National Library of Energy BETA

Sample records for turbine design concepts

  1. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  2. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    Injector Concept for Gas Turbines Robert K. Cheng * , Scottconcept for ultra- low NO x gas turbines. Low-swirl flamevirtually every industrial gas turbine manufacturer to meet

  3. Loads Analysis of Several Offshore Floating Wind Turbine Concepts

    SciTech Connect (OSTI)

    Robertson, A. N.; Jonkman, J. M.

    2011-10-01

    This paper presents a comprehensive dynamic-response analysis of six offshore floating wind turbine concepts.

  4. A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY

    E-Print Network [OSTI]

    A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY AND POWER REPORT (FAR) A NEW GAS TURBINE ENGINE CONCEPT FOR ELECTRICITY GENERATION WITH INCREASED EFFICIENCY://www.energy.ca.gov/research/index.html. #12;Page 1 A New Gas Turbine Engine Concept For Electricity Generation With Increased

  5. Development of a low swirl injector concept for gas turbines

    E-Print Network [OSTI]

    Cheng, R.K.; Fable, S.A.; Schmidt, D.; Arellano, L.; Smith, K.O.

    2000-01-01

    and robust combustion concept for gas turbines. The use of acombustion systems have been adopted by virtually every industrial gas turbinegas turbines is non-trivial due to the dynamic nature of the combustion

  6. Fast Wind Turbine Design via Geometric Programming

    E-Print Network [OSTI]

    Abbeel, Pieter

    Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

  7. Parametric design of floating wind turbines

    E-Print Network [OSTI]

    Tracy, Christopher (Christopher Henry)

    2007-01-01

    As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

  8. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  9. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  10. Advanced wind turbine design studies: Advanced conceptual study. Final report

    SciTech Connect (OSTI)

    Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)] [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  11. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect (OSTI)

    Smith, M J; Suo, M

    1981-04-01

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  12. Advanced Control Design and Testing for Wind Turbines at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Design and Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint Advanced Control Design and Testing for Wind Turbines at the National Renewable...

  13. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    conversion losses for hydro power is power density Designs for four hydro turbines fromconstant power density Designs for four hydro turbines from

  14. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design 

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    2001-01-01

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  15. Design of heterogeneous turbine blade Xiaoping Qian, Deba Dutta*

    E-Print Network [OSTI]

    Qian, Xiaoping

    Design of heterogeneous turbine blade Xiaoping Qian, Deba Dutta* Department of Mechanical material. A critical task of such synthesis in turbine blade design is an effective design method approach for turbine blade design, which ties B-spline representation of a turbine blade to a physics

  16. Market penetration of wind turbine concepts over the years Anca D. Hansen1

    E-Print Network [OSTI]

    Market penetration of wind turbine concepts over the years Anca D. Hansen1 , Lars H. Hansen2 1 Risø wind turbine concepts over the years (1995-2005). A detailed overview is performed based on suppliers market data and concept evaluation for each individual wind turbine type sold by the suppliers

  17. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  18. 1Design limits and solutions for very large wind turbines Design limits and solutions for very large wind turbines

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    #12;#12;1Design limits and solutions for very large wind turbines UpWind Design limits and solutions for very large wind turbines A 20 MW turbine is feasible March 2011 Supported by: #12;March 20112 Photo:Nordex #12;3Design limits and solutions for very large wind turbines Contents 1. UpWind: Summary

  19. Concepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013

    E-Print Network [OSTI]

    McCalley, James D.

    for wind turbine sound generation starting at the turbine source and ending at the receptor. Figure 1 sources of sound generated by a wind turbine are mechanical noise and aerodynamic noise. Mechanical noiseConcepts for Wind Turbine Sound Mitigation Page 1 of 16 AWEA Windpower 2013 Chicago, IL May 6

  20. Ris R1024EN Design of the Wind Turbine

    E-Print Network [OSTI]

    Ris R1024EN Design of the Wind Turbine Airfoil Family RIS AXX Kristian S. Dahl, Peter Fuglsang Ris National Laboratory, Roskilde, Denmark December 1998 #12;Abstract A method for design of wind turbine turbine. The airfoils are designed to have maximum lift-drag ratio until just below stall, a design lift

  1. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect (OSTI)

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method was developed and implemented in FAST to extend its capability for ice load modeling.Both upwind and downwind 2-bladed rotor wind turbine designs were developed and studied. The new rotor blade uses a new twist angle distribution design and a new pitch control algorithm compared with the baseline model. The coning and tilt angles were selected for both the upwind and downwind configurations to maximize the annual energy production. The risk of blade-tower impact is greater for the downwind design, particularly under a power grid fault; however, this risk was effectively reduced by adjusting the tilt angle for the downwind configuration.

  2. Final Turbine and Test Facility Design Report Alden/NREC Fish Friendly Turbine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  3. TAPS design concepts: environmental concerns

    SciTech Connect (OSTI)

    Turner, M.J.

    1981-05-01

    The engineering concepts used in the design, construction, and operation of the Trans-Alaska Pipeline System (TAPS) were often new and in many cases in the state of the art. To accommodate environmental concerns for operating a hot oil pipeline in permafrost soil, unique features were incorporated into TAPS. Design concepts include a sophisticated leak detection and internal pipeline monitoring system. Additional features for accommodating thaw-unstable soils, earthquakes, and river systems are described. (23 references)

  4. PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S-4020 ABSTRACT International standards for wind turbine certification depend on finding long-term fatigue load loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load

  5. Design Loads for Wind Turbines using the Environmental Contour Method

    E-Print Network [OSTI]

    Manuel, Lance

    Design Loads for Wind Turbines using the Environmental Contour Method Korn Saranyasoontorn, TX 78712 When interest is in establishing ultimate design loads for wind turbines such that a service). The parametric conditional load distri- butions require extensive turbine response simulations over the entire

  6. innovati nWind Turbine Design Innovations Drive Industry Transformation

    E-Print Network [OSTI]

    innovati nWind Turbine Design Innovations Drive Industry Transformation For more than 20 years. Tackling Turbine Blade Inefficiencies In 1984, NREL researchers began investigating problems with wind turbine blade designs. Inefficiency was a significant barrier to lowering the cost of wind energy

  7. Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept

    E-Print Network [OSTI]

    Ray, Asok

    307 Fault detection and isolation in aircraft gas turbine engines. Part 1: underlying concept: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical pattern recognition 1 INTRODUCTION Performance and reliability of aircraft gas turbine engines gradually deteriorate over the service

  8. System Design - Lessons Learned, Generic Concepts, Characteristics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design - Lessons Learned, Generic Concepts, Characteristics & Impacts System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Presented at the DOE-DOD...

  9. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    studied were vertical axis wind turbines, which are nottesting of vertical axis wind turbines (VAWT). For example,vertical axis turbines (VAWTs). Gradually, as the industry matured, most design concepts standardized on horizontal axis wind turbines (

  10. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  11. Advanced Sensor Fish Device for ImprovedTurbine Design

    SciTech Connect (OSTI)

    Carlson, Thomas J.

    2009-09-14

    Juvenile salmon (smolts) passing through hydroelectric turbines are subjected to environmental conditions that can potentially kill or injure them. Many turbines are reaching the end of their operational life expectancies and will be replaced with new turbines that incorporate advanced “fish friendly” designs devised to prevent injury and death to fish. To design a fish friendly turbine, it is first necessary to define the current conditions fish encounter. One such device used by biologists at Pacific Northwest National Laboratory was the sensor fish device to collect data that measures the forces fish experience during passage through hydroelectric projects.

  12. Design of wind turbines with Ultra-High Performance Concrete

    E-Print Network [OSTI]

    Jammes, François-Xavier

    2009-01-01

    Ultra-High Performance Concrete (UHPC) has proven an asset for bridge design as it significantly reduces costs. However, UHPC has not been applied yet to wind turbine technology. Design codes do not propose any recommendations ...

  13. Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro

    E-Print Network [OSTI]

    Sun, Yu

    Design, Analysis and Development of Micro Gas Turbine for propulsion of Micro UAVs Micro gas turbines or simply micro turbines are very promising technology for propelling micro unmanned aerial vehicles. These micro turbines vary in size and power. They can be hand held producing a fraction

  14. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    SciTech Connect (OSTI)

    Wright, A. D.; Fingersh, L. J.

    2008-03-01

    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  15. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  16. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  17. Spatial Concepts in GIS and Design, Agenda

    E-Print Network [OSTI]

    Center for Spatial Studies, UCSB; National Center for Geographic Information and Analysis; Esri

    2008-01-01

    Meeting on Spatial Concepts in GIS and Design Santa Barbara,design more fully into GIS, and over the development ofconcepts that lie behind GIS relevant in design?" or "To

  18. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  19. Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine

    E-Print Network [OSTI]

    Tedrake, Russ

    Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine J. Zico Kolter of renewable energy, and improvements to wind turbine design and control can have a significant impact a actuated micro wind turbine intended for research purposes. While most academic work on wind turbine

  20. 3rd Int'l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS'03), Makuhari, Japan, 4-5 Dec. 2003. PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP

    E-Print Network [OSTI]

    Frechette, Luc G.

    ), Makuhari, Japan, 4-5 Dec. 2003. 1 PRELIMINARY DESIGN OF A MEMS STEAM TURBINE POWER PLANT-ON-A-CHIP Luc G. The microfabricated device consists of a steam turbine that drives an integrated micropump and generator. Two, mechanical, then electrical energy. The concept developed herein consists of a microfabricated steam turbine

  1. Test evaluation of a laminated wood wind turbine blade concept

    SciTech Connect (OSTI)

    Faddoul, J.R.

    1981-05-01

    Because of the high stiffness and fatigue strength of wood (as compared to density) along with the low cost manufacturing techniques available, a laminated wood wind turbine blade application has been studied. This report presents the results of the testing performed on elements of the wood blade-to-hub transition section which uses steel studs cast into a laminated wood spar with a filled epoxy. Individual stud samples were tested for both ultimate load carrying capability and fatigue strength. A one-time pull-out load of 78,000 lb was achieved for a 15 in. long stud with a diameter of 1 in. Tension-tension fatigue indicated that peak loads on the order of 40% of ultimate could be maintained as an endurance limit (mean load = 20,000 lb, cyclic load = +-15,000 lb). Following the individual stud testing, a full-scale inboard blade section (20 ft in length) was tested.

  2. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    SciTech Connect (OSTI)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  3. Baseline Design of a Hurricane-Resilient Wind Turbine (Poster)

    SciTech Connect (OSTI)

    Damiani, R.; Robertson, A.; Schreck, S.; Maples, B.; Anderson, M.; Finucane, Z.; Raina, A.

    2014-10-01

    Under U.S. Department of Energy-sponsored research FOA 415, the National Renewable Energy Laboratory led a team of research groups to produce a complete design of a large wind turbine system to be deployable in the western Gulf of Mexico region. As such, the turbine and its support structure would be subjected to hurricane-loading conditions. Among the goals of this research was the exploration of advanced and innovative configurations that would help decrease the levelized cost of energy (LCOE) of the design, and the expansion of the basic IEC design load cases (DLCs) to include hurricane environmental conditions. The wind turbine chosen was a three-bladed, downwind, direct-drive, 10-MW rated machine. The rotor blade was optimized based on an IEC load suite analysis. The drivetrain and nacelle components were scaled up from a smaller sized turbine using industry best practices. The tubular steel tower was sized using ultimate load values derived from the rotor optimization analysis. The substructure is an innovative battered and raked jacket structure. The innovative turbine has also been modeled within an aero-servo-hydro-elastic tool, and future papers will discuss results of the dynamic response analysis for select DLCs. Although multiple design iterations could not be performed because of limited resources in this study, and are left to future research, the obtained data will offer a good indication of the expected LCOE for large offshore wind turbines to be deployed in subtropical U.S. waters, and the impact design innovations can have on this value.

  4. New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) developed a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology.

  5. The Design and Dimensional Analysis of a Tesla Turbine 

    E-Print Network [OSTI]

    Richardson, Bobby Dean

    1960-01-01

    THE DESIGN AND DIMENSIONAL ANALYSIS OF A TESLA TURBINE A Thesis By BOBBY DEAN RICHARDBON Submitted to the Graduate School of the Agricultural and mechanical College of Texas in psrtial fulfillment of the requirements for the degree of ASTER... . ~ ~ . ~ ~ . ~ ~ ~ ~ 24 DLSCUSSIQN OF RESULTS . ~ . . ~ . , ~. . . . . . ~ . . ~ . . ~. . . 28 CONCLUSIONS AND RECOMMENDATIONS . ~. . . . . . . ~. . . 33 BIBLIOGRAPHY ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 3 S LIST OF FIGURES Figure The Tesla...

  6. Ris-R-Report Improved design for large wind turbine blades

    E-Print Network [OSTI]

    Risø-R-Report Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary: Improved design for large wind turbine blades of fibre composites (Phase 3) - Summary report Division: 1 char.): An overview is given of the activities of the project "Improved design for large wind turbine

  7. AIAA-2004-0502 A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT

    E-Print Network [OSTI]

    Manuel, Lance

    wind speed. For wind turbine generator systems, a similar reliability-based design format is employedAIAA-2004-0502 1 A COMPARISON OF WIND TURBINE DESIGN LOADS IN DIFFERENT ENVIRONMENTS USING INVERSE, Austin, TX 78712 ABSTRACT* The influence of turbulence conditions on the design loads for wind turbines

  8. Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

  9. CHAPTER 2.0 SUSTAINABLE DESIGN CONCEPTS

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    , WA. 2011 Urban Transitions Studio (UTS) June 2, 2011 Chapter 2. Sustainable Design. 1 #12;2.0 Introduction June 2, 2011 2011 Urban Transitions Studio (UTS) Sustainable Design Concepts for Transit Oriented expenditures. If we want urban areas that can sustain high standards of living and low levels of energy

  10. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    Turbine Blades,” in AWEA Windpower, (Atlanta, GA), pp. 1–22,turbine blades,” AWEA Windpower, Atlanta, GA, (presentation)

  11. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect (OSTI)

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  12. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems

    SciTech Connect (OSTI)

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  13. Improved Engine Design Concepts Using the Second Law of Thermodynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Concepts Using the Second Law of Thermodynamics Improved Engine Design Concepts Using the Second Law of Thermodynamics Presentation from the U.S. DOE Office of Vehicle...

  14. CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

  15. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-Print Network [OSTI]

    Camci, Cengiz

    DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

  16. Ris-R-Report Grid fault and design-basis for wind turbines -

    E-Print Network [OSTI]

    Risø-R-Report Grid fault and design-basis for wind turbines - Final report Anca D. Hansen, Nicolaos and design-basis for wind turbines - Final report Division: Wind Energy Division Risø-R-1714(EN) January 2010-basis for wind turbines". The objective of this project has been to assess and analyze the consequences

  17. Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines

    E-Print Network [OSTI]

    Victoria, University of

    Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Mooring Line Modelling and Design Optimization of Floating Offshore Wind Turbines by Matthew Thomas Jair was coupled to the floating wind turbine simulator FAST. The results of the comparison study indicate the need

  18. Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion

    E-Print Network [OSTI]

    Sweetman, Bert

    Conceptual Design of Floating Wind Turbines with Large-Amplitude Motion Lei Wang Department of spar-type floating offshore wind turbines is investigated in detail. Three conceptual designs based for siting offshore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating

  19. Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine of software to analyze and design gas turbine systems has been an important part of this course since 1988 of this project was to develop MS Windows based software: Simple Aircraft Gas Turbine Design, that is easy to use

  20. Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators

    E-Print Network [OSTI]

    Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

    2012-01-01

    Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

  1. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  2. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    14] 4C Offshore, “Offshore Wind Turbine: S7.0-171, Sam- sungblade for a 7-MW offshore wind turbine [8], and blades arefor a 6-megawatt offshore wind turbine [79, 80]. Blades are

  3. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    44] M. Hansen, Aerodynamics of wind turbines. Golden, CO:of the art in wind turbine aerodynamics and aeroelasticity,”subsonic regime of wind turbine aerodynamics in the inboard

  4. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009

    SciTech Connect (OSTI)

    Matha, D.

    2010-02-01

    This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

  5. Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera

    E-Print Network [OSTI]

    Jüttler, Bert

    Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

  6. CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES

    E-Print Network [OSTI]

    Foss, Bjarne A.

    . The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

  7. Assessment of low-order theories for analysis and design of shrouded wind turbines using CFD

    E-Print Network [OSTI]

    Alonso, Juan J.

    Assessment of low-order theories for analysis and design of shrouded wind turbines using CFD Aniket of a shroud around the rotor of a wind turbine has been known to augment the airflow through the rotor plane the validity of several simple theories which attempt to extend Betz theory to shrouded turbines. Two CFD

  8. Project Title: Residential wind turbine design Project Description: This project aims to

    E-Print Network [OSTI]

    Muradoglu, Metin

    that wind is expected to come. Therefore it may be a good idea to consider a vertical-axis wind turbine of the conventional wind turbines use horizontal- axis configuration (see Fig. 1) and is aligned with the directionPROJECT 1: Project Title: Residential wind turbine design Project Description: This project aims

  9. A comparison between the performance of different silencer designs for gas turbine exhaust systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A comparison between the performance of different silencer designs for gas turbine exhaust systems in more specialist applications, such as the exhaust systems of gas turbines, different silencer experiments are carried out with the aim of investigating performance of silencers used on gas turbines

  10. An integrated mechanical design concept for the final focusing region for the HIF point design

    E-Print Network [OSTI]

    2002-01-01

    N. Andreev et al, "Mechanical Design and Analysis of LHCAn Integrated Mechanical Design Concept for the Finalfirst cut" integrated mechanical design concept of the final

  11. Design of a Transonic Research Turbine Facility Ruolong Ma*

    E-Print Network [OSTI]

    Morris, Scott C.

    and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control throughout the gas-turbine engine in terms of their impact on each engine component was given by Lord et al.1 in the new Advanced Performance Gas Turbine Laboratory at the University of Notre Dame. II. Turbine Rig

  12. Advanced turbine systems program conceptual design and product development. Quarterly report, February, 1996--April, 1996

    SciTech Connect (OSTI)

    1996-07-08

    This paper describes the design and testing of critical gas turbine components. Development of catalytic combustors and diagnostic equipment is included.

  13. Understanding Design Concept Identification Ivey Chiu, Filippo A. Salustri

    E-Print Network [OSTI]

    Salustri, Filippo A.

    , bioinformatics and education. In this paper, we explore the process of design concept identification and addressUnderstanding Design Concept Identification Ivey Chiu, Filippo A. Salustri Ryerson University, Toronto, Ontario, Canada In the design literature, the term design concept is often used de facto

  14. Offshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp-Johansen

    E-Print Network [OSTI]

    the next generation of offshore wind farms are designed. The aim of this paper is to discuss existingOffshore Wind Turbine Design: Addressing Uncertainty Drivers Sten Frandsen Niels Jacob Tarp@civil.auc.dk leje@elsam-eng.com Abstract: Current offshore wind turbine design methods have matured to a 1st

  15. SMART wind turbine rotor. Design and field test

    SciTech Connect (OSTI)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  16. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    SciTech Connect (OSTI)

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  17. Data Analytics Methods in Wind Turbine Design and Operations 

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  18. Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine

    E-Print Network [OSTI]

    Kolter, J. Zico

    Design, Analysis, and Learning Control of a Fully Actuated Micro Wind Turbine J. Zico Kolter, Zachary Jackowski, Russ Tedrake* Abstract-- Wind power represents one of the most promising sources of renewable energy, and improvements to wind turbine design and control can have a significant impact

  19. Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang with photovoltaic (PV) arrays, wind turbines, and battery storage is designed based on empirical weather and load with renewable resources such as solar and wind power, supplemented with battery storage in a case study. One

  20. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    SciTech Connect (OSTI)

    1995-06-01

    Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

  1. On the Role of Basic Design Concepts in Behaviour Structuring

    E-Print Network [OSTI]

    van Sinderen, Marten

    On the Role of Basic Design Concepts in Behaviour Structuring Dick A.C. Quartel1 , Luís Ferreira to repre- sent behaviour structure, the structuring of the design process, and the definition of design concepts facilitate the designer to conceive, structure and refine the essential characteristics

  2. Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A.D.; Stol, K.A.

    2008-01-01

    The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

  3. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  4. Supercomputer Helps Design Wind Turbines | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge National Laboratory have been researching, developing and testing materials in freezing conditions. By developing more efficient materials for wind turbines, researchers can...

  5. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  6. On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from the Environmental Contour Method

    E-Print Network [OSTI]

    Manuel, Lance

    On Assessing the Accuracy of Offshore Wind Turbine Reliability-Based Design Loads from to derive design loads for an active stall-regulated offshore wind turbine. Two different Danish offshore contour method; wind turbine; offshore; reliability. INTRODUCTION Inverse reliability techniques

  7. Evaluation of Generic EBS Design Concepts and Process Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and 6) coupled thermal-mechanical (TM) and thermo-hydrological (TH) modeling in salt. Evaluation of Generic EBS Design Concepts and Process Models Implications to EBS...

  8. MPACT Fast Neutron Multiplicity System Design Concepts

    SciTech Connect (OSTI)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors.

  9. Improving the manufacturing yield of investment cast turbine blades through robust design

    E-Print Network [OSTI]

    Margetts, David (David Lawrence)

    2008-01-01

    The manufacturing of turbine blades is often outsourced to investment casting foundries by aerospace companies that design and build jet engines. Aerospace companies have found that casting defects are an important cost ...

  10. Design, build and test of an axial flow hydrokinetic turbine with fatigue analysis

    E-Print Network [OSTI]

    Ketcham, Jerod W

    2010-01-01

    OpenProp is an open source propeller and turbine design and analysis code that has been in development since 2007 by MIT graduate students under the supervision of Professor Richard Kimball. In order to test the performance ...

  11. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants 

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  12. NREL Software Aids Offshore Wind Turbine Designs (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    NREL researchers are supporting offshore wind power development with computer models that allow detailed analyses of both fixed and floating offshore wind turbines. While existing computer-aided engineering (CAE) models can simulate the conditions and stresses that a land-based wind turbine experiences over its lifetime, offshore turbines require the additional considerations of variations in water depth, soil type, and wind and wave severity, which also necessitate the use of a variety of support-structure types. NREL's core wind CAE tool, FAST, models the additional effects of incident waves, sea currents, and the foundation dynamics of the support structures.

  13. Transformation of traditional design concepts into contemporary architecture

    E-Print Network [OSTI]

    Cakmakli, Oruc

    1983-01-01

    The primary aim of this thesis is to explore the design concepts of traditional architecture in Anamur, Turkey, and to make an attempt to incorporate the design patterns extracted from traditional houses into contemporary ...

  14. An innovative concept for deep water oil production platform design 

    E-Print Network [OSTI]

    Racine, Florian

    1994-01-01

    As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating Production, Storage...

  15. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    3 Aero-structural investigation of biplane wind turbine5 Aero-structural analysis of a full 100-meter biplane windP. Roth-Johnson, R. Wirz, “Aero-structural investigation of

  16. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    H. J. D. Williamson, "Low head pico hydro turbine selectionA.4.1 GUI –Interface -1: Low Head and high flow Figure A-2:4 Low-Head or Low-Flow River

  17. Design and Fabrication of cm-scale Tesla Turbines

    E-Print Network [OSTI]

    Krishnan, Vedavalli Gomatam

    2015-01-01

    H. J. D. Williamson, "Low head pico hydro turbine selection4 Low-Head or Low-Flow River124 A.4.1 GUI –Interface -1: Low Head and high

  18. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    of figures Land-based and offshore wind energy resource ofFigure 1.1: Land-based and offshore wind energy resource of14] 4C Offshore, “Offshore Wind Turbine: S7.0-171, Sam- sung

  19. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    of figures Land-based and offshore wind energy resource ofsamsung-s7.0-171, 2012. Accessed: [14] 4C Offshore, “Offshore Wind Turbine: S7.0-171, Sam- sung Heavy

  20. Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994

    SciTech Connect (OSTI)

    1995-02-01

    Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

  1. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    SciTech Connect (OSTI)

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  2. On the Role of Basic Design Concepts in Behaviour Structuring

    E-Print Network [OSTI]

    Pires, Luís Ferreira

    On the Role of Basic Design Concepts in Behaviour Structuring Dick A.C. Quartel1 , Luís Ferreira to repre- sent behaviour structure, the structuring of the design process, and the definition of design facilitate the designer to conceive, structure and refine the essential characteristics of a system

  3. Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical Extrapolation from Limited Field Data

    E-Print Network [OSTI]

    Manuel, Lance

    Paper No. 2006-JSC-397 Agarwal Design Loads for an Offshore Wind Turbine using Statistical a field measurement campaign. At the Blyth offshore wind farm in the United Kingdom, a 2MW wind turbine of variability in the parameters for load distribution is investigated. KEY WORDS: Offshore wind turbines

  4. Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Design and Test of a Vertical-Axis Wind Turbine with Pitch Control J. J. Miau1,a , S. Y. Liang2 , R, USA a jjmiau@mail.ncku.edu.tw Keywords: vertical-axis wind turbine, pitch control, wind of a small vertical-axis wind turbine. Benefits gained can be shown by the experimental and numerical results

  5. Application of biological design criteria and computational fluid dynamics to investigate fish survival in Kaplan turbines

    SciTech Connect (OSTI)

    Garrison, Laura A.; Fisher, Jr., Richard K.; Sale, Michael J.; Cada, Glenn

    2002-07-01

    One of the contributing factors to fish injury in a turbine environment is shear stress. This paper presents the use of computational fluid dynamics (CFD) to display and quantify areas of elevated shear stress in the Wanapum Kaplan turbine operating at four different flow conditions over its operating range. CFD observations will be compared to field test observations at the same four flow conditions. Methods developed here could be used to facilitate the design of turbines and related water passages with lower risks of fish injury.

  6. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  7. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  8. Engineering study for ISSTRS design concept

    SciTech Connect (OSTI)

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  9. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    SciTech Connect (OSTI)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  10. Spatial Concepts in GIS and Design, Position Papers

    E-Print Network [OSTI]

    Center for Spatial Studies, UCSB; National Center for Geographical Information and Analysis; Esri

    2008-01-01

    Fisher, P. F. (1998). Is GIS Hidebound by the Legacy ofand R. McMaster (Eds. ) GIS & Society Research . SageMeeting— Spatial Concepts in GIS and Design Sui—62 Lidwell,

  11. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1995-11-01

    This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

  12. The Design and Development of An Externally Fired Steam Injected Gas Turbine for Cogeneration 

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Ford, D.

    1981-01-01

    This paper describes the theoretical background and the design and development of a prototype externally fired steam injected (ECSI) gas turbine which has a potential to utilize lower grade fuels. The system is designed around a 2 shaft 360 HP gas...

  13. Superconducting generators for large off shore wind turbines 

    E-Print Network [OSTI]

    Keysan, Ozan

    2014-06-30

    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

  14. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    Blade designs are defined by a set of cross-sectionclass of blade designs . . . . . . . . . . . . .Artisticand Structural Blade and Wing Design,” 2011. [35] R. E. Wirz

  15. Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential

    E-Print Network [OSTI]

    Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce

  16. Design, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, Russ Tedrake*

    E-Print Network [OSTI]

    Jackson, Daniel

    Design, Analysis, and Learning Control of a Robotic Wind Turbine J. Zico Kolter, Zachary Jackowski, Russ Tedrake* Abstract-- Wind power represents one of the most promising sources of renewable energy, and improvements to wind turbine design and control can have a significant impact on energy sustainability

  17. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect (OSTI)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  18. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  19. Aero-Structural Design Investigations for Biplane Wind Turbine Blades

    E-Print Network [OSTI]

    Roth-Johnson, Perry

    2014-01-01

    4 Structural design of spars for 100- meter biplane windR. Wirz, E. Lin, “Structural design of spars for 100-mP. Johnson, R. Wirz, “Structural design of spars for 100-m

  20. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    SciTech Connect (OSTI)

    1994-10-01

    Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

  1. Test data will be used to validate advanced turbine design and analysis tools.

    E-Print Network [OSTI]

    Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize

  2. Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

  3. MODELING, IDENTIFICATION AND CONTROL, 2006, VOL. 00, NO. 0, 000000 Control Design for a Gas Turbine Cycle with CO2 Capture

    E-Print Network [OSTI]

    Foss, Bjarne A.

    capture The semi-closed oxy-fuel gas turbine cycle has been suggested in (Ulizar and Pilidis, 1997 in Section 2), is based on concept (c) above. The exhaust gas from a gas turbine with CO2 as working fluid is removed and the CO2 is recycled as working fluid in the gas turbine. The purpose of this paper

  4. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    SciTech Connect (OSTI)

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  5. International Effort Advances Offshore Wind Turbine Design Codes...

    Broader source: Energy.gov (indexed) [DOE]

    under the International Energy Agency's (IEA) Task 30 to improve the tools used to design offshore wind energy systems. The computer-aided engineering tools used to design offshore...

  6. Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher

    E-Print Network [OSTI]

    Ingestion of high temperature mainstream gas into the rotor-stator cavities of a gas turbine is one of the major problems faced by the turbine designers. The ingested gas heats up rotor disks and induces higher a negative effect on the gas turbine thermal efficiency, one goal is to use the least possible amount

  7. Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Quach, K.; Robb, A. G.

    2008-01-01

    Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

  8. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  9. TURBINE BURNERS: Engine Performance Improvements;

    E-Print Network [OSTI]

    Heydari, Payam

    the expansion through the turbine for turbojet , turbofan , and stationary - power gas - turbine engines. StudyTURBINE BURNERS: Engine Performance Improvements; Mixing, Ignition, and Flame-Holding in High/WEIGHT Range highly undesirable Desirable Not Good #12;TURBINE BURNER CONCEPT Turbine burning has advantage

  10. DESIGN, ANALYSIS AND TEST CONCEPT FOR PROTOTYPE CRYOLINE OF ITER

    SciTech Connect (OSTI)

    Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch.

    2008-03-16

    The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P and I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

  11. Generic repository design concepts and thermal analysis (FY11).

    SciTech Connect (OSTI)

    Howard, Robert; Dupont, Mark; Blink, James A.; Fratoni, Massimiliano; Greenberg, Harris; Carter, Joe; Hardin, Ernest L.; Sutton, Mark A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

  12. Advanced turbine systems program -- Conceptual design and product development. Final report

    SciTech Connect (OSTI)

    1996-07-26

    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  13. Advanced turbine systems (ATS) program conceptual design and product development. Quarterly report, September 1 - November 30, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature must increase, although this will lead to increased NOx emission. Improved coating and materials along with creative combustor design can result in solutions. The program is focused on two specific products: a 70 MW class industrial gas turbine based on GE90 core technology utilizing an innovative air cooling methodology, and a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. This report reports on tasks 3-8 for the industrial ATS and the utility ATS. Some impingement heat transfer results are given.

  14. Annual Report: Turbines (30 September 2012)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2012-09-30

    The FY12 NETL-RUA Turbine Thermal Management effort supported the Department of Energy (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach includes explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address ? Development and design of aerothermal and materials concepts in FY12-13. ? Design and manufacturing of these advanced concepts in FY13. ? Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. The Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of aerothermal and heat transfer, coatings and materials development, design integration and testing, and a secondary flow rotating rig.

  15. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  16. Increased confidence in concept design through trade space exploration and multiobjective optimization

    E-Print Network [OSTI]

    Odegard, Ryan Glenn

    2008-01-01

    The growing size, complexity and demands of engineering systems requires paying greater attention to the initial design of the system concept. To improve the process by which concept design is carried out, this thesis ...

  17. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 2, Appendix A: Fixed bed gasifier and sulfur sorbent regeneration subsystem computer model development: Final report

    SciTech Connect (OSTI)

    Blough, E.; Russell, W.; Leach, J.W.

    1990-08-01

    Computer models have been developed for evaluating conceptual designs of integrated coal gasification combined cycle power plants. An overall system model was developed for performing thermodynamic cycle analyses, and detailed models were developed for predicting performance characteristics of fixed bed coal gasifiers and hot gas clean up subsystem components. The overall system model performs mass and energy balances and does chemical equilibrium analyses to determine the effects of changes in operating conditions, or to evaluate proposed design changes. An existing plug flow model for fixed bed gasifiers known as the Wen II model was revised and updated. Also, a spread sheet model of zinc ferrite sulfur sorbent regeneration subsystem was developed. Parametric analyses were performed to determine how performance depends on variables in the system design. The work was done to support CRS Sirrine Incorporated in their study of standardized air blown coal gasifier gas turbine concepts.

  19. DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT

    E-Print Network [OSTI]

    Raffray, A. René

    DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT X.R. Wanga , S Consulting, Fliederweg 3, 76351 Linkenheim, Germany A helium-cooled plate-type divertor design concept has of the concept in the high heat flux zone. This paper describes the design optimization of the helium

  20. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect (OSTI)

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

  1. Turbine Research Program Cold Weather Turbine Project: Period of Performance May 27, 1999 -- March 31, 2004

    SciTech Connect (OSTI)

    Lynch, J.; Bywaters, G.; Costin, D.; Hoskins, S.; Mattila, P.; Stowell, J.

    2004-08-01

    Northern Power Systems completed the Cold Weather Turbine (CWT) project, which was funded by the National Renewable Energy Laboratory (NREL), under subcontract XAT-9-29200-01. The project's primary goal is to develop a 100-kW wind turbine suited for deployment in remote villages in cold regions. The contract required testing and certification of the turbine to the International Electrotechnical Commission (IEC) 61400-1 international standard through Underwriters Laboratories (UL). The contract also required Northern Power Systems to study design considerations for operation in extreme cold (-80F at the South Pole, for example). The design was based on the successful proof of concept (POC) turbine (developed under NREL and NASA contracts), considered the prototype turbine that would be refined and manufactured to serve villages in cold regions around the world.

  2. Houlsby, G. T., Kelly, R. B., Huxtable, J. & Byrne, B. W. (2006). Geotechnique 56, No. 1, 310 Field trials of suction caissons in sand for offshore wind turbine

    E-Print Network [OSTI]

    Byrne, Byron

    2006-01-01

    Field trials of suction caissons in sand for offshore wind turbine foundations G. T. HOULSBY*, R. B to the design of either monopod or quadruped foundations for offshore wind turbines. Records are presented conception de fonda- tions de turbines e´oliennes. INTRODUCTION The offshore wind energy industry is a very

  3. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    SciTech Connect (OSTI)

    Dykes, K.; Resor, B.; Platt, A.; Guo, Y.; Ning, A.; King, R.; Parsons, T.; Petch, D.; Veers, P.

    2014-10-01

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraint on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.

  4. Fish schooling as a basis for vertical axis wind turbine farm design

    E-Print Network [OSTI]

    Whittlesey, Robert W; Dabiri, John O

    2010-01-01

    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooli...

  5. Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels-erik.clausen@risoe.dk, Sren Ott, Niels-Jacob Tarp-Johansen, Per Nrgrd and

    E-Print Network [OSTI]

    Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels and cost of wind turbines is influenced by a combination of fatigue and extreme loads and the applied design codes. In general wind turbines are designed for 20 years of operation using design standards

  6. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    SciTech Connect (OSTI)

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; Ravichandran, Maruthi T.

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.

  7. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect (OSTI)

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx}21%) for a range of operating and design parameters. Further, to achieve high efficiency engines requires that the exergy be managed and not necessarily reduced. The overall thermodynamics is the final discriminator regarding high efficiency engines.

  8. This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published

    E-Print Network [OSTI]

    Papalambros, Panos

    ://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

  9. Optimal integrated design of air separation unit and gas turbine block for IGCC systems

    SciTech Connect (OSTI)

    Kamath, R.; Grossman, I.; Biegler, L.; Zitney, S.

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  10. Optimal Integrated Design of Air Separation Unit and Gas Turbine Block for IGCC Systems

    SciTech Connect (OSTI)

    Ravindra S. Kamath; Ignacio E. Grossmann; Lorenz T. Biegler; Stephen E. Zitney

    2009-01-01

    The Integrated Gasification Combined Cycle (IGCC) systems are considered as a promising technology for power generation. However, they are not yet in widespread commercial use and opportunities remain to improve system feasibility and profitability via improved process integration. This work focuses on the integrated design of gasification system, air separation unit (ASU) and the gas turbine (GT) block. The ASU supplies oxygen to the gasification system and it can also supply nitrogen (if required as a diluent) to the gas turbine block with minimal incremental cost. Since both GT and the ASU require a source of compressed air, integrating the air requirement of these units is a logical starting point for facility optimization (Smith et al., 1997). Air extraction from the GT can reduce or avoid the compression cost in the ASU and the nitrogen injection can reduce NOx emissions and promote trouble-free operation of the GT block (Wimer et al., 2006). There are several possible degrees of integration between the ASU and the GT (Smith and Klosek, 2001). In the case of 'total' integration, where all the air required for the ASU is supplied by the GT compressor and the ASU is expected to be an elevated-pressure (EP) type. Alternatively, the ASU can be 'stand alone' without any integration with the GT. In this case, the ASU operates at low pressure (LP), with its own air compressor delivering air to the cryogenic process at the minimum energy cost. Here, nitrogen may or may not be injected because of the energy penalty issue and instead, syngas humidification may be preferred. A design, which is intermediate between these two cases, involves partial supply of air by the gas turbine and the remainder by a separate air compressor. These integration schemes have been utilized in some IGCC projects. Examples include Nuon Power Plant at Buggenum, Netherlands (both air and nitrogen integration), Polk Power Station at Tampa, US (nitrogen-only integration) and LGTI at Plaquemine, US (stand-alone). However, there is very little information on systematic assessment of air extraction, nitrogen injection and configuration and operating conditions of the ASU and it is not clear which scheme is optimal for a given IGCC application. In this work, we address the above mentioned problem systematically using mixed-integer optimization. This approach allows the use of various objectives such as minimizing the investment and operating cost or SOx and NOx emissions, maximizing power output or overall efficiency or a weighted combination of these factors. A superstructure is proposed which incorporates all the integration schemes described above. Simplified models for ASU, gas turbine system and steam cycle are used which provide reasonable estimates for performance and cost (Frey and Zhu, 2006). The optimal structural configuration and operating conditions are presented for several case studies and it is observed that the optimal solution changes significantly depending on the specified objective.

  11. Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System

    SciTech Connect (OSTI)

    1994-12-01

    This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

  12. Annual Report: Turbine Thermal Management (30 September 2013)

    SciTech Connect (OSTI)

    Alvin, Mary Anne; Richards, George

    2014-04-10

    The FY13 NETL-RUA Turbine Thermal Management effort supported the Department of Energy’s (DOE) Hydrogen Turbine Program through conduct of novel, fundamental, basic, and applied research in the areas of aerothermal heat transfer, coatings development, and secondary flow control. This research project utilized the extensive expertise and facilities readily available at NETL and the participating universities. The research approach included explorative studies based on scaled models and prototype coupon tests conducted under realistic high-temperature, pressurized, turbine operating conditions. This research is expected to render measurable outcomes that will meet DOE’s advanced turbine development goals of a 3- to 5-point increase in power island efficiency and a 30 percent power increase above the hydrogen-fired combined cycle baseline. In addition, knowledge gained from this project will further advance the aerothermal cooling and TBC technologies in the general turbine community. This project has been structured to address: • Development and design of aerothermal and materials concepts in FY12-13. • Design and manufacturing of these advanced concepts in FY13. • Bench-scale/proof-of-concept testing of these concepts in FY13-14 and beyond. In addition to a Project Management task, the Turbine Thermal Management project consists of four tasks that focus on a critical technology development in the areas of heat transfer, materials development, and secondary flow control. These include: • Aerothermal and Heat Transfer • Coatings and Materials Development • Design Integration and Testing • Secondary Flow Rotating Rig.

  13. Innovative Design Concept for the New Bangkok International Airport, NBIA 

    E-Print Network [OSTI]

    Kessling, W.; Holst, S.; Schuler, M.

    2004-01-01

    using photovoltaic modules covering a surface area of 55,000 m² for the immediate generation of electric power in combination with an electrically powered compression chiller system was compared to other concepts under the aspect of economy. Fig. 17... that the concept will work even if flight schedules are drastically changed. The building has a maximum cooling demand of 44 MW, where a third is covered by radiant floor cooling, fresh air conditioning and return air cooling respectively. With pre...

  14. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect (OSTI)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  15. A Rollator-Mounted Wayfinding System for the Elderly: Proof-of-Concept Design

    E-Print Network [OSTI]

    Kulyukin, Vladimir

    A Rollator-Mounted Wayfinding System for the Elderly: Proof-of-Concept Design and Preliminary to this research venue by describing the proof-of-concept design and preliminary technical evaluation of i efforts, iWalker emphasizes a smart world (SW) perspective. A SW is a physical space equipped

  16. ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY ASSESSMENT THROUGH THEORY, SIMULATION AND DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    revolution that enables economic development of wind farms in very challenging deepwater offshore locationsA-1 ENERGY FOR SUSTAINABILITY: HIGHLY COMPLIANT FLOATING OFFSHORE WIND TURBINES: FEASIBILITY surrounding Europe, and plans are in place for offshore developments in the US. Locating these wind turbines

  17. Design trade studies and assessment for advanced quiet aircraft concepts

    E-Print Network [OSTI]

    Tan, David York Luen, 1979-

    2005-01-01

    (cont.) designed for 4,000nm range, 25,000 to 35,000ft cruise altitude, Mach 0.8 at cruise, and 10,000 to 14,000ft takeoff field length. By identifying the main high-level design drivers of an aircraft design, the mission ...

  18. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  19. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  20. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  1. Off-design performance characteristics of a twin shaft gas turbine engine with regeneration 

    E-Print Network [OSTI]

    Leckie, Todd Stewart

    1984-01-01

    of Advisory Comnittee: Dr. Peter E. Jenkins An analytical srx)el was developed which determines the operating point at various gasifier speeds for a twin shaft gas turbine engine with regeneration. The model also calculates temperatures and pressures thrm... and speed for the compressor 81 82 A4 Non-dQnensional mass flow as a function of pressure ratio for the gasifier turbine 83 A5 Isentropic efficiency as a function of pressure ratio and non-dimensional speed for the gasifier turbine A6 Non...

  2. Probabilistic turbine blade thermal analysis of manufacturing variability and toleranced designs

    E-Print Network [OSTI]

    Moeckel, Curtis William

    2006-01-01

    Manufacturing variability is likely the primary cause of a large scatter in the life of gas turbine hot-section components. This research deals with schemes to improve robustness through tolerancing input parameters in ...

  3. On the Role of Continuum Structural Topology Optimization in Concept Design of Civil Structures

    E-Print Network [OSTI]

    Swan Jr., Colby Corson

    1 On the Role of Continuum Structural Topology Optimization in Concept Design of Civil Structures Center for Computer-Aided Design The University of Iowa Iowa City, Iowa 2001 Structures Congress · Structural domain is discretized into a mesh of volume/area elements. · A solid volume-fraction design

  4. Applying set based methodology in submarine concept design

    E-Print Network [OSTI]

    Frye, Matthew C. (Matthew Clinton)

    2010-01-01

    Early stage ship design decisions continue to be a challenge for naval architects and engineers. The complex interactions between the different elements of the ship and the broad spectrum of disciplines required in ship ...

  5. Experimental concept and design of DarkLight, a search for a heavy photon

    SciTech Connect (OSTI)

    Cowan, Ray F.

    2013-11-01

    This talk gives an overview of the DarkLight experimental concept: a search for a heavy photon A′ in the 10-90 MeV/c 2 mass range. After briefly describing the theoretical motivation, the talk focuses on the experimental concept and design. Topics include operation using a half-megawatt, 100 MeV electron beam at the Jefferson Lab FEL, detector design and performance, and expected backgrounds estimated from beam tests and Monte Carlo simulations.

  6. Experimental concept and design of DarkLight, a search for a heavy photon

    SciTech Connect (OSTI)

    Cowan, Ray F.; Collaboration: DarkLight Collaboration

    2013-11-07

    This talk gives an overview of the DarkLight experimental concept: a search for a heavy photon A? in the 10-90 MeV/c{sup 2} mass range. After briefly describing the theoretical motivation, the talk focuses on the experimental concept and design. Topics include operation using a half-megawatt, 100 MeV electron beam at the Jefferson Lab FEL, detector design and performance, and expected backgrounds estimated from beam tests and Monte Carlo simulations.

  7. A new design concept for an automated peanut processing facility

    SciTech Connect (OSTI)

    Ertas, A.; Tanju, B.T. [Texas Tech Univ., Lubbock, TX (United States); Fair, W.T. [Long Shot, Inc., Seminole, TX (United States); Butts, C. [National Peanut Research Lab., Dawson, GA (United States)

    1996-12-31

    Peanut quality is a major concern in all phases of the peanut industry from production to manufacturing. Postharvest processing of peanuts can have profound effects on the quality and safety of peanut food products. Curing is a key step in postharvest processing. Curing peanuts improperly can significantly reduce quality, and result in significant losses to both farmers and processors. The conventional drying system designed in the 1960`s is still being used in the processing of the peanuts today. The objectives of this paper is to design and develop a new automated peanut drying system for dry climates capable of handling approximately 20 million lbm of peanuts per harvest season.

  8. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal performance between the various coproduct cases is further complicated by the fact that the carbon footprint is not the same when carbon leaving with the coproduct are accounted for. The economic analysis and demand for a particular coproduct in the market place is a more meaningful comparison of the various coproduction scenarios. The first year cost of electricity calculated for the bituminous coal is $102.9/MWh while that for the lignite is $108.1/MWh. The calculated cost of hydrogen ranged from $1.42/kg to $2.77/kg depending on the feedstock, which is lower than the DOE announced hydrogen cost goal of $3.00/kg in July 14, 2005. Methanol cost ranged from $345/MT to $617/MT, while the market price is around $450/MT. For Fischer-Tropsch liquids, the calculated cost ranged from $65/bbl to $112/bbl, which is comparable to the current market price of crude oil at around $100/bbl. It should be noted, however, that F-T liquids contain no sulfur and nitrogen compounds. The calculated cost of alcohol ranged from $4.37/gal to $5.43/gal, while it ranged from $2.20/gal to $3.70/gal in a DOE funded study conducted by Louisiana State University. The Louisiana State University study consisted of a significantly larger plant than our study and benefited from economies of scale. When the plant size in our study is scaled up to similar size as in the Louisiana State University study, cost of alcohol is then reduced to a range of $3.24/gal to $4.28/gal, which is comparable. Urea cost ranged from $307/MT to $428/MT, while the market price is around $480/MT.

  9. Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and

    E-Print Network [OSTI]

    Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set

  10. Lead Coolant Test Facility - Design Concept and Requirements

    SciTech Connect (OSTI)

    Soli Khericha, Ph. D.

    2011-08-01

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements are identified in this paper: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing Across these five broad areas are supported by twenty-one specific requirements. The purpose of this facility is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  11. Definition of a 5MW/61.5m wind turbine blade reference model.

    SciTech Connect (OSTI)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  12. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  13. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  14. Single casing reheat turbine

    SciTech Connect (OSTI)

    Matsushima, Tatsuro; Nishimura, Shigeo

    1999-07-01

    For conventional power plants, regenerative reheat steam turbines have been accepted as the most practical method to meet the demand for efficient and economical power generation. Recently the application of reheat steam turbines for combined cycle power plant began according to the development of large-capacity high temperature gas turbine. The two casing double flow turbine has been applied for this size of reheat steam turbine. The single casing reheat turbine can offer economical and compact power plant. Through development of HP-LP combined rotor and long LP blading series, Mitsubishi Heavy Industries, Ltd. had developed a single casing reheat steam turbine series and began to use it in actual plants. Six units are already in operation and another seven units are under manufacturing. Multiple benefits of single casing reheat turbine are smaller space requirements, shorter construction and erection period, equally good performance, easier operation and maintenance, shorter overhaul period, smaller initial investment, lower transportation expense and so on. Furthermore, single exhaust steam turbine makes possible to apply axial exhaust type, which will lower the height of T/G foundation and T/G housing. The single casing reheat turbine has not only compact and economical configuration itself but also it can reduce the cost of civil construction. In this paper, major developments and design features of the single casing reheat turbine are briefly discussed and operating experience, line-up and technical consideration for performance improvement are presented.

  15. Hardware-in-the-Loop Simulations and Control Design for a Small Vertical Axis Wind Turbine

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    the dynamics of the rotor. To deal with disturbance torques in the HIL system, a virtual plant is introduced to obtain an error between the speeds in the HIL system and virtual plant. This error is used by a pro a maximum power point tracking (MPPT) algorithm for small vertical axis wind turbines (VAWTs). Wind torque

  16. Task 8.4 - High Temperature Turbine Disk Development

    SciTech Connect (OSTI)

    NONE

    1997-02-27

    The goal of this task is to demonstrate a bonding technique to produce a dual-alloy turbine disk concept which will satisfy the diverse property requirements of the rim and hub areas of the disk. The program examines methods of attaching a cast superalloy rim with sufficient rupture strength to a fine grain hub materials with the required LCF properties. The goals of the program were established in the context of a preliminary turbine design by Solar Turbines, Inc. designated ATS 5. The initial target for the ATS 5 application was to allow rim operating temperatures in the 1350-1400 {degrees} F range. The life goal of the Dual-Alloy Disk was envisioned to maintain Solar`s standard turbine disk philosophy of 1000,000 hours.

  17. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect (OSTI)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  18. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

  19. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    SciTech Connect (OSTI)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  20. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  1. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  2. Operational concepts and implementation strategies for the design configuration management process.

    SciTech Connect (OSTI)

    Trauth, Sharon Lee

    2007-05-01

    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  3. J. F. Mandell, D. D. Samborsky, and H. J. Sutherland, "Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades", 1999

    E-Print Network [OSTI]

    J. F. Mandell, D. D. Samborsky, and H. J. Sutherland, "Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades", 1999 EWEC, Nice, France, March 1-5, 1999. Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind

  4. Fish-Friendly Hydropower Turbine Development & Deployment: Alden Turbine Preliminary Engineering and Model Testing

    SciTech Connect (OSTI)

    2011-10-01

    The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), the design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.

  5. Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine

    E-Print Network [OSTI]

    Samuelsen, GS; Therkelsen, P; Werts, T; McDonell, V

    2009-01-01

    A HYDROGEN FUELED GAS TURBINE ENGINE Peter Therkelsen, Tavisnatural gas fueled gas turbine engine was operated ongas. INTRODUCTION Gas turbine engines designed to operate on

  6. Thin Liquid Wall Concepts and the CLiFF Design APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    , and then removed from the vacuum chamber by gravity drainage, an EM pump (if the working liquid is an electrical of the preliminary design, heat transfer, power balance, thermal-hydraulic performance, neutronics, activation/blanket concept will behave (thermal- hydraulically) in a very similar fashion to the various thick liquid wall

  7. Spanish Power Exchange Market and Information System Design concepts, and operating experience

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Spanish Power Exchange Market and Information System Design concepts, and operating experience Jose Abstract: Since January, 1st, 1998, the new Spanish: Since January, 1st, 1998, the new Spanish Electricity negotiate all power exchanges through the spot market. The Spanish Power Exchange Market Operator (Compañia

  8. Spanish Power Exchange Market and Information System Design concepts, and operating experience

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Spanish Power Exchange Market and Information System Design concepts, and operating experience Jose negotiate all power exchanges through the spot market. The Spanish Power Exchange Market Operator (Compañia 1999 indicating each specific market results and aggregate statistics. Keywords: Power Exchange Market

  9. This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the

    E-Print Network [OSTI]

    This thesis seeks to further explore off-design point operation of gas turbines and to examine the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally

  10. Gas Turbine Emissions 

    E-Print Network [OSTI]

    Frederick, J. D.

    1990-01-01

    Historically, preliminary design information regarding gas turbine emissions has been unreliable, particularly for facilities using steam injection and other forms of Best Available Control Technology (BACT). This was probably attributed to the lack...

  11. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Analysis and Concept Design for grey water heat

    E-Print Network [OSTI]

    Design for grey water heat recovery to preheat domestic water supply for multi-unit residential high rise of a project/report". #12;2 Analysis and Concept Design for grey water heat recovery to preheat domestic water

  13. Chapter Summary: Thin Liquid Wall Concepts and the CLiFF Design The idea behind CLiFF, the Convective Liquid Flow First-Wall concept, is to

    E-Print Network [OSTI]

    California at Los Angeles, University of

    . Design Description The majority of the work reported here was carried out for the tokamak. Specifically in Figure 7-1, is conceptually simple in its implementation. A thin fast liquid layer is injected near7-1 Chapter Summary: Thin Liquid Wall Concepts and the CLiFF Design The idea behind CLi

  14. Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996

    SciTech Connect (OSTI)

    1996-10-01

    The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

  15. OF CARBON FIBERS TURBINE BLADE

    E-Print Network [OSTI]

    THE USE IN WIND DESIGN: OF CARBON FIBERS TURBINE BLADE A SERI-8BLADE EXAMPLE Cheng Printed March 2000 The Use of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng represent different volumes of carbon fibers in the blade, were also studied for two design options

  16. Design of Human-GIS Dialogue for Communication of Vague Spatial Concepts Based on Human Communication Framework

    E-Print Network [OSTI]

    Klippel, Alexander

    Design of Human-GIS Dialogue for Communication of Vague Spatial Concepts Based on Human for GIS [1, 2]. One of the challenges for designing such an interface is that natural language is vague and ambiguous when used in the communication of spatial concepts. This challenge has been recognized by the GIS

  17. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01

    to reduce the cost of all future floating wind turbines andwind turbine is an important factor in the design of these structures, reducing the cost

  18. An autonomous long-term fast reactor system and the principal design limitations of the concept 

    E-Print Network [OSTI]

    Tsvetkova, Galina Valeryevna

    2004-09-30

    VALERYEVNA TSVETKOVA Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Kenneth L. Peddicord (Chair of Committee) Yassin A... System and the Principal Design Limitations of the Concept. (December 2003) Galina Valeryevna Tsvetkova, Dipl., Moscow State Engineering Physics Institute,Russia Chair of Advisory Committee: Dr. Kenneth L. Peddicord The objectives of this dissertation...

  19. Classification concepts from object oriented software design applied to engineering design 

    E-Print Network [OSTI]

    Krishnamurthy, Ritesh

    2002-01-01

    information to guide design decisions. In this thesis, the feature of Inheritance is proposed as a way to organize the information in these charts. Supplementary details are provided in the form of functions and properties to enable easier access...

  20. SAFETY GUIDED DESIGN OF CREW RETURN VEHICLE IN CONCEPT DESIGN PHASE USING STAMP/STPA

    E-Print Network [OSTI]

    Leveson, Nancy

    safe space systems. During system design, component failure based analyses, such as FTA and FMEA that are not related to component failures using FTA/FMEA, which can lead to inadequate investigation for hazards

  1. Overview and Current Status of Analyses of Potential LEU Design Concepts for TREAT

    SciTech Connect (OSTI)

    Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.; Wright, A. E.

    2015-10-01

    Neutronic and thermal-hydraulic analyses have been performed to evaluate the performance of different low-enriched uranium (LEU) fuel design concepts for the conversion of the Transient Reactor Test Facility (TREAT) from its current high-enriched uranium (HEU) fuel. TREAT is an experimental reactor developed to generate high neutron flux transients for the testing of nuclear fuels. The goal of this work was to identify an LEU design which can maintain the performance of the existing HEU core while continuing to operate safely. A wide variety of design options were considered, with a focus on minimizing peak fuel temperatures and optimizing the power coupling between the TREAT core and test samples. Designs were also evaluated to ensure that they provide sufficient reactivity and shutdown margin for each control rod bank. Analyses were performed using the core loading and experiment configuration of historic M8 Power Calibration experiments (M8CAL). The Monte Carlo code MCNP was utilized for steady-state analyses, and transient calculations were performed with the point kinetics code TREKIN. Thermal analyses were performed with the COMSOL multi-physics code. Using the results of this study, a new LEU Baseline design concept is being established, which will be evaluated in detail in a future report.

  2. Alstom 3-MW Wind Turbine Installed at NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    The 3-MW Alstom wind turbine was installed at NREL's NWTC in October 2010. Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing on the company's 3-MW ECO 100 wind turbine and to validate models of Alstom's unique drivetrain concept. The turbine was installed at NREL's National Wind Technology Center (NWTC) in October 2010 and engineers began certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize the International Electrotechnical Commission (IEC) requirements for type certification of the 60-Hz unit. The successful outcome of this test will enable Alstom to begin commercial production of ECO 100 in the United States. NREL also will obtain additional measurements of power performance, acoustic noise, and system frequency to complement the 50 Hz results previously completed in Europe. After NREL completes the certification testing on the ECO 100, it will conduct long-term testing to validate gearbox performance to gain a better understanding of the machine's unique ALSTOM PURE TORQUE{trademark} drivetrain concept. In conventional wind turbines, the rotor is supported by the shaft-bearing gearbox assembly. Rotor loads are partially transmitted to the gearbox and may reduce gearbox reliability. In the ALSTOM PURE TORQUE concept, the rotor is supported by a cast frame running through the hub, which transfers bending loads directly to the tower. Torque is transmitted to the shaft through an elastic coupling at the front of the hub. According to Alstom, this system will increase wind turbine reliability and reduce operation and maintenance costs by isolating the gearbox from rotor loads. Gearbox reliability has challenged the wind energy industry for more than two decades. Gearbox failures require expensive and time-consuming replacement, significantly increasing the cost of wind plant operation while reducing the plant's power output and revenue. To solve gearbox reliability issues, NREL launched a Gearbox Reliability Collaborative (GRC) in 2006 and brought together the world's leading turbine manufacturers, consultants, and experts from more than 30 companies and organizations. GRC's goal was to validate the typical design process-from wind turbine system loads to bearing ratings-through a comprehensive dynamometer and field-test program. Design analyses will form a basis for improving reliability of future designs and retrofit packages. Through its study of Alstom's Eco 100 gearbox, NREL can compare its GRC model gearbox with Alstom's and add the results to the GRC database, which is helping to advance more reliable wind turbine technology.

  3. DESIGN AND DEVELOPMENT OF COST EFFECTIVE SURFACE MOUNTED WATER TURBINES FOR RURAL ELECTRICITY PRODUCTION

    E-Print Network [OSTI]

    Sóbester, András

    model and design of hydro dynamically balanced rotor. Small-scale hydro power is the key source of serving the ever increasing demand of power requirements in the shortest time are driving forces for small/low head hydro power generation. This project intends to design and develop cost effective design

  4. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01

    Bloomberg NEF”). 2011c. Wind Turbine Price Index, Issue V.Hand, A. Laxson. 2006. Wind Turbine Design Cost and Scalingof a Multi-MegaWatt Wind Turbine. ” Renewable Energy, vol.

  5. Understanding Trends in Wind Turbine Prices Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2012-01-01

    Dissecting Wind Turbine Costs. ” WindStats Newsletter, vol.A. Laxson. 2006. Wind Turbine Design Cost and Scaling Model.they can impact wind turbine costs but fall mostly outside

  6. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  7. Advanced turbine systems program conceptual design and product development quarterly report, May--July 1995

    SciTech Connect (OSTI)

    1995-08-01

    Progress for the quarter is reported in the areas of system definition and analysis and design and test of critical components.

  8. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  9. Design and construction of vertical axis wind turbines using dual-layer vacuum-forming

    E-Print Network [OSTI]

    Carper, Christopher T

    2010-01-01

    How does one visualize wind? Is it the way trees bend in a strong gust or the way smoke is carried in a breeze? What if wind could be visualized using design, technology, and light? This thesis documents the design of a ...

  10. Microhydropower Turbine, Pump, and Waterwheel Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impulse turbines, which have the least complex design, are most commonly used for high-head microhydro systems. They rely on the velocity of water to move the turbine wheel,...

  11. Design Considerations for Monopile Founded Offshore Wind Turbines Subject to Breaking Waves 

    E-Print Network [OSTI]

    Owens, Garrett Reese 1987-

    2012-11-26

    The majority of offshore wind farms utilize monopile substructures. As these wind farms are typically located in water depths less than 30 meters, the effect of breaking waves on these structures is of great concern to design engineers...

  12. Model-based design of an ultra high performance concrete support structure for a wind turbine

    E-Print Network [OSTI]

    Wang, Zheng, M. Eng. Massachusetts Institute of Technology

    2007-01-01

    A support tower is the main structure which would support rotor, power transmission and control systems, and elevates the rotating blades above the earth boundary layer. A successful design should ensure safe, efficient ...

  13. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  14. Preliminary Design Procedure for Gas TurbineTopping Reverse-Flow Wave Rotors

    E-Print Network [OSTI]

    Müller, Norbert

    of wave energy exchange and proposed a wave rotor design for aircraft turbofan engines (Taussig, 1984.S. Navy expressed interest and sponsored programs to develop an understanding of wave rotor technology. Many developments were presented in the 1985 ONR/NAVAIR Wave Rotor Research and Technology Workshop

  15. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    will result in design driving loads for the turbine blades.will result in design driving loads for the turbine blades.Design Study” (Malcolm and Hansen, 2006) to create a blade

  16. Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance

    SciTech Connect (OSTI)

    Eric P. Loewen; Paul Demkowicz

    2005-05-01

    The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

  17. Design concept of K-DEMO for near-term implementation

    SciTech Connect (OSTI)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G -S.; Neilson, G.; Kessel, C.; Brown, T.; Titus, P.; Mikkelsen, D.; Zhai, Y.

    2015-04-22

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb?Sn-based superconducting conductor is adopted, providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.

  18. Design concept of K-DEMO for near-term implementation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C.; Lee, G -S.; et al

    2015-04-22

    A Korean fusion energy development promotion law (FEDPL) was enacted in 2007. As a following step, a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) was initiated in 2012. After the thorough 0D system analysis, the parameters of the main machine characterized by the major and minor radii of 6.8 and 2.1 m, respectively, were chosen for further study. The analyses of heating and current drives were performed for the development of the plasma operation scenarios. Preliminary results on lower hybrid and neutral beam current drive are included herein. A high performance Nb?Sn-based superconducting conductor is adopted,more »providing a peak magnetic field approaching 16 T with the magnetic field at the plasma centre above 7 T. Pressurized water is the prominent choice for the main coolant of K-DEMO when the balance of plant development details is considered. The blanket system adopts a ceramic pebble type breeder. Considering plasma performance, a double-null divertor is the reference configuration choice of K-DEMO. For a high availability operation, K-DEMO incorporates a design with vertical maintenance. A design concept for K-DEMO is presented together with the preliminary design parameters.« less

  19. SMART Wind Turbine Rotor: Design and Field Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts AboutSLED-Fact-Sheet.pdfEnergyEnergyDesign

  20. SMART Wind Turbine Rotor: Design and Field Test | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800 ModificationSJTEnergyDesign and

  1. A Fatigue Approach to Wind Turbine Control

    E-Print Network [OSTI]

    A Fatigue Approach to Wind Turbine Control Keld Hammerum Kongens Lyngby 2006 #12;Technical to the turbulent nature of wind, the structural components of a wind turbine are exposed to highly varying loads. Therefore, fatigue damage is a major consideration when designing wind turbines. The control scheme applied

  2. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  3. New Concepts in Fish Ladder Design, Part I of IV, Summary Report, 1982-1984 Final Project Report.

    SciTech Connect (OSTI)

    Orsborn, John F.

    1985-08-01

    The report looks at the most active periods of fishway research since 1938 as background for a project to apply fundamental fluid and bio-mechanics to fishway design, and develop more cost effective fish passage facilities with primary application to small scale hydropower facilities. Also discussed are new concepts in fishway design, an assessment of fishway development and design, and an analysis of barriers to upstream migration. (ACR)

  4. Design Concept for nu-STORM: An Initial Very Low-Energy Neutrino Factory

    SciTech Connect (OSTI)

    Bross, A.; Geer, S.; Liu, A.; Neuffer, D.; Popovic, M.; /Fermilab; Ankenbrandt, C.; Roberts, T.; /MUONS Inc., Batavia

    2012-05-01

    We present a design concept for a {nu} source from a STORage ring for Muons ({nu}STORM). In this initial design a high-intensity proton beam produces {approx}5 GeV pions that provide muons that are captured using 'stochastic injection' within a 3.6 GeV racetrack storage ring. In 'stochastic injection', the {approx}5 GeV pion beam is transported from the target into the storage ring, dispersion-matched into a long straight section. (Circulating and injection orbits are separated by momentum.) Decays within that straight section provide muons that are within the {approx}3.6 GeV/c ring momentum acceptance and are stored for the muon lifetime of {approx}1000 turns. Muon (and pion) decays in the long straight sections provide neutrino beams of precisely known flux and flavor that can be used for precision measurements of electron and muon neutrino interactions, and neutrino oscillations or disappearance at L/E = {approx}1m/MeV. The facility is described, and variations are discussed.

  5. Fusion transmutation of waste: design and analysis of the in-zinerator concept.

    SciTech Connect (OSTI)

    Durbin, S. M.; Cipiti, Benjamin B.; Olson, Craig Lee; Guild-Bingham, Avery (Texas A& M University, College Station, TX); Venneri, Francesco (General Atomics, San Diego, CA); Meier, Wayne (LLNL, Livermore, CA); Alajo, A.B. (Texas A& M University, College Station, TX); Johnson, T. R. (Argonne Mational Laboratory, Argonne, IL); El-Guebaly, L. A. (University of Wisconsin, Madison, WI); Youssef, M. E. (University of California, Los Angeles, CA); Young, Michael F.; Drennen, Thomas E. (Hobart & William Smith College, Geneva, NY); Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Morrow, Charles W.; Turgeon, Matthew C.; Wilson, Paul (University of Wisconsin, Madison, WI); Phruksarojanakun, Phiphat (University of Wisconsin, Madison, WI); Grady, Ryan (University of Wisconsin, Madison, WI); Keith, Rodney L.; Smith, James Dean; Cook, Jason T.; Sviatoslavsky, Igor N. (University of Wisconsin, Madison, WI); Willit, J. L. (Argonne Mational Laboratory, Argonne, IL); Cleary, Virginia D.; Kamery, William (Hobart & William Smith College, Geneva, NY); Mehlhorn, Thomas Alan; Rochau, Gary Eugene

    2006-11-01

    Due to increasing concerns over the buildup of long-lived transuranic isotopes in spent nuclear fuel waste, attention has been given in recent years to technologies that can burn up these species. The separation and transmutation of transuranics is part of a solution to decreasing the volume and heat load of nuclear waste significantly to increase the repository capacity. A fusion neutron source can be used for transmutation as an alternative to fast reactor systems. Sandia National Laboratories is investigating the use of a Z-Pinch fusion driver for this application. This report summarizes the initial design and engineering issues of this ''In-Zinerator'' concept. Relatively modest fusion requirements on the order of 20 MW can be used to drive a sub-critical, actinide-bearing, fluid blanket. The fluid fuel eliminates the need for expensive fuel fabrication and allows for continuous refueling and removal of fission products. This reactor has the capability of burning up 1,280 kg of actinides per year while at the same time producing 3,000 MWth. The report discusses the baseline design, engineering issues, modeling results, safety issues, and fuel cycle impact.

  6. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  7. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  8. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect (OSTI)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  9. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  10. Dynamic wind turbine models in power system simulation tool

    E-Print Network [OSTI]

    Dynamic wind turbine models in power system simulation tool DIgSILENT Anca D. Hansen, Florin Iov Iov, Poul Sørensen, Nicolaos Cutululis, Clemens Jauch, Frede Blaabjerg Title: Dynamic wind turbine system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second

  11. Author contributions: J.J.: Conception and design, Provision of study material, Collection and/or assembly of data; S.N.: Conception and design, Provision of study material, Collection and/or assembly of data, Data analysis and interpretation; D.N.: Colle

    E-Print Network [OSTI]

    Church, George M.

    /or assembly of data; N.B.: Conception and design, Data analysis and interpretation, Financial supportAuthor contributions: J.J.: Conception and design, Provision of study material, Collection and/or assembly of data; S.N.: Conception and design, Provision of study material, Collection and/or assembly

  12. Condition Based Monitoring of Gas Turbine Combustion Components

    SciTech Connect (OSTI)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  13. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  14. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  15. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

  16. Mitral Web -A New Concept for Mitral Valve Repair: Improved Engineering Design and In-Vitro Studies

    E-Print Network [OSTI]

    Pekkan, Kerem

    Mitral Web - A New Concept for Mitral Valve Repair: Improved Engineering Design and In of Biomedical Engineering, Georgia Institute of Technology, GA, USA Myxomatous mitral valve disease is currently reported that mitral valve repair is preferable to valve replace- ment, as it offers certain advantages

  17. Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou a,*, Manuel Pulido-Velazquez b

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Review Hydro-economic models: Concepts, design, applications, and future prospects Julien J. Harou of Frank Ward, Associate Editor Keywords: Hydro-economic models Integrated water resource management (IWRM and space will increasingly motivate efforts to address water scarcity and reduce water conflicts. Hydro

  18. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  19. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    SciTech Connect (OSTI)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in heavy vehicles. The research work planed for the first year of this project (June 1, 2003 through May 30, 2004) focused on a theoretical investigation of weight benefits and structural performance tradeoffs associated with the design, fabrication, and joining of MMC components for heavy-duty vehicles. This early research work conducted at West Virginia University yielded the development of integrated material-structural models that predicted marginal benefits and significant barriers to MMC applications in heavy trailers. The results also indicated that potential applications of MMC materials in heavy vehicles are limited to components identified as critical for either loadings or weight savings. Therefore, the scope of the project was expanded in the following year (June 1, 2004 through May 30, 2005) focused on expanding the lightweight material-structural design concepts for heavy vehicles from the component to the system level. Thus, the following objectives were set: (1) Devise and evaluate lightweight structural configurations for heavy vehicles. (2) Study the feasibility of using Metal Matrix Composites (MMC) for critical structural components and joints in heavy vehicles. (3) Develop analysis tools, methods, and validated test data for comparative assessments of innovative design and joining concepts. (4) Develop analytical models and software for durability predictions of typical heavy vehicle components made of particulate MMC or fiber-reinforced composites. This report summarizes the results of the research work conducted during the past two years in this projects.

  20. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  1. Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report

    SciTech Connect (OSTI)

    1995-05-01

    Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

  2. A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines

    E-Print Network [OSTI]

    Brest, Université de

    A Comparative Study of Modular Axial Flux Podded Generators for Marine Current Turbines Sofiane turbines (MCTs). Due to the submarine environment, maintenance operations are very hard, very costly current turbine, axial flux permanent magnet generator, design, optimization. Nomenclature MCT = Marine

  3. Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1

    E-Print Network [OSTI]

    Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2) wind turbines address primarily the design of DFIG wind turbine control with special focus on power strategy for DFIG wind turbines, which enhances the fault ride-through capability of DFIG wind turbines

  4. Simulation of large-amplitude motion of floating wind turbines using conservation of momentum

    E-Print Network [OSTI]

    Sweetman, Bert

    Simulation of large-amplitude motion of floating wind turbines using conservation of momentum Lei equations of motion (EOMs) of a floating wind turbine system using the theorem of conservation of angular wind turbine dynamics software FAST. The concept of highly compliant floating wind turbines

  5. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Nair, Sankar

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  6. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  7. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    SciTech Connect (OSTI)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  8. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  9. AIAA-2001-0047 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE

    E-Print Network [OSTI]

    Sweetman, Bert

    AIAA-2001-0047 1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance 94305-4020 ABSTRACT International standards for wind turbine certification depend on finding long. INTRODUCTION Design constraints for wind turbine structures fall into either extreme load or fatigue categories

  10. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  11. A TURBINE RESEARCH FACILITY TO STUDY TIP DESENSITIZATION INCLUDING COOLING FLOWS

    E-Print Network [OSTI]

    Camci, Cengiz

    followed by outlet guide vanes. The blading design embodies modem HP turbine design philosophy, loading design turbine practice. State-of-the-art quasi-3D blade design techniques were used to design the vane of the Pennsylvania State University. The AFTRF is a single-stage cold flow turbine specifically designed for studying

  12. EA-2004: Seneca Nation of Indians Wind Turbine Project, Cattaraugus...

    Broader source: Energy.gov (indexed) [DOE]

    funding to the Seneca Nation of Indians, to design, permit, and construct a 1.7-megawatt wind turbine on Tribal common lands in the Cattaraugus Territory, New York. The turbine...

  13. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs...

  14. Reduced Order Structural Modeling of Wind Turbine Blades 

    E-Print Network [OSTI]

    Jonnalagadda, Yellavenkatasunil

    2011-10-21

    Conventional three dimensional structural analysis methods prove to be expensive for the preliminary design of wind turbine blades. However, wind turbine blades are large slender members with complex cross sections. They can be accurately modeled...

  15. An exploration of wind energy and wind turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that effect wind turbine design. Explain the goals of the following lab experiments. Review what practices make for good experimental design and the need to control...

  16. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  17. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  18. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  19. Probabilistic analysis of turbine blade durability

    E-Print Network [OSTI]

    Kountras, Apostolos, 1970-

    2004-01-01

    The effect of variability on turbine blade durability was assessed for seven design/operating parameters in three blade designs. The parameters included gas path and cooling convective parameters, metal and coating thermal ...

  20. Method and apparatus for wind turbine braking

    DOE Patents [OSTI]

    Barbu, Corneliu (Laguna Hills, CA); Teichmann, Ralph (Nishkayuna, NY); Avagliano, Aaron (Houston, TX); Kammer, Leonardo Cesar (Niskayuna, NY); Pierce, Kirk Gee (Simpsonville, SC); Pesetsky, David Samuel (Greenville, SC); Gauchel, Peter (Muenster, DE)

    2009-02-10

    A method for braking a wind turbine including at least one rotor blade coupled to a rotor. The method includes selectively controlling an angle of pitch of the at least one rotor blade with respect to a wind direction based on a design parameter of a component of the wind turbine to facilitate reducing a force induced into the wind turbine component as a result of braking.

  1. Proceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    - istic of steam turbine blading in low pressure turbines. The re- sults demonstrate that the designProceedings of IGTI 2009 ASME 2009 International Gas Turbine Institute Conference June 8-12, 2009, Orlando,FL, USA GT2009-60115 THREE-DIMENSIONAL AERODYNAMIC DESIGN OPTIMIZATION OF A TURBINE BLADE BY USING

  2. Experiment study on FLOATING JACKET: a new concept for deep water platform design 

    E-Print Network [OSTI]

    Xu, Yufeng

    1996-01-01

    in this thesis. The most unique feature of the new FJ concept is to place much of the needed buoyancy/ballast deep in the ocean water. The deck and production equipment are supported by a jacket structure which is in turn mounted on top of the large buoyancy...

  3. Accessibility of Neotraditional Neighborhoods: A Review of Design Concepts, Policies, and Recent Literature

    E-Print Network [OSTI]

    McNally, Michael G.; Ryan, Sherry

    1992-01-01

    utopian planners, as the nameimplies, were less groundedin politics and tended to express their views through design and architecture.

  4. Design Concept of a Gamma-gamma Higgs Factory Driven by Thin Laser Targets and Energy Recovery Linacs

    SciTech Connect (OSTI)

    Zhang, Yuhong [JLAB

    2013-06-01

    A gamma-gamma collider has long been considered an option for a Higgs Factory. Such photon colliders usually rely on Compton back-scattering for generating high energy gamma photons and further Higgs bosons through gamma-gamma collisions. The presently existing proposals or design concepts all have chosen a very thick laser target (i.e., high laser photon intensity) for Compton scatterings. In this paper, we present a new design concept of a gamma-gamma collider utilizing a thin laser target (i.e., relatively low photon density), thus leading to a low electron to gamma photon conversion rate. This new concept eliminates most useless and harmful low energy soft gamma photons from multiple Compton scattering so the detector background is improved. It also greatly relaxes the requirement of the high peak power of the laser, a significant technical challenge. A high luminosity for such a gamma-gamma collider can be achieved through an increase of the bunch repetition rate and current of the driven electron beam. Further, multi-pass recirculating linac could greatly reduce the linac cost and energy recovery is required to reduce the needed RF power.

  5. Single Rotor Turbine

    DOE Patents [OSTI]

    Platts, David A. (Los Alamos, NM)

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  6. Advanced turbine systems program: Conceptual design and product development. Quarterly report, November 1, 1995--January 31, 1996

    SciTech Connect (OSTI)

    1996-04-09

    Several tasks were completed. Design and test of critical components are discussed. Plans for the next reporting period are outlined.

  7. On the Fatigue Analysis of Wind Turbines

    SciTech Connect (OSTI)

    Sutherland, Herbert J.

    1999-06-01

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  8. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  9. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  10. A Simplified Morphing Blade for Horizontal Axis Wind Turbines

    E-Print Network [OSTI]

    Boyer, Edmond

    A Simplified Morphing Blade for Horizontal Axis Wind Turbines Weijun WANG , St´ephane CARO, Fouad salinas@hotmail.com The aim of designing wind turbine blades is to improve the power capture ability by adjusting the twist of the blade's root and tip. To evaluate the performance of wind turbine blades

  11. AIAA-2001-0044 Extreme Load Estimation for Wind Turbines

    E-Print Network [OSTI]

    AIAA-2001-0044 Extreme Load Estimation for Wind Turbines: Issues and Opportunities for Improved design load estimation procedures for wind turbines often do not accurately treat the statistical nature of loads. Current practice for wind turbine load analysis is reviewed. The authors

  12. Duration Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-12-01

    This report summarizes the results of a duration test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  13. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    SciTech Connect (OSTI)

    IJ van Rooyen; SR Morrell; AE Wright; E. P Luther; K Jamison; AL Crawford; HT III Hartman

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizes that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.

  14. Functional thinking in cost estimation through the tools and concepts of axiomatic design

    E-Print Network [OSTI]

    Odhner, Lael Ulam, 1980-

    2004-01-01

    There has been an increasing demand for cost estimation tools which aid in the reduction of system cost or the active consideration of cost as a design constraint. The existing tools are currently incapable of anticipating ...

  15. 2008-01-0709 Modeling Design Concepts under Risk and Uncertainty using

    E-Print Network [OSTI]

    of Toyota Motor Company and its suppliers, that improvements in early-phase decision making can lead to considerable risk. In this paper, we investigate an alternative to approaches that rely on explicit design

  16. Duration Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Murphy, M.; van Dam, J.

    2013-06-01

    This report summarizes the results of a duration noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with Clause 9.4 of the International Electrotechnical Commission's (IEC) standard, Wind turbines - Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed. 2.0:2006-03. NREL researchers evaluated the turbine based on structural integrity and material degradation, quality of environmental protection, and dynamic behavior.

  17. 202 IEEE TRANS.4CTIONS Oh'AUTOMATIC CONTROL, VOL. AC-18,NO. 3, J U K E 1973 Design and Analysis of Boiler-Turbine-Generator

    E-Print Network [OSTI]

    Kwatny, Harry G.

    of Boiler-Turbine-Generator Controls Using Optimal Linear Regulator Theory JOHN P. McDOKALD AND HARRY G of a nonlinear mathematical model of a drum-type, twin furnace, reheat boiler-turbine-generator (RBTG) system- tiveoperatingandcontrolstrategies for boiler-t.urbine- generator systems to meet different, system operating ob- jectives. Among

  18. Application of Product Design Concepts and Hybrid System Dynamics to Demonstrate Zeno Behavior and Zeno Periodic Orbits in a Physical Double Pendulum Setup 

    E-Print Network [OSTI]

    Kothapalli, Bhargav

    2012-07-16

    This thesis aims to explain how the concepts of functional modeling are implemented in the development and validation of real-world hybrid dynamic systems. I also discuss how control theory is integrated with the design ...

  19. 36 AUGUST | 2011 EnhancEd TurbinE

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

  20. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    SciTech Connect (OSTI)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural response of these blades. The trends were used to identify geometries and rotor configurations that showed the greatest promise for achieving beneficial aeroelastic response. The ADAMS code was used to perform complete aeroelastic simulations of selected rotor configurations; however, the results of these simulations were not satisfactory. This report documents the challenges encountered with the ADAMS simulations and presents recommendations for further development of this concept for aeroelastically tailored small wind turbine blades.

  1. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  2. Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Duarte, T.; Sarmento, A. J. N. A.; Jonkman, J.

    2014-04-01

    Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.

  3. Effect of Second-Order Hydrodynamics on Floating Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Roald, L.; Jonkman, J.; Robertson, A,; Chokani, N.

    2013-07-01

    Offshore winds are generally stronger and more consistent than winds on land, making the offshore environment attractive for wind energy development. A large part of the offshore wind resource is however located in deep water, where floating turbines are the only economical way of harvesting the energy. The design of offshore floating wind turbines relies on the use of modeling tools that can simulate the entire coupled system behavior. At present, most of these tools include only first-order hydrodynamic theory. However, observations of supposed second-order hydrodynamic responses in wave-tank tests performed by the DeepCwind consortium suggest that second-order effects might be critical. In this paper, the methodology used by the oil and gas industry has been modified to apply to the analysis of floating wind turbines, and is used to assess the effect of second-order hydrodynamics on floating offshore wind turbines. The method relies on combined use of the frequency-domain tool WAMIT and the time-domain tool FAST. The proposed assessment method has been applied to two different floating wind concepts, a spar and a tension-leg-platform (TLP), both supporting the NREL 5-MW baseline wind turbine. Results showing the hydrodynamic forces and motion response for these systems are presented and analysed, and compared to aerodynamic effects.

  4. M. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project

    E-Print Network [OSTI]

    Bahrami, Majid

    and the vertical-axis wind turbine (VAWT) in Figure 2-b. The designation simply depends on the axis of rotationM. Bahrami ENSC 283 (S 11) Wind Turbine Project 1 ENSC 283 Project Assigned date: Feb. 23, 2011 family), but also important are those which extract energy form the fluid such as turbines. Wind turbines

  5. Nuclear Safety Design Principles & the Concept of Independence: Insights from Nuclear Weapon Safety for Other High-Consequence Applications.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2014-05-01

    Insights developed within the U.S. nuclear weapon system safety community may benefit system safety design, assessment, and management activities in other high consequence domains. The approach of assured nuclear weapon safety has been developed that uses the Nuclear Safety Design Principles (NSDPs) of incompatibility, isolation, and inoperability to design safety features, organized into subsystems such that each subsystem contributes to safe system responses in independent and predictable ways given a wide range of environmental contexts. The central aim of the approach is to provide a robust technical basis for asserting that a system can meet quantitative safety requirements in the widest context of possible adverse or accident environments, while using the most concise arrangement of safety design features and the fewest number of specific adverse or accident environment assumptions. Rigor in understanding and applying the concept of independence is crucial for the success of the approach. This paper provides a basic description of the assured nuclear weapon safety approach, in a manner that illustrates potential application to other domains. There is also a strong emphasis on describing the process for developing a defensible technical basis for the independence assertions between integrated safety subsystems.

  6. Agent-based Cyber Control Strategy Design for Resilient Control Systems: Concepts, Architecture and Methodologies

    SciTech Connect (OSTI)

    Craig Rieger; Milos Manic; Miles McQueen

    2012-08-01

    The implementation of automated regulatory control has been around since the middle of the last century through analog means. It has allowed engineers to operate the plant more consistently by focusing on overall operations and settings instead of individual monitoring of local instruments (inside and outside of a control room). A similar approach is proposed for cyber security, where current border-protection designs have been inherited from information technology developments that lack consideration of the high-reliability, high consequence nature of industrial control systems. Instead of an independent development, however, an integrated approach is taken to develop a holistic understanding of performance. This performance takes shape inside a multiagent design, which provides a notional context to model highly decentralized and complex industrial process control systems, the nervous system of critical infrastructure. The resulting strategy will provide a framework for researching solutions to security and unrecognized interdependency concerns with industrial control systems.

  7. Coal air turbine ``CAT`` program, invention 604. Fifth quarter project report, October--December 1995

    SciTech Connect (OSTI)

    Foster-Pegg, R.W.

    1995-12-31

    The primary objective of this ``CAT`` (Coal Air Turbine) project is to complete a conceptual design of this unique new combination of existing technology with cost estimates to show that the CAT system offers the economic incentive with low technical risk for a plant to be built which will demonstrate its viability. The technologies involved in the components of a CAT plant are proven, and the integration of the components into a complete plant is the only new developmental activity involved. Industry and the Federal General Services Administration (GSA), require the demonstration of a commercial plant before the viability of a new concept is accepted. To satisfy this requirement the construction of a plant of commercially viable size in excess of 15 MW if cogeneration and above 30 MW if all power, is proposed. This plant will produce economical power and heat for the owner. The plant will operate for a full commercial life and continue as an operating demonstration of the viability of the technology, gathering long term life and maintenance data, all adding to the credibility of the concept. The major components of CAT plants are an air turbine, a heater of compressed air, a coal combustion system, means to recover waste heat and a steam turbine when appropriate. The plant burns raw coal in a fluid bed at atmospheric pressure. The air turbine operates on clean compressed air heated inside tubes immersed in the fluid bed. Progress during the fifth quarter is described.

  8. Design Concepts for Power Distribution Equipment Serving Non-Linear Loads 

    E-Print Network [OSTI]

    Massey, G. W.

    1995-01-01

    foundation for building non-linear load power distribution system design guidelines for single-phase branch circuit wiring, three-phase equipment circuiting, panelboard circuit breakers, bus bars, and feeders, transformers, and power capacitors... or harmonic current overload, reduced energy consumption with lower operati g cost, and longer expected transformer life, regardle s of loading. Power Capacitors Power capacitors are installed on systems f? r voltage regulation and power factor correctio...

  9. Fish Passage Assessment of an Advanced Hydropower Turbine and Conventional Turbine Using Blade-strike Modeling

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Dauble, Dennis D.; Ploskey, Gene R.

    2011-01-04

    In the Columbia and Snake River basins, several species of Pacific salmon were listed under the Endangered Species Act of 1973 due to significant declines of fish population. Dam operators and design engineers are thus faced with the task of making those hydroelectric facilities more ecologically friendly through changes in hydro-turbine design and operation. Public Utility District No. 2 of Grant County, Washington, applied for re-licensing from the U.S. Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that were designed to increase power generation and improve fish passage conditions. We applied both deterministic and stochastic blade-strike models to the newly installed turbine and an existing turbine. Modeled probabilities were compared to the results of a large-scale live fish survival study and a sensor fish study under the same operational parameters. Overall, injury rates predicted by the deterministic model were higher than experimental rates of injury while those predicted by the stochastic model were in close agreement with experiment results. Fish orientation at the time of entry into the plane of the leading edges of the turbine runner blades was an important factor contributing to uncertainty in modeled results. The advanced design turbine had slightly higher modeled injury rates than the existing turbine design; however, there was no statistical evidence that suggested significant differences in blade-strike injuries between the two turbines and the hypothesis that direct fish survival rate through the advanced hydropower turbine is equal or better than that through the conventional turbine could not be rejected.

  10. Compressor & Steam Turbine Efficiency Improvements & Revamping Opportunities 

    E-Print Network [OSTI]

    Hata, S.; Horiba, J.; Sicker, M.

    2011-01-01

    in which they operate. This energy growth requires high efficiency improvements for machine design and operation to minimize life cycle cost. This paper will focus on the mechanical drive steam turbines which power the main process equipment in the heart...

  11. An Exploration of Wind Energy & Wind Turbines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind...

  12. Sandia Energy - Senator Bingaman Tells Sandia Wind Turbine Blade...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbine design, blade and rotor testing, manufacturing and inspection, distributed wind technology, and water power. Bingaman said a diversity of U.S. energy sources at a...

  13. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop...

    Broader source: Energy.gov (indexed) [DOE]

    provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river...

  14. Hydro Review: Computational Tools to Assess Turbine Biological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to analyze the biological performance of proposed designs to help ensure the safety of fish passing through the turbines at the Priest Rapids Dam in Grant County, Washington....

  15. FRACTURE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES

    E-Print Network [OSTI]

    FRACTURE OF SKIN-STIFFENER INTERSECTIONS IN COMPOSITE WIND TURBINE BLADE STRUCTURES by Darrin John..................................................................4 Stiffener Design Considerations

  16. Computational Tools to Assess Turbine Biological Performance

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  17. Wavy flow cooling concept for turbine airfoils

    DOE Patents [OSTI]

    Liang, George (Palm City, FL)

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  18. Fixation and creativity in concept development: the attitudes and practices of expert designers

    E-Print Network [OSTI]

    Crilly, Nathan

    2015-02-18

    , Luchins’ (1942) presents qualitative data that reveals the possibility of demand characteristics in fixation research. In his three water jars study, where the participants were seemingly fixated on the complex (three-jar subtractive) ‘E’ method and failed... -solution type for project Duration of project (months) Size of project team (number of people) 1A Doctorate 20e25 Lead engineer Consumer products Thermal 36 14 2B Masters 5e10 Designer Medical products Electrical, pneumatic 18 8 3B Bachelors 20e25 Project lead...

  19. Coupled Dynamic Analysis of Large-Scale Mono-Column Offshore Wind Turbine with a Single Tether Hinged in Seabed 

    E-Print Network [OSTI]

    Chen, Jieyan

    2012-10-19

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  20. On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications

    E-Print Network [OSTI]

    Manuel, Lance

    On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica variables forms the basis of this study. A commercial-sized 1.5MW concept wind turbine is considered

  1. EXPERIMENTS ON A SCALE MODEL OF A MONOLITHIC CONCRETE SPAR FOR FLOATING WIND TURBINES

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    EXPERIMENTS ON A SCALE MODEL OF A MONOLITHIC CONCRETE SPAR FOR FLOATING WIND TURBINES Alexis Campos device, simulating the mean thrust force exerted by the wind turbine. To adjust the weight of the whole floating offshore wind turbines substructures. Preliminary studies of a concept consisting of a monolithic

  2. Wind Turbines Electrical and Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    wind power. Encourage students to discuss the pros and cons of wind design. Students can find the wind? Time Required (Itemized) · Design introduction ­ 20 minutes · Student construction time o Option is created through conservation of energy! Designing a wind turbine takes a lot of ingenuity. The designer

  3. Reconstruction of a wind turbine's endured load spectrum using a short-time load measurement

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Reconstruction of a wind turbine's endured load spectrum using a short-time load measurement Abstract Wind turbines (WT) are normally designed for a service life (SL) of 20 years. In Germany, over safety. 1 Introduction A wind turbine (WT) is normally designed, tested and certified for a design life

  4. Materials design concepts for efficient blue OLEDs: A joint theoretical and experimental study

    SciTech Connect (OSTI)

    Polikarpov, Evgueni; Padmaperuma, Asanga B.

    2012-04-01

    Since their discovery, organic light emitting devices have evolved from a scientific curiosity into a technology with applications in flat panel displays and the potential to revolutionize the lighting market. During their relatively short history, the technology incorporated into OLEDs has rapidly advanced. Device quantum efficiencies have increased more than 20-fold since the first OLEDs, approaching the theoretical limit for internal quantum efficiencies. , , At this point, OLED research moves towards optimization of manufacturing processes, drive circuitry, light extraction, and overall cost reduction. However, finding the organic materials that provide both operational stability and high efficiency for the devices still remains one of the biggest challenges, particularly for blue emission. In this presentation, we will describe our approach to design functional OLED materials to meet the complex criteria set forth by device efficiency and stability goals.

  5. Wind Turbine Towers Establish New Height Standards and Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enabled Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly...

  6. Vertical axis wind turbine with continuous blade angle adjustment

    E-Print Network [OSTI]

    Weiss, Samuel Bruce

    2010-01-01

    The author presents a concept for a vertical axis wind turbine that utilizes each blade's entire rotational cycle for power generation. Each blade has its own vertical axis of rotation and is constrained to rotate at the ...

  7. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  8. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    N. A. (2002). “Design challenges in international wind powerN. A. (2002). “Design challenges in international wind powerwind into electrical power. Early turbines explored many di?erent design

  9. Foam Cleaning of Steam Turbines 

    E-Print Network [OSTI]

    Foster, C.; Curtis, G.; Horvath, J. W.

    2000-01-01

    The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

  10. An introduction to the small wind turbine project

    SciTech Connect (OSTI)

    Forsyth, T.L.

    1997-07-01

    Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

  11. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  12. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  13. New Compressor Concept Improves Efficiency and Operation Range

    Broader source: Energy.gov [DOE]

    Advanced turbocharger compressor design with active casing treatment and advanced mixed flow turbine design provided improved performance and efficiency over the base turbocharger

  14. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  15. Sliding vane geometry turbines

    DOE Patents [OSTI]

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  16. IMPLEMENTATION OF WIND TURBINE CONTROLLERS W.E.Leithead

    E-Print Network [OSTI]

    Duffy, Ken

    significantly reduce the power transients at controller start-up. The relation to anti-wind-up is noted. The standard commercial design of wind turbine is a horizontal-axis grid-connected up-wind machine of wind turbines, which are presently being developed, will include large-scale designs with a rating

  17. Measurement and analysis of gas turbine blade endwall heat transfer 

    E-Print Network [OSTI]

    Lee, Joon Ho

    2001-01-01

    For many years it has been recognized that the design of an efficient high pressure turbine with adequate component life is crucial to the success of any gas turbine engine project. Inherent in the design process is the need to predict accurately...

  18. APPROPRIATE REALISATION OF GAIN-SCHEDULED CONTROLLERS WITH APPLICATION TO WIND TURBINE REGULATION

    E-Print Network [OSTI]

    Duffy, Ken

    1 1QE, U.K. Abstract Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch of wind turbine technology. The standard commercial design of turbine is a horizontal-axis grid that the next generation of wind turbines which are presently being developed will include large-scale designs

  19. Wind Turbine Selection: A case-study for Brfell, Iceland Samuel Perkin

    E-Print Network [OSTI]

    Karlsson, Brynjar

    , Reykjavík University, Iceland Margrét Arnardóttir, Co-Supervisor Project Manager (Wind Power), Landsvirkjun. The model identified an optimum wind turbine design for Búrfell which decreases the Levelized Cost of Energy by 10.4% when compared to the existing E-44 turbines. The power curve of the optimum turbine design

  20. 1 Copyright 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR

    E-Print Network [OSTI]

    Manuel, Lance

    1 Copyright © 2007 by ASME SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR EXTREME LIMIT STATES P loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice in the design of offshore wind turbines against ultimate limit states, and a recent draft [1] of design

  1. Proceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference

    E-Print Network [OSTI]

    Liu, Feng

    of design parameters. Three design cases are performed with a low-aspect-ratio steam turbine blade testedProceedings of IGTI 2010 ASME 2010 International Gas Turbine Institute Conference June 14-18, 2010 (Switzerland) Baden, Switzerland ABSTRACT For low-aspect-ratio turbine blades secondary loss reduc- tion

  2. RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS

    E-Print Network [OSTI]

    RIS0-M-2432 SIMPLIFIED LAWS OF SIMIALRITY FOR WIND TURBINE ROTORS Helge Petersen The Test Station for Small Windmills Abstract, Laws of similarity or scaling laws for the character- istics of a wind turbine rotor are of importance to the designer even during the initial design phase of a new wind turbine con

  3. Ris-R-1000(EN) Cost Optimization of Wind Turbines for

    E-Print Network [OSTI]

    Risø-R-1000(EN) Cost Optimization of Wind Turbines for Large-scale Off-shore Wind Farms Peter contains a preliminary investigation of site specific design of off- shore wind turbines for a large off using a design tool for wind turbines that involve numerical optimization and aeroelastic calculations

  4. Inter-stage and Performance Tests of a Two-stage High-pressure Turbine 

    E-Print Network [OSTI]

    Sharma, Kapil

    2011-08-08

    The existing 3-stage research turbine at Turbomachinery Performance and Flow Research Laboratory (TPFL) facility, Texas A & M University (TAMU) was replaced with a newly designed and manufactured 2-stage turbine in accordance ...

  5. Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques 

    E-Print Network [OSTI]

    Viar, W. L.

    1984-01-01

    Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

  6. Experimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbine

    E-Print Network [OSTI]

    Gruber, Timothy J. (Timothy James)

    2012-01-01

    An experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy ...

  7. Understanding Wind Turbine Price Trends in the U.S. Over the Past Decade

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Dissecting Wind Turbine Costs. ” WindStats Newsletter, vol.A. Laxson. 2006. Wind Turbine Design Cost and Scaling Model.driven down wind energy costs (for a brief survey of the

  8. Optimization of Combustion Efficiency for Supplementally Fired Gas Turbine Cogenerator Exhaust Heat Receptors 

    E-Print Network [OSTI]

    Waterland, A. F.

    1984-01-01

    A broad range of unique cogeneration schemes are being installed or considered for application in the process industries involving gas turbines with heat recovery from the exhaust gas. Depending on the turbine design, exhaust gases will range from...

  9. Economical Condensing Turbines

    E-Print Network [OSTI]

    Dean, J. E.

    1997-01-01

    Turbines? by J.E.Dean, P.E. Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown 1 and extraction/condensing. ? Letdown turbines reduce the pressure... of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: ? Letdown turbines produce power based upon steam requirements and not based upon power requirements, and ? If all...

  10. Understanding Trends in Wind Turbine Prices Over the Past Decade

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2011-10-26

    Taking a bottom-up approach, this report examines seven primary drivers of wind turbine prices in the United States, with the goal of estimating the degree to which each contributed to the doubling in turbine prices from 2002 through 2008, as well as the subsequent decline in prices through 2010 (our analysis does not extend into 2011 because several of these drivers are best gauged on a full-year basis due to seasonality issues). The first four of these drivers can be considered, at least to some degree, endogenous influences – i.e., those that are largely within the control of the wind industry – and include changes in: 1) Labor costs, which have historically risen during times of tight turbine supply; 2) Warranty provisions, which reflect technology performance and reliability, and are most often capitalized in turbine prices; 3) Turbine manufacturer profitability, which can impact turbine prices independently of costs; and 4) Turbine design, which for the purpose of this analysis is principally manifested through increased turbine size. The other three drivers analyzed in this study can be considered exogenous influences, in that they can impact wind turbine costs but fall mostly outside of the direct control of the wind industry. These exogenous drivers include changes in: 5) Raw materials prices, which affect the cost of inputs to the manufacturing process; 6) Energy prices, which impact the cost of manufacturing and transporting turbines; and 7) Foreign exchange rates, which can impact the dollar amount paid for turbines and components imported into the United States.

  11. Designing a 3-D optical multilayer due to merging the concepts of stacked and planar-integrated free-space optics

    E-Print Network [OSTI]

    Jahns, Jürgen

    Designing a 3-D optical multilayer due to merging the concepts of stacked and planar-integrated free-space optics M. Jarczynski, J. Jahns Optical interconnects aim to overcome the communication dimension [1]. For the optical implementation of 3-D setups suitable microoptics approaches are re- quired

  12. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  13. Optomechanical conversion by mechanical turbines

    E-Print Network [OSTI]

    Milos Knezevic; Mark Warner

    2014-11-02

    Liquid crystal elastomers are rubbers with liquid crystal order. They contract along their nematic director when heated or illuminated. The shape changes are large and occur in a relatively narrow temperature interval, or at low illumination, around the nematic-isotropic transition. We present a conceptual design of a mechanical, turbine-based engine using photo-active liquid crystal elastomers to extract mechanical work from light. Its efficiency is estimated to be 40%.

  14. SPINTHIR: An ignition model for gas turbines

    E-Print Network [OSTI]

    Neophytou, A; Mastorakos, E

    2012-08-28

    , Sardinia, Italy, September 11-15, 2011 A PRACTICAL MODEL FOR THE HIGH-ALTITUDE RELIGHT OF A GAS TURBINE COMBUSTOR A. Neophytou*,1, E. Mastorakos*, E.S. Richardson**, S. Stow*** and M. Zedda*** em257@eng.cam.ac.uk * University of Cambridge... geometries is given. In this section, the main concepts of the model are repeated for clarity and the CFD solution of the gas turbine combustor is briefly presented. 2.1 Model description: main idea The model aims at representing the possible...

  15. Computational Design and Prototype Evaluation of Aluminide-Strengthened Ferritic Superalloys for Power-Generating Turbine Applications up to 1,033 K

    SciTech Connect (OSTI)

    Peter Liaw; Gautam Ghosh; Mark Asta; Morris Fine; Chain Liu

    2010-04-30

    The objective of the proposed research is to utilize modern computational tools, integrated with focused experiments, to design innovative ferritic NiAl-strengthened superalloys for fossil-energy applications at temperatures up to 1,033 K. Specifically, the computational alloy design aims toward (1) a steady-state creep rate of approximately 3 x 10{sup -11} s{sup -1} at a temperature of 1,033 K and a stress level of 35 MPa, (2) a ductility of 10% at room temperature, and (3) good oxidation and corrosion resistance at 1,033 K. The research yielded many outstanding research results, including (1) impurity-diffusion coefficients in {alpha} Fe have been calculated by first principles for a variety of solute species; (2) the precipitates were characterized by the transmission-electron microscopy (TEM) and analytical-electron microscopy (AEM), and the elemental partitioning has been determined; (3) a bending ductility of more than 5% has been achieved in the unrolled materials; and (4) optimal compositions with minimal secondary creep rates at 973 K have been determined. Impurity diffusivities in {alpha} Fe have been calculated within the formalisms of a harmonic transition-state theory and Le Claire nine-frequency model for vacancy-mediated diffusion. Calculated diffusion coefficients for Mo and W impurities are comparable to or larger than that for Fe self-diffusion. Calculated activation energies for Ta and Hf impurities suggest that these solutes should display impurity-diffusion coefficients larger than that for self-diffusion in the body-centered cubic Fe. Preliminary mechanical-property studies identified the alloy Fe-6.5Al-10Ni-10Cr-3.4Mo-0.25Zr-0.005B (FBB-8) in weight percent (wt.%) for detailed investigations. This alloy shows precipitation of NiAl particles with an average diameter of 130 nm. In conjunction with the computational alloy design, selected experiments are performed to investigate the effect of the Al content on the ductility and creep of prototype Fe-Ni-Cr-Al-Mo alloys. Three-point-bending experiments show that alloys containing more than 5 wt.% Al exhibit poor ductility (< 2%) at room temperature, and their fracture mode is predominantly of a cleavage type. Two major factors governing the poor ductility are (1) the volume fraction of NiAl-type precipitates, and (2) the Al content in the {alpha}-Fe matrix. A bend ductility of more than 5% can be achieved by lowering the Al concentration to 3 wt.% in the alloy. The alloy containing about 6.5 wt.% Al is found to have an optimal combination of hardness, ductility, and minimal creep rate at 973 K. A high volume fraction of precipitates is responsible for the good creep resistance by effectively resisting the dislocation motion through Orowan-bowing and dislocation-climb mechanisms. The effects of stress on the creep rate have been studied. With the threshold-stress compensation, the stress exponent is determined to be 4, indicating power-law dislocation creep. The threshold stress is in the range of 40-53 MPa. The addition of W can significantly reduce the secondary creep rates. Compared to other candidates for steam-turbine applications, FBB-8 does not show superior creep resistance at high stresses (> 100 MPa), but exhibit superior creep resistance at low stresses (< 60 MPa).

  16. The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to

    E-Print Network [OSTI]

    turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy

  17. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  18. Turbine adapted maps for turbocharger engine matching

    SciTech Connect (OSTI)

    Tancrez, M.; Galindo, J.; Guardiola, C.; Fajardo, P.; Varnier, O.

    2011-01-15

    This paper presents a new representation of the turbine performance maps oriented for turbocharger characterization. The aim of this plot is to provide a more compact and suited form to implement in engine simulation models and to interpolate data from turbocharger test bench. The new map is based on the use of conservative parameters as turbocharger power and turbine mass flow to describe the turbine performance in all VGT positions. The curves obtained are accurately fitted with quadratic polynomials and simple interpolation techniques give reliable results. Two turbochargers characterized in an steady flow rig were used for illustrating the representation. After being implemented in a turbocharger submodel, the results obtained with the model have been compared with success against turbine performance evaluated in engine tests cells. A practical application in turbocharger matching is also provided to show how this new map can be directly employed in engine design. (author)

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  1. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  2. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  3. The design and construction of electronic motor control and network interface hardware for advance concept urban mobility vehicles

    E-Print Network [OSTI]

    Morrissey, Bryan L. (Bryan Lawrence)

    2008-01-01

    Over the past several years, the Smart Cities Group at MIT's Media Lab has engaged in research to develop several advanced concepts for vehicles to improve urban mobility. This research has focused on developing a modular ...

  4. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  5. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  6. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens@imm.dtu.dk www.imm.dtu.dk #12;#12;#12;Abstract This thesis describes the design of controllers for power regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation

  7. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  8. Response of Juvenile Pacific Lamprey to Turbine Passage

    SciTech Connect (OSTI)

    Dauble, D.

    2009-09-14

    To help determine the Pacific lamprey’s ability to survive turbine passage, Pacific Northwest National Laboratory scientists conducted laboratory tests designed to simulate a fish’s passage through the turbine environment. Juvenile Pacific lamprey were subjected to two of three aspects of passage: pressure drop and shear stress. The third aspect, blade strike, was not tested.

  9. AIAA-2003-0692 NEW FATIGUE DATA FOR W IND TURBINE BLADE M ATERIALS

    E-Print Network [OSTI]

    1 AIAA-2003-0692 NEW FATIGUE DATA FOR W IND TURBINE BLADE M ATERIALS John F. Mandell, Daniel D the expected cycle range for turbines. While the data cannot be used directly in design due to the specialized AND RESULTS Introduction Composite wind turbine blade materials may experience between 108 to 109 significant

  10. TOWARDS LIFE-CYCLE MANAGEMENT OF WIND TURBINES BASED ON STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Stanford University

    for power generation in 83 countries, 52 of which having increased their totally installed wind energy for manufacturers, owners, and operators. Unlike conventional power plants, wind turbines represent unmanned remote and maintenance of wind turbines and, eventually, to operate wind turbines beyond their original design life

  11. Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines Puneet, and Environmental Engineering The University of Texas, Austin, TX 78712 Design of an offshore wind turbine requires on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular

  12. International Conference on Ocean Energy, 6 October, Bilbao Computational Analysis of Ducted Turbine Performance

    E-Print Network [OSTI]

    Pedersen, Tom

    Turbine Performance M. Shives1 and C. Crawford2 Dept. of Mechanical Engineering, University of Victoria turbine designs using computational fluid dynamics (CFD) simulation. Analytical model coefficients is proposed for the base pressure coefficient. Keywords: base-pressure, CFD, diffuser-augmented turbine, tidal

  13. Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components.

    E-Print Network [OSTI]

    Nicoud, Franck

    Conjugate Heat Transfer with Large Eddy Simulation for Gas Turbine Components. Florent Duchaine constraint for GT (gas turbines). Most existing CHT tools are developped for chained, steady phenomena with colder walls is a key phenomenon in all chambers and is actually a main design constraint in gas turbines

  14. Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions

    E-Print Network [OSTI]

    Kim, Sangho

    Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions 94305, U.S.A The aero-thermal computation of the flow path of an entire gas turbine engine can used in the analysis of single components of the gas turbine engines as an aid in the design process

  15. Experimental and numerical investigation of an optimized airfoil for vertical axis wind turbines

    E-Print Network [OSTI]

    Experimental and numerical investigation of an optimized airfoil for vertical axis wind turbines and numerical verification of the per- formance of a new airfoil design for lift driven vertical-axis wind-turbines-driven vertical-axis wind-turbines VAWTs, with particular attention to floating installations (see Akimoto et al

  16. Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an

    E-Print Network [OSTI]

    Alonso, Juan J.

    Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under, USA Designing better vertical axis wind turbines (VAWTs) requires considering the uncertain wind cost. Low-fidelity tools are used extensively in the modeling of vertical axis wind turbines (VAWTs)3

  17. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect (OSTI)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  18. ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT

    E-Print Network [OSTI]

    Firestone, Jeremy

    /s). Maximum sound power is first produced by the wind turbine at the design wind speed. The study at or above 4.2 m/s) and 108.4 dBA for the design wind condition (hub height winds at or above 9.7 m average sound levels are in the range of 34 to 56 dBA. · The maximum wind turbine sound level under design

  19. Gas turbine diagnostic system

    E-Print Network [OSTI]

    Talgat, Shuvatov

    2011-01-01

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  20. Turbine disc sealing assembly

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  1. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, J.E.; Norton, P.F.

    1996-12-17

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components have a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment, each of the first and second vane segments having a vertical portion, and each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component. 4 figs.

  2. Ceramic turbine nozzle

    DOE Patents [OSTI]

    Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

    1996-01-01

    A turbine nozzle and shroud assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes a plurality of segmented vane defining a first vane segment and a second vane segment. Each of the first and second vane segments having a vertical portion. Each of the first vane segments and the second vane segments being positioned in functional relationship one to another within a recess formed within an outer shroud and an inner shroud. The turbine nozzle and shroud assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the other component.

  3. Ceramic Cerami Turbine Nozzle

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA)

    1997-04-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of horizontally segmented vanes therebetween being positioned by a connecting member positioning segmented vanes in functional relationship one to another. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  4. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  5. Campus Energy Infrastructure Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Campus Energy Infrastructure Steam Turbine Gas Turbine University Substation High Pressure Natural,000 lbs/hr (with duct fire) Steam Turbine Chiller 2,000 tons Campus Heat Load 60 MMBtu/hr (average) Campus-hours) Generator Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller

  6. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  7. Cooled snubber structure for turbine blades

    DOE Patents [OSTI]

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  8. Composite turbine bucket assembly

    DOE Patents [OSTI]

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  9. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  10. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  11. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, Charles C. (San Diego, CA); Pytanowski, Gregory P. (San Diego, CA); Vendituoli, Jonathan S. (San Diego, CA)

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  12. Turbine blade vibration dampening

    DOE Patents [OSTI]

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  13. Aquantis Ocean Current Turbine Development Project Report

    SciTech Connect (OSTI)

    Fleming, Alex J.

    2014-08-23

    The Aquantis® Current Plane (“C-Plane”) technology developed by Dehlsen Associates, LLC (DA) and Aquantis, Inc. is an ocean current turbine designed to extract kinetic energy from ocean currents. The technology is capable of achieving competitively priced base-load, continuous, and reliable power generation from a source of renewable energy not before possible in this scale or form.

  14. Redesign of a wind turbine hub

    E-Print Network [OSTI]

    Hunter-Jones, Bridget I

    2014-01-01

    The current designs of wind turbine hubs contain many faults. The slew ring bearing that connects the blade to the hub takes on a large bending moment that in many cases causes the joints to fail and the blade to break ...

  15. Hydro Review: Computational Tools to Assess Turbine Biological Performance

    Broader source: Energy.gov [DOE]

    This review covers the BioPA method used to analyze the biological performance of proposed designs to help ensure the safety of fish passing through the turbines at the Priest Rapids Dam in Grant County, Washington.

  16. Microsoft Word - RM1_Tidal Turbine_ARL_PTO_OMAE_Paper-Abstract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good...

  17. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  18. New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture

    SciTech Connect (OSTI)

    1982-01-01

    The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

  19. Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjrn Skaare*, Tor David Hanson*, Finn Gunnar Nielsen*, Rune Yttervik*, Anders Melchior Hansen**,

    E-Print Network [OSTI]

    Integrated Dynamic Analysis of Floating Offshore Wind Turbines Bjørn Skaare*, Tor David Hanson of floating wind turbines exposed to forces from wind, waves and current has been developed for Hydro Oil & Energy's floating wind turbine concept, HYWIND. Two existing, independent, computer program systems

  20. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  1. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.

  2. Turbine nozzle positioning system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1996-01-30

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.

  3. DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND

    E-Print Network [OSTI]

    DEVELOPMENT OF OPTIMUM DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE Prepared DESIGN CONFIGURATION AND PERFORMANCE FOR VERTICAL AXIS WIND TURBINE EISG AWARDEE Mechanical and Aerospace://www.energy.ca.gov/research/index.html. #12;Page 1 Development Of Optimum Design Configuration And Performance For Vertical Axis Wind Turbine

  4. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  5. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  6. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect (OSTI)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  7. Definition of a 5-MW Reference Wind Turbine for Offshore System Development

    SciTech Connect (OSTI)

    Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G.

    2009-02-01

    This report describes a three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled multimegawatt wind turbine model developed by NREL to support concept studies aimed at assessing offshore wind technology.

  8. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    SciTech Connect (OSTI)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  9. Hydrodynamics and drive-train dynamics of a direct-drive floating wind turbine 

    E-Print Network [OSTI]

    Sethuraman, Latha

    2014-06-30

    Floating wind turbines (FWTs) are considered a new lease of opportunity for sustaining growth from offshore wind energy. In recent years, several new concepts have emerged, with only a few making it to demonstration or ...

  10. Design concepts for a pulse power test facility to simulate EMP surges in overhead power lines. Part I. Fast pulse

    SciTech Connect (OSTI)

    Ramrus, A.

    1986-02-01

    Objective of the study was to create conceptual designs of high voltage pulsers capable of simulating two types of electromagnetic pulses (EMPs) caused by a high-altitude nuclear burst; the slow rise time magnetohydrodynamic (MHD-EMP) and the fast rise time high-altitude EMP (HEMP). The pulser design was directed towards facilities capable of performing EMP vulnerability testing of components used in the national electric power system.

  11. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  12. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect (OSTI)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70,

  13. ADVANCED TURBINE SYSTEMS PROGRAM

    SciTech Connect (OSTI)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

  14. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    E-Print Network [OSTI]

    J. L. Abelleira Fernandez; C. Adolphsen; A. N. Akay; H. Aksakal; J. L. Albacete; S. Alekhin; P. Allport; V. Andreev; R. B. Appleby; E. Arikan; N. Armesto; G. Azuelos; M. Bai; D. Barber; J. Bartels; O. Behnke; J. Behr; A. S. Belyaev; I. Ben-Zvi; N. Bernard; S. Bertolucci; S. Bettoni; S. Biswal; J. Blümlein; H. Böttcher; A. Bogacz; C. Bracco; G. Brandt; H. Braun; S. Brodsky; O. Brüning; E. Bulyak; A. Buniatyan; H. Burkhardt; I. T. Cakir; O. Cakir; R. Calaga; V. Cetinkaya; E. Ciapala; R. Ciftci; A. K. Ciftci; B. A. Cole; J. C. Collins; O. Dadoun; J. Dainton; A. De. Roeck; D. d'Enterria; A. Dudarev; A. Eide; R. Enberg; E. Eroglu; K. J. Eskola; L. Favart; M. Fitterer; S. Forte; A. Gaddi; P. Gambino; H. García Morales; T. Gehrmann; P. Gladkikh; C. Glasman; R. Godbole; B. Goddard; T. Greenshaw; A. Guffanti; V. Guzey; C. Gwenlan; T. Han; Y. Hao; F. Haug; W. Herr; A. Hervé; B. J. Holzer; M. Ishitsuka; M. Jacquet; B. Jeanneret; J. M. Jimenez; J. M. Jowett; H. Jung; H. Karadeniz; D. Kayran; A. Kilic; K. Kimura; M. Klein; U. Klein; T. Kluge; F. Kocak; M. Korostelev; A. Kosmicki; P. Kostka; H. Kowalski; G. Kramer; D. Kuchler; M. Kuze; T. Lappi; P. Laycock; E. Levichev; S. Levonian; V. N. Litvinenko; A. Lombardi; J. Maeda; C. Marquet; S. J. Maxfield; B. Mellado; K. H. Mess; A. Milanese; S. Moch; I. I. Morozov; Y. Muttoni; S. Myers; S. Nandi; Z. Nergiz; P. R. Newman; T. Omori; J. Osborne; E. Paoloni; Y. Papaphilippou; C. Pascaud; H. Paukkunen; E. Perez; T. Pieloni; E. Pilicer; B. Pire; R. Placakyte; A. Polini; V. Ptitsyn; Y. Pupkov; V. Radescu; S. Raychaudhuri; L. Rinolfi; R. Rohini; J. Rojo; S. Russenschuck; M. Sahin; C. A. Salgado; K. Sampei; R. Sassot; E. Sauvan; U. Schneekloth; T. Schörner-Sadenius; D. Schulte; A. Senol; A. Seryi; P. Sievers; A. N. Skrinsky; W. Smith; H. Spiesberger; A. M. Stasto; M. Strikman; M. Sullivan; S. Sultansoy; Y. P. Sun; B. Surrow; L. Szymanowski; P. Taels; I. Tapan; A. T. Tasci; E. Tassi; H. Ten. Kate; J. Terron; H. Thiesen; L. Thompson; K. Tokushuku; R. Tomás García; D. Tommasini; D. Trbojevic; N. Tsoupas; J. Tuckmantel; S. Turkoz; T. N. Trinh; K. Tywoniuk; G. Unel; J. Urakawa; P. VanMechelen; A. Variola; R. Veness; A. Vivoli; P. Vobly; J. Wagner; R. Wallny; S. Wallon; G. Watt; C. Weiss; U. A. Wiedemann; U. Wienands; F. Willeke; B. -W. Xiao; V. Yakimenko; A. F. Zarnecki; Z. Zhang; F. Zimmermann; R. Zlebcik; F. Zomer

    2012-09-07

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron's and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets and further components, together with a design study for a high acceptance detector. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It thus represents a major opportunity for progress in particle physics exploiting the investment made in the LHC.

  15. The Effects of Foundation Damping on Offshore Wind Turbines with Yaw Misalignment Hannah Johlas, Casey Fontana, Dr. Sanjay Arwade

    E-Print Network [OSTI]

    Mountziaris, T. J.

    The Effects of Foundation Damping on Offshore Wind Turbines with Yaw Misalignment Hannah Johlas, Casey Fontana, Dr. Sanjay Arwade Large offshore wind turbines offer an attractive renewable energy. Understanding and incorporating foundation damping into offshore wind turbine design guidelines can therefore

  16. Flow modeling in Pelton turbines by an accurate Eulerian and a fast Lagrangian evaluation method. Panagiotopoulos A.a,b

    E-Print Network [OSTI]

    MacDonald, Mark

    1 Title: Flow modeling in Pelton turbines by an accurate Eulerian and a fast Lagrangian evaluation Fluids Dynamics (CFD) has allowed the flow modeling in impulse hydro turbines that includes complex-parametric design optimization of the turbine's runner. In the present work, a CFD Eulerian approach is applied

  17. FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan

    E-Print Network [OSTI]

    Dabiri, John O.

    FSI Modeling of Vertical-Axis Wind Turbines Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan-dependent aerodynamics and fluid-structure interaction (FSI) simula- tions of a Darrieus-type vertical-axis wind turbine compared to the vertical-axis wind turbine (VAWT) designs. However, smaller-size VAWTs are more suitable

  18. 46th Aerospace Sciences Meeting, January 7-10, 2008, Reno, Nevada A Smart Wind Turbine Blade Using Distributed

    E-Print Network [OSTI]

    Nelson, Robert C.

    of "smart" wind turbine blades with integrated sensor-actuator-controller modules to im- prove the performance of wind turbines. The system will be designed to enhance energy capture, and reduce aerodynamic46th Aerospace Sciences Meeting, January 7-10, 2008, Reno, Nevada A Smart Wind Turbine Blade Using

  19. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  20. Comparison of Second-Order Loads on a Semisubmersible Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Gueydon, S.; Duarte, T.; Jonkman, J.; Bayati, I.; Sarmento, A.

    2014-03-01

    As offshore wind projects move to deeper waters, floating platforms become the most feasible solution for supporting the turbines. The oil and gas industry has gained experience with floating platforms that can be applied to offshore wind projects. This paper focuses on the analysis of second-order wave loading on semisubmersible platforms. Semisubmersibles, which are being chosen for different floating offshore wind concepts, are particularly prone to slow-drift motions. The slack catenary moorings usually result in large natural periods for surge and sway motions (more than 100 s), which are in the range of the second-order difference-frequency excitation force. Modeling these complex structures requires coupled design codes. Codes have been developed that include turbine aerodynamics, hydrodynamic forces on the platform, restoring forces from the mooring lines, flexibility of the turbine, and the influence of the turbine control system. In this paper two different codes are employed: FAST, which was developed by the National Renewable Energy Laboratory, and aNySIM, which was developed by the Maritime Research Institute Netherlands. The hydrodynamic loads are based on potential-flow theory, up to the second order. Hydrodynamic coefficients for wave excitation, radiation, and hydrostatic forces are obtained with two different panel codes, WAMIT (developed by the Massachusetts Institute of Technology) and DIFFRAC (developed by MARIN). The semisubmersible platform, developed for the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation project is used as a reference platform. Irregular waves are used to compare the behavior of this platform under slow-drift excitation loads. The results from this paper highlight the effects of these loads on semisubmersible-type platforms, which represent a promising solution for the commercial development of the offshore deepwater wind resource.

  1. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect (OSTI)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  2. Wind Turbine Gearbox Failure Modes - A Brief (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.; McDade, M.; Errichello, R.

    2011-10-01

    Wind turbine gearboxes are not always meeting 20-year design life. Premature failure of gearboxes increases cost of energy, turbine downtime, unplanned maintenance, gearbox replacement and rebuild, and increased warranty reserves. The problem is widespread, affects most Original Equipment Manufacturers, and is not caused by manufacturing practices. There is a need to improve gearbox reliability and reduce turbine downtime. The topics of this presentation are: GRC (Gearbox Reliability Collaborative) technical approach; Gearbox failure database; Recorded incidents summary; Top failure modes for bearings; Top failure modes for gears; GRC test gearbox; Bearing nomenclature; Test history; Real damage; Gear sets; Bearings; Observations; and Summary. 5 refs.

  3. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    SciTech Connect (OSTI)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  4. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  5. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, Paul F. (San Diego, CA); Shaffer, James E. (Maitland, FL)

    1995-01-01

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine.

  6. Turbine nozzle attachment system

    DOE Patents [OSTI]

    Norton, P.F.; Shaffer, J.E.

    1995-10-24

    A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components. The nozzle guide vane assembly includes a pair of legs extending radially outwardly from an outer shroud and a pair of mounting legs extending radially inwardly from an inner shroud. Each of the pair of legs and mounting legs have a pair of holes therein. A plurality of members attached to the gas turbine engine have a plurality of bores therein which axially align with corresponding ones of the pair of holes in the legs. A plurality of pins are positioned within the corresponding holes and bores radially positioning the nozzle guide vane assembly about a central axis of the gas turbine engine. 3 figs.

  7. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  8. Model Predictive Control Wind Turbines

    E-Print Network [OSTI]

    Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

  9. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  10. American Institute of Aeronautics and Astronautics A Framework for the Reliability Analysis of Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    the entire wind energy industry. Designs have an objective set of criteria against which they can be judged and entire fleets of turbines can be manufactured to a common set of criteria. Each wind power development typical wind turbine systems are yet to be characterized in ways that drive aeroelastic loads and design

  11. Structural Testing of 9 m Carbon Fiber Wind Turbine Research Blades*

    E-Print Network [OSTI]

    Structural Testing of 9 m Carbon Fiber Wind Turbine Research Blades* Joshua Paquette Sandia Laboratory** , Golden, CO, 80401 Three 9 m carbon fiber wind turbine blades have been designed through Systems Consulting (GEC) , Dynamic Design Engineering , and MDZ Consulting§§ ; and seven blades from each

  12. Ceramic gas turbine shroud

    DOE Patents [OSTI]

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  13. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  14. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  15. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  16. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  17. New Concepts in Fish Ladder Design, Volume III of IV, Assessment of Fishway Development and Design, 1982-1983 Final Report.

    SciTech Connect (OSTI)

    Powers, Patrick D.; Orsborn, John F.

    1985-08-01

    This volume covers the broad, though relatively short, historical basis for this project. The historical developments of certain design features, criteria and research activities are traced. Current design practices are summarized based on the results of an international survey and interviews with agency personnel and consultants. The fluid mechanics and hydraulics of fishway systems are discussed. Fishways (or fishpasses) can be classified in two ways: (1) on the basis of the method of water control (chutes, steps (ladders), or slots); and (2) on the basis of the degree and type of water control. This degree of control ranges from a natural waterfall to a totally artificial environment at a hatchery. Systematic procedures for analyzing fishways based on their configuration, species, and hydraulics are presented. Discussions of fish capabilities, energy expenditure, attraction flow, stress and other factors are included.

  18. Low-pressure-ratio regenerative exhaust-heated gas turbine

    SciTech Connect (OSTI)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  19. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Amaral, Stephen V.; Castro-Santos, Theodore; Giza, Dan; Haro, Alexander J.; Hecker, George; McMahon, Brian; Perkins, Norman; Pioppi, Nick

    2012-12-31

    This collection of three reports describes desktop and laboratory flume studies that provide information to support assessment of the potential for injury and mortality of fish that encounter hydrokinetic turbines of various designs installed in tidal and river environments. Behavioral responses to turbine exposure also are investigated to support assessment of the potential for disruptions to upstream and downstream movements of fish. The studies: (1) conducted an assessment of potential injury mechanisms using available data from studies with conventional hydro turbines; (2) developed theoretical models for predicting blade strike probabilities and mortality rates; and (3) performed flume testing with three turbine designs and several fish species and size groups in two laboratory flumes to estimate survival rates and document fish behavior. The project yielded three reports which this document comprises. The three constituent documents are addressed individually below Fish Passage Through Turbines: Application of Conventional Hydropower Data to Hydrokinetic Technologies Fish passing through the blade sweep of a hydrokinetic turbine experience a much less harsh physical environment than do fish entrained through conventional hydro turbines. The design and operation of conventional turbines results in high flow velocities, abrupt changes in flow direction, relatively high runner rotational and blade speeds, rapid and significant changes in pressure, and the need for various structures throughout the turbine passageway that can be impacted by fish. These conditions generally do not occur or are not significant factors for hydrokinetic turbines. Furthermore, compared to conventional hydro turbines, hydrokinetic turbines typically produce relatively minor changes in shear, turbulence, and pressure levels from ambient conditions in the surrounding environment. Injuries and mortality from mechanical injuries will be less as well, mainly due to low rotational speeds and strike velocities, and an absence of structures that can lead to grinding or abrasion injuries. Additional information is needed to rigorously assess the nature and magnitude of effects on individuals and populations, and to refine criteria for design of more fish-friendly hydrokinetic turbines. Evaluation of Fish Injury and Mortality Associated with Hydrokinetic Turbines Flume studies exposed fish to two hydrokinetic turbine designs to determine injury and survival rates and to assess behavioral responses. Also, a theoretical model developed for predicting strike probability and mortality of fish passing through conventional hydro turbines was adapted for use with hydrokinetic turbines and applied to the two designs evaluated during flume studies. The flume tests were conducted with the Lucid spherical turbine (LST), a Darrieus-type (cross flow) turbine, and the Welka UPG, an axial flow propeller turbine. Survival rates for rainbow trout tested with the LST were greater than 98% for both size groups and approach velocities evaluated. Turbine passage survival rates for rainbow trout and largemouth bass tested with the Welka UPG were greater than 99% for both size groups and velocities evaluated. Injury rates of turbine-exposed fish were low with both turbines and generally comparable to control fish. Video observations of the LST demonstrated active avoidance of turbine passage by a large proportion fish despite being released about 25 cm upstream of the turbine blade sweep. Video observations from behavior trials indicated few if any fish pass through the turbines when released farther upstream. The theoretical predictions for the LST indicated that strike mortality would begin to occur at an ambient current velocity of about 1.7 m/s for fish with lengths greater than the thickness of the leading edge of the blades. As current velocities increase above 1.7 m/s, survival was predicted to decrease for fish passing through the LST, but generally remained high (greater than 90%) for fish less than 200 mm in length. Strike mortality was not predicted to occur duri

  20. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  1. Using optimization and lean principles to design work cells and make capital purchase decisions for hole drilling operations in turbine airfoil manufacturing

    E-Print Network [OSTI]

    Neal, Thomas E. (Thomas Eugene)

    2006-01-01

    Classical manufacturing work cells have machines to perform each operation in the process, the number of each type of machine being chosen so that all machines would be equally busy. Although design of work cells for ...

  2. Heat Recovery Design Considerations for Cogeneration Systems 

    E-Print Network [OSTI]

    Pasquinelli, D. M.; Burns, E. D.

    1985-01-01

    The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping...

  3. Concept of Operations: Essence

    SciTech Connect (OSTI)

    Hutton, William J.

    2014-04-01

    This concept of operations is designed to give the reader a brief overview of the National Rural Electric Cooperative Association’s Essence project and a description of the Essence device design. The data collected by the device, how the data are used, and how the data are protected are also discussed in this document.

  4. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    SciTech Connect (OSTI)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  5. Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

    2011-07-15

    The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement drift or borehole spacing) by comparing the peak temperature to the thermal limits of the concentric layers surrounding the waste package; specifically 100 C for the bentonite buffer in granite and clay repositories, 100 C for rock wall in a clay repository and 200 C at the rock wall for a salt repository. These thermal limits are both preliminary and approximate, and serve as a means to evaluate design options rather than determining compliance for licensing situations. The thermal behavior of a salt repository is more difficult to model because it is not a concentric geometry and because the crushed salt backfill initially has a much higher thermal resistance than intact salt. Three models were investigated, namely a waste package in complete contact with crushed salt, secondly a waste package in contact with intact salt, and thirdly a waste package in contact with 75% intact and 25% crushed salt. The latter model best depicts emplacement of a waste package in the corner of an intact salt alcove and subsequently covered with crushed salt backfill to the angle of repose. The most conservative model (crushed salt) had temperatures much higher than the other models and although bounding, is too conservative to use. The most realistic model (75/25) had only a small temperature difference from the simplest (non-conservative, intact salt) model, and is the one chosen in this report (see Section 5.2.3). A trade-study investigating three key variables (surface storage time, waste package capacity and waste package spacing) is important to understand and design a repository. Waste package heat can be reduced by storing for longer periods prior to emplacement, or by reducing the number of assemblies or canisters within that waste package. Waste package spacing can be altered to optimize the thermal load without exceeding the thermal limits of the host rock or EBS components. By examining each of these variables, repository footprint (and therefore cost) can be optimized. For this report, the layout was fixed for each geologic medium based on prior published designs in

  6. Starting of turbine engines

    SciTech Connect (OSTI)

    Shekleton, J.R.

    1990-05-01

    This patent describes a relatively small turbine engine. It comprises: a rotary turbine wheel; a rotary compressor coupled to the turbine wheel; an annular combustor for receiving air from the compressor and fuel from a fuel source combusting the same and providing gases of combustion to the turbine wheel to drive the same; substantially identical main fuel injectors including fuel injecting nozzles angularly spaced about the compressor; fuel and air from the compressor being introduced into the combustor generally in the tangential direction; a fuel pump; a control schedule valve; and first and second main fuel solenoid valves. The first valve being operable to connect a minority of the injectors to the control schedule valve and the fuel pump for starting the engine, there being an even number of the injectors and the minority of injectors consisting of two diametrically opposite injectors; the first and second valves being operable to connect all of the injectors to the control schedule valve and the pump for causing normal operation of the engine; the engine further being characterized by the absence of start fuel injectors for the combustor.

  7. Turbine vane structure

    DOE Patents [OSTI]

    Irwin, John A. (Greenwood, IN)

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  8. Wind Turbine Tribology Seminar - A Recap

    SciTech Connect (OSTI)

    Errichello, R.; Sheng, S.; Keller, J.; Greco, A.

    2012-02-01

    Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication, and wear. It is an important phenomenon that not only impacts the design and operation of wind turbine gearboxes, but also their subsequent maintenance requirements and overall reliability. With the major growth and increasing dependency on renewable energy, mechanical reliability is an extremely important issue. The Wind Turbine Tribology Seminar was convened to explore the state-of-the-art in wind turbine tribology and lubricant technologies, raise industry awareness of a very complex topic, present the science behind each technology, and identify possible R&D areas. To understand the background of work that had already been accomplished, and to consolidate some level of collective understanding of tribology by acknowledged experts, the National Renewable Energy Laboratory (NREL), Argonne National Laboratory (ANL), and the U.S. Department of Energy (DOE) hosted a wind turbine tribology seminar. It was held at the Renaissance Boulder Flatiron Hotel in Broomfield, Colorado on November 15-17, 2011. This report is a summary of the content and conclusions. The presentations given at the meeting can be downloaded. Interested readers who were not at the meeting may wish to consult the detailed publications listed in the bibliography section, obtain the cited articles in the public domain, or contact the authors directly.

  9. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect (OSTI)

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  10. SPINNER ANEMOMETRY -AN INNOVATIVE WIND MEASUREMENT CONCEPT TF Pedersen*)

    E-Print Network [OSTI]

    SPINNER ANEMOMETRY - AN INNOVATIVE WIND MEASUREMENT CONCEPT TF Pedersen*) , N Sørensen, HA Madsen, R Møller, M Courtney, Risø National Laboratory P Enevoldsen, P Egedal, Siemens *) Risø, Wind Energy, fax +45 46 77 50 83 SUMMARY: An innovative and new concept for measurements of wind on a wind turbine

  11. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  12. Turbine airfoil to shround attachment

    DOE Patents [OSTI]

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  13. Improved global efficiency in industrial applications with cogeneration steam turbines

    SciTech Connect (OSTI)

    Hassan, A.; Alsthom, G.

    1998-07-01

    This paper focuses on medium steam turbine in the range of 10--80 MW and their application in cogeneration plants. The author summarizes the different steps which have led to the TM concept: good efficiency; competitive price; short delivery time; operation flexibility; ease of integration in a cogeneration process. The second part of the document shows two examples of integration of these turbines in cogeneration processes; one for acrilonitril (ACN) and polypropylene plant in Spain and the second for a textile plant in Taiwan.

  14. Learning curves and changing product attributes: the case of wind turbines

    E-Print Network [OSTI]

    Coulomb, Louis; Neuhoff, Karsten

    2006-03-14

    an important contribution. Other studies avoid this problem by using kWh as the energy benchmark; here, a reference wind site is selected, and the annual theoretical energy production of all turbines that constitute the installed capacity is determined... -seventh for onshore sites. Wind turbine designers have two options to capitalise on the increase in wind speed with increasing hub height. Firstly, they can retain the combination of turbine diameter and rated power of the generator and thus increase the energy...

  15. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  16. Turbine repair process, repaired coating, and repaired turbine component

    SciTech Connect (OSTI)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  17. Probabilistic fatigue methodology and wind turbine reliability

    SciTech Connect (OSTI)

    Lange, C.H. [Stanford Univ., CA (United States)

    1996-05-01

    Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

  18. Selection of Wind Turbine Blade Materials for Fatigue Resistance

    E-Print Network [OSTI]

    Selection of Wind Turbine Blade Materials for Fatigue Resistance John Mandell Montana State reversed tension-compression. ­ Data used in blade design can be of uncertainData used in blade design can (Power Law Most Common)q ( ) #12;Statistical Confidence Limit Representation, Power Law and Three-ParameterPower

  19. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  20. Research and development of a 3 MW power plant from the design, development, and demonstration of a 100 KW power system utilizing the direct contact heat exchanger concept for geothermal brine recovery project. Final report

    SciTech Connect (OSTI)

    Huebner, A.W.; Wall, D.A.; Herlacher, T.L.

    1980-09-01

    The design phase for the 100 KW unit consumed the months of May through November 1978, with the final design selected as having a direct contact boiler and condenser, a single-stage radial inflow induction turbine-generator using isopentane as the working fluid, and a single cell ejector-type cooling tower. The unit was constructed on two, forty-foot flatbed trailers between the months of October 1978 and June 1979. Systems start-up testing, in-field modifications, unit operation, and performance testing were performed between July and December 1979. AP and L (Arkansas Power and Light) personnel assumed responsibility of the unit at that time and conducted further maintenance, operations, and testing through August 1980.

  1. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    SciTech Connect (OSTI)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  2. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  3. Turbine seal assembly

    DOE Patents [OSTI]

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  4. Gas turbine sealing apparatus

    DOE Patents [OSTI]

    Marra, John Joseph; Wessell, Brian J.; Liang, George

    2013-03-05

    A sealing apparatus in a gas turbine. The sealing apparatus includes a seal housing apparatus coupled to a disc/rotor assembly so as to be rotatable therewith during operation of the gas turbine. The seal housing apparatus comprises a base member, a first leg portion, a second leg portion, and spanning structure. The base member extends generally axially between forward and aft rows of rotatable blades and is positioned adjacent to a row of stationary vanes. The first leg portion extends radially inwardly from the base member and is coupled to the disc/rotor assembly. The second leg portion is axially spaced from the first leg portion, extends radially inwardly from the base member, and is coupled to the disc/rotor assembly. The spanning structure extends between and is rigidly coupled to each of the base member, the first leg portion, and the second leg portion.

  5. Multiple piece turbine airfoil

    DOE Patents [OSTI]

    Kimmel, Keith D (Jupiter, FL)

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  6. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  7. Snubber assembly for turbine blades

    DOE Patents [OSTI]

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  8. Gas turbine premixing systems

    DOE Patents [OSTI]

    Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

    2013-12-31

    Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

  9. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  10. Wind Turbine Generator KanaKanapathipillai

    E-Print Network [OSTI]

    New South Wales, University of

    Wind Turbine Generator Noise KanaKanapathipillai Reliable and accurate measurement of wind turbine & Associates on wind turbine noise for a number of years. Treatment for Presbyopia Hooman M. Pour Presbyopia

  11. Automatic Control of Freeboard and Turbine Operation

    E-Print Network [OSTI]

    Automatic Control of Freeboard and Turbine Operation ­ Wave Dragon, Nissum Bredning Project: Sea of Freeboard and Turbine Operation Wave Dragon, Nissum Bredning by Jens Peter Kofoed & Peter Frigaard, Aalborg.........................................................................................................................10 TURBINE PERFORMANCE DATA

  12. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,1970, p. 545. R. Krutenat, Gas Turbine Materials ConferenceOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  13. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    E-Print Network [OSTI]

    Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

  14. Theory and Performance of Tesla Turbines

    E-Print Network [OSTI]

    Romanin, Vincent D.

    2012-01-01

    through a Tesla turbine microchannel . . . . . . . . . . .1.2 History of the Tesla Turbine 1.3 BackgroundCFD) Solution of Flow Through a Tesla Turbine 4.1 Summary of

  15. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,military aircraft gas turbine engines as well as mar1ne andfeatures. Like the gas turbine engine, the EB·-PVD coater is

  16. OVERLAY COATINGS FOR GAS TURBINE AIRFOILS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    of Supperalloys for Gas Turbine Engines, 11 J. Metals, Q,FT4, JT9D and other gas turbines, and their use continues toOVERLAY COATINGS FOR GAS TURBINE AIRFOILS Donald H. Boone

  17. Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001

    E-Print Network [OSTI]

    Ishii, Jun

    2004-01-01

    operation of gas turbines (especially combustion turbines inthe development of gas turbines, especially combustion gas

  18. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  19. Field Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power

    E-Print Network [OSTI]

    investigate a solar thermal steamdriven turbine system and build and evaluate several versions in fieldField Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power by Amy and repeatability necessary for regular people to design, manufacture, and install a system to convert solar

  20. Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles

    E-Print Network [OSTI]

    Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles John Pye, Keith of the technical feasibility a solarised combined-cycle gas turbines with a dish concentrator, with several with a thermal receiver taken from the earlier 400 m² 'SG3' dish. Work is underway to design a new steam receiver

  1. PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S. Cairns

    E-Print Network [OSTI]

    in Reference 3, available on the Sandia web site www.sandia.gov/Renewable_Energy/Wind_Energy/. DELAMINATION1 PREDICTION OF DELAM INATION IN WIND TURBINE BLADE STRUCTURAL DETAILS John F. Mandell, Douglas S materials structures such as wind turbine blades. Design methodologies to prevent such failures have

  2. Turbulence-Turbine Interaction: The Basis for the Development of the TurbSim Stochastic Simulator

    SciTech Connect (OSTI)

    Kelley, N. D.

    2011-11-01

    A combination of taller wind turbines with more flexible rotors and towers operating in turbulent conditions that are not well understood is contributing to much higher than anticipated maintenance and repairs costs and is associated with lower energy production. This report documents evidence of this and offers the turbine designers an expanded tool that resolves many of these shortcomings.

  3. Developing Biological Specifications for Fish Friendly Turbines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Biological Specifications for Fish Friendly Turbines Developing Biological Specifications for Fish Friendly Turbines This factsheet explains studies conducted in a...

  4. turbine thermal index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current...

  5. Developing Biological Specifications for Fish Friendly Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Biological Specifications for Fish Friendly Turbines The U.S. Department of Energy's Advanced Hydropower Turbine Sys- tem (AHTS) Program supports the research and...

  6. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    SciTech Connect (OSTI)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  7. Development and assessment of a coupled strategy for conjugate heat transfer with Large Eddy Simulation: Application to a cooled turbine blade

    E-Print Network [OSTI]

    Nicoud, Franck

    Simulation: Application to a cooled turbine blade F. Duchaine a,*, A. Corpron b , L. Pons b , V. Moureau b parameters. The coupled tool is then applied to a cooled turbine blade model where results demonstrate both walls is an important phenomenon in combustion chambers and a main design constraint in gas turbines

  8. Property Variability Stochastic Multiscale Analysis and Design

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    Property Variability Stochastic Multiscale Analysis and Design of Engine Disks N. Zabaras, B. Wen in nickel-based superalloy turbine disks. Issues: Property variability of turbine disk due to high-dimensional multiscale sources Rolls-Royce RB211- 535 turbofan Nickel-base superalloy turbine disk Superalloy

  9. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect (OSTI)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

  10. 66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With

    E-Print Network [OSTI]

    Kusiak, Andrew

    . Three different objectives, wind power output, vibration of drive train, and vibration of tower intensified in recent years. Areas with the most research progress include the design of wind turbines [1], [2], the design and reliability of wind farms [3]­[5], the control of wind turbines [6], [7], [22], [23], wind

  11. Quiet airfoils for small and large wind turbines

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan L. (Port Matilda, PA)

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  12. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  13. A Silicon-Based Micro Gas Turbine Engine for Power Generation

    E-Print Network [OSTI]

    Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

    2007-01-01

    This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

  14. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  15. TEDANN: Turbine engine diagnostic artificial neural network

    SciTech Connect (OSTI)

    Kangas, L.J.; Greitzer, F.L.; Illi, O.J. Jr.

    1994-03-17

    The initial focus of TEDANN is on AGT-1500 fuel flow dynamics: that is, fuel flow faults detectable in the signals from the Electronic Control Unit`s (ECU) diagnostic connector. These voltage signals represent the status of the Electro-Mechanical Fuel System (EMFS) in response to ECU commands. The EMFS is a fuel metering device that delivers fuel to the turbine engine under the management of the ECU. The ECU is an analog computer whose fuel flow algorithm is dependent upon throttle position, ambient air and turbine inlet temperatures, and compressor and turbine speeds. Each of these variables has a representative voltage signal available at the ECU`s J1 diagnostic connector, which is accessed via the Automatic Breakout Box (ABOB). The ABOB is a firmware program capable of converting 128 separate analog data signals into digital format. The ECU`s J1 diagnostic connector provides 32 analog signals to the ABOB. The ABOB contains a 128 to 1 multiplexer and an analog-to-digital converter, CP both operated by an 8-bit embedded controller. The Army Research Laboratory (ARL) developed and published the hardware specifications as well as the micro-code for the ABOB Intel EPROM processor and the internal code for the multiplexer driver subroutine. Once the ECU analog readings are converted into a digital format, the data stream will be input directly into TEDANN via the serial RS-232 port of the Contact Test Set (CTS) computer. The CTS computer is an IBM compatible personal computer designed and constructed for tactical use on the battlefield. The CTS has a 50MHz 32-bit Intel 80486DX processor. It has a 200MB hard drive and 8MB RAM. The CTS also has serial, parallel and SCSI interface ports. The CTS will also host a frame-based expert system for diagnosing turbine engine faults (referred to as TED; not shown in Figure 1).

  16. Energy harvesting to power sensing hardware onboard wind turbine blade

    SciTech Connect (OSTI)

    Carlson, Clinton P; Schichting, Alexander D; Quellette, Scott; Farinholt, Kevin M; Park, Gyuhae

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  17. NIST Home > Baldrige > Solar Turbines Select Language

    E-Print Network [OSTI]

    NIST Home > Baldrige > Solar Turbines * Select Language Powered by Translate Malcolm Baldrige National Quality Award 1998 Recipient Solar Turbines Incorporated With customers in 86 countries, Solar Turbines Incorporated is the world's largest supplier of midrange industrial gas turbine systems. The San

  18. 5th International Meeting Wind Turbine Noise

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 5th International Meeting on Wind Turbine Noise Denver 28 ­ 30 August 2013 Wind Turbine Noise Broadband noise generated aerodynamically is the dominant noise source for a modern wind turbine(Brooks et turbines . First, a wall pressure spectral model proposed recently by Rozenberg, Robert and Moreau

  19. AIAA 20033698 Aircraft Gas Turbine Engine

    E-Print Network [OSTI]

    Stanford University

    AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J. Alonso, and M. Fatica, Reston, VA 20191­4344 #12;AIAA 2003­3698 Aircraft Gas Turbine Engine Simulations W. C. Reynolds , J. J of the flowpath through complete aircraft gas turbines including the compressor, combustor, turbine, and secondary

  20. Installing Small Wind Turbines Seminar and Workshop

    E-Print Network [OSTI]

    Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

  1. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  2. Yale ME Turbine Test cell instructions Background

    E-Print Network [OSTI]

    Haller, Gary L.

    Yale ME Turbine Test cell instructions Background: The Turbine Technologies Turbojet engine combustion gas backflow into the lab space. Test Cell preparation: 1. Turn on Circuit breakers # 16 of the turbine and check a few items: o Open keyed access door on rear of Turbine enclosure o Check Jet A fuel

  3. Why Condensing Steam Turbines are More Efficient than Gas Turbines 

    E-Print Network [OSTI]

    Nelson, K. E.

    1988-01-01

    turbine at 75'rc adiabatic efficiency to a vacuum of 2"Hg. No steam is extracted. 15,7 ~Blu/hr STACK Figure 3. Enthalpy analysis of power plant cycle. Analyzing this system points to the steam turbine condenser as the source of inefficiency... it's thrown away. Why be concerned about throwing away something that has virtually no value? But there is concern. The steam turbine condenser is nearly always viewed as the source of inefficiency in the cycle. The problem is that the wrong thing...

  4. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  5. An integrated CAD methodology applied to wind turbine optimization

    E-Print Network [OSTI]

    Crawford, Curran A. (Curran Alexander), 1978-

    2003-01-01

    Modern engineering practice for designing physical products requires the creation of a CAD model of the design for documentation and manufacturing. As the design evolves from concept through to production, it is analyzed ...

  6. Driver Selection Integration with Utility System Design Li Sun, Robin Smith

    E-Print Network [OSTI]

    Ahrendt, Wolfgang

    Driver options · Electric motor · Helper motor and generator · Steam turbine · Gas turbine · Combustion and energy efficiency · Flexibility and reliability · Others VHP HP MP LP Steam turbines HRSG Gas turbine, M13 9PL, UK Utility system design analysis Main components: - Fuel - Steam mains - Steam generation

  7. Quantifying Barotrauma Risk to Juvenile Fish during Hydro-turbine Passage

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.; Sick, Mirjam; Brown, Richard S.; Carlson, Thomas J.

    2014-03-15

    We introduce a method for hydro turbine biological performance assessment (BioPA) to bridge the gap between field and laboratory studies on fish injury and turbine engineering design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed hydro turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism (stressor) and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, engineers and biologists can identify the more-promising designs and operating conditions to minimize hydraulic conditions hazardous to passing fish. In this paper, the BioPA method is applied to estimate barotrauma induced mortal injury rates for Chinook salmon exposed to rapid pressure changes in Kaplan-type hydro turbines. Following the description of the general method, application of the BioPA to estimate the probability of mortal injury from exposure to rapid decompression is illustrated using a Kaplan hydro turbine at the John Day Dam on the Columbia River in the Pacific Northwest region of the USA. The estimated rates of mortal injury increased from 0.3% to 1.7% as discharge through the turbine increased from 334 to 564 m3/s for fish assumed to be acclimated to a depth of 5 m. The majority of pressure nadirs occurred immediately below the runner blades, with the lowest values in the gap at the blade tips and just below the leading edge of the blades. Such information can help engineers focus on problem areas when designing new turbine runners to be more fish-friendly than existing units.

  8. Probabilistic aerothermal design of gas turbine combustors

    E-Print Network [OSTI]

    Bradshaw, Sean D. (Sean Darien), 1978-

    2006-01-01

    This thesis presents a probability-based framework for assessing the impact of manufacturing variability on combustor liner durability. Simplified models are used to link combustor liner life, liner temperature variability, ...

  9. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  10. Wind Turbine Blade Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurementWind Program»

  11. Wind Turbine Blade Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.ProjectsLeaders |3 0 0 N S T R EDepartment

  12. Vibration and Structural Response of Hybrid Wind Turbine Blades 

    E-Print Network [OSTI]

    Nanami, Norimichi

    2011-02-22

    to the square of the blade length and the cube of the wind speed, wind turbine size has grown rapidly in the last two decades to match the increase in power output. As the blade length increases, so does its weight opening up design possibilities to introduce...

  13. Challenges in Simulation of Aerodynamics, Hydrodynamics, and Mooring-Line Dynamics of Floating Offshore Wind Turbines

    SciTech Connect (OSTI)

    Matha, D.; Schlipf, M.; Cordle, A.; Pereira, R.; Jonkman, J.

    2011-10-01

    This paper presents the current major modeling challenges for floating offshore wind turbine design tools and describes aerodynamic and hydrodynamic effects due to rotor and platform motions and usage of non-slender support structures.

  14. Microsoft Word - RM1_Tidal Turbine_NREL Bir, Lawson, Li_2011...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Engineering OMAE2011 June 19-24, 20111, Rotterdam, the Netherland OMAE2011-50063 STRUCTURAL DESIGN OF A HORIZONTAL-AXIS TIDAL CURRENT TURBINE COMPOSITE BLADE ABSTRACT This...

  15. Development and assessment of a soot emissions model for aircraft gas turbine engines

    E-Print Network [OSTI]

    Martini, Bastien

    2008-01-01

    Assessing candidate policies designed to address the impact of aviation on the environment requires a simplified method to estimate pollutant emissions for current and future aircraft gas turbine engines under different ...

  16. Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes

    SciTech Connect (OSTI)

    Oyague, F.

    2009-02-01

    This report discusses the causes for premature wind turbine gearbox failure and determining a method for revealing the missing loading conditions relevant to the gearbox design process.

  17. Advanced coal-fueled gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

  18. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    SciTech Connect (OSTI)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  19. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  20. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    3.2.1 Description of Test Wind Turbine . . . . . .Figure 1.2: Components of a modern wind turbine . . . . . .D.3: D.4: Wind turbine parameters . . . . . . . . . . . .