  

SciTech Connect

Because of the high stiffness and fatigue strength of wood (as compared to density) along with the low cost manufacturing techniques available, a laminated wood wind turbine blade application has been studied. This report presents the results of the testing performed on elements of the wood blade-to-hub transition section which uses steel studs cast into a laminated wood spar with a filled epoxy. Individual stud samples were tested for both ultimate load carrying capability and fatigue strength. A one-time pull-out load of 78,000 lb was achieved for a 15 in. long stud with a diameter of 1 in. Tension-tension fatigue indicated that peak loads on the order of 40% of ultimate could be maintained as an endurance limit (mean load = 20,000 lb, cyclic load = +-15,000 lb). Following the individual stud testing, a full-scale inboard blade section (20 ft in length) was tested.

Faddoul, J.R.

1981-05-01T23:59:59.000Z

57

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

58

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

59

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, [August 3, 1993--October 31, 1993  

SciTech Connect

This Quarterly Technical Progress Report covers the period August 3 through October 31, 1993, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC21-93MC30246. The objective of this program is to provide the conceptual design and product development plan for an industrial gas turbine system to operate at a thermal efficiency of 50 percent and developable to 60 percent. Solar`s ATS Engine Design Team reviewed the intercooled and recuperated (ICR) gas turbine concept defined in the Program proposal, validated certain assumptions associated therewith, and began the process of actualizing this concept in terms of achievable turbomachinery components. Given the probable use of a free power turbine arrangement, both 1-spool and 2-spool compressor arrangements were examined with both fixed and variable turbine geometry. Off-design performance, both part-load and full-load over a range of inlet air temperatures, was examined. During this period certain simplifying assumptions were made regarding the amount of cycle air extracted for use in turbine cooling and the distribution of its return to the cycle. The exact influence of turbine cooling air extraction on cycle performance (thermal efficiency) will be highly dependent upon turbine airfoil material selection, its life/temperature capabilities, etc. Thus, cycle performance will be subject to some degree of change as the design progresses. Even now, improvements made to the cycle performance model will result in variation in presented results. As a general rule, later results will always supersede earlier results when there is an apparent conflict.

Karstensen, K.W.

1994-02-01T23:59:59.000Z

60

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design of Control System for Wind Turbine Electric Pitch  

Science Conference Proceedings (OSTI)

The operating principle of an electric pitch system of wind turbine is introduced in this paper, and three-phase PMSM (permanent magnetism synchronous motor) is chosen as the executive motor of the proposed system. TMS320F2812 is designed as the core ... Keywords: electric pitch, servo-control, PMSM, vector control, DSP

Yongwei Li; Shuxia Liu; Jiazhong Wang; Hongbo Zhang; Zhiping Lu

2009-04-01T23:59:59.000Z

62

Study on Aerodynamic Design of Horizontal Axis Wind Turbine Generator System  

Science Conference Proceedings (OSTI)

In this paper the choosing principles of design parameters and multi-airfoils in horizontal axis wind turbine (HAWT) generator system aerodynamic design are introduced. On the basis of the comparison analysis of wind turbine aerodynamic design method ... Keywords: Schmitz, airfoil, partial load, horizontal axis wind turbine (HAWT), blade tip speed ratio (BTSR)

Li Dong; Mingfu Liao; Yingfeng Li; Xiaoping Song; Ke Xu

2009-10-01T23:59:59.000Z

63

Materials Issues in Innovative Turbine Blade Designs - Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Issues in Innovative Turbine Materials Issues in Innovative Turbine Blade Designs-Oak Ridge National Laboratory Background Gas turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's working fluid.

64

Wind Speed Technology Phase II: Semisubmersible Platform and Anchor Foundation Systems for Wind Turbine Support; Concept Marine Associates, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Concept Marine Associates, Inc. to evaluate and optimize a semisubmersible platform and anchor foundation system that can support a 5-MW wind turbine.

2006-03-01T23:59:59.000Z

65

Preliminary gas turbine combustor design using a network approach  

SciTech Connect

The preliminary design process of a gas turbine combustor often involves the use of cumbersome, geometry restrictive semi-empirical models. The objective of this analysis is the development of a versatile design tool for gas turbine combustors, able to model all conceivable combustor types. A network approach is developed that divides the flow into a number of independent semi-empirical subflows. A pressure-correction methodology solves the continuity equation and a pressure-drop/flow rate relationship. The development of a full conjugate heat transfer model allows the calculation of flame tube heat loss in the presence of cooling films, annulus heat addition, and flame tube feature heat pick-up. A constrained equilibrium calculation, incorporating mixing and recirculation models, simulates combustion processes. Comparison of airflow results to a well-validated combustor design code showed close agreement. The versatility of the network solver is illustrated with comparisons to experimental data from a reverse flow combustor.

Stuttaford, P.J.; Rubini, P.A. [Cranfield Univ. (United Kingdom). School of Mechanical Engineering

1997-07-01T23:59:59.000Z

66

Design considerations for a two-phase turbine  

DOE Green Energy (OSTI)

A two-phase turbine, using a low-quality steam-water mixture as a working fluid, was designed, built, and tested in the laboratory. Two-phase fluids are found naturally in most geothermal fields throughout the world and can also be used in the conversion of waste heat from industrial sources. The thermodynamic and fluid-dynamic properties of such fluid mixtures are reviewed, with specific reference to the selection and design of an appropriate expander. Various types of practically realizable expanders are considered, and the choice of a single-stage, axial-flow, impulse turbine is explained. Also the basic design parameters, including sizing and blade and nozzle geometry, are described.

Comfort, W.J. III; Beadle, C.W.

1978-05-25T23:59:59.000Z

67

Data Analytics Methods in Wind Turbine Design and Operations  

E-Print Network (OSTI)

This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic environments. To account for the influence of environmental factors, we employ a conditional approach by modeling the expectation or distribution of response of interest, be it the structural load or power output, conditional on a set of environmental factors. Because of the different nature associated with the two types of responses, our methods also come in different forms, conducted through two studies. The first study presents a Bayesian parametric model for the purpose of estimating the extreme load on a wind turbine. The extreme load is the highest stress level that the turbine structure would experience during its service lifetime. A wind turbine should be designed to resist such a high load to avoid catastrophic structural failures. To assess the extreme load, turbine structural responses are evaluated by conducting field measurement campaigns or performing aeroelastic simulation studies. In general, data obtained in either case are not sufficient to represent various loading responses under all possible weather conditions. An appropriate extrapolation is necessary to characterize the structural loads in a turbine’s service life. This study devises a Bayesian spline method for this extrapolation purpose and applies the method to three sets of load response data to estimate the corresponding extreme loads at the roots of the turbine blades. In the second study, we propose an additive multivariate kernel method as a new power curve model, which is able to incorporate a variety of environmental factors in addition to merely the wind speed. In the wind industry, a power curve refers to the functional relationship between the power output generated by a wind turbine and the wind speed at the time of power generation. Power curves are used in practice for a number of important tasks including predicting wind power production and assessing a turbine’s energy production efficiency. Nevertheless, actual wind power data indicate that the power output is affected by more than just wind speed. Several other environmental factors, such as wind direction, air density, humidity, turbulence intensity, and wind shears, have potential impact. Yet, in industry practice, as well as in the literature, current power curve models primarily consider wind speed and, with comparatively less frequency, wind speed and direction. Our model provides, conditional on a given environmental condition, both the point estimation and density estimation of the power output. It is able to capture the nonlinear relationships between environmental factors and wind power output, as well as the high-order inter- action effects among some of the environmental factors. To illustrate the application of the new power curve model, we conduct case studies that demonstrate how the new method can help with quantifying the benefit of vortex generator installation, advising pitch control adjustment, and facilitating the diagnosis of faults.

Lee, Giwhyun

2013-08-01T23:59:59.000Z

68

Retrievable storage concept designs. Final report  

SciTech Connect

Three tasks related to the reference design of retrievable storage canisters for radioactive waste have been completed. The three tasks consist of the reference design itself, the definition of failure modes most appropriate for structural integrity determinations for the reference canister, and the development of a failure methodology for the structural integrity of the containers. The reference design is a sealed storage canister concept based upon the waste isolation pilot plant (WIPP) design, with slight modifications. The modifications consist of an alternate lifting yoke arrangement for the top head and a revised bottom head design for absorption of impact energy. Welded closures provide the seal at each end. Overpacking is considered as a possibility, but is not included in the preliminary reference design. The four failure modes that are deemed the most appropriate for the design of the reference canister are: (i) a loss of functional capability; (ii) ductile rupture of the canister; (iii) buckling of the structural members; and (iv) stress corrosion cracking. Failure scenarios are provided for each of the relevant failure modes. In addition, a failure methodology based upon the distribution of demand and the distribution of capacity for the structural members, with respect to each failure mode, is proffered.

Nickell, R.E.

1979-03-01T23:59:59.000Z

69

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network (OSTI)

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

Foss, Bjarne A.

70

DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES  

E-Print Network (OSTI)

DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

Camci, Cengiz

71

Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design  

E-Print Network (OSTI)

Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine of software to analyze and design gas turbine systems has been an important part of this course since 1988 of this project was to develop MS Windows based software: Simple Aircraft Gas Turbine Design, that is easy to use

Ghajar, Afshin J.

72

Advanced Turbine Systems Program: Conceptual design and product development. Quarterly report, February--April 1994  

SciTech Connect

Objective (Phase II) is to develop an industrial gas turbine system to operate at a thermal efficiency of 50% (ATS50) with efficiency enhancements to be added as they become possible. During this quarter, Solar`s engine design team has refined both the 1- and 2-spool cycle concepts, to determine sensitivity to key component efficiencies, cooling air usage and origin, and location of compressor surge lines. The refined analysis included more detailed component work such as compressor and turbine design; different speed trade-offs for the low-and high-pressure compressor in the 1-spool configuration were examined for the best overall compressor efficiency. High-temperature and creep testing of recuperator candidate materials continued. Creep, yield, and proportional limit were measured for foil thicknesses 0.0030--0.0050 for Type 347 ss, Inconel 625, and Haynes 230. Combustor design work included preliminary layout of a multi-can annular combustor integrated into the main engine layout. During the subscale catalytic combustion rig testing, NOx emissions < 5 ppmv were measured. Integration of the engine concept designs into the full power plant system designs has started.

Benjamin, G.J.

1994-06-01T23:59:59.000Z

73

Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators  

E-Print Network (OSTI)

Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

2012-01-01T23:59:59.000Z

74

Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

1995-02-01T23:59:59.000Z

75

Millville Wind Turbine Generator: failure analysis and corrective design modification  

DOE Green Energy (OSTI)

Fatigue cracks in the blade skins of the Millville Wind Turbine Generator were fractographically analyzed. It is believed they were caused by large flapwise deflections during a wind storm on December 4, 1978. The deflections caused the skin to buckle, which initiated rapidly growing fatigue cracks. Propagation continued to the leading edge, moving radially inward and outward along the leading edge radius. Communication between Rockwell and Millville resulted in a modified blade design which incorporates several corrective techniques.

Waldon, C.A.; Carr, M.J.; Grotzky, V.K.

1979-07-01T23:59:59.000Z

76

Design of Light Weight Structure for Wind Turbine Tower by Using ...  

Science Conference Proceedings (OSTI)

This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nano-structured ...

77

Design of a self-regulating composite bearingless blade wind turbine. Final report, October 15, 1976-August 15, 1977  

DOE Green Energy (OSTI)

A study was undertaken to design a 40-ft diameter wind turbine employing the UTRC/ERDA Self-Regulating Composite Bearingless Rotor (CBR) concept. The CBR concept was developed at United Technologies for rotary wing applications and is now in use on Sikorsky helicopters. The concept was further developed for wind turbine applications at UTRC under an ERDA contract in 1975-76. Successful wind tunnel tests were conducted during that contract, which demonstrated the self-starting and self-regulating features. The latest contract was to design a 40-ft system in the 5 kW - 15 kW power range. This effort included performance tradeoff studies, stress analyses of the blade and tower structure, a stability investigation, and engineering drawings of the complete system. However an overall cost analysis was not performed in this study.

Spierings, P.A.M.; Cheney, M.C.

1978-01-01T23:59:59.000Z

78

Advanced Turbine Systems Program, Conceptual Design and Product Development. Task 6, System definition and analysis  

DOE Green Energy (OSTI)

The strategy of the ATS program is to develop a new baseline for industrial gas turbine systems for the 21st century, meeting the buying criteria of industrial gas turbine end users, and having growth potential. These criteria guided the Solar ATS Team in selecting the system definition described in this Topical Report. The key to selecting the ATS system definition was meeting or exceeding each technical goal without negatively impacting other commercial goals. Among the most crucial goals are the buying criteria of the industrial gas turbine market. Solar started by preliminarily considering several cycles with the potential to meet ATS program goals. These candidates were initially narrowed based on a qualitative assessment of several factors such as the potential for meeting program goals and for future growth; the probability of successful demonstration within the program`s schedule and expected level of funding; and the appropriateness of the cycle in light of end users` buying criteria. A first level Quality Function Deployment (QFD) analysis then translated customer needs into functional requirements, and ensured favorable interaction between concept features. Based on this analysis, Solar selected a recuperated cycle as the best approach to fulfilling both D.O.E. and Solar marketing goals. This report details the design and analysis of the selected engine concept, and explains how advanced features of system components achieve program goals. Estimates of cost, performance, emissions and RAMD (reliability, availability, maintainability, durability) are also documented in this report.

NONE

1995-04-01T23:59:59.000Z

79

Design studies for twist-coupled wind turbine blades.  

SciTech Connect

This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

2004-06-01T23:59:59.000Z

80

Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?  

Science Conference Proceedings (OSTI)

Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

Cada, G. F.; Richmond, Marshall C.

2011-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Systematic Controller Design Methodology for Variable-Speed Wind Turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three operational regions. This paper provides a guide for controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship between the two opposing metrics is easily visualized.

Hand, M. M.; Balas, M. J.

2002-02-01T23:59:59.000Z

82

Designing an H-rotor type Wind Turbine for Operation on Amundsen-Scott South Pole Station.  

E-Print Network (OSTI)

?? This thesis focuses on designing the turbine, tower structure and generator for an H-rotor type wind turbine. The produced power will be used for… (more)

Wahl, Mats

2007-01-01T23:59:59.000Z

83

Innovative Design Approaches for Large Wind Turbine Blades  

SciTech Connect

The primary goal of the WindPACT Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. The initial project task was to assess the fundamental physical and manufacturing issues that govern and constrain large blades and entails three basic elements: (1) a parametric scaling study to assess blade structure using current technology, (2) an economic study of the cost to manufacture, transport, and install large blades, and (3) identification of promising innovative design approaches that show potential for overcoming fundamental physical and manufacturing constraints. This report discusses several innovative design approaches and their potential for blade cost reduction. During this effort we reviewed methods for optimizing the blade cross-section to improve structural and manufacturing characteristics. We also analyzed and compared a number of composite materials and evaluated their relative merits for use in large wind turbine blades in the range from 30 meters to 70 meters. The results have been summarized in dimensional and non-dimensional format to aid in interpretation. These results build upon earlier parametric and blade cost studies, which were used as a guide for the innovative design approaches explored here.

ASHWILL, THOMAS D.

2003-03-01T23:59:59.000Z

84

Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009  

DOE Green Energy (OSTI)

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

Matha, D.

2010-02-01T23:59:59.000Z

85

Design Concept and Application of Small Nuclear Power Reactor  

Science Conference Proceedings (OSTI)

The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

Minato, Akio [CRIEPI, Central Research Institute of Electric Power Industry, Tokyo (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy Systems (CRINES) Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2009-03-31T23:59:59.000Z

86

A comparison between the performance of different silencer designs for gas turbine exhaust systems  

E-Print Network (OSTI)

A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

Paris-Sud XI, Université de

87

Investigating the efficiency of gas turbines in off-design operation  

SciTech Connect

Experimental data on the performance of gas turbines for eight gas turbine power plants are presented and compared for the purpose of determining the efficiency of gas turbines in off-design operation such as during start-up or at less than rated speeds. (LCL)

Ol' Khovskii, G.G.; Ol' Khovskaya, N.I.

1978-01-01T23:59:59.000Z

88

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

89

Reference repository design concept for bedded salt  

Science Conference Proceedings (OSTI)

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08T23:59:59.000Z

90

Design of a Transonic Research Turbine Facility Ruolong Ma*  

E-Print Network (OSTI)

and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control throughout the gas-turbine engine in terms of their impact on each engine component was given by Lord et al.1 in the new Advanced Performance Gas Turbine Laboratory at the University of Notre Dame. II. Turbine Rig

Morris, Scott C.

91

Wind turbine trailing-edge aerodynamic brake design  

DOE Green Energy (OSTI)

This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

Quandt, G.

1996-01-01T23:59:59.000Z

92

WindPACT Turbine Design Scaling Studies Technical Area 1ŒComposite Blades for 80- to 120-Meter Rotor  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29492 1 * NREL/SR-500-29492 Dayton A. Griffin Global Energy Concepts Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 April 2001 * NREL/SR-500-29492 WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor March 21, 2000 - March 15, 2001 Dayton A. Griffin Global Energy Concepts Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory

93

WindPACT Turbine Design Scaling Studies Technical Area 3ŒSelf-Erecting Tower and Nacelle Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29493 1 * NREL/SR-500-29493 Global Energy Concepts, LLC Kirkland, Washington WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 May 2001 * NREL/SR-500-29493 WindPACT Turbine Design Scaling Studies Technical Area 3-Self-Erecting Tower and Nacelle Feasibility March 2000-March 2001 Global Energy Concepts, LLC Kirkland, Washington NREL Technical Monitor: Alan Laxson Prepared under Subcontract No. YAM-0-30203-01 National Renewable Energy Laboratory 1617 Cole Boulevard

94

WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

DOE Green Energy (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

95

Design, fabrication, and testing of a miniature impulse turbine driven by compressed gas.  

E-Print Network (OSTI)

??A miniature impulse turbine has been developed at the Rochester Institute of Technology. The goal of this project was to design, fabricate, and test a… (more)

Holt, Daniel B.

2004-01-01T23:59:59.000Z

96

Advanced turbine systems program conceptual design and product development. Quarterly report, February, 1996--April, 1996  

SciTech Connect

This paper describes the design and testing of critical gas turbine components. Development of catalytic combustors and diagnostic equipment is included.

1996-07-08T23:59:59.000Z

97

Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2007-01-01T23:59:59.000Z

98

Design and Dynamic Modeling of the Support Structure for a 10 MW Offshore Wind Turbine.  

E-Print Network (OSTI)

?? This thesis presents two designs of tension-leg-platforms (TLP) support structures for the 10 MW reference wind turbine being developed by the Norwegian Research Centre… (more)

Crozier, Aina

2011-01-01T23:59:59.000Z

99

SMI 2012: Full Paper: Medial design of blades for hydroelectric turbines and ship propellers  

Science Conference Proceedings (OSTI)

We present a method for constructing blades of hydroelectric turbines and ship propellers based on design parameters that possess a clear hydraulic meaning. The design process corresponds to the classical construction of a blade using the medial surface ... Keywords: B-spline representation, CAD-model, Hydroelectric turbine blade, Medial axis-based design, Propeller blade

M. Rossgatterer; B. Jüttler; M. Kapl; G. Della Vecchia

2012-08-01T23:59:59.000Z

100

Optimal design of aeroengine turbine disc based on kriging surrogate models  

Science Conference Proceedings (OSTI)

A design optimization method based on kriging surrogate models is proposed and applied to the shape optimization of an aeroengine turbine disc. The kriging surrogate model is built to provide rapid approximations of time-consuming computations. For improving ... Keywords: Design of experiments, Differential evolutionary algorithm, Kriging method, Optimal design, Surrogate model, Turbine disc

Zhangjun Huang; Chengen Wang; Jian Chen; Hong Tian

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

102

RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES  

SciTech Connect

Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

Nichols, R.

2013-10-14T23:59:59.000Z

103

Design Evolution, Durability and Reliability of Alstom Heavy-Duty Gas Turbines: Pedigree Matrices, Volume 5  

Science Conference Proceedings (OSTI)

Advanced technology heavy-duty gas turbines carry a degree of technical risk because of new technologies used in their design. This report reviews the design evolution of specific Alstom (formerly ABB) industrial gas turbines in a standard format, which allows a qualitative and quantitative assessment of the technical risks involved in their operation. The report establishes a pedigree matrix, or qualitative analysis, for standard production and newly introduced heavy-duty gas turbines, including ...

2013-12-19T23:59:59.000Z

104

Design Evolution, Durability, and Reliability of Alstom Heavy-Duty Combustion Turbines: Pedigree Matrices, Volume 5  

Science Conference Proceedings (OSTI)

Advanced technology heavy-duty combustion turbines carry a degree of technical risk because of new technologies used in their design. This report reviews the design evolution of specific Alstom (formerly ABB) industrial combustion turbines in a standard format, which allows a qualitative and quantitative assessment of the technical risks involved in their operation. The report establishes a pedigree matrix, or qualitative analysis, for standard production and newly introduced heavy-duty combustion turbin...

2011-12-28T23:59:59.000Z

105

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1994  

SciTech Connect

This is a quarterly report on the Westinghouse Electric Corporation Advanced Turbine Systems Program--conceptual design and product development. The topics of the report include the management plan, National Energy Policy Act, selection of natural gas-fired advanced turbine systems, selection of coal-fired advanced turbine systems, market study, systems definition and analysis, design and test of critical components, and plans for the next reporting period.

1994-12-01T23:59:59.000Z

106

Design Evolution, Durability and Reliability of General Electric Aeroderivative Gas Turbines  

Science Conference Proceedings (OSTI)

This report reviews the design evolution and experience base of General Electric (GE) aeroderivative gas turbines in a comprehensive format, which facilitates an assessment of the technical risks involved in operating these high-technology gas turbines. The report establishes a pedigree matrix for standard production GE LM2500, LM6000, and LMS100 aeroderivative gas turbines, describing their design features. In addition, it provides a reliability, availability, and maintainability (RAM) assessment ...

2012-12-07T23:59:59.000Z

107

Design Evolution, Durability and Reliability of Siemens Heavy-Duty Combustion Turbines: Pedigree Matrices, Volume 4  

Science Conference Proceedings (OSTI)

Advanced technology heavy frame gas turbines carry a degree of technical risk because of new technologies incorporated into their design. This report reviews the design evolution of specific Siemens industrial gas turbines in a standard format, which allows a qualitative and quantitative assessment of technical risks involved in their operation.BackgroundThe current power generation market and the gas turbine market, in particular, continue to drive the ...

2013-12-16T23:59:59.000Z

108

Innovative design approaches for large wind turbine blades : final report.  

SciTech Connect

The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

2004-05-01T23:59:59.000Z

109

MPACT Fast Neutron Multiplicity System Design Concepts  

Science Conference Proceedings (OSTI)

This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors.

D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

2012-10-01T23:59:59.000Z

110

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

DOE Green Energy (OSTI)

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

111

Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades  

SciTech Connect

As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

2002-07-01T23:59:59.000Z

112

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

113

Determination of fault operation dynamical constraints for the design of wind turbine DFIG drives  

Science Conference Proceedings (OSTI)

This paper presents an efficient design tool for the estimation of the transient electromagnetic peak torque and transient rotor over-voltages of wind turbines (WT) doubly-fed induction generators (DFIG) during severe fault conditions on the grid side. ... Keywords: Dynamical constraint, Integrated design, Non-linear optimization, Wind turbine

Davide Aguglia; Philippe Viarouge; René Wamkeue; Jérôme Cros

2010-10-01T23:59:59.000Z

114

Advanced Turbine Systems Program: Conceptual design and product development. Quarterly status report, May--July 1994  

Science Conference Proceedings (OSTI)

The goal of the overall Advanced Turbine Systems (ATS) program is to develop and commercialize ultrahigh-efficiency gas-turbine-based power systems for utility and industrial applications. This contract will complete conceptual design and begin component testing for a utility-scale power system having 60% efficiency. Progress reports are presented for the following tasks: selection of natural gas-fired advance turbine systems (GFATS); selection of coal-fired advanced turbine systems (CFATS); market study; system definition and analysis; and design and test of critical components.

Not Available

1994-09-14T23:59:59.000Z

115

Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994  

SciTech Connect

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

1995-01-01T23:59:59.000Z

116

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

Science Conference Proceedings (OSTI)

Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

NONE

1995-06-01T23:59:59.000Z

117

Preliminary design of axial flow hydrocarbon turbine/generator set for geothermal applications  

DOE Green Energy (OSTI)

This report outlines the design of a 65 MW (e) gross turbine generator set in which a hydrocarbon gas mixture is used as the motive fluid. The turbine generator set is part of a geothermal binary cycle electric power plant proposed for the Heber site in the Imperial Valley, California. Aerodynamic design considerations and estimated unit performance for three hydrocarbon gas mixtures are presented. Real gas properties and equations of state are reviewed as they affect the turbine design and the thermodynamic cycle. The mechanical designs for the casing, rotor dynamics, shaft sealing and unit construction are detailed. Support systems such as the lube and seal supply system, turbine controls, etc., are reviewed. An extensive hydrocarbon turbine general specification is also included.

Barnes, B.; Samurin, N.A.; Shields, J.R.

1979-05-01T23:59:59.000Z

118

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

DOE Green Energy (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

119

Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect

The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

Wright, A.D.; Stol, K.A.

2008-01-01T23:59:59.000Z

120

Forecaster Workstation Design: Concepts and Issues  

Science Conference Proceedings (OSTI)

Some basic ideas about designing a meteorological workstation for operational weather forecasting are presented, in part as a complement to the recently published discussion of workstation design by R. R. Hoffman. Scientific weather forecasting ...

Charles A. Doswell III

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

122

State of the Art in Floating Wind Turbine Design Tools  

SciTech Connect

This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

Cordle, A.; Jonkman, J.

2011-10-01T23:59:59.000Z

123

Evaluation of Generic EBS Design Concepts and Process Models Implications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generic EBS Design Concepts and Process Models Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS Design Optimization The assessment of generic Engineered Barrier System (EBS) concepts and design optimization to harbor various disposal configurations and waste types needs advanced approaches and methods to analyze barrier performance. The report addresses: 1) Overview of the importance of Thermal-Hydrological-Mechanical-Chemical (THMC) processes to barrier performance, and international collaborations; 2) THMC processes in clay barriers; 3) experimental studies of clay stability and clay-metal interactions at high temperatures and pressures; 4) thermodynamic modeling and database development; 5) Molecular Dynamics (MD) study of clay

124

Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual  

SciTech Connect

This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

1997-10-01T23:59:59.000Z

125

WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics  

SciTech Connect

Through the National Renewable Energy Laboratory (NREL), the United States Department of Energy (DOE) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. This program will explore advanced technologies that may reduce the cost of energy (COE) from wind turbines. The initial step in the WindPACT program is a series of preliminary scaling studies intended to determine the optimum sizes for future turbines, help define sizing limits for certain critical technologies, and explore the potential for advanced technologies to contribute to reduced COE as turbine scales increase. This report documents the results of Technical Area 2-Turbine Rotor and Blade Logistics. For this report, we investigated the transportation, assembly, and crane logistics and costs associated with installation of a range of multi-megawatt-scale wind turbines. We focused on using currently available equipment, assembly techniques, and transportation system capabilities and limitations to hypothetically transport and install 50 wind turbines at a facility in south-central South Dakota.

Smith, K.

2001-07-16T23:59:59.000Z

126

Design Evolution, Durability and Reliability of Pratt & Whitney Aero-Derivative Combustion Turbines  

Science Conference Proceedings (OSTI)

Market forces associated with deregulation are driving the incorporation of new technologies into combustion turbine designs, with the goal of increased profitability via improved performance. The next generation aero-derivative combustion turbines currently being introduced into the market carry a degree of technical risk due to new technologies incorporated into their design. This report reviews the design evolution and experience base of Pratt & Whitney Power Systems (PWPS) FT8 and FT4 aero-derivative...

2011-12-19T23:59:59.000Z

127

Engineering study for ISSTRS design concept  

Science Conference Proceedings (OSTI)

Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

Hertzel, J.S.

1997-01-31T23:59:59.000Z

128

Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

1995-12-31T23:59:59.000Z

129

Tower Design Load Verification on a 1-kW Wind Turbine: Preprint  

DOE Green Energy (OSTI)

Wind turbine testing at the National Wind Technology Center (NWTC) has been done to characterize both tower top loads and thrust loads for small wind turbines, which is part of an ongoing effort to model and predict small wind turbine behavior and the resulting stresses imposed on the supporting tower. To these ends, a 1-kW furling wind turbine mounted on a 10-meter tower was instrumented and monitored via a data acquisition system for nearly a year. This test was conducted to verify the design loads as predicted by the simple design equations provided in the draft revision of the International Electrotechnical Commission (IEC) Small Wind Turbine Safety Standard 61400-02 CDV (hereafter called ''the draft Standard''). Data were captured for several operating conditions covered by the draft Standard. This paper addresses the collected data and what conclusions can be made from it.

Prascher, D.; Huskey, A.

2004-11-01T23:59:59.000Z

130

Design, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, Russ Tedrake*  

E-Print Network (OSTI)

. Second, we note that single turbine installations are be- coming rather uncommon: most commercial windDesign, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, and improvements to wind turbine design and control can have a significant impact on energy sustainability

Jackson, Daniel

131

Intercooler flow path for gas turbines: CFD design and experiments  

DOE Green Energy (OSTI)

The Advanced Turbine Systems (ATS) program was created by the U.S. Department of Energy to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for generating electricity. Intercooling or cooling of air between compressor stages is a feature under consideration in advanced cycles for the ATS. Intercooling entails cooling of air between the low pressure (LP) and high pressure (HP) compressor sections of the gas turbine. Lower air temperature entering the HP compressor decreases the air volume flow rate and hence, the compression work. Intercooling also lowers temperature at the HP discharge, thus allowing for more effective use of cooling air in the hot gas flow path.

Agrawal, A.K.; Gollahalli, S.R.; Carter, F.L. [Univ. of Oklahoma, Norman, OK (United States)] [and others

1995-12-31T23:59:59.000Z

132

NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)  

DOE Green Energy (OSTI)

NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

Not Available

2013-10-01T23:59:59.000Z

133

Strong concepts: Intermediate-level knowledge in interaction design research  

Science Conference Proceedings (OSTI)

Design-oriented research practices create opportunities for constructing knowledge that is more abstracted than particular instances, without aspiring to be at the scope of generalized theories. We propose an intermediate design knowledge form that we ... Keywords: Design research, bare-skin connection, seamfulness, social navigation, strong concepts

Kristina Höök; Jonas Löwgren

2012-10-01T23:59:59.000Z

134

NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO  

E-Print Network (OSTI)

SHARK, NEW MOTOR DESIGN CONCEPT FOR ENERGY SAVING APPLIED TO SWITCHED RELUCTANCE MOTOR by Ana of the cylindrical and Shark air gap Switched Reluctance Motors and their assistance during the experimental work with other motor technologies such

135

Pipet: a design concept supporting photo sharing  

Science Conference Proceedings (OSTI)

To support reminiscing in the home, people collect an increasing amount of digital media on numerous devices. When sharing their media with other people, distribution of the media over different devices can be problematic. In this paper, we address this ... Keywords: collaboration, cross-device interaction, interaction design, photo sharing, tangible user interface

Bernt Meerbeek; Peter Bingley; Wil Rijnen; Elise van den Hoven

2010-10-01T23:59:59.000Z

136

Acoustic Design of Aircraft Gas Turbine Test Cells  

Science Conference Proceedings (OSTI)

The high noise level associated with aircraft gas turbine operation creates two noise problems: (1) The reduction of the noise in the neighborhood of the installation to an acceptable level

R. O. Fehr; R. J. Wells; T. L. Bray

1952-01-01T23:59:59.000Z

137

High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Design and development of the liquid-fueled high-temperature combustor for the Turbine Spool Technology Rig  

SciTech Connect

The concept selected by Curtiss-Wright for this DOE sponsored High Temperature Turbine Technology (HTTT) Program utilizes transpiration air-cooling of the turbine subsystem airfoils. With moderate quantities of cooling air, this method of cooling has been demonstrated to be effective in a 2600 to 3000/sup 0/F gas stream. Test results show that transpiration air-cooling also protects turbine components from the aggressive environment produced by the combustion of coal-derived fuels. A new single-stage, high work transpiration air-cooled turbine has been designed and fabricated for evaluation in a rotating test vehicle designated the Turbine Spool Technology Rig (TSTR). The design and development of the annular combustor for the TSTR are described. Some pertinent design characteristics of the combustor are: fuel, Jet A; inlet temperature, 525/sup 0/F; inlet pressure, 7.5 Atm; temperature rise, 2475/sup 0/F; efficiency, 98.5%; exit temperature pattern, 0.25; and exit mass flow, 92.7 pps. The development program was conducted on a 60/sup 0/ sector of the full-round annular combustor. Most design goals were achieved, with the exception of the peak gas exit temperature and local metal temperatures at the rear of the inner liner, both of which were higher than the design values. Subsequent turbine vane cascade testing established the need to reduce both the peak gas temperature (for optimum vane cooling) and the inner liner metal temperature (for combustor durability). Further development of the 60/sup 0/ combustor sector achieved the required temperature reductions and the final configuration was incorporated in the TSTR full-annular burner.

1981-06-01T23:59:59.000Z

138

Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis  

E-Print Network (OSTI)

OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

Ketcham, Jerod W

2010-01-01T23:59:59.000Z

139

Design and component integration of a T63-A-700 gas turbine engine test facility ; .  

E-Print Network (OSTI)

??A gas turbine engine test cell was developed integrating an Allison T63-A-700 helicopter engine with a superflow water brake dynamometer power absorber. Design specifications were… (more)

Eckerle, Brian P.

1995-01-01T23:59:59.000Z

140

Improving the manufacturing yield of investment cast turbine blades through robust design  

E-Print Network (OSTI)

The manufacturing of turbine blades is often outsourced to investment casting foundries by aerospace companies that design and build jet engines. Aerospace companies have found that casting defects are an important cost ...

Margetts, David (David Lawrence)

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wind Turbine Design Using A Free-wake Vortex Method With Winglet Application.  

E-Print Network (OSTI)

??Wind turbine blades are traditionally designed with blade element momentum theory (BEMT). This method is incapable of accurately analyzing non-conventional or non-planar blade planforms. Modern… (more)

Maniaci, David

2013-01-01T23:59:59.000Z

142

Design Evolution, Durability and Reliability of Siemens Heavy-Duty Combustion Turbines  

Science Conference Proceedings (OSTI)

Advanced technology heavy frame combustion turbines carry a degree of technical risk because of new technologies incorporated into their design. This report reviews the design evolution of specific Siemens A.G. industrial combustion turbines in a standard format, which allows a qualitative and quantitative assessment of technical risks involved in their operation. Turbine models include the SGT5/6-2000E, SGT5/6-4000F, SGT5/6-1000F, SGT5-3000E, SGT6-3000E, SGT6-5000F, SGT6-6000G and the new Siemens SGT5/6...

2011-12-22T23:59:59.000Z

143

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

144

Design Evolution, Reliability and Durability of Rolls-Royce Aero-Derivative Combustion Turbines  

Science Conference Proceedings (OSTI)

Competitive pressures are driving power generators to exploit aviation combustion turbine technology to create more efficient and powerful generation plants at lower cost. However, the use of aero-derivative combustion turbines (third generation or "next generation") carry a degree of technical risk because technologies incorporated into their design push them to the edge of the envelope. This report reviews the design evolution and experience base of advanced Rolls-Royce aero-derivative combustion turbi...

2010-12-02T23:59:59.000Z

145

Wind Turbine Design Guideline DG03: Yaw and Pitch Rolling Bearing Life  

DOE Green Energy (OSTI)

This report describes the design criteria, calculation methods, and applicable standards recommended for use in performance and life analyses of ball and roller (rolling) bearings for yaw and pitch motion support in wind turbine applications. The formulae presented here for rolling bearing analytical methods and bearing-life ratings are consistent with methods in current use by wind turbine designers and rolling-bearing manufacturers.

Harris, T.; Rumbarger, J. H.; Butterfield, C. P.

2009-12-01T23:59:59.000Z

146

Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010  

DOE Green Energy (OSTI)

This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

DOE, EERE

2010-12-01T23:59:59.000Z

147

Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010  

SciTech Connect

This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

DOE, EERE

2010-12-01T23:59:59.000Z

148

Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994  

DOE Green Energy (OSTI)

Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

NONE

1995-02-01T23:59:59.000Z

149

Biological Assessment of the Advanced Turbine Design at Wanapum Dam, 2005  

DOE Green Energy (OSTI)

This report summarizes the results of studies sponsored by the U.S. Department of Energy and conducted by Pacific Northwest National Laboratory to evaluate the biological performance (likelihood of injury to fish) from an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in Washington State in 2005. PNNL studies included a novel dye technique to measure injury to juvenile fish in the field, an evaluation of blade-strike using both deterministic and stochastic models, and extended analysis of the response of the Sensor Fish Device to strike, pressure, and turbulence within the turbine system. Fluorescein dye was used to evaluate injuries to live fish passed through the advanced turbine and an existing turbine at two spill discharges (15 and 17 kcfs). Under most treatments the results were not significantly different for the two turbines, however, eye injury occurred in nearly 30% of fish passing through Unit 9 but in less than 10% of those passing through Unit 8 at 15 kcfs. Both deterministic and stochastic blade-strike models were applied for the original and new AHTS turbines. The modeled probabilities were compared to the Sensor Fish results (Carlson et al. 2006) and the biological studies using juvenile fish (Normandeau et al. 2005) under the same operational parameters. The new AHTS turbine had slightly higher modeled injury rates than the original turbine, but no statistical evidence to suggest that there is significant difference in blade-strike injury probabilities between the two turbines, which is consistent with the experiment results using Sensor Fish and juvenile fish. PNNL also conducted Sensor Fish studies at Wanapum Dam in 2005 concurrent with live fish studies. The probablility of severe collision events was similar for both turbine. The advanced turbine had a slightly lower probability of severe shear events but a slightly higher probability of slight shear.

Dauble, Dennis D.; Deng, Zhiqun; Richmond, Marshall C.; Moursund, Russell A.; Carlson, Thomas J.; Rakowski, Cynthia L.; Duncan, Joanne P.

2007-09-12T23:59:59.000Z

150

Structural Design Methodology Based on Concepts of Uncertainty  

Science Conference Proceedings (OSTI)

In this report, an approach to damage-tolerant aircraft structural design is proposed based on the concept of an equivalent "Level of Safety" that incorporates past service experience in the design of new structures. The discrete "Level of Safety" for ...

Lin K. Y.; Du Jiaji; Rusk David

2000-02-01T23:59:59.000Z

151

Systems analysis and futuristic designs of advanced biofuel factory concepts.  

SciTech Connect

The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

2007-10-01T23:59:59.000Z

152

Combustion-Turbine Design Guidelines Based on Deposition-Corrosion Considerations, Volume 2: Coal-Derived Liquid Studies  

Science Conference Proceedings (OSTI)

Middle-distillate coal liquids test out as acceptable gas turbine fuels in terms of deposition and corrosion. Solid-liquid slurries would also be acceptable if turbine cleaning techniques were fully used.This series of tests provided design and operating guidelines that would minimize ash deposition and turbine corrosion.

1984-06-01T23:59:59.000Z

153

Design of State-Space-Based Control Algorithms for Wind Turbine Speed Regulation: Preprint  

DOE Green Energy (OSTI)

Control can improve the performance of wind turbines by enhancing energy capture and reducing dynamic loads.At the National Renewable Energy Laboratory, we are beginning to design control algorithms for regulation of turbine speed and power using state-space control designs. In this paper, we describe the design of such a control algorithm for regulation of rotor speed in full-load operation (region 3) for a two-bladed wind turbine. We base our control design on simple linear models of a turbine, which contain rotor and generator rotation, drivetrain torsion, and rotor flap degrees of freedom (first mode only). We account for wind-speed fluctuations using disturbance-accommodating control. We show the capability of these control schemes to stabilize the modeled turbine modes via pole placement while using state estimation to reduce the number of turbine measurements that are needed for these control algorithms. We incorporate these controllers into the FAST-AD code and show simulation results for various conditions. Finally, we report conclusions to this work and outline future studies.

Wright, A.; Balas, M.

2002-01-01T23:59:59.000Z

154

WindPACT Turbine Rotor Design, Specific Rating Study; Period of Performance: June 29, 2000--March 1, 2003  

DOE Green Energy (OSTI)

In 2000, the National Renewable Energy Laboratory (NREL) launched the Wind Partnerships for Advanced Component Technologies (WindPACT) program to examine ways in which the cost of wind energy could be reduced a further 30%. One element of the WindPACT program has been a series of design studies aimed at each of the major subsystems of the wind turbine to study the effect of scale and of alternative design approaches. The WindPACT Turbine Rotor Design Study was carried out by Global Energy Concepts, LLC, (GEC) on behalf of NREL, and the final report was delivered in June 2002. The study examined what configuration and design changes in the rotor would reduce the overall cost of energy. The objectives of this report are to use the 1.5-MW baseline configuration from the earlier WindPACT Rotor Design Study to examine the effect of different power ratings and to identify an optimum specific rating; to examine the effect of different maximum tip speeds on overall cost of energy (COE); to examine the role of different wind regimes on the optimum specific rating; and to examine how the optimum specific rating may be affected by introducing more advanced blade designs.

Malcolm, D. J.; Hansen, A. C.

2003-11-01T23:59:59.000Z

155

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

156

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

DOE Green Energy (OSTI)

This report describes the adaptation of a wind turbine performance code for use in the development of a general use design code and optimization method for stall-regulated horizontal-axis hydrokinetic turbine rotors. This rotor optimization code couples a modern genetic algorithm and blade-element momentum performance code in a user-friendly graphical user interface (GUI) that allows for rapid and intuitive design of optimal stall-regulated rotors. This optimization method calculates the optimal chord, twist, and hydrofoil distributions which maximize the hydrodynamic efficiency and ensure that the rotor produces an ideal power curve and avoids cavitation. Optimizing a rotor for maximum efficiency does not necessarily create a turbine with the lowest cost of energy, but maximizing the efficiency is an excellent criterion to use as a first pass in the design process. To test the capabilities of this optimization method, two conceptual rotors were designed which successfully met the design objectives.

Sale, D.; Jonkman, J.; Musial, W.

2009-08-01T23:59:59.000Z

157

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

158

Strain-Based Turbine Generator Torsional Vibration Monitoring System - Phase 1: Concept Development  

Science Conference Proceedings (OSTI)

Shaft torsional vibration in large steam turbine-generator units is induced by transient grid disturbances and negative sequence currents. If undetected, these vibrations can accumulate fatigue damage in rotor elements such as turbine blades, couplings, and retaining rings. Shaft natural frequencies can be closely aligned with the predominant torsional excitation that occurs at twice the grid frequency, amplifying the resulting vibratory response. Calculation methods have evolved that predict shaft ...

2013-12-20T23:59:59.000Z

159

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

DOE Green Energy (OSTI)

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

160

Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint  

SciTech Connect

Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

SciTech Connect

This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

Malcolm, D. J.; Hansen, A. C.

2006-04-01T23:59:59.000Z

162

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

DOE Green Energy (OSTI)

This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

Malcolm, D. J.; Hansen, A. C.

2006-04-01T23:59:59.000Z

163

Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments  

SciTech Connect

Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

G.E. Fuchs

2007-12-31T23:59:59.000Z

164

F-Class Gas Turbine Technology Summary: Design Features, Reliability Statistics, and Durability Issues  

Science Conference Proceedings (OSTI)

This report summarizes the design features and capabilities of current F-class gas turbine models, and includes reliability/availability statistics and a summary of durability issues. The design matrix table includes models GT24/GT26 by Alstom, 7FA/9FA and 7FB/9FB by General Electric, M501F/M701F by Mitsubishi, and W501F by Siemens, presented in a format that facilitates a comparison of their design characteristics.BackgroundGas turbine technology continues ...

2012-12-31T23:59:59.000Z

165

Design Evolution, Durability and Reliability of Mitsubishi Heavy-Duty Gas Turbines  

Science Conference Proceedings (OSTI)

Advanced, heavy-duty gas turbines carry a degree of technical risk because of new technologies incorporated into their designs. This report reviews the design evolution of specific Mitsubishi Heavy Industries, Ltd., heavy-duty industrial gas turbines in a standard format that facilitates an assessment of technical risks involved in their operation. The pedigree matrix includes performance and design features of the M501D/701D, M501F/701F, M501G/701G, M501H/701H, and M501J/701J machines. The report ...

2012-11-28T23:59:59.000Z

166

Hydrogen Storage in Wind Turbine Towers: Design Considerations; Preprint  

DOE Green Energy (OSTI)

The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research and experimentation, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are technically feasible. We discovered that hydrogen towers have a''crossover pressure'' at which their critical mode of failure crosses over from fatigue to bursting. The crossover pressure for many turbine towers is between 10 and 15 atm. The cost of hydrogen storage per unit of storage capacity is lowest near the crossover pressure. Above the crossover pressure, however, storage costs rise quickly.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

167

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

1995-11-01T23:59:59.000Z

168

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

169

THE SNAP-II POWER CONVERSION SYSTEM. TOPICAL REPORT NO. 4. TURBINE DESIGN AND TESTING  

SciTech Connect

SNAP II is the designation for a 3 kw nuclear auxiliary power unit to be used in a satellite vehicle. The SNAP II system consist of a reactor heat source, a mercury Rankine engine, and an alternator. A two stage, full admission, axial flow turbine was chosen for this APU application. Design details and test results are presented. (auth).

Poulos, E.N.; Furman, E.R.

1960-01-18T23:59:59.000Z

170

Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels„The Ohio State University  

NLE Websites -- All DOE Office Websites (Extended Search)

Designing Turbine Endwalls for Designing Turbine Endwalls for Deposition Resistance with 1,400 °C Combustor Exit Temperatures and Syngas Water Vapor Levels-The Ohio State University Background This University Turbine Systems Research (UTSR) project will explore a critical need for innovative turbine endwall designs that could increase turbine durability and mitigate the adverse effects of residue deposition from coal-derived synthesis gas (syngas). The Ohio State University (OSU), in cooperation with Brigham Young University (BYU),

171

Development and Test Plans for a small Vertical Axis Turbine Designed and  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Test Plans for a small Vertical Axis Turbine Designed and Development and Test Plans for a small Vertical Axis Turbine Designed and Built by the Russian State Rocket Center under Berkeley Lab auspices Speaker(s): Anthony Radspieler Jr. Glen Dahlbacka Joseph Rasson Date: March 4, 2010 - 12:00pm Location: 90-3122 Berkeley Lab Engineering Division teamed with Empire Magnetics, Rohnert Park and the Makeyev State Rocket Center under a DOE NNSA non-proliferation project to develop and test a series of small wind turbines of vertical axis design. Over the years, about 100 Russian scientists and engineers worked on the project and the hydrodynamic, aerodynamic and mechanical test facilities of the SRC were used. The objective was to create a highly manufacturable Darieus unit with a modest Tip Speed Ratio (quiet and low

172

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1--May 31, 1995  

DOE Green Energy (OSTI)

Achieving the goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature of the gas turbine must increase, leading also to increased NOx emission. However, improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The program is focused on two specific products: a 70MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling technology, and a 200MW class utility gas turbine based on an advanced GE heavy duty machine utilizing advanced cooling and enhancement in component efficiency.

NONE

1995-12-31T23:59:59.000Z

173

An Instrument Design Concept for Measuring Solar Diffuse Irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

An Instrument Design Concept for Measuring Solar Diffuse Irradiance An Instrument Design Concept for Measuring Solar Diffuse Irradiance Rutledge, Charles NASA Langley Research Center Schuster, Greg NASA Langley Research Center Category: Instruments Recent effort towards the development of a diffuse horizontal solar irradiance standard group [Michalsky et.al. 2005] using well calibrated pyranometers suggested that inter-instrument differences in cosine response characteristics may be problematic. They showed a calibration method using overcast skies (an approximately uniform radiance distribution) produced superior diffuse radiometer performance when compared to a calibration method using clear skies (which have a radiance distribution systematically varying from horizon to the near vicinity of the sun). The proposed instrument offers a significantly different basic design compared to

174

Design Evolution, Durability and Reliability of General Electric Heavy-Duty Gas Turbines: Pedigree Matrices, Volume 3  

Science Conference Proceedings (OSTI)

The advanced technology heavy-frame gas turbines being introduced into the market today carry a degree of technical risk because of new technologies incorporated into their design. This report reviews the design evolution of specific General Electric (GE) industrial gas turbines in a standard format, which allows an assessment of the technical risks involved in operating these high-technology gas turbines. The report also establishes a pedigree matrix for standard production heavy-frame gas ...

2012-12-31T23:59:59.000Z

175

Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

1994-11-01T23:59:59.000Z

176

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for anultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. Technical progress covered in this report is confined to Task 4 (conversion to coal) and the nine subtasks under Task 8 (design and test of critical components). These nine subtasks address six ATS technologies: catalytic combustion, recuperator, autothermal fuel reformer, high temperature turbine disc, advanced control system, and ceramic materials.

1995-02-01T23:59:59.000Z

177

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October, 1994  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. During this report period, the following tasks were completed: Market study; System definition and analysis; and Integrated program plans. Progress on Task 8, Design and Test of Critical Components, is also discussed. This particular task includes expanded materials and component research covering recuperators, combustion, autothermal fuel reformation, ceramics application and advanced gas turbine system controls.

1995-01-01T23:59:59.000Z

178

Advanced Turbine Systems program conceptual design and product development. Quarterly report, August--October 1994  

Science Conference Proceedings (OSTI)

This report addresses progress on Advanced Turbine Systems (ATS) design and testing. The most important program milestone to date occurred during this quarter. Allison successfully tested the prototype ATS high temperature turbine section to the ATS goal of 2600F Turbine Rotor Inlet Temperature. This test represented the first full engine test of the Castcool turbine airfoil cooling system. This contract provided funding for the build and test of the turbine system while other Allison IR and D funding and Navy contract funds provided the design and development successes necessary to advance this technology to the level required for a successful test. A demonstration of this kind shows what a cooperative government/industry initiative can achieve. This test itself was cut short due to a high interstage cavity temperature resulting in remaining budget at completion of test. Allison has decided that the best use of the remaining budget is to develop the manufacturing process for Castcool turbine rotor blades now that the process for the stator vanes has been proven. Development of this process will provide the basis for future engine development of this critical ATS high temperature turbine technology. DOE COR Diane Hooie agreed with this direction and Allison will proceed down this path posthaste. Allison is in the process of requesting a contract extension. Although most tasks will be completed by end of contract there are two areas where additional time is needed: (1) dynamic oxidation testing -- obtaining the goal of 5,000hrs will require an additional 2 months; (2) combustor rig testing of the ``best`` lean pre-mix module will require an additional one month. Addition time will be required to accomplish the reporting task for these efforts.

Not Available

1995-01-01T23:59:59.000Z

179

Design of Controls to Attenuate Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Designing wind turbines to maximize energy production and increase fatigue life is a major goal of the wind industry. To achieve this goal, we must design wind turbines to extract maximum energy and reduce component and system loads. This paper applies modern state-space control design methods to a two-bladed teetering-hub upwind machine located at the National Wind Technology Center*. The design objective is to regulate turbine speed in region 3 (above rated wind speed) and enhance damping in several low-damped flexible modes of the turbine. The controls approach is based on the Disturbance Accommodating Control (DAC) method and provides accountability for wind-speed disturbances. First, controls are designed using the single control input rotor collective pitch to stabilize the first drive-train torsion as well as the tower first fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances first drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections caused by wind shear.

Wright, A. D.; Balas, M. J.

2003-11-01T23:59:59.000Z

180

21st century advanced hydropower turbine system  

DOE Green Energy (OSTI)

While hydropower turbine manufacturers have incrementally improved turbine technology to increase efficiency, the basic design concepts haven`t changed for decades. These late 19th and early 20th century designs did not consider environmental effects, since little was known about environmental effects of hydropower at the time. The U.S. Department of Energy (DOE) and the hydropower industry recognize that hydropower plants have an effect on the environment and there is a great need to bring turbine designs into the 21st century. DOE has issued a request for proposals (RFP) that requested proposers to discard conventional thinking, search out innovative solutions, and to visualize innovative turbines designed from a new perspective. This perspective would look at the {open_quotes}turbine system{close_quotes} (intake to tailrace) which will balance environmental, technical, and economic considerations. This paper describes the DOE Advanced Hydropower Turbine System Program.

Brookshier, P.A.; Flynn, J.V.; Loose, R.R.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Cooling and Mounting Concepts for Transition Duct in Industrial Gas Turbines at Siemens Industrial Turbomachinery AB.  

E-Print Network (OSTI)

?? Gas turbine development is constantly moving forward and for higher efficiency hotter turbine inlet temperature is required. Because of that, one of the largest… (more)

Öfverstedt, Tomas

2011-01-01T23:59:59.000Z

182

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

183

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

184

DESIGN, ANALYSIS AND TEST CONCEPT FOR PROTOTYPE CRYOLINE OF ITER  

Science Conference Proceedings (OSTI)

The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P and I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch. [Institute for Plasma Research Bhat, Gandhinagar, Gujarat, 382428 (India)

2008-03-16T23:59:59.000Z

185

Generic repository design concepts and thermal analysis (FY11).  

SciTech Connect

Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

2011-08-01T23:59:59.000Z

186

ECC-D4 Electostatic Oil Cleaner Design for Heavy-Duty Gas Turbine Applications.  

E-Print Network (OSTI)

?? The turbine technology improvements from 1980 onwards have considerably increased mechanical and thermal stresses on turbine oils which, cause oil oxidation and thereby turbine… (more)

Gorur, Murat

2010-01-01T23:59:59.000Z

187

Test data will be used to validate advanced turbine design and analysis tools.  

E-Print Network (OSTI)

Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize

188

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

1994-10-01T23:59:59.000Z

189

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

Science Conference Proceedings (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

190

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

DOE Green Energy (OSTI)

This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

Karstensen, K.W.

1995-07-01T23:59:59.000Z

191

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1993--January 1994  

SciTech Connect

This Quarterly Technical Progress Report covers the period November 1, 1993, through January 31, 1994, for Phase 11 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. The objective of this program is to provide the conceptual design and product development plan for an industrial gas turbine system to operate at a thermal efficiency of 50 percent ({open_quotes}ATS50{close_quotes}) with future improvement to 60 percent ({open_quotes}ATS60{close_quotes}). During the prior quarter Solar`s ATS Engine Design Team characterized the intercooled and recuperated (ICR) gas turbine cycle in 1-spool, 2-shaft, and 2-spool 3-shaft arrangements. Fixed and variable geometry free power turbines were compared in both arrangements and sensitivity of all combinations to component performance was determined. Full- and part-load performance were compared over a range of ambient air temperatures. During the quarter just completed, the Team defined four unique and different physical arrangements of the gas turbine components outlined above. These three arrangements were then examined in terms of their ability to support Program goals of thermal efficiency, low emissions, increased reliability, availability and maintainability (RAM), and reduced cost of electrical power production. This work, together with preliminary specification of component cooling needs, suggested that earlier studies of the pressure ratio/firing temperature/thermal efficiency relationship should be re-visited. This accomplished, the effect of total cooling air bleed requirements on thermal efficiency was determined. This will lead to the selection of hot section material capability/cooling air requirements which are able to meet Program goals. As noted in the first quarterly report, where there are apparently conflicting data, later results should take precedence due to the continuing refinement of analytical models.

Karstensen, K.W.

1994-06-01T23:59:59.000Z

192

Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009  

DOE Green Energy (OSTI)

This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

Darrow, P. J.

2010-01-01T23:59:59.000Z

193

Innovative Design Concept for the New Bangkok International Airport, NBIA  

E-Print Network (OSTI)

Thermal and visual comfort for the occupants of a room are not defined by air temperature only, but also radiation with its three components solar radiation, daylight and heat radiation has to be taken into account (among other factors such as humidity, air speed and occupant activity and clothing levels). In hot climates the optimization of room comfort is a challenging task due to the high solar radiation over the whole year. In intelligent buildings new material developments are applied optimizing the building envelope in an integral building design process. New solutions for weather, noise and heat protection are developed, where building envelope and installed mechanical equipment work together creating optimal comfort at minimum energy consumption. This approach was used in the design of the New Bangkok International Airport, NBIA to develop an optimized building concept in a design team comprising the architects, structural and mechanical engineers, HVAC, acoustic and climate engineers.

Kessling, W.; Holst, S.; Schuler, M.

2004-01-01T23:59:59.000Z

194

HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability  

SciTech Connect

The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

McDonald, C.F.

1980-04-01T23:59:59.000Z

195

High Flux Isotope Reactor cold neutron source reference design concept  

SciTech Connect

In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

1998-05-01T23:59:59.000Z

196

An innovative concept for deep water oil production platform design  

E-Print Network (OSTI)

As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating Production, Storage and Off loading Tower) is studied in this thesis. Instead of using a single large cylindrical structure as in the spar configuration, the FPSOT utilizes a jacket-type framed structure supported by a buoyancy/storage tank deep below the ocean surface. This new structure concept is suitable for water depths up to 1000 meters or more. 20000 tons of concrete and 67000 tons of oil, serving as ballast, provide a good stability of the structure. The stored oil, used as a ballast, can also be replaced by sea water. The deck and the drilling/production equipment of 10000 tons are supported by a framed structure made of small cylindrical members. Because of the smallness of these cylindrical members, wave forces on the upper structure is very small. The forces on the lower structure (buoyancy/ballast tank), which is deeply submerged, are also small. Thus, the platform will be very stable even in a very severe sea state, with maximum surge and heave motions are less than two meters and the pitch motion is always smaller than one degree. All the natural frequencies are very small (less than 0.055 rd/sec). All the calculations are performed for regular and random waves. It was found that the platform motions were extremely small even in stormy waves as compared to the other platform configurations. A model with a scale 1:60 of this concept has been built and tested in deep water wave at the Offshore Technology Research Center on campus. The experimental and theoretical results are very close. A comparison is performed between this new concept and a spar buoy of same draft, weight, buoyancy and catenary system. The motions of the FPSOT, specially in pitch, are smaller than the spar buoy. Thus, this new concept is proved to be feasible and to be a very interesting approach for the future offshore platform design.

Racine, Florian

1994-01-01T23:59:59.000Z

197

Alternative design concept for the second Glass Waste Storage Building  

SciTech Connect

This document presents an alternative design concept for storing canisters filled with vitrified waste produced at the Defense Waste Processing Facility (DWPF). The existing Glass Waste Storage Building (GWSB1) has the capacity to store 2,262 canisters and is projected to be completely filled by the year 2000. Current plans for glass waste storage are based on constructing a second Glass Waste Storage Building (GWSB2) once the existing Glass Waste Storage Building (GWSB1) is filled to capacity. The GWSB2 project (Project S-2045) is to provide additional storage capacity for 2,262 canisters. This project was initiated with the issue of a basic data report on March 6, 1989. In response to the basic data report Bechtel National, Inc. (BNI) prepared a draft conceptual design report (CDR) for the GWSB2 project in April 1991. In May 1991 WSRC Systems Engineering issued a revised Functional Design Criteria (FDC), the Rev. I document has not yet been approved by DOE. This document proposes an alternative design for the conceptual design (CDR) completed in April 1991. In June 1992 Project Management Department authorized Systems Engineering to further develop the proposed alternative design. The proposed facility will have a storage capacity for 2,268 canisters and will meet DWPF interim storage requirements for a five-year period. This document contains: a description of the proposed facility; a cost estimate of the proposed design; a cost comparison between the proposed facility and the design outlined in the FDC/CDR; and an overall assessment of the alternative design as compared with the reference FDC/CDR design.

Rainisch, R.

1992-10-01T23:59:59.000Z

198

Power-Electronic, Variable-Speed Wind Turbine Development: 1988-1993  

Science Conference Proceedings (OSTI)

A five-year development program culminated in the 33M-VS power-electronic, variable-speed turbine, used in a number of wind power plants to offer competitively priced electricity. This report describes turbine development activities from conception through field testing, highlights design decisions that led to the new technology, and provides an overview of the turbine's electrical and mechanical design. An appendix describes technical issues relevant to building a wind power plant using 33M-VS turbines.

1995-11-16T23:59:59.000Z

199

Mechanical Design, Analysis, and Testing of a Two-Bladed Wind Turbine Hub  

DOE Green Energy (OSTI)

Researchers at the National Wind Technology Center (NWTC) in Golden, Colorado, began performing the Unsteady Aerodynamics Experiment in 1993 to better understand the unsteady aerodynamics and structural responses of horizontal-axis wind turbines. The experiment consists of an extensively instrumented, downwind, three-bladed, 20-kilowatt wind turbine. In May 1995, I received a request from the NWTC to design a two-bladed hub for the experiment. For my thesis, I present the results of the mechanical design, analysis, and testing of the hub. The hub I designed is unique because it runs in rigid, teetering, or independent blade-flapping modes. In addition, the design is unusual because it uses two servomotors to pitch the blades independently. These features are used to investigate new load reduction, noise reduction, blade pitch optimization, and yaw control techniques for two-bladed turbines. I used a methodology by G. Phal and W. Bietz to design the hub. The hub meets all the performance specifications except that it achieves only 90% of the specified teeter range. In my thesis, I focus on the analysis and testing of the hub body. I performed solid-mechanics calculations, ran a finite-element analysis simulation, and experimentally investigated the structural integrity of the hub body.

Cotrell, J.

2002-06-01T23:59:59.000Z

200

Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989  

SciTech Connect

Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

1989-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Constructuing design concepts : a computational approach to the synthesis of architectural form  

E-Print Network (OSTI)

Architects use concepts about space to solve problems and to form designs. A design concept is the manifestation of the basic instability of our mental performance: it is a makeshift that provides general direction for ...

Kotsopoulos, Sotirios D., 1966-

2005-01-01T23:59:59.000Z

202

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996  

SciTech Connect

This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

1997-06-01T23:59:59.000Z

203

Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design; Preprint  

Science Conference Proceedings (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. The most cost-effective hydrogen tower design would use substantially all of its volume for hydrogen storage and be designed at its crossover pressure. An 84-m tall hydrogen tower for a 1.5-MW turbine would cost an additional $84,000 (beyond the cost of the conventional tower) and would store 950 kg of hydrogen. The resulting incremental storage cost of $88/kg is approximately 30% of that for conventional pressure vessels.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

204

Advanced Turbine Systems Program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

The stated objective of the project was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems (GFATS) in order to select one that would achieve all of the ATS Program goals. Detailed cycle performance, cost of electricity, and RAM analysis were carried out to provide information on the final selection of the GFATS cycle. To achieve the very challenging goals, innovative approaches and technological advances are required, especially in combustion, aerodynamic design, cooling design, mechanical design, leakage control, materials, and coating technologies.

1994-11-01T23:59:59.000Z

205

Ultrasupercritical Steam Turbines: Design and Materials Issues for the Next Generation  

Science Conference Proceedings (OSTI)

The ultrasupercritical fossil power plant is one option for high-efficiency and low-emissions electricity generation. It is based on significant increases in steam temperature and pressure, beyond those traditionally employed for supercritical plants. Such steam conditions put new demands on the steam turbine design, particularly where the new unit has to operate in a business climate that demands flexible, reliable operation of generating plants. This report reviews demands on the ultrasupercritical ste...

2002-03-14T23:59:59.000Z

206

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1, 1994--May 31, 1994  

DOE Green Energy (OSTI)

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus their close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NO{sub x} and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives requires the development of Advanced Gas Turbine Systems which encompasses two potential products: a new aeroderivative combined cycle system for the industrial market and a combined cycle system for the utility sector that is based on an advanced frame machine.

NONE

1998-12-31T23:59:59.000Z

207

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, September, 1--November 30, 1995  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA-based in engineering and manufacturing and are marketed through GE Power Systems. Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both the efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emissions. Improved coatings and other materials technologies along with creative combustor design can result in solutions which will achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine.

1997-06-01T23:59:59.000Z

208

Design of a 3 kW wind turbine generator with thin airfoil blades  

SciTech Connect

Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performance characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)

Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan)

2008-09-15T23:59:59.000Z

209

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

1996-07-26T23:59:59.000Z

210

Preliminary systems design study assessment report. Volume 7, Subsystem concepts  

SciTech Connect

The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each. This volume contains the descriptions and other relevant information of the four subsystems required for most of the ex situ processing systems. This volume covers the metal decontamination and sizing subsystem, soils processing subsystem, low-level waste subsystem, and retrieval subsystem.

Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

1992-01-01T23:59:59.000Z

211

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

212

Advanced turbine systems (ATS) program conceptual design and product development. Quarterly report, September 1 - November 30, 1994  

DOE Green Energy (OSTI)

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature must increase, although this will lead to increased NOx emission. Improved coating and materials along with creative combustor design can result in solutions. The program is focused on two specific products: a 70 MW class industrial gas turbine based on GE90 core technology utilizing an innovative air cooling methodology, and a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. This report reports on tasks 3-8 for the industrial ATS and the utility ATS. Some impingement heat transfer results are given.

NONE

1994-12-31T23:59:59.000Z

213

Design and construction of a thermophotovoltaic generator using turbine combustion gas  

SciTech Connect

This US Naval Academy project involves the development of a prototype thermophotovoltaic (TPV) generator that uses a General Electric T-58 helicopter gas turbine as the heat source. The goals of this project were to demonstrate the viability of using TPV and external combustion gases to generate electricity, and develop a system which could also be used for materials testing. The generator was modularly designed so that different materials could be tested at a later date. The combustion gas was tapped from the T-58`s combustor through one of the two igniter ports and extracted through a silicon carbide matrix ceramic composite tube into a similarly constructed ceramic composite radiant emitter. The ceramic radiant emitters is heated by the combustion gas via convection, and then serves the TPV generator by radiating the heat outwards where it can be absorbed by thermophotovoltaic cells and converted directly into electricity. The gas turbine and generator module are monitored by a data acquisition system that performs both data collection and control functions. This paper details the design of the TPV generator. It also gives results of initial tests with the gas turbine.

Erickson, T.A.; Lindler, K.W.; Harper, M.J. [Naval Academy, Annapolis, MD (United States). Dept. of Naval Architecture, Ocean, and Marine Engineering

1997-07-01T23:59:59.000Z

214

The use of carbon fibers in wind turbine blade design: A SERI-8 blade example  

DOE Green Energy (OSTI)

The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

ONG,CHENG-HUAT; TSAI,STEPHEN W.

2000-03-01T23:59:59.000Z

215

Systematic approach for PID controller design for pitch-regulated, variable-speed wind turbines  

DOE Green Energy (OSTI)

Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is desired. The robust nature of the proportional-integral-derivative (PID) controller is illustrated, and optimal operating conditions are determined. Because numerous simulation runs may be completed in a short time, the relationship of the two opposing metrics is easily visualized. 2 refs., 9 figs.

Hand, M.M. [National Renewable Energy Lab., Golden, CO (United States); Balas, M.J. [Univ. of Colorado, Boulder, CO (United States). Dept. of Aerospace Engineering Sciences

1997-11-01T23:59:59.000Z

216

Task 6 -- Advanced turbine systems program conceptual design and product development  

DOE Green Energy (OSTI)

The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electric power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.

NONE

1996-01-10T23:59:59.000Z

217

Advanced turbine systems program: Conceptual design and product development. Topical report, November 1993  

SciTech Connect

This report has been prepared by Solar Turbines Incorporated (Solar) in accordance with Task 2 of the Advanced Turbine Systems (ATS) Contract. This report addresses only the work that will be performed under Task 8 (Design and Test of Critical Components) of the Contract. The discussion is divided into four general sections: Project Description; Potential Environmental Impacts; Required Permits and Licenses; and Environmental, Safety and Health (ES and H) Agency Contact Information. As described in further detail herein, the activities to occur during the project (i.e., Task 8) consists primarily of short duration testing of laboratory-scale components (or portions of components) for the ATS program. The testing involved will fall in the following general categories: recuperator, combustor, and blade/airfoil cooling. All activities contemplated will occur at existing facilities. Solar believes that the information in this report supports the conclusion that no significant environmental impacts will be associated with the project.

Wilken, L.S.

1994-01-01T23:59:59.000Z

218

Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry  

Science Conference Proceedings (OSTI)

The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

Johnston, S.F. Jr. (ed.)

1980-08-01T23:59:59.000Z

219

Design and development of a marine current energy conversion system using hybrid vertical axis turbine.  

E-Print Network (OSTI)

??The Ocean Network Seafloor Instrumentation (ONSFI) Project, which commenced in 2007, is a five year multidisciplinary R&D project to design, fabricate and validate a proof-of-concept… (more)

Alam, MD. Jahangir, 1984-

2009-01-01T23:59:59.000Z

220

An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers.  

E-Print Network (OSTI)

??As wind turbines are continued to be placed at higher elevations, the need for taller wind turbine towers becomes necessary. However, there are multiple challenges… (more)

Lewin, Thomas James

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Classification concepts from object oriented software design applied to engineering design  

E-Print Network (OSTI)

The objectives of this research were to study and explore Object Oriented Design, as applied in software design, and identify those principles and concepts that could be applied in engineering design to make it more efficient. An examination of the object oriented software design philosophy, methodology and programming approach was therefore carried out. The Object Oriented Design features of Functions, Properties and Inheritance were identified as having potential value in reformatting engineering classification charts, so as to make them more useful to both neophyte and experienced engineering designers. Engineering components have evolved from their basic forms into families of components and sub-components. Classification charts are often used to represent these families. In most charts, only the names of the components are provided. The design engineer, when faced with the need to choose the best form or variant of an item on the list, has to go to disparate sources to find even the most basic information to guide design decisions. In this thesis, the feature of Inheritance is proposed as a way to organize the information in these charts. Supplementary details are provided in the form of functions and properties to enable easier access of information on the operating concepts and functional characteristics of the devices within a given family. The goal is to select the member of a given family that best meets a particular need.

Krishnamurthy, Ritesh

2002-01-01T23:59:59.000Z

222

Design concepts for flash steam systems for use with medium temperature geothermal water  

SciTech Connect

Medium temperature water can be utilized for production of electrical energy when it is available in massive quantities. The design concepts herein are to provide a base for feasibility studies and evaluate processes with consideration of the economics of developing this electrical energy on a commercial scale. Two methods of producing electrical energy with geothermal water are being considered. The methods discussed in this document are by the flashing process of producing steam for driving turbine-generators. Flash steam systems were evaluated for use with 300/sup 0/F water. Single and multiflash systems were evaluated and component size sensitivity to operating pressures were studied. It was determined that a double flash system is the most practical system. Net power production of approximately 2.4 megawatts/million pounds per hour of brine is estimated for the double flash system which operates at an initial flash pressure of 30 psia and a second stage pressure of 13 psia. Flash pressures below atmospheric are not recommended due to oxygen leakage into the system. Sensitivity analysis has indicated that the power output is not highly sensitive to the first stage flash pressure. A significant loss in power output occurs if the second stage pressure is increased significantly.

Whitbeck, J.F.

1975-07-01T23:59:59.000Z

223

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1994--February 28, 1995  

SciTech Connect

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved costing and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. Both of these activities require the identification and resolution of technical issues critical to achieving Advanced Turbine System (ATS) goals. The emphasis for the industrial ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed on developing a technology base for advanced turbine cooling while utilizing demonstrated and planned improvements in low emissions combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE`s Industrial and Power Systems is solely responsible for offering Ge products for the industrial and utility markets. The GE ATS program will be managed fully by this organization with core engine technology being supplied by GE Aircraft Engines (GEAE) and fundamental studies supporting both product developments being conducted by GE Corporate Research and Development (CRD).

1995-12-31T23:59:59.000Z

224

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

1997-06-01T23:59:59.000Z

225

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, August 25--November 30, 1993  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

1997-06-01T23:59:59.000Z

226

MHK Technologies/Open Centre Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Open Centre Turbine.jpg Technology Profile Primary Organization OpenHydro Group Limited Project(s) where this technology is utilized *MHK Projects/OpenHydro Alderney Channel Islands UK *MHK Projects/OpenHydro Bay of Fundy Nova Scotia CA Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Open-Centre Turbine is designed to be deployed directly on the seabed. The Open-Centre Turbine is a horizontal axis turbine with a direct-drive, permanent magnetic generator that has a slow-moving rotor and lubricant-free operation, which decreases maintenance and minimizes risk to marine life.

227

Reference wind speed distributions and height profiles for wind turbine design and performance evaluation applications. [USA  

DOE Green Energy (OSTI)

The purpose of this report is to provide a set of reference or standard values of wind profiles, wind speed distributions and their effects on wind turbine performance for engineering design applications. Based on measured Weibull distribution parameters, representative average, low, and high variance data are given for height profiles of mean, 25 percentile, and 75 percentile wind speeds; and for wind speed probability density (velocity frequency) functions and cumulative probability (velocity duration) functions at selected heights. Results of a sensitivity analysis of the dependence of wind turbine performance parameters on cut-in speed, and rated speed for various mean wind and wind variance regimes are also presented. Wind turbine performance is expressed in terms of capacity factor (ratio of mean power output to rated power) and recovery factor (ratio of mean energy output to energy theoretically available in the wind). The representative high, mean, and low variance cases were determined from calculated Weibull distributions at 140 sites across the Continental U.S., and all of the representative functions are evaluated at mean wind speeds of 4, 5, 6, 7, and 8 m/s at standard 10 m level.

Justus, C.G.; Hargraves, W.R.; Mikhail, A.

1976-08-01T23:59:59.000Z

228

An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion  

E-Print Network (OSTI)

Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspe...

Moses Bouchard Vause; L. W. Taylor Lll; P. L. Moses; P. L. Moses; K. A. Bouchard; K. A. Bouchard; R. F. Vause; R. F. Vause; S. Z. Pinckney; S. Z. Pinckney; L. W. Taylor Iii; S. M. Ferlemann; S. M. Ferlemann; C. P. Leonard; C. P. Leonard; J. S. Robinson; J. S. Robinson; J. G. Martin; J. G. Martin; D. H. Petley; D. H. Petley; J. L. Hunt; J. L. Hunt

1999-01-01T23:59:59.000Z

229

Annual Report: Turbines (30 September 2012)  

SciTech Connect

The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

Alvin, Mary Anne [NETL] [NETL; Richards, George [NETL] [NETL

2012-09-30T23:59:59.000Z

230

Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade  

DOE Green Energy (OSTI)

This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

Bir, G. S.; Lawson, M. J.; Li, Y.

2011-10-01T23:59:59.000Z

231

Numerical and Experimental Analysis of Multi-Stage Axial Turbine Performance at Design and Off-Design Conditions  

E-Print Network (OSTI)

Computational fluid dynamics or CFD isan importanttool thatis used at various stages in the design of highly complex turbomachinery such as compressorand turbine stages that are used in land and air based power generation units. The ability of CFD to predict the performance characteristics of a specific blade design is challenged by the need to use various turbulence models to simulate turbulent flows as well as transition models to simulate laminar to turbulent transition that can be observed in various turbomachinery designs. Moreover, CFD is based on numerically solving highly complex differential equations, which through the use of a grid to discretize the geometry introduces numerical errors. Allthese factors combine to challenge CFD’s role as a predictor of blade performance. It has been generallyfound that CFD in its current state of the art is best used to compare between various design points and not as a pure predictor of performances. In this study the capability of CFD, and turbulence modeling, in turbomachinery based geometry is assessed.Three different blade designs are tested, that include an advanced two-stage turbine blade design, a three stage 2D or cylindrical design and finally a three stage bowed stator and rotor design. Allcases were experimentally tested at the Texas A&Muniversity Turbomachinery Performance and Flow Research Laboratory (TPFL).In all cases CFD provided good insights into fundamental turbomachinery flow physics, showing the expected improvement from using 2D cylindrical blades to 3D bowed blade designs in abating the secondary flow effects which are dominant loss generators.However, comparing experimentally measured performance results to numerically predicted shows a clear deficiency, where the CFD overpredicts performance when compared to experimentallyobtained data, largely underestimating the various loss mechanisms. In a relative sense, CFD as a tool allows the user to calculate the impact a new feature or change can have on a baseline design. CFD will also provide insight into what are the dominant physics that explain why a change can provide an increase or decrease in performance. Additionally,as part of this study, one of the main factors that affect the performance of modern turbomachinery is transition from laminar to turbulent flow.Transition is an influential phenomena especially in high pressure turbines, and is sensitive to factors such asupstream incidentwake frequency and turbulence intensity.A model experimentally developed, is implemented into a CFD solver and compared to various test results showing greater capability in modeling the effects of reduced frequency on the transition point and transitional flow physics. This model is compared to industry standard models showing favorable prediction performance due to its abilityto account for upstream wake effects which most current model are unable to account for.

Abdelfattah, Sherif Alykadry

2013-08-01T23:59:59.000Z

232

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

233

Improved Engine Design Concepts Using the Second Law of Thermodynamics  

DOE Green Energy (OSTI)

This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx}21%) for a range of operating and design parameters. Further, to achieve high efficiency engines requires that the exergy be managed and not necessarily reduced. The overall thermodynamics is the final discriminator regarding high efficiency engines.

None

2009-09-30T23:59:59.000Z

234

Guidelines for the Uprate Design of Turbine-Generator Rotor Support Systems  

Science Conference Proceedings (OSTI)

The focus of this guidelines document is the rotor support structure for uprated turbine-generator (T/G) systems. The overall objective of the guidelines is to provide utility personnel with the guidance needed to validate the design of the components prior to a plant uprate/upgrade to ensure that the unit will operate without unplanned and unanticipated issues related to the rotor bearings, bearing support structures, and pedestals. The guidelines are applicable to both nuclear and fossil T/G rotor supp...

2011-12-23T23:59:59.000Z

235

Applying combined pinch and exergy analysis to closed-cycle gas turbine system design  

Science Conference Proceedings (OSTI)

Pinch technology has developed into a powerful tool for thermodynamic analysis of chemical processes and associated utilities, resulting in significant energy savings. Conventional pinch analysis identifies the most economical energy consumption in terms of heat loads and provides practical design guidelines to achieve this. However, in analyzing systems involving heat and power, for example, steam and gas turbines, etc., pure heat load analysis is insufficient. Exergy analysis, on the other hand, provides a tool for heat and power analysis, although at times it does not provide clear practical design guideline. An appropriate combination of pinch and exergy analysis can provide practical methodology for the analysis of heat and power systems. The methodology has been successfully applied to refrigeration systems. This paper introduces the application of a combined pinch and exergy approach to commercial power plants with a demonstration example of a closed-cycle gas turbine (CCGT) system. Efficiency improvement of about 0.82 percent (50.2 to 51.02 percent) can be obtained by application of the new approach. More importantly, the approach can be used as an analysis and screening tool for the various design improvements and is generally applicable to any commercial power generation facility.

Dhole, V.R.; Zheng, J.P. [Univ. of Manchester (United Kingdom). Inst. of Science and Technology

1995-01-01T23:59:59.000Z

236

ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

Science Conference Proceedings (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

237

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network (OSTI)

Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands. The optimum cycle is typically based on an analysis of the plant's electrical / steam / process heating requirements, an evaluation of the potential for selling to or permit wheeling by utilities of electrical power under PURPA guidelines, and application of pertinent investment decision criteria. The study that identifies the best solution to the problem must contain sufficient detail to support a plan of action by management. This paper addresses how computer-aided design techniques support the effort necessary to fully evaluate several alternative cycle designs in a short time frame. It includes examples for a new power unit as well as for cycles which require modifications to existing process and steam generating equipment in a medium-sized chemical plant.

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

238

NETL: Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines Coal and Power Systems Turbines Turbine Animation Turbines have been the world's energy workhorses for generations... - Read More The NETL Turbine Program manages a...

239

Design study of a two-phase turbine bottoming cycle. Final report. [Therminol 66 heated in diesel exhaust  

SciTech Connect

The use of a biphase turbine system to recover waste heat from diesel engines was examined and found to have many favorable attributes. Among these were low rpm, high torque, low heat exchanger cost, and simplicity. Several candidate working fluid combinations were tested at temperatures of interest. The contact heat exchanger concept was substantiated by large scale experiment. The program includes subscale tests of key hardware components of a biphase turbine bottoming system. These are the two-phase nozzle, two-phase turbine, and direct contact heat exchanger. A comprehensive cost analysis was completed. A three-year program leading to a full-size system field demonstration has been planned. Progress in the first year of this program and the effort started on the second year program are reported.

Studhalter, W R

1979-06-15T23:59:59.000Z

240

Direct Nyquist array design of PID controllers for boiler-turbine units based on gain and phase margins  

Science Conference Proceedings (OSTI)

In this paper, a direct Nyquist array (DNA) method for the design of PID controllers for multivariable boiler-turbine units with specifications of gain and phase margins is proposed. The essential objective is to propose a method for the design and auto-tuning ...

Hui Pan; Minrui Fei; Ling Wang; Kang Li; Lin Qian

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fish schooling as a basis for vertical axis wind turbine farm design  

E-Print Network (OSTI)

Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

Whittlesey, Robert W; Dabiri, John O

2010-01-01T23:59:59.000Z

242

DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS  

SciTech Connect

The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

2003-11-12T23:59:59.000Z

243

Pole-Zero Placement Technique Based Hydro Turbine Speed Governor Design  

Science Conference Proceedings (OSTI)

According to different structure of hydraulic systems combined with hydro-turbine for hydropower plant, the 5order nonlinear control model of hydro turbine speed governor system for hydraulic system which composed of reservoir-tunnel-surge-penstock-generator ... Keywords: Hydro turbine speed governor system, pole-zero placement, Nonlinear control, PID

Fan-Nie Kong; Xiao-Cong Li

2012-04-01T23:59:59.000Z

244

The Virtual Gas Turbine System for Alloy Assesment  

Science Conference Proceedings (OSTI)

Key words: Virtual turbine, Alloy design program, Gas turbine design program, Nickel-base ... developed a virtual gas turbine (VT) system as a combination of.

245

WindPACT Turbine Design Scaling Studies: Technical Area 4ƒBalance-of-Station Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

1 * NREL/SR-500-29950 1 * NREL/SR-500-29950 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman With assistance from D.W. Bernadett Commonwealth Associates, Inc. Jackson, Michigan WindPACT Turbine Design Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 July 2001 * NREL/SR-500-29950 WindPACT Turbine Desing Scaling Studies: Technical Area 4- Balance-of-Station Cost 21 March 2000-15 March 2001 D.A. Shafer, K.R. Strawmyer, R.M. Conley, J.H. Guidinger, D.C. Wilkie, and T.F. Zellman

246

Turbine Research Program Cold Weather Turbine Project: Period of Performance May 27, 1999 -- March 31, 2004  

DOE Green Energy (OSTI)

Northern Power Systems completed the Cold Weather Turbine (CWT) project, which was funded by the National Renewable Energy Laboratory (NREL), under subcontract XAT-9-29200-01. The project's primary goal is to develop a 100-kW wind turbine suited for deployment in remote villages in cold regions. The contract required testing and certification of the turbine to the International Electrotechnical Commission (IEC) 61400-1 international standard through Underwriters Laboratories (UL). The contract also required Northern Power Systems to study design considerations for operation in extreme cold (-80F at the South Pole, for example). The design was based on the successful proof of concept (POC) turbine (developed under NREL and NASA contracts), considered the prototype turbine that would be refined and manufactured to serve villages in cold regions around the world.

Lynch, J.; Bywaters, G.; Costin, D.; Hoskins, S.; Mattila, P.; Stowell, J.

2004-08-01T23:59:59.000Z

247

MHK Technologies/Gorlov Helical Turbine GHT | Open Energy Information  

Open Energy Info (EERE)

Gorlov Helical Turbine GHT Gorlov Helical Turbine GHT < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gorlov Helical Turbine GHT.jpg Technology Profile Primary Organization Lucid Energy Technologies GCK Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Gorlov Helical Turbine GHT evolved from the Darrieus turbine design which was altered to have helical blades foils In the GHTs design the blades are twisted about the axis so that there is always a foil section at every possible angle of attack The optimal placement and angle of the blades allow the GHT to operate under a lift based principle Technology Dimensions

248

Conceptions of design in a culture of simulation  

E-Print Network (OSTI)

Design is a system of relationships in flux. Practitioners at Arup, a global design consultancy, negotiate a place for themselves within this system by using simulations to mediate their professional relationships. Simulations ...

Loukissas, Yanni, 1976-

2008-01-01T23:59:59.000Z

249

Advanced Turbine Systems Program: Conceptual Design and Product Development. Annual report, August 1, 1995--July 31, 1996; Advanced turbine systems program: Conceptual design and product development. Annual report, August 1, 1995--July 31, 1996  

Science Conference Proceedings (OSTI)

Objective of Phase II is to provide the coneptual design and product development plan for an ultra high efficiency, enivornmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. All 8 tasks have been completed (see quarterly reports, topical reports).

NONE

1996-12-31T23:59:59.000Z

250

Reframing Teachers' Conceptions of Accessible E-Learning Designs  

Science Conference Proceedings (OSTI)

This paper presents the results of a small-scale research project carried out in an English Higher Education institution which aimed to identify teachers’ understanding of ‘accessible designs’ in relation to pedagogical situations where ... Keywords: accessible design, elearning design, inclusion, pedagogy

Éric Bel; Emma Bradburn

2008-07-01T23:59:59.000Z

251

Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.  

Science Conference Proceedings (OSTI)

An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess reactivity and ensuring a negative temperature coefficient under all operating conditions. Additionally, current results suggest that it may be preferable to use a double strata thermal critical system and fast subcritical system to achieve nearly complete destruction of the TRU oxide fuel. The report gives a general description of the system proposed by General Atomics. The major design parameters (degrees of freedom), which can be altered to optimize the system design, and the constraints, which guide the design and the optimization studies are described. The deterministic and the Monte Carlo neutronics codes and models used for the neutronics analysis and assessment are presented. The results of fuel block and whole-core parametric studies performed to understand the physics are given including the effect of various fuel management schemes on the system performance. A point design is described including the system performance results for a single-batch and three-batch loading schemes. The major design issues, which need to be addressed during further studies, are discussed.

Gohar, Y.; Taiwo, T. A.; Cahalan, J. E.; Finck, P. J.

2001-05-08T23:59:59.000Z

252

Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors  

NLE Websites -- All DOE Office Websites (Extended Search)

5021 5021 August 2009 Hydrodynamic Optimization Method and Design Code for Stall-Regulated Hydrokinetic Turbine Rotors D. Sale University of Tennessee J. Jonkman and W. Musial National Renewable Energy Laboratory Presented at the ASME 28 th International Conference on Ocean, Offshore, and Arctic Engineering Honolulu, Hawaii May 31-June 5, 2009 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

253

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

254

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

1990-07-01T23:59:59.000Z

255

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

256

Database-assisted design for wind: basic concepts and ...  

Science Conference Proceedings (OSTI)

... wind design information, while DAD tools seek to ... of peak gust speeds recorded at weather stations and ... would be a useful tool allowing standards ...

2013-08-19T23:59:59.000Z

257

Descriptions of Past Research in Program 80: New Combustion Turbine/Combined-Cycle Plant Design and Technology Selection  

Science Conference Proceedings (OSTI)

BackgroundAt a time when the power industry needs to meet growing demand and capacity requirements, informed decisions on gas turbine selection and plant designs are especially important. Technology selection impacts efficiency, emissions, availability, maintainability, and durability. Flexible operational capabilities are needed for plant dispatch, and planners need to understand upcoming trends and potential improvements for future growth.The Electric Power ...

2012-09-19T23:59:59.000Z

258

Questionable concepts: critique as resource for designing with eighty somethings  

Science Conference Proceedings (OSTI)

This paper reports findings from a series of participatory design workshops with ten people over eighty years old. The focus of the workshops was new banking technologies for the older old. Participants were asked to discuss their current experiences ... Keywords: ageing, banking, eighty somethings, participatory design, user study methods

John Vines; Mark Blythe; Stephen Lindsay; Paul Dunphy; Andrew Monk; Patrick Olivier

2012-05-01T23:59:59.000Z

259

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

260

Concept  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Argonne is home to the Advanced Photon Source (APS) user facility, which provides open access to scientific users from universities, national labs, and industry across the...

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design and evaluation of a two-phase turbine for low quality steam--water mixtures  

DOE Green Energy (OSTI)

A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.

Comfort, W.J. III

1977-05-16T23:59:59.000Z

262

Ocean thermal energy conversion cold water pipe preliminary design project. Task 2. Analysis for concept selection  

DOE Green Energy (OSTI)

The successful performance of the CWP is of crucial importance to the overall OTEC system; the pipe itself is considered the most critical part of the entire operation. Because of the importance the CWP, a project for the analysis and design of CWP's was begun in the fall of 1978. The goals of this project were to study a variety of concepts for delivering cold water to an OTEC plant, to analyze and rank these concepts based on their relative cost and risk, and to develop preliminary design for those concepts which seemed most promising. Two representative platforms and sites were chosen: a spar buoy of a Gibbs and Cox design to be moored at a site off Punta Tuna, Puerto Rico, and a barge designed by APL/Johns Hopkins University, grazing about a site approximately 200 miles east of the coast of Brazil. The approach was to concentrate on the most promising concepts and on those which were either of general interest or espoused by others (e.g., steel and concrete concepts). Much of the overall attention, therefore, focused on analyzing rigid and compliant wall design, while stockade (except for the special case of the FRP stockade) and bottom-mounted concepts received less attention. A total of 67 CWP concepts were initially generated and subjected to a screening process. Of these, 16 were carried through design analysis, costing, and ranking. Study results are presented in detail. (WHK)

None

1979-04-01T23:59:59.000Z

263

Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors  

Science Conference Proceedings (OSTI)

The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

1981-09-01T23:59:59.000Z

264

Repowering Fossil Steam Plants with Gas Turbines and Heat Recovery Steam Generators: Design Considerations, Economics, and Lessons L earned  

Science Conference Proceedings (OSTI)

This report describes repowering fossil steam plants using gas turbines (GTs) and heat recovery steam generators (HRSGs) in combined-cycle mode. Design considerations and guidance, comparative economics, and lessons learned in the development of such projects are included. Various other methods of fossil plant repowering with GTs are also briefly discussed. The detailed results and comparisons that are provided relate specifically to a generic GT/HRSG repowering. Design parameters, limitations, schedulin...

2012-08-08T23:59:59.000Z

265

Promethus Hot Leg Piping Concept  

SciTech Connect

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

AM Girbik; PA Dilorenzo

2006-01-24T23:59:59.000Z

266

Service-Oriented Architecture: Concepts, Technology, and Design  

E-Print Network (OSTI)

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact: U. S. Corporate and Government Sales

Thomas Erl

2005-01-01T23:59:59.000Z

267

Development of an 8 kW wind turbine generator for residential type applications. Phase I: design and analysis. Volume II. Technical report  

SciTech Connect

This Phase I summary report contains a description of the 8 kW wind energy conversion system developed by the United Technologies Research Center (UTRC) for the Department of Energy. The wind turbine employs the UTRC Bearingless Rotor Concept in conjunction with a passive pendulum control system which controls blade pitch for start-up, efficient power generation, and high-speed survivability. The report contains a summary of the experimental and analytical programs in support of design efforts. These supporting programs include materials tests, a wind tunnel program, and aeroelastic analyses to evaluate system stability. An estimate is also made of the projected manufacturing cost of the system if produced in quantity.

Cheney, M.C.

1979-06-25T23:59:59.000Z

268

MHK Technologies/The Davis Hydro Turbine | Open Energy Information  

Open Energy Info (EERE)

Hydro Turbine Hydro Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Davis Hydro Turbine.jpg Technology Profile Primary Organization Blue Energy Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Blue Energy Ocean Turbine acts as a highly efficient underwater vertical axis windmill Four fixed hydrofoil blades of the turbine are connected to a rotor that drives an integrated gearbox and electrical generator assembly The turbine is mounted in a durable concrete marine caisson that anchors the unit to the ocean floor and the structure directs flow through the turbine further concentrating the resource supporting the coupler gearbox and generator above the rotor These sit above the surface of the water and are readily accessible for maintenance and repair The hydrofoil blades employ a hydrodynamic lift principal that causes the turbine foils to move proportionately faster than the speed of the surrounding water Computer optimized cross flow design ensures that the rotation of the turbine is unidirectional on both the ebb and flow of the tide

269

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

DOE Green Energy (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

270

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

271

MHK Technologies/Davidson Hill Venturi DHV Turbine | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Davidson Hill Venturi DHV Turbine MHK Technologies/Davidson Hill Venturi DHV Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Davidson Hill Venturi DHV Turbine.jpg Technology Profile Primary Organization Tidal Energy Pty Ltd Project(s) where this technology is utilized *MHK Projects/QSEIF Grant Sea Testing *MHK Projects/Stradbroke Island *MHK Projects/Tidal Energy Project Portugal Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Davidson Hill Venturi DHV Turbine is a horizontal axis turbine that utilizes a Venturi structure in front of the intake The device can be mounted on the seabed or can float slack moored in a tidal stream

272

MHK Technologies/GreenFlow Turbines | Open Energy Information  

Open Energy Info (EERE)

GreenFlow Turbines GreenFlow Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GreenFlow Turbines.jpg Technology Profile Primary Organization Gulfstream Technologies Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Targeted at commercial sites with large water flow volume These hydro turbines range in size from 50kW to 750kW with many sites able to house multiple units Technology Dimensions Device Testing Date Submitted 55:53.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/GreenFlow_Turbines&oldid=681584

273

Initial Package Design Concepts Integrated Product Team (IPT) Summary Report  

Science Conference Proceedings (OSTI)

Initially, the question of transporting TRU waste to WIPP was raised as part of the EM Integration activities. The issue was re-examined as part of the system-wide view to re-engineer the TRU waste program. Consequently, the National Transportation Program and the National TRU Waste Program, in a cooperative effort, made a commitment to EM-20 to examine the feasibility of using rail to transport TRU waste material to WIPP. In December of 1999 Mr. Philip Altomare assembled a team of subject matter experts (SME) to define initial concepts for a Type B package capable of shipping TRU waste by rail (see Attachment 1 for a list of team members). This same team of experts also provided input to a preliminary study to determine if shipping TRU waste by rail could offer cost savings or other significant advantages over the current mode of operation using TRUPACT-II packages loaded on truck. As part of the analysis, the team also identified barriers to implementing rail shipments to WIPP and outlined a path forward. This report documents the findings of the study and its initial set of recommendations. As the study progressed, it was expanded to include new packages for truck as well as rail in recognition of the benefits of shipping large boxes and contaminated equipment.

Moss, J.; Luke, Dale Elden

2000-03-01T23:59:59.000Z

274

Experimental concept and design of DarkLight, a search for a heavy photon  

SciTech Connect

This talk gives an overview of the DarkLight experimental concept: a search for a heavy photon A′ in the 10-90 MeV/c 2 mass range. After briefly describing the theoretical motivation, the talk focuses on the experimental concept and design. Topics include operation using a half-megawatt, 100 MeV electron beam at the Jefferson Lab FEL, detector design and performance, and expected backgrounds estimated from beam tests and Monte Carlo simulations.

Cowan, Ray F. [MIT

2013-11-01T23:59:59.000Z

275

Advanced turbine systems program conceptual design and product development. Topical report, April 1995  

Science Conference Proceedings (OSTI)

Allison Engine Company has developed and verified key combustion system technologies to satisfy ATS Phase 2 performance requirements. These activities include the following: demonstration test of an ultra-lean premix module meeting the ATS 8 ppm NOx goal using natural gas fuel; design and fabrication of a second generation premix module for bench test evaluation; bench test verification of catalytically enhanced combustion; and preliminary design of the transition section that guides the combustor discharge flow from the external combustor to the turbine inlet. Allison has been executing a systematic approach in developing the combustion system technologies to insure that the ATS engine includes the benefits of advanced material and low NOx combustion technologies without placing undue risk on the overall engine development program. New technology is most easily assimilated in discrete evolutionary stages; thus Allison has structured the combustion system development plan with a series of increasingly demanding performance evaluations that demonstrate the suitability of the individual technology. The discussion summarizes the progress made in bringing advanced combustion technology to the ATS.

NONE

1996-02-01T23:59:59.000Z

276

Sustainable Design and Renewable Energy Concepts in Practice  

Science Conference Proceedings (OSTI)

The energy use of residential and non?residential buildings in the US makes up a full 50% of the total energy use in the country. The Architects role in positively altering this equation has become more and more apparent. A change in the paradigm of how buildings are designed and the integration of renewable energy sources to meet their energy requirements can have tremendous impacts on sustainability energy consumption environment impacts and the potential for climate change.

Lawrence Maxwell; AIA

2009-01-01T23:59:59.000Z

277

Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain  

Science Conference Proceedings (OSTI)

We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

Short, D.W.; Ruffner, D.J.; Jardine, L.J.

1991-10-01T23:59:59.000Z

278

Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures  

SciTech Connect

The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal performance between the various coproduct cases is further complicated by the fact that the carbon footprint is not the same when carbon leaving with the coproduct are accounted for. The economic analysis and demand for a particular coproduct in the market place is a more meaningful comparison of the various coproduction scenarios. The first year cost of electricity calculated for the bituminous coal is $102.9/MWh while that for the lignite is $108.1/MWh. The calculated cost of hydrogen ranged from $1.42/kg to $2.77/kg depending on the feedstock, which is lower than the DOE announced hydrogen cost goal of $3.00/kg in July 14, 2005. Methanol cost ranged from $345/MT to $617/MT, while the market price is around $450/MT. For Fischer-Tropsch liquids, the calculated cost ranged from $65/bbl to $112/bbl, which is comparable to the current market price of crude oil at around $100/bbl. It should be noted, however, that F-T liquids contain no sulfur and nitrogen compounds. The calculated cost of alcohol ranged from $4.37/gal to $5.43/gal, while it ranged from $2.20/gal to $3.70/gal in a DOE funded study conducted by Louisiana State University. The Louisiana State University study consisted of a significantly larger plant than our study and benefited from economies of scale. When the plant size in our study is scaled up to similar size as in the Louisiana State University study, cost of alcohol is then reduced to a range of $3.24/gal to $4.28/gal, which is comparable. Urea cost ranged from $307/MT to $428/MT, while the market price is around $480/MT.

Rao, A. D.; Chen, Q.; Samuelsen, G. S.

2012-09-30T23:59:59.000Z

279

Process Design Concepts for Stabilization of High Level Waste Calcine  

Science Conference Proceedings (OSTI)

The current baseline assumption is that packaging ¡§as is¡¨ and direct disposal of high level waste (HLW) calcine in a Monitored Geologic Repository will be allowed. The fall back position is to develop a stabilized waste form for the HLW calcine, that will meet repository waste acceptance criteria currently in place, in case regulatory initiatives are unsuccessful. A decision between direct disposal or a stabilization alternative is anticipated by June 2006. The purposes of this Engineering Design File (EDF) are to provide a pre-conceptual design on three low temperature processes under development for stabilization of high level waste calcine (i.e., the grout, hydroceramic grout, and iron phosphate ceramic processes) and to support a down selection among the three candidates. The key assumptions for the pre-conceptual design assessment are that a) a waste treatment plant would operate over eight years for 200 days a year, b) a design processing rate of 3.67 m3/day or 4670 kg/day of HLW calcine would be needed, and c) the performance of waste form would remove the HLW calcine from the hazardous waste category, and d) the waste form loadings would range from about 21-25 wt% calcine. The conclusions of this EDF study are that: (a) To date, the grout formulation appears to be the best candidate stabilizer among the three being tested for HLW calcine and appears to be the easiest to mix, pour, and cure. (b) Only minor differences would exist between the process steps of the grout and hydroceramic grout stabilization processes. If temperature control of the mixer at about 80„aC is required, it would add a major level of complexity to the iron phosphate stabilization process. (c) It is too early in the development program to determine which stabilizer will produce the minimum amount of stabilized waste form for the entire HLW inventory, but the volume is assumed to be within the range of 12,250 to 14,470 m3. (d) The stacked vessel height of the hot process vessels in the hydroceramic grout process (i.e., 21 m) appears to be about the same as that estimated by the Direct Cementitious Waste Process in 1998, for which a conceptual design was developed. Some of the conceptual design efforts in the 1998 study may be applicable to the stabilizer processes addressed in this EDF. (e) The gamma radiation fields near the process vessels handling HLW calcine would vary from a range of about 300-350 R/hr at a distance of 2.5 cm from the side of the vessels to a range of about 50-170 R/hr at a distance of 100 cm from the side of the vessels. The calculations were made for combined calcine, which was defined as the total HLW calcine inventory uniformly mixed. (f) The gamma radiation fields near the stabilized waste in canisters would range from about 25-170 R/hr at 2.5 cm from the side of the canister and 5-35 R/hr at 100 cm from the side of the canister, depending on the which bin set was the source of calcine.

T. R. Thomas; A. K. Herbst

2005-06-01T23:59:59.000Z

280

Automotive turbine engine  

SciTech Connect

Gas flow through a turbine is divided, with part of the flow directed to the compressor for the combusion chamber and part directed to the primary power turbine. Division of the gas flow is accomplished by a mixing wheel of novel design. Before passing to the primary power turbine the gas flow passes through a secondary power turbine that drives the compressor for the combustion chamber. Both the secondary power turbine and the compressor rotate independently of the main turbine rotor shaft. The power input to the secondary power turbine is varied in accordance with the pressure differential between the gas pressure at the outlet of the compressor for the combustion chamber and the outlet from the mixing wheel. If the speed of the main turbine shaft slows down more power is put into the secondary power turbine and the combustion chamber compressor is speeded up so as to produce a higher gas pressure than would otherwise be the case.

Wirth, R.E.; Wirth, M.N.

1978-12-26T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

Science Conference Proceedings (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

282

Evaluation of multi-attribute decision making systems applied during the concept design of new microplasma devices  

Science Conference Proceedings (OSTI)

Various multi-attribute decision making (MADM) systems can be implemented to narrow a field of new concept designs down to those with high likelihoods of surpassing state-of-the-art technologies. This research investigated the conceptual design phase ... Keywords: AHP, Concept design tools, Design process(es), Engineering design, GRA, MADM, Multi-attribute decision making, New product development, Pugh, QFD, UBAF

Elizabeth Lennon, John Farr, Ronald Besser

2013-11-01T23:59:59.000Z

283

Mixed Reality-Mediated Collaborative Design System: Concept, Prototype, and Experimentation  

Science Conference Proceedings (OSTI)

This paper introduces a Mixed Reality-mediated Collaborative design system, named MR-Collab, which combines Mixed Reality (MR), Augmented Reality (AR) and various channels of communication technologies. The concept and system of ... Keywords: Cooperative design, concurrent visualization, cooperative visualization, system architecture and prototypes, user interfaces

Rui Wang; Xiangyu Wang

2008-09-01T23:59:59.000Z

284

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

285

Using a collision model to design safer wind turbine rotors for birds  

Science Conference Proceedings (OSTI)

A mathematical model for collisions between birds and propeller-type turbine rotors identifies the variables that can be manipulated to reduce the probability that birds will collide with the rotor. This study defines a safety index--the clearance power density--that allows rotors of different sizes and designs to be compared in terms of the amount of wind energy converted to electrical energy per bird collision. The collision model accounts for variations in wind speed during the year and shows that for model rotors with simple, one-dimensional blades, the safety index increases in proportion to rotor diameter, and variable speed rotors have higher safety indexes than constant speed rotors. The safety index can also be increased by enlarging the region near the center of the rotor hub where the blades move slowly enough for birds to avoid them. Painting the blades to make them more visible might have this effect. Model rotors with practical designs can have safety indexes an order of magnitude higher than those for model rotors typical of the constant speeds rotors in common use today. This finding suggests that redesigned rotors could have collision rates with birds perhaps an order of magnitude lower than today`s rotors, with no reduction in the production of wind power. The empirical data that exist for collisions between raptors, such as hawks and eagles, and rotors are consistent with the model: the numbers of raptor carcasses found beneath large variable speed rotors, relative to the numbers found under small constant speed rotors, are in the proportions predicted by the collision model rather than in proportion to the areas swept by the rotor blades. However, uncontrolled variables associated with these data prevent a stronger claim of support for the model.

Tucker, V.A. [Duke Univ., Durham, NC (United States). Dept. of Zoology

1996-11-01T23:59:59.000Z

286

Modeling and design of control system for variable speed wind turbine in all operating region  

Science Conference Proceedings (OSTI)

In order to get the maximum power from the wind, the variable-speed wind turbine should run at different speed when wind speed changes. In this paper a control system is introduced to get this purpose base on establishing the three-mass model of the ... Keywords: doubly-fed induction generator (DFIG), feed-forward compensator, loop-shaping, pitch controller, speed controller, three-mass model, wind turbine

Wu Dingguo; Wang Zhixin

2008-05-01T23:59:59.000Z

287

Steam Turbine and Generator Designs for Combined-Cycle Applications: Durability, Reliability, and Procurement Considerations  

Science Conference Proceedings (OSTI)

Combined-cycle power plants are currently preferred for new power generation capacity in much of the world, particularly in the United States. Steam turbines and electrical generators are vital components affecting plant performance and reliability. Over 90 percent of the world's combined-cycle steam turbines are provided by six major manufacturers: Alstom, General Electric, Siemens-Westinghouse, Mitsubishi, Toshiba, and Hitachi. This report provides information on their model offerings and consideration...

2003-03-18T23:59:59.000Z

288

Survey of techniques for reduction of wind turbine blade trailing edge noise.  

DOE Green Energy (OSTI)

Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

Barone, Matthew Franklin

2011-08-01T23:59:59.000Z

289

Grading in interaction design education using design practitioners' conceptions of process quality  

Science Conference Proceedings (OSTI)

The designed product is often assessed in interaction design education, but there are also courses that focus on learning the design process. It is then necessary to develop criteria for grading in such courses. To make a successful transfer from theory ... Keywords: Assessment, Design education, Grading, Human-computer interaction education, Interaction design education, Process quality in design

Mattias Arvola

2012-11-01T23:59:59.000Z

290

Aerothermodynamics of low pressure steam turbines and condensers  

SciTech Connect

This book presents papers on steam turbines and steam condensers. Topics considered include the design of modern low pressure steam turbines, throughflow design methods, three-dimensional flow calculations, the calculation of wet steam stages, aerodynamic development of turbine blades, turbine performance measurement, turbine exhaust system design, and condensers for large turbines.

Moore, M.J.; Sieverding, C.H.

1987-01-01T23:59:59.000Z

291

Advanced Turbine Systems program conceptual design and product development. Task 2: Information required for the National Environmental Policy Act  

Science Conference Proceedings (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, under contract DE-AC21-93MC30247, a Westinghouse Electric led team is working on a 10-year, four-phase Advanced Turbine Systems (ATS) program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. Environmental performance is to be enhanced, and busbar energy costs are to be 10% less than those of current state-of-the-art-turbines. In Phase II of the ATS program, the objective is to develop the conceptual design of this innovative natural-gas-fired advanced turbine system (GFATS) which, in combination with increased firing temperature ({ge}2600{degree}F), increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value (LHV) plant efficiency in excess of 60%. Other program goals include providing flexibility to burn both natural gas and coal-derived fuels, holding water consumption to levels consistent with cost and efficiency goals, and having improved environmental performance. Phase II also includes development of an integrated plan to commercialize a GFATS by the year 2000, and initiation of R&D on engine components critical to the success of the plan. Figure 1 is the summary program schedule for Task 8; Design and Test of Critical Components.

Not Available

1993-11-01T23:59:59.000Z

292

NETL: Turbine Projects - Emissions Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Reduction Turbine Projects Emissions Reduction Pre-Mixer Design for High Hydrogen Fuels DataFact Sheets Low-NOX Emissions in a Fuel Flexible Gas Turbine Combustor Design...

293

Operational concepts and implementation strategies for the design configuration management process.  

SciTech Connect

This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

Trauth, Sharon Lee

2007-05-01T23:59:59.000Z

294

Program on Technology Innovation: Wireless Vibration Measurement of Turbine and Compressor Blades  

Science Conference Proceedings (OSTI)

This report describes Phase 4 of a multiyear research effort to develop a turbine blade vibration sensor (TBVS) system design. The sensor system application is the monitoring of the mechanical vibration spectrum of large steam turbine and compressor blades during operation. In Phase 1, the design concept as well as several alternative system components were considered for a wireless electronic device, called a mote. In Phase 2, the design parameters of a custom microelectromechanical (MEMS) ...

2012-12-12T23:59:59.000Z

295

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

296

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

297

MHK Technologies/Wells Turbine for OWC | Open Energy Information  

Open Energy Info (EERE)

Turbine for OWC Turbine for OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wells Turbine for OWC.png Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description From Brochure Wells turbine is a fixed pitch machine with only one direction of rotation Therefore the rotor is symeteric with respect to the rotation plane Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

298

MHK Technologies/Deep water capable hydrokinetic turbine | Open Energy  

Open Energy Info (EERE)

water capable hydrokinetic turbine water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage 275px Technology Profile Primary Organization Hills Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description It is an axial flow shrouded turbine direct connected to a water pump that delivers water to an on shore genetator Being completely water proof and submersible the device can operate at any water depth Mooring Configuration An array of turbines are teathered to a cable that is anchored via a dead weight Optimum Marine/Riverline Conditions This system is designed for use in Florida s Gulf Stream however any constant ocean current is suitable

299

MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine | Open Energy  

Open Energy Info (EERE)

Horizontal Axis Logarithmic Spiral Turbine Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden Turbines LLC Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description A Horizontal axis Water turbine following the logarithmic spiral to generate clean electric energy from slow moving currents like rivers or ocean currents and with least impact on marine life and the environment because it doesn t require a damn or building huge structures Technology Dimensions Device Testing Date Submitted 36:09.5 << Return to the MHK database homepage

300

Spanish Power Exchange Market and Information System Design concepts, and operating experience  

E-Print Network (OSTI)

Spanish Power Exchange Market and Information System Design concepts, and operating experience Jose Market started operations. All generators, distributors, commercialization companies, and final consumers negotiate all power exchanges through the spot market. The Spanish Power Exchange Market Operator (Compañia

Tesfatsion, Leigh

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A conception for creating a system of parametric design of parallel algorithms and their software implementations  

Science Conference Proceedings (OSTI)

A conception is proposed for the creation of a system for parametric design of parallel algorithms. The following functional components of the system are described: transformation of SAA-M schemes, program synthesis, and execution and statistics gathering. ... Keywords: Java Multithreading, SAA-M scheme, algorithm, flow, formalization, modified system of algorithmic algebras, paradigm of parallel programming, parallelism, process

S. D. Pogorilyy; I. Yu. Shkulipa

2009-11-01T23:59:59.000Z

302

Main features of direct cycle helium gas turbines integrated with a high temperature reactor  

SciTech Connect

From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). The main features and advantages of direct cycle helium gas turbines integrated with a high temperature reactor are presented. The proposed design concept is based on a logical extension of existirg knowledge and experience on currently built gas cooled reactors and industrial gas turbines. The direct cycle gas turbine offers many advantages in the form of high reliability, safety and simplicity; it emerges as a potential competitor to the main power generation prime mover, the steam turbine. (auth)

Burylo, P.

1972-01-01T23:59:59.000Z

303

Advanced turbine systems program conceptual design and product development. Quarterly report, August 1993--November 1994  

Science Conference Proceedings (OSTI)

This report discusses a series of heat balance programs were developed and reviewed in a Westinghouse Engineering Department meeting. The cycle formats were reviewed and candidate conditions and components selected for additional investigations,for the selection of the Natural Gas-fired Advanced Turbines Systems (GFATS).

Not Available

1993-12-01T23:59:59.000Z

304

Advanced turbine systems program conceptual design and product development. Quarterly report, November 1993--January 1994  

Science Conference Proceedings (OSTI)

This report discusses a series of materials testing programs were developed and reviewed in a Westinghouse Engineering Department meeting. The cycle formats were reviewed and candidate conditions and components selected for additional investigations,for the selection of the Natural Gas-fired Advanced Turbines Systems (GFATS).

Not Available

1994-04-01T23:59:59.000Z

305

WindPACT Turbine Design Scaling Studies: Technical Area 4 -- Balance-of-Station Cost  

SciTech Connect

DOE's Wind Partnerships for Advanced Component Technologies (WindPACT) program explores the most advanced wind-generating technologies for improving reliability and decreasing energy costs. The first step in the WindPact program is a scaling study to bound the optimum sizes for wind turbines, to define size limits for certain technologies, and to scale new technologies. The program is divided into four projects: Composite Blades for 80-120-meter Rotors; Turbine, Rotor, and Blade Logistics; Self-Erecting Tower and Nacelle Feasibility; and Balance-of-Station Cost. This report discusses balance-of-station costs, which includes the electrical power collector system, wind turbine foundations, communications and controls, meteorological equipment, access roadways, crane pads, and the maintenance building. The report is based on a conceptual 50-megawatt (MW) wind farm site near Mission, South Dakota. Cost comparisons are provided for four sizes of wind turbines: 750 kilowatt (kW), 2.5 MW, 5.0 MW, and 10.0 MW.

Shafer, D. A.; Strawmyer, K. R.; Conley, R. M.; Guidinger J. H.; Wilkie, D. C.; Zellman, T. F.

2001-07-24T23:59:59.000Z

306

Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report  

Science Conference Proceedings (OSTI)

Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

White, D.J.

1994-07-01T23:59:59.000Z

307

Innovative wind turbines. Circulation controlled vertical axis wind turbine. Progress report, March 1-December 31, 1976  

DOE Green Energy (OSTI)

Theoretical and experimental research efforts in evaluating an innovative concept for vertical axis wind turbines (VAWT) are described. The concept is that of using straight blades composed of circulation controlled airfoil sections. The theoretical analysis has been developed to determine the unsteady lift and moment characteristics of multiple-blade cross-flow wind turbines. To determine the drag data needed as input to the theoretical analysis, an outdoor test model VAWT has been constructed; design details, instrumentation, and calibration results are reported. Initial testing is with fixed pitch blades having cross-sections of conventional symmetrical airfoils. Costs of building the test model are included, as well as estimates for blades constructed with composite materials. These costs are compared with those of other types of wind turbines.

Walters, R. E.; Fanucci, J. B.; Hill, P. W.; Migliore, P. G.; Squire, W.; Waltz, T. L.

1978-10-01T23:59:59.000Z

308

WindPACT Turbine Design Scaling Studies Technical Area 1-Composite Blades for 80- to 120-Meter Rotor  

SciTech Connect

The United States Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) implemented the Wind Partnership for Advanced Component Technologies (WindPACT) program. As part of the WindPACT program, Global Energy Concepts, LLC (GEC), was awarded contract number YAM-0-30203-01 to examine Technical Area 1-Blade Scaling, Technical Area 2-Turbine Rotor and Blade Logistics, and Technical Area 3-Self-Erecting Towers. This report documents the results of GEC's Technical Area 1-Blade Scaling. The primary objectives of the Blade-Scaling Study are to assess the scaling of current materials and manufacturing technologies for blades of 40 to 60 meters in length, and to develop scaling curves of estimated cost and mass for rotor blades in that size range.

Griffin, D.A.

2001-04-30T23:59:59.000Z

309

Preliminary Systems Design Study assessment report. Volume 5, Land disposal compliance and hydrogen generation restricted concepts  

SciTech Connect

The System Design Study (SDS), part of the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examined techniques available for the remediation of hazardous and transuranic waste stored at the Radioactive Waste Management Complex`s Subsurface Disposal Area at the INEL. Using specific technologies, system concepts for treating the buried waste and the surrounding contaminated soil were evaluated. Evaluation included implementability, effectiveness, and cost. The SDS resulted in the development of technology requirements including demonstration, testing, and evaluation activities needed for implementing each concept.

Mayberry, J.L.; Feizollahi, F.; Del Signore, J.C.

1991-11-01T23:59:59.000Z

310

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

SciTech Connect

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2013-02-01T23:59:59.000Z

311

Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint  

DOE Green Energy (OSTI)

Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

2012-04-01T23:59:59.000Z

312

[Advanced Turbine Systems Program: Conceptual design and product development]. Task 8.7, Recuperator materials  

Science Conference Proceedings (OSTI)

Solar`s Primary Surface Recuperator (PSR) is a compact, high thermal effectiveness heat exchanger for reducing fuel consumption and increasing the thermal efficiency of gas turbine engines. (Recuperation extracts waste heat from the turbine exhaust stream to heat the compressor discharge air before entry into the combustion system.) Solar`s PSR is comprised of thin, folded, corrugated sheets of a stainless steel (eg type 347) in modular units (air cells). Since sheet data are not applicable to thin foils, effort was focused on acquiring creep, tensile, and oxidation data for a variety of stainless and alloy materials. A new thin foil material was created from two separate materials welded together at gage; the advanced alloy would be used only in the hottest sections of the recuperator and the stainless would be used elsewhere to keep the cost down.

NONE

1996-01-01T23:59:59.000Z

313

Advanced Hydrogen Turbine Development  

DOE Green Energy (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

314

Program on Technology Innovation: Wireless Vibration Measurement of Low-Pressure Steam Turbine Blades  

Science Conference Proceedings (OSTI)

This report describes Phase 2 of a research and development effort to define a turbine blade vibration sensor (TBVS) system for measuring the mechanical vibrational spectrum of large steam turbine blades as they rotate. In Phase 1, the design concept and a number of alternative system components were considered for a wireless electronic device called a mote. In the Phase 2 research covered in this report, the final design of a custom accelerometer capable of operating under very high sustained centrifuga...

2010-12-22T23:59:59.000Z

315

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tower Systems to develop the Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly optimized design of five custom-shaped legs and interlaced steel struts. With this design, Space Frame towers can support turbines at greater heights, yet weigh and cost less than traditional steel tube towers. Wind Tower Systems LLC (now

316

Program on Technology Innovation: Wireless Vibration Measurement of Turbine and Compressor Blades: Phase 3 -- Electronic System  

Science Conference Proceedings (OSTI)

This report describes Phase 3 of a multiphase research and development effort to define a turbine blade vibration sensor (TBVS) system for measuring the vibration spectrum of a complete row of operating large steam turbine or compressor blades. In Phase 1, the design concept and several alternative system components were considered for a wireless electronic device called a mote (see the Electric Power Research Institute [EPRI] report 1020697). In Phase 2, the design of a custom accelerometer capable of o...

2011-12-16T23:59:59.000Z

317

PRISM; The plant design concept for the U. S. advanced liquid metal reactor program  

SciTech Connect

The US program for development of an advanced liquid metal reactor (ALMR) is proceeding into a new phase of focused design development. This new phase started at the beginning of 1989; its objective is to complete the conceptual design of the US ALMR, with supporting key feature tests, sufficiently to enter a more detailed design phase and subsequent construction of a prototype reactor plant. A project goal is to demonstrate by actual performance of the reactor its passive, inherent safety features and thereby provide the technical basis for certification of the design by the Nuclear Regulatory Commission (NRC). This paper reports on the PRISM (power reactor inherently safe module) reactor concept which in combination with the IFR (integral fast reactor) metal fuel cycle being developed by Argonne National Laboratory, was selected by DOE in 1988 as the reference design for the US ALMR program.

Berglund, R.C.; Tippets, F.E. (GE Nuclear Energy, Advance Nuclear Technology, San Jose, CA (US))

1989-01-01T23:59:59.000Z

318

Fusion Engineering and Design 42 (1998) 537548 Chamber technology concepts for inertial fusion energy--three  

E-Print Network (OSTI)

to 650°C and has a low enough vapor pressure. Li and Li17Pb83 would also work but must be 1.5 m thick and increased pumping power features required by use of Li or Li17Pb83 suggest Flibe might be the lowest cost to a large variety of chamber design concepts for inertial fusion energy (IFE). Refs. [1­8] provide

Abdou, Mohamed

319

ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM  

DOE Green Energy (OSTI)

Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

Frank Macri

2003-10-01T23:59:59.000Z

320

MHK Technologies/Savanious Turbine | Open Energy Information  

Open Energy Info (EERE)

Savanious Turbine Savanious Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Savanious Turbine.jpg Technology Profile Primary Organization Rugged Renewables EMAT Inc Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The large blade area of the Savonious Turbine allows for low blade loading which eases the mechanical design The low speed in relation to flow speed ensures minimal environmental disturbance The output characteristic is peaked with a maximum free running speed at a tip speed ratio of about 1 5 Hence a runaway Savonius freewheeling in a fast flow current is quite tame and over speed protection is not required Since the turbine is unidirectional it does not require an alignment system The turbine is capable of extracting energy from flow which is fluctuating rapidly in speed and direction The swept area is rectangular in shape fitting it for applications unsuitable for propeller turbines

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design studies of the Moderated Thermonic Heat Pipe Reactor (MOHTR) concept  

DOE Green Energy (OSTI)

Design studies, based primarily on neutronics analysis, have been conducted on a thermionic reactor concept that uses a combined beryllium and zirconium hydride moderator to facilitate the incorporation of heat pipe cooling into compact thermionic fuel element (TFE) based designs useful in the tens of kilowatts electrical power regime. The goal of the design approach is to achieve a single point failure free system with technologies such as TFEs, high-temperature heat pipes, and ZrH moderation, which have extensive test data bases and have been shown to be capable of long lifetimes. Beryllium is used to thermally couple redundant heat pipes to TFEs and ZrH is added to reduce critical size. Neutronic analysis undertaken to investigate this design approach shows that greater reactivity can be achieved for a given geometry with a combination of the two moderator materials than with ZrH alone and that the combined moderator is much less sensitive to hydrogen loss than more traditional ZrH-moderated thermionic reactor designs. These and other analytical approaches have demonstrated the credibility of a heat pipe cooled thermionic reactor concept that has a reactor height and diameter of 60 cm and a reactor mass of 400 kg for 30-kWe power output. 14 refs., 8 figs.

Ranken, W.A.; Turner, J.A.

1991-01-01T23:59:59.000Z

322

GAS TURBINES  

E-Print Network (OSTI)

In the age of volatile and ever increasing natural gas fuel prices, strict new emission regulations and technological advancements, modern IGCC plants are the answer to growing market demands for efficient and environmentally friendly power generation. IGCC technology allows the use of low cost opportunity fuels, such as coal, of which there is a more than a 200-year supply in the U.S., and refinery residues, such as petroleum coke and residual oil. Future IGCC plants are expected to be more efficient and have a potential to be a lower cost solution to future CO2 and mercury regulations compared to the direct coal fired steam plants. Siemens has more than 300,000 hours of successful IGCC plant operational experience on a variety of heavy duty gas turbine models in Europe and the U.S. The gas turbines involved range from SGT5-2000E to SGT6-3000E (former designations are shown on Table 1). Future IGCC applications will extend this experience to the SGT5-4000F and SGT6-4000F/5000F/6000G gas turbines. In the currently operating Siemens ’ 60 Hz fleet, the SGT6-5000F gas turbine has the most operating engines and the most cumulative operating hours. Over the years, advancements have increased its performance and decreased its emissions and life cycle costs without impacting reliability. Development has been initiated to verify its readiness for future IGCC application including syngas combustion system testing. Similar efforts are planned for the SGT6-6000G and SGT5-4000F/SGT6-4000F models. This paper discusses the extensive development programs that have been carried out to demonstrate that target emissions and engine operability can be achieved on syngas operation in advanced F-class 50 Hz and 60 Hz gas turbine based IGCC applications.

Power For L; Satish Gadde; Jianfan Wu; Anil Gulati; Gerry Mcquiggan; Berthold Koestlin; Bernd Prade

2006-01-01T23:59:59.000Z

323

Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing  

SciTech Connect

The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

None

2011-10-01T23:59:59.000Z

324

Advanced turbine systems program conceptual design and product development. Quarterly report, May--July 1994  

Science Conference Proceedings (OSTI)

This quarter of the ATS program saw progress occur in several areas; An update (Revision A) of the Management Plan was submitted on May 15, 1994. This Plan was updated to reflect two basic changes to the program; 1. Task 8.5 was stopped and remaining funds transferred to the Task 8.lT, the test of the ATS 2600F prototype turbine. 2. Task 8.1B was added to the program. This task is the Build/Teardown of the prototype 260OF turbine. This task is fully funded by Allison and is in-kind cost share replacing cost share lost due to decreases on Allisons overhead rates. It is noted that these changes do not affect either the total value of the program or Allisons 25% cost share. Allison has submitted justification for 2. above. DoE has requested a cost to complete on the program. This is in process and will be completed in August 1994.

Not Available

1994-10-01T23:59:59.000Z

325

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

326

Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core  

SciTech Connect

A new non-TRISO fuel and clad design concept is proposed for the prismatic, heliumcooled Very High Temperature Reactor core. The new concept could substantially reduce the current 10-20 wt% TRISO uranium enrichments down to 4-6 wt% for both initial and reload cores. The proposed fuel form would be a high-temperature, high-density uranium ceramic, for example UO2, configured into very small diameter cylindrical rods. The small diameter fuel rods significantly increase core reactivity through improved neutron moderation and fuel lumping. Although a high-temperature clad system for the concept remains to be developed, recent success in tube fabrication and preliminary irradiation testing of silicon carbide (SiC) cladding for light water reactor applications offers good potential for this application, and for future development of other carbide clad designs. A high-temperature ceramic fuel, together with a high-temperature clad material, could also lead to higher thermal safety margins during both normal and transient reactor conditions relative to TRISO fuel. The calculated neutronic results show that the lowenrichment, small diameter fuel rods and low thermal neutron absorbing clad retain the strong negative Doppler fuel temperature coefficient of reactivity that ensures inherent safe operation of the VHTR, and depletion studies demonstrate that an 18-month power cycle can be achieved with the lower enrichment fuel.

Sterbentz, James W

2007-05-01T23:59:59.000Z

327

Hydrogen Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

328

Direct FuelCell/Turbine Power Plant  

SciTech Connect

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

329

Direct FuelCell/Turbine Power Plant  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

Hossein Ghezel-Ayagh

2004-11-19T23:59:59.000Z

330

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

331

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

of Turbine Rotor . . . . . . . . . . . . . . 3.9 Results ofA. C. (2006). “WindPACT turbine rotor design study. ” ReportA. C. (2006). “WindPACT turbine rotor design study. ” Report

Prowell, I.

2011-01-01T23:59:59.000Z

332

An autonomous long-term fast reactor system and the principal design limitations of the concept  

E-Print Network (OSTI)

The objectives of this dissertation were to find a principal domain of promising and technologically feasible reactor physics characteristics for a multi-purpose, modular-sized, lead-cooled, fast neutron spectrum reactor fueled with an advanced uranium-transuranic-nitride fuel and to determine the principal limitations for the design of an autonomous long-term multi-purpose fast reactor (ALM-FR) within the principal reactor physics characteristic domain. The objectives were accomplished by producing a conceptual design for an ALM-FR and by analysis of the potential ALM-FR performance characteristics. The ALM-FR design developed in this dissertation is based on the concept of a secure transportable autonomous reactor for hydrogen production (STAR-H2) and represents further refinement of the STAR-H2 concept towards an economical, proliferation-resistant, sustainable, multi-purpose nuclear energy system. The development of the ALM-FR design has been performed considering this reactor within the frame of the concept of a self-consistent nuclear energy system (SCNES) that satisfies virtually all of the requirements for future nuclear energy systems: efficient energy production, safety, self-feeding, non-proliferation, and radionuclide burning. The analysis takes into consideration a wide range of reactor design aspects including selection of technologically feasible fuels and structural materials, core configuration optimization, dynamics and safety of long-term operation on one fuel loading, and nuclear material non-proliferation. Plutonium and higher actinides are considered as essential components of an advanced fuel that maintains long-term operation. Flexibility of the ALM-FR with respect to fuel compositions is demonstrated acknowledging the principal limitations of the long-term burning of plutonium and higher actinides. To ensure consistency and accuracy, the modeling has been performed using state-of-the-art computer codes developed at Argonne National Laboratory. As a result of the computational analysis performed in this work, the ALM-FR design provides for the possibility of continuous operation during about 40 years on one fuel loading containing mixture of depleted uranium with plutonium and higher actinides. All reactor physics characteristics of the ALM-FR are kept within technological limits ensuring safety of ultra-long autonomous operation. The results obtained provide for identification of physical features of the ALM-FR that significantly influence flexibility of the design and its applications. The special emphasis is given to existing limitations on the utilization of higher actinides as a fuel component.

Tsvetkova, Galina Valeryevna

2003-12-01T23:59:59.000Z

333

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

1996-10-01T23:59:59.000Z

334

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

335

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

336

MHK Technologies/EnCurrent Turbine | Open Energy Information  

Open Energy Info (EERE)

EnCurrent Turbine EnCurrent Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EnCurrent Turbine.jpg Technology Profile Primary Organization New Energy Corporation Project(s) where this technology is utilized *MHK Projects/Bonnybrook Wastewater Facility Project 1 *MHK Projects/Bonnybrook Wastewater Facility Project 2 *MHK Projects/Canoe Pass *MHK Projects/Great River Journey *MHK Projects/Miette River *MHK Projects/Pointe du Bois *MHK Projects/Ruby ABS Alaskan *MHK Projects/Western Irrigation District Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering

337

LMR design concepts for transuranic management in low sodium void worth cores  

Science Conference Proceedings (OSTI)

The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs.

Hill, R.N.

1991-01-01T23:59:59.000Z

338

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept, ultra...

339

Catalytic Combustor for Fuel-Flexible Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Lean (RCL TM ) technology, Figure 1, is being developed as an ultra low NOx gas turbine combustor for Integrated Gasification Combined Cycle (IGCC). In this concept,...

340

NETL: Turbines - About the Turbine Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbines About the Turbine Program Siemens Turbine Turbines have been the world's energy workhorses for generations, harkening back to primitive devices such as waterwheels (2,000...

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

342

Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance  

SciTech Connect

The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

Eric P. Loewen; Paul Demkowicz

2005-05-01T23:59:59.000Z

343

Risø-R-1205(EN) Conceptual survey of Generators and Power Electronics for Wind Turbines  

E-Print Network (OSTI)

This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: • State of the art on generators and power electronics. • Future concepts and technologies within generators and power electronics. • Market needs in the shape of requirements to the grid connection. This survey on generator and power electronic concepts was carried out in cooperation between Aalborg University and Risø National Laboratory, in the scope of the joint research programme Electric Design and Control. The report has been reviewed by:

L. H. Hansen; L. Helle; F. Blaabjerg; E. Ritchie; S. Munk; H. Bindner; P. Sørensen; B. Bak-jensen; Anca Daniela; Hansen Peter; Hauge Madsen

2001-01-01T23:59:59.000Z

344

Wind Turbines Electrical and Mechanical Engineering  

E-Print Network (OSTI)

Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

Provancher, William

345

Single rotor turbine engine  

SciTech Connect

There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

Platts, David A. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

346

Advanced turbine systems program conceptual design and product development quarterly report, May--July 1995  

Science Conference Proceedings (OSTI)

Progress for the quarter is reported in the areas of system definition and analysis and design and test of critical components.

NONE

1995-08-01T23:59:59.000Z

347

Design and construction of vertical axis wind turbines using dual-layer vacuum-forming  

E-Print Network (OSTI)

How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

Carper, Christopher T

2010-01-01T23:59:59.000Z

348

Application of the Eigen-Emittance Concept to Design Ultra-Bright Electron Beams  

SciTech Connect

Using correlations at the cathode to tailor a beam's eigen-emittances is a recent concept made useful by the symplectic nature of Hamiltonian systems such as beams in accelerators. While introducing correlations does not change the overall 6-dimensional phase space volume, it can change the partitioning of this volume into the longitudinal and two transverse emittances, which become these eigen-emittances if all the initial correlations are unwound and removed. In principle, this technique can be used to generate beams with highly asymmetric emittances, such as those needed for the next generation of very hard X-ray free-electron lasers. This approach is based on linear correlations, and its applicability will be limited by the magnitude of nonlinear effects in photoinjectors which will lead to mixing in phase space that cannot be unwound downstream. Here, we review the eigen-emittance concept and present a linear eigen-emittance design leading to a highly partitioned, and transverse ultra-bright, electron beam. We also present numerical tools to examine the evolution of the eigen-emittances in realistic accelerator structures and results indicating how much partitioning is practical.

Duffy, Leanne D. [Los Alamos National Laboratory; Bishofberger, Kip A. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory; Dragt, Alex [U. Maryland; Russell, Steven J. [Los Alamos National Laboratory; Ryne, Robert D. [LBNL; Yampolsky, Nikolai A. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

349

Toward Integrated Life-limit Materials Engineering of Turbine Engine ...  

Science Conference Proceedings (OSTI)

... the design and life management of future turbine engine rotor alloys and components. ... loading variables found in the operation of advanced turbine engines.

350

Advanced Materials and Processes for Gas Turbines TABLE OF ...  

Science Conference Proceedings (OSTI)

Materials Issues for the Design of Industrial Gas Turbines [pp. 3-13] ... French Developments of Superalloys for Gas Turbine Disks and Blades [pp. 17-28

351

Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)  

DOE Green Energy (OSTI)

The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

Not Available

2011-09-01T23:59:59.000Z

352

Model-based design of an ultra high performance concrete support structure for a wind turbine  

E-Print Network (OSTI)

A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...

Wang, Zheng, M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

353

Preliminary structural design conceptualization for composite rotor for verdant power water current turbine  

DOE Green Energy (OSTI)

Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

Paquette, J. A.

2012-03-01T23:59:59.000Z

354

High efficiency fuel cell/advanced turbine power cycles  

Science Conference Proceedings (OSTI)

The following figures are included: Westinghouse (W.) SOFC pilot manufacturing facility; cell scale-up plan; W. 25 kW SOFC unit at the utility`s facility on Rokko Island; pressure effect on SOFC power and efficiency; SureCELL{trademark} vs conventional gas turbine plants; SureCELL{trademark} product line for distributed power applications; 20 MW pressurized SOFC/gas turbine power plant; 10 MW SOFT/CT power plant; SureCELL{trademark} plant concept design requirements; and W. SOFC market entry.

Morehead, H.

1996-12-31T23:59:59.000Z

355

Integrated Design of Chemical Processes and Utility Systems  

E-Print Network (OSTI)

The pinch concept for integrated heat recovery networks has recently become established in chemical process design. This paper presents an overview of the concept and shows how it has now been extended to total process design (reactors, separators, etc.) and to the task of interfacing processes with their utility systems (furnaces, steam levels, turbines, etc.)

Linnhoff, B.

1985-05-01T23:59:59.000Z

356

Turbine Blade Shape Favorable for Fish Survival  

Science Conference Proceedings (OSTI)

Various mechanisms associated with turbine design and operation injure fish passing through hydro turbines. Pilot-scale tests with various fish species and sizes showed that most turbine passage injury and mortality are caused by blade strike. Leading edge blade strike is particularly important for turbines with numerous blades. Very little information and data are available on the mechanics of fish struck by turbine blades and the resulting injury and mortality rates. Determining what leading edge blade...

2008-05-29T23:59:59.000Z

357

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

358

Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves  

E-Print Network (OSTI)

The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers. This research investigation examines many of the practical considerations and alternative ways of estimating breaking wave forces. A survey of existing European wind farms is used to establish a realistic range of basic design parameters. Based upon this information a parametric study was pursued and a series of realistic design scenarios were evaluated. Comparisons include the sensitivity to the wave force model as well as to analytical and numerical wave theories used to evaluate the wave kinematics. In addition, the effect of different kinematics stretching techniques for linear waves is addressed. Establishing whether the bathymetry will induce spilling or plunging wave breaking is critical. Spilling wave breaking can be addressed using existing wave and wave force theories; however for plunging wave breaking an additional impact force must be introduced. Dimensionless design curves are used to display pertinent trends across the full range of design cases considered. This research study provides insight into the evaluation of the maximum breaking wave forces and overturning moment for both spilling and plunging breaking waves as a function of bottom slope.

Owens, Garrett 1987-

2012-12-01T23:59:59.000Z

359

Understanding Trends in Wind Turbine Prices Over the Past Decade  

E-Print Network (OSTI)

Bloomberg NEF”). 2011c. Wind Turbine Price Index, Issue V.Hand, A. Laxson. 2006. Wind Turbine Design Cost and Scalingof a Multi-MegaWatt Wind Turbine. ” Renewable Energy, vol.

Bolinger, Mark

2012-01-01T23:59:59.000Z

360

New Concepts in Fish Ladder Design, Volume II of IV, Results of Laboratory and Field Research on New Concepts in Weir and Pool Fishways, 1982-1984 Final Project Report.  

DOE Green Energy (OSTI)

A comprehensive review of fishway design practice led to new design concepts that had previously been untested. This concept was based on the observation that fish can be stimulated to leap when presented with certain hydraulic conditions. A laboratory test program was conducted to develop this concept into a new fishway configuration. Field testing revealed that components of the new design improved fish passage. Verification of the initial premise that fish can be stimulated to leap needs further study.

Aaserude, Robert G.; Orsborn, John F.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Superconductivity for Large Scale Wind Turbines  

SciTech Connect

A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

2012-10-12T23:59:59.000Z

362

Design of experiment and Montecarlo simulation as support for gas turbine power plant availabilty estimation  

Science Conference Proceedings (OSTI)

Maintenance is an important aspect in order to guarantee the efficiency of industrial facilities. For power plants the high availability ratios can be obtained only with preventive maintenance but the result costs increases rapidly. In order to reduce ... Keywords: design of experiment, fuzzy logic, model estimation, montecarlo simulation, reliability

Enrico Briano; Claudia Caballini; Pietro Giribone; Roberto Revetria

2010-05-01T23:59:59.000Z

363

A Kind of Innovative Design Methodology of Wind Turbine Blade Based on Natural Structure  

Science Conference Proceedings (OSTI)

Based on the mid axis pattern configuration, the topology adaption of the plant leaf vein is discussed in the first place., Secondly, combined with the blade principal stress field distribution cases, the adaptive design is applied in the blade structure ... Keywords: adaptation, blade, hybrid composites, mid axis pattern, stress field

Wangyu Liu; Jiaxing Gong; Xifeng Liu; Xin Zhang

2009-05-01T23:59:59.000Z

364

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

365

Application of Nuclear Energy for Seawater Desalination: Design Concepts of Nuclear Desalination Plants  

SciTech Connect

Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already under way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which are experienced, being implemented or evaluated by several IAEA Member States. Operating experience with nuclear desalination using a liquid-metal reactor BN-350 in Kazakhstan and several Pressurized Water Reactor units in Japan is discussed. Results of economic analyses of nuclear desalination are also presented in order to illustrate the competitiveness of this technology with other conventional desalination operations. (authors)

Faibish, R.S.; Konishi, T.; Gasparini, M. [International Atomic Energy Agency - IAEA, P.O. Box 100, Wagramer Strasse 5, A-1400 Vienna (Austria)

2002-07-01T23:59:59.000Z

366

The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory  

E-Print Network (OSTI)

1 The Robust Gas Turbine Project M.I.T. Gas Turbine Laboratory Prof. David Darmofal, Prof. Daniel and in-service conditions is a key factor in gas turbine product quality. While a given design may these improved engines. The M.I.T. Gas Turbine Laboratory (GTL) has a long history of developing advanced

Waitz, Ian A.

367

New Concepts in Fish Ladder Design, Part I of IV, Summary Report, 1982-1984 Final Project Report.  

DOE Green Energy (OSTI)

The report looks at the most active periods of fishway research since 1938 as background for a project to apply fundamental fluid and bio-mechanics to fishway design, and develop more cost effective fish passage facilities with primary application to small scale hydropower facilities. Also discussed are new concepts in fishway design, an assessment of fishway development and design, and an analysis of barriers to upstream migration. (ACR)

Orsborn, John F.

1985-08-01T23:59:59.000Z

368

Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine  

SciTech Connect

Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

None

2010-02-22T23:59:59.000Z

369

Turbine arrangement  

SciTech Connect

A turbine arrangement is disclosed for a gas turbine engine having a sloped gas flowpath through the turbine. The radial axes of the rotor blades and stator vanes in the sloped flowpath are tilted such that the axes are substantially normal to the mean flow streamline of the gases. This arrangement reduces tip losses and thereby increases engine efficiency.

Johnston, R.P.

1984-02-28T23:59:59.000Z

370

Analysis of advanced compressed air energy storage concepts. [Adiabatic concept  

DOE Green Energy (OSTI)

An analysis is presented of a class of Advanced Compressed Air Energy Storage (CAES) concepts, which are designed to minimize or eliminate the dependence on oil for firing the turbines. The analysis is based on a ''Hybrid'' CAES system that incorporates thermal storage and varying turbine inlet conditions. The extreme case of the hybrid is the adiabatic CAES concept where the sole source of energy to the cycle is the electrical power input to the compressors. The thermodynamic characteristics of these cycles are studied parametrically. In addition, the economics of the hybrid cycle, including the adiabatic cycle, are studied parametrically for the case where thermal storage in an aquifer is used. The results of the analysis conclude that the adiabatic CAES concept is technically feasible and that the storage efficiency would be comparable to or better than pumped hydro. However, the economic analysis concludes that heat storage in an aquifer is of questionable economic value since a recuperator can accomplish much the same effects at lower cost. The adiabatic concept using heat storage in an aquifer does not appear economic for foreseeable conditions.

Kreid, D.

1977-10-01T23:59:59.000Z

371

Stochastic Analysis of Waterhammer and Applications in Reliability-Based Structural Design for Hydro Turbine Penstocks  

Science Conference Proceedings (OSTI)

Abstract: The randomness of transient events, and the variability in factors which influence the magnitudes of resultant pressure fluctuations, ensures that waterhammer and surges in a pressurized pipe system are inherently stochastic. To bolster and improve reliability-based structural design, a stochastic model of transient pressures is developed for water conveyance systems in hydropower plants. The statistical characteristics and probability distributions of key factors in boundary conditions, initial states and hydraulic system parameters are analyzed based on a large record of observed data from hydro plants in China; and then the statistical characteristics and probability distributions of annual maximum waterhammer pressures are simulated using Monte Carlo method and verified by the analytical probabilistic model for a simplified pipe system. In addition, the characteristics (annual occurrence, sustaining period and probability distribution) of hydraulic loads for both steady and transient states are discussed. Illustrating with an example of penstock structural design, it is shown that the total waterhammer pressure should be split into two individual random variable loads: the steady/static pressure and the waterhammer pressure rise during transients; and that different partial load factors should be applied to each individual load to reflect its unique physical and stochastic features. Particularly, the normative load (usually the unfavorable value at 95-percentage point) for steady/static hydraulic pressure should be taken from the probability distribution of its maximum values during the pipe's design life, while for waterhammer pressure rise, as the second variable load, the probability distribution of its annual maximum values is used to determine its normative load.

Zhang, Qin Fen [ORNL; Karney, Professor Byran W. [University of Toronto; Suo, Prof. Lisheng [Hohai University, China; Colombo, Dr. Andrew [University of Toronto

2011-01-01T23:59:59.000Z

372

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

373

Preliminary design and economic investigations of diffuser-augmented wind turbines (DAWT). Executive summary. Final report  

DOE Green Energy (OSTI)

A preferred design and configuration approach for the DAWT innovative wind energy conversion system is suggested. A preliminary economic assessment is made for limited production rates of units between 5 and 150 kW rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units, the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1971 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

Foreman, K.M.

1981-12-01T23:59:59.000Z

374

Preliminary design and economic investigations of Diffuser-Augmented Wind Turbines (DAWT)  

DOE Green Energy (OSTI)

A preferred design and configuration approach is suggested for the DAWT innovative wind energy conversion system. A preliminary economic asessment is made for limited production rates of units between 5 and 150 kw rated output. Nine point designs are used to arrive at the conclusions regarding best construction material for the diffuser and busbar cost of electricity (COE). It is estimated that for farm and REA cooperative end users, the COE can range between 2 and 3.5 cents/kWh for sites with annual average wind speeds of 16 and 12 mph (25.7 and 19.3 km/h) respectively, and 150 kW rated units. No tax credits are included in these COE figures. For commercial end users of these 150 kW units the COE ranges between 4.0 and 6.5 cents/kWh for 16 and 12 mph sites. These estimates in 1979 dollars are lower than DOE goals set in 1978 for the rating size and end applications. Recommendations are made for future activities to maintain steady, systematic progress toward mature development of the DAWT.

Foreman, K.M.

1981-12-01T23:59:59.000Z

375

Early Identification of Steam Turbine Performance Issues via Real-Time Diagnostics:Concepts to Advance the State-of-the-Art  

Science Conference Proceedings (OSTI)

This report describes initial work performed to demonstrate how advanced analytics, coupled with existing monitoring tools, could be used to better identify the cause and location of steam turbine performance problems. Developing a full-fledged diagnostic system that incorporates this approach is potentially a multi-year project, but the payoff could be significant.BackgroundThe importance of power plant performance is well recognized since improving ...

2013-12-13T23:59:59.000Z

376

Gas Turbine World performance specs 1984  

SciTech Connect

The following topics are discussed: working insights into the performance specifications; performance and design characteristics of electric power plants, mechanical drive gas turbines, and marine propulsion gas turbines; and performance calculations.

1984-03-01T23:59:59.000Z

377

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

378

Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas  

DOE Green Energy (OSTI)

A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

Stephenson, W.A.

1986-12-01T23:59:59.000Z

379

High Temperature Capabililty and Innovative Cooling with a Spar and Shell Turbine Blade - Florida Turbine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Capability and Temperature Capability and Innovative Cooling with a Spar and Shell Turbine Blade-Florida Turbine Technologies Background Florida Turbine Technologies, Inc. (FTT) is currently developing advanced aerothermal technologies centered on spar and shell airfoil concepts meant to provide highly durable turbine components that require the lowest cooling flow possible. The spar-shell system represents a unique opportunity for the use of advanced, high-temperature materials

380

Heat pipe turbine vane cooling  

SciTech Connect

The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and a uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

Langston, L.; Faghri, A. [Connecticut Univ., Storrs, CT (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling.  

E-Print Network (OSTI)

?? Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing… (more)

Reding, Brian D., II

2013-01-01T23:59:59.000Z

382

DIRECT FUEL/CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

383

DIRECT FUEL/CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

Hossein Ghezel-Ayagh

2004-05-01T23:59:59.000Z

384

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas 7 Simulating Particle Deposition and Mitigating Deposition Degradation Effects in Film Cooled Turbine Sections University of Texas David Bogard Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Aero/Heat Transfer Federal Project Manager: Mark Freeman Project Objective: A major goal of this project is to determine a reliable methodology for simulating contaminant deposition in a low-speed wind tunnel facility where testing is considerably less costly. The project is aimed at developing new cooling designs for turbine components that will minimize the effect of the depositions of contaminant particles on turbine components and maintain good film cooling performance even when surface conditions deteriorate. Moreover, a methodology will be established that

385

NETL: Turbines - UTSR Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

386

Power control of a wind farm with active stall wind turbines and AC grid connection  

E-Print Network (OSTI)

turbines with AC connection. The control of other wind farm concepts such as wind farms with DFIG wind

387

Turbine Option  

NLE Websites -- All DOE Office Websites (Extended Search)

study was sponsored by the Turbine Survival Program in cooperation with the Department of Energy (DOE), Hydro Optimization Team (HOT), and the Federal Columbia River Power System...

388

Advanced turbine systems program conceptual design and product development. Quarterly report, November 1, 1996--January 31, 1997  

SciTech Connect

The confirmation for the contract modification was received on February 19, 1997. All reports reflect this modification at present. Technical highlights for the reporting period are: first results on steam oxidation behavior of super alloys in steam environment have been achieved; and the tests on TBC evaluation in high thermal gradients could be started. The turbine test rig hardware is progressing well.

1997-05-01T23:59:59.000Z

389

DIRECT FUEL CELL/TURBINE POWER PLANT  

SciTech Connect

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

390

DIRECT FUEL CELL/TURBINE POWER PLANT  

DOE Green Energy (OSTI)

This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

Hossein Ghezel-Ayagh

2004-11-01T23:59:59.000Z

391

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

392

Airfoil treatments for vertical axis wind turbines  

SciTech Connect

Sandia National Laboratories (SNL) has taken three airfoil related approaches to decreasing the cost of energy of vertical axis wind turbine (VAWT) systems; airfoil sections designed specifically for VAWTs, vortex generators (VGs), and ''pumped spoiling.'' SNL's blade element airfoil section design effort has led to three promising natural laminar flow (NLF) sections. One section is presently being run on the SNL 17-m turbine. Increases in peak efficiency and more desirable dynamic stall regulation characteristics have been observed. Vane-type VGs were fitted on one DOE/Alcoa 100 kW VAWT. With approximately 12% of span having VGs, annual energy production increased by 5%. Pumped spoiling utilizes the centrifugal pumping capabilities of hollow blades. With the addition of small perforations in the surface of the blades and valves controlled by windspeed at the ends of each blade, lift spoiling jets may be generated inducing premature stall and permitting lower capacity, lower cost drivetrain components. SNL has demonstrated this concept on its 5-m turbine and has wind tunnel tested perforation geometries on one NLF section.

Klimas, P.C.

1985-01-01T23:59:59.000Z

393

Scale Model Turbine Missile Casing Impact Tests  

Science Conference Proceedings (OSTI)

This report describes three 1/5-scale-model turbine missile impact experiments performed to provide benchmark data for assessing turbine missiles effects in nuclear plant design. The development of an explosive launcher to accelerate the turbine missile models to the desired impact velocities is described. A comparison of the test results with those from full-scale experiments demonstrates scalability.

1982-12-01T23:59:59.000Z

394

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

W. R. Laster; E. Anoshkina

2008-01-31T23:59:59.000Z

395

Catalytic Combustor for Fuel-Flexible Turbine  

SciTech Connect

Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

Laster, W. R.; Anoshkina, E.

2008-01-31T23:59:59.000Z

396

Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR  

SciTech Connect

A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

Felde, D. K.

1982-04-01T23:59:59.000Z

397

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

398

Advanced turbine systems program conceptual design and product development: Task 8.1, Low-pressure drop recuperator  

DOE Green Energy (OSTI)

Purpose of the ATS program is to develop a new baseline for industrial gas turbine systems for the 21st century. A recuperated gas turbine cycle was selected; the eventual engine that result will utilize Solar`s Primary Surface Recuperator (PSR) technology. Besides higher thermal efficiency, other goals included lower emission, cost of power, and improved RAMD (reliability, availability, maintainability). Performance data have been obtained for the candidate heat transfer surface, and on a scaled rig. Pretest predictions of air-side and gas-side pressure drop were in very good agreement with tests results; predicted effectiveness also agreed well with experiment. A flattened tube test to determine changes of the PSR heat transfer surface profile after exposure is underway.

NONE

1995-09-01T23:59:59.000Z

399

Vertical axis wind turbine development. Final report, March 1, 1976-June 30, 1977  

DOE Green Energy (OSTI)

Theoretical and experimental research accomplished in evaluating an innovative concept for vertical axis wind turbines (VAWT) is described. The concept is that of using straight blades composed of circulation controlled airfoil sections. The theoretical analysis has been developed to determine the unsteady lift and moment characteristics of multiple-blade cross-flow wind turbines. To determine the drag data needed as input to the theoretical analysis, an outdoor test model VAWT has been constructed; design details, instrumentation, calibration results, and initial test results are reported. Initial testing was with fixed pitch blades having cross-sections of conventional symmetrical airfoils. Costs of building the test model are included, as well as cost estimates for blades constructed with composite materials. These costs are compared with those of other types of wind turbines.

Walters, R. E.; Fanucci, J. B.; Hill, P. W.; Migliore, P. G.

1979-07-01T23:59:59.000Z

400

Integrated Low Emissions Cleanup system for direct coal fueled turbines  

Science Conference Proceedings (OSTI)

The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.

Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low Wind Speed Turbine Project Conceptual Design Study: Advanced Independent Pitch Control; July 30, 2002--July 31, 2004 (Revised)  

DOE Green Energy (OSTI)

AES conducted a conceptual study of independent pitch control using inflow angle sensors. The control strategy combined input from turbine states (rotor speed, rotor azimuth, each blade pitch) with inflow angle measurements (each blade angle of attack at station 11 of 15) to derive blade pitch demand signals. The controller reduced loads sufficiently to allow a 10% rotor extension and reduce COE by 6.3%.

Olsen, T.; Lang, E.; Hansen, A.C.; Cheney, M. C.; Quandt, G.; VandenBosche, J.; Meyer, T.

2004-12-01T23:59:59.000Z

402

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

403

A practical application of concept selection methods for high-speed marine vehicle design  

E-Print Network (OSTI)

Naval ship design and construction has been in existence for thousands of years. Over that time, many tools have been developed to aid naval architects in the quest for an optimal design, whether fast and sleek like a ...

Hagan, William L. (William Laurie), III

2008-01-01T23:59:59.000Z

404

Chemically recuperated gas turbine  

SciTech Connect

This patent describes a powerplant. It comprises: a gas turbine engine having a compressor, a combustor downstream of the compressor, a turbine, and a power turbine downstream and adjacent the turbine there being no reheating means between the turbine and power turbine; a reformer positioned downstream of the power turbine such that the output of the power turbine provides a first means for heating the reformer; a second means for heating the reformer, the second means positioned downstream of the power turbine.

Horner, M.W.; Hines, W.R.

1992-07-28T23:59:59.000Z

405

Advanced Combustion Systems for Next Generation Gas Turbines  

SciTech Connect

Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program. Emissions measurements were obtained over a variety of operating conditions. A kinetics model is formulated to describe the emissions performance. The model is a tool for determining the conditions for low emission performance. The flow field was also modeled using CFD. A first prototype was developed for low emission performance on natural gas. The design utilized the tools anchored to the atmospheric prototype performance. The 1/6 scale combustor was designed for low emission performance in GE's FA+e gas turbine. A second prototype was developed to evaluate changes in the design approach. The prototype was developed at a 1/10 scale for low emission performance in GE's FA+e gas turbine. The performance of the first two prototypes gave a strong indication of the best design approach. Review of the emission results led to the development of a 3rd prototype to further reduce the combustor emissions. The original plan to produce a scaled-up prototype was pushed out beyond the scope of the current program. The 3rd prototype was designed at 1/10 scale and targeted further reductions in the full-speed full-load emissions.

Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

2006-01-01T23:59:59.000Z

406

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

407

Investigation of flow characteristics of gas turbines  

SciTech Connect

Measurements carried out in the process of assimilation of gas turbine (GT) plants of 16 different types in starting and working conditions to estimate the operational conditions and characteristics of the main elements (in particular of the turbines) have created a basis for generaliztion of flow characteristics of different turbines and for extending them to a wider range of operational conditions. The studies showed that: flow characteristics of the investigated turbines, independently of the number of stages and the degree of reaction, are described by the elliptic flowrate equation; throughput of similar turbines, i.e., of turbines formed of stages with high reaction, which have low design degrees of expansion, can be determined with satisfactory accuracy by the unique function of the degree of expansion; and in operating the gas turbine plants considerable changes in throughput of the turbines are possible.

Ol' khovskii, G.G.; Ol' khovskaya, N.I.

1978-01-01T23:59:59.000Z

408

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

409

Accessibility and historic districts: design concepts and economic feasibility study for the downtown historic district of Bryan, Texas  

E-Print Network (OSTI)

This study explores the application of the Americans with Disabilities Act (ADA) to historic districts, and design concepts are proposed to bring the district as a whole into compliance with the ADA. Past studies have dealt with accessibility in individual historic properties, but none have touched upon large areas such as an entire district. It is concluded that implementing ADA requirements for an entire district through the sharing of accessible facilities is successful in terms of both cost savings to the owners of buildings and in maintaining the historicity of the area. The historic district of downtown Bryan, Texas has been chosen as a pilot project for the study. Two blocks of buildings were then chosen based on their non-compliance with the ADA, their age, and their contribution to the historicity of the district. This study concentrates on achieving a reasonable balance between a historic district's substantial compliance with the ADA while still maintaining its historic integrity and economic vitality. This is achieved by treating a historic district like a shopping center which allows concepts such as the transfer of development rights and shared facilities to be explored. The final step is an economic feasibility study, in which costs for strict compliance with the ADA of each individual structure in the district were compared to the costs for the recommended design concepts and alterations for the district as a whole.

Shamanna, Jayashree B

1994-01-01T23:59:59.000Z

410

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

411

Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their energy output than waterwheels. They also have fewer gears and require less material for construction. There are two general types of turbines: impulse and reaction. Impulse Turbines Impulse turbines, which have the least complex design, are most commonly

412

Onshore Wind Turbines Life Extension  

Science Conference Proceedings (OSTI)

Wind turbines are currently type-certified for nominal 20-year design lives, but many wind industry stakeholders are considering the possibility of extending the operating lives of their projects by 5, 10, or 15 years. Life extension—the operation of an asset beyond the nominal design life—is just one option to maximize the financial return of these expensive assets. Other options include repowering, upgrading, or uprating a turbine.In order to make informed decisions ...

2012-10-01T23:59:59.000Z

413

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

414

Experiment study on FLOATING JACKET: a new concept for deep water platform design.  

E-Print Network (OSTI)

??As more oil and gas are discovered in deeper water than ever before, the offshore industry has become increasingly interested in the design of advanced… (more)

Xu, Yufeng

2012-01-01T23:59:59.000Z

415

Gas Turbine Emissions  

E-Print Network (OSTI)

Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack of regulatory interest in the 'real world' test results coupled with the difficulties of gathering analogous bench test data for systems employing gas turbines with Heat Recovery Steam Generators (HRSG) and steam injection. It appears that the agencies are getting a better grasp of emissions, but there are still problem areas, particularly CO and unburned hydrocarbon emissions. The lag in data has resulted in the imposition of a CO reactor as BACT for the gas turbine. With the renewed concern about the environment, air permits will have a high profile with offsets being the next fix beyond BACT. 'The manner in which technology developers and electric utilities will share emissions reductions in the coming era of pollution allowance trading is becoming prominent on the agendas of strategic planners at technology vendors and the electric power industry....' (1) Therefore, it becomes increasingly important that the proponents of gas turbine-based facilities establish more reliable data on their proposed emissions. This paper addresses the gas turbine emissions experiences of eight cogeneration plants utilizing: 1) steam injection for both NOx control and power augmentation, 2) CO reactors, 3) selective catalytic reduction units. It also looks at possible regulatory actions.

Frederick, J. D.

1990-06-01T23:59:59.000Z

416

Ceramic stationary gas turbine  

DOE Green Energy (OSTI)

The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

Roode, M. van

1995-12-31T23:59:59.000Z

417

Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

418

Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine  

DOE Green Energy (OSTI)

This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

Smith, J.; Huskey, A.; Jager, D.; Hur, J.

2012-11-01T23:59:59.000Z

419

Challenges And Concepts for Design of An Interaction Region With Push-Pull Arrangement of Detectors - An Interface Document  

SciTech Connect

Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics and alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers and conveners of working groups of the workshop on engineering design of interaction region IRENG07, the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.

Parker, B.; /Brookhaven; Herve, Alain; Osborne, J.; /CERN; Mikhailichenko, A.; /Cornell U., Phys. Dept.; Buesser, K.; /DESY; Ashmanskas, B.; Kuchler, Victor P.; Mokhov, N.; /Fermilab; Enomoto, A.; Sugimoto, Y.; Tauchi, T.; Tsuchiya, K.; /KEK, Tsukuba; Weisend, J.; /NSF, Wash., D.C.; Burrows, P.; /Oxford U.; Markiewicz, Thomas W.; Oriunno, M.; Seryi, Andrei; Sullivan, M.; /SLAC; Angal-Kalinin, D.; /Rutherford; Sanuki, T.; Yamamoto, H.; /Tohoku U.

2011-10-14T23:59:59.000Z

420

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "turbine design concepts" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

422

The value of steam turbine upgrades  

Science Conference Proceedings (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

423

SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.  

SciTech Connect

The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel fibers. The use of recycled concrete aggregate in the conventional and 50% slag mixes was also studied. Properties investigated included compressive and tensile strengths, elastic modulus, coefficient of permeability, thermal conductivity and durability in seawater and sulfate solutions. It was determined that the mixes containing 50% slag gave the best overall performance. Slag was particularly beneficial for concrete that used recycled aggregate and could reduce strength losses. Initial durability results indicated that corrosion of fibers in the different concrete mixes when exposed to seawater was minimal. Future research needs to include more detailed studies of mix design and properties of concrete for wind turbine foundations. Emphasis on slag-modified mixes with natural and recycled concrete aggregate is recommended. The proportion of slag that can be incorporated in the concrete needs to be optimized, as does the grading of recycled aggregate. The potential for using silica fume in conjunction with slag is worth exploring as this may further enhance strength and durability. Longer-term durability studies are necessary and other pertinent properties of concrete that require investigation include damping characteristics, pullout strength, fatigue strength and risk of thermal cracking. The properties of sustainable concrete mixes need to be integrated with studies on the structural behavior of wind turbine foundations in order to determine the optimal mix design and to examine means of reducing conservatism and cost of foundations.

BERNDT,M.L.

2004-06-01T23:59:59.000Z

424

Functional thinking in cost estimation through the tools and concepts of axiomatic design  

E-Print Network (OSTI)

There has been an increasing demand for cost estimation tools which aid in the reduction of system cost or the active consideration of cost as a design constraint. The existing tools are currently incapable of anticipating ...

Odhner, Lael Ulam, 1980-

2004-01-01T23:59:59.000Z

425

Sound design concepts meeting minimum sound requirements—Advantages and disadvantages  

Science Conference Proceedings (OSTI)

A young field of activity for acoustic engineers has emerged in the context of vehicle exterior noise design considering the aspect of pedestrian safety. The fear of blind associations

André Fiebig; Klaus Genuit

2013-01-01T23:59:59.000Z

426

Technical and economic assessment of particle control technology for direct coal fueled turbines: Final report  

SciTech Connect

Gilbert/Commomwealth (1984) analyzed ten different concepts for high-temperature, high-pressure control of gas stream particulate matter in coal-fueled pressurized fluidized-bed combustion (PFBC) systems. This paper analyzes the five higher ranking concepts of the Gilbert study at direct coal fueled turbine conditions which are even more severe than PFBC conditions. The five concepts are ceramic crossflow filter, ceramic bag filter, granular bed filter, and advanced cyclones. Five ranking factors were used: economic, design, operations complexity, materials/mechanical, and development status. (DLC)

DiBella, C.A.W.; Thomas, R.L.; Rubow, L.N.; Zaharchuk, R.

1987-02-01T23:59:59.000Z

427

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy.  

E-Print Network (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering have been able to identify shortcomings in the design, testing, and operation of wind turbines findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment

428

Self-regulating composite bearingless wind turbine. Final report, June 3, 1975--June 2, 1976  

DOE Green Energy (OSTI)

The Composite Bearingless Rotor (CBR) concept has been shown to have characteristics ideally suited for wind turbine applications. This rotor concept provides a fully self-regulating and self-aligning wind turbine. Such a system was achieved without the need for auxiliary controls or sensors. These features allow self-starting for wind initiating from any direction and automatic pitch and yaw variations to optimize performance under all normal wind conditions. The work described in this report consists of the design of a 4.5 ft dynamically scaled wind turbine model and the testing of this model in the United Technologies low speed wind tunnel. Several concepts were investigated which were designed to achieve self-regulation. Of these, a system which consisted of a hub supported pendulum integrated with the CBR blade provided the features desired. Testing of this configuration consisted of startups from any wind direction with wind speeds up to 30 mph. Stress and stability characteristics were investigated during the test program and the CBR wind turbine demonstrated low stress levels and highly stable response characteristics under all conditions tested.

Cheney, M.C.; Spierings, P.A.M.

1976-09-01T23:59:59.000Z

429

Chapter 14: Wind Turbine Control Systems  

DOE Green Energy (OSTI)

Wind turbines are complex, nonlinear, dynamic systems forced by gravity, stochastic wind disturbances, and gravitational, centrifugal, and gyroscopic loads. The aerodynamic behavior of wind turbines is nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated three-dimensional turbulent wind inflow field that drives fatigue loading. Wind turbine modeling is also complex and challenging. Accurate models must contain many degrees of freedom (DOF) to capture the most important dynamic effects. The rotation of the rotor adds complexity to the dynamics modeling. Designs of control algorithms for wind turbines must account for these complexities. Algorithms must capture the most important turbine dynamics without being too complex and unwieldy. Off-the-shelf commercial soft ware is seldom adequate for wind turbine dynamics modeling. Instead, specialized dynamic simulation codes are usually required to model all the important nonlinear effects. As illustrated in Figure 14-1, a wind turbine control system consists of sensors, actuators and a system that ties these elements together. A hardware or software system processes input signals from the sensors and generates output signals for actuators. The main goal of the controller is to modify the operating states of the turbine to maintain safe turbine operation, maximize power, mitigate damaging fatigue loads, and detect fault conditions. A supervisory control system starts and stops the machine, yaws the turbine when there is a significant yaw misalignment, detects fault conditions, and performs emergency shut-downs. Other parts of the controller are intended to maximize power and reduce loads during normal turbine operation.

Wright, A. D.

2009-01-01T23:59:59.000Z

430

Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance  

DOE Green Energy (OSTI)

Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across