National Library of Energy BETA

Sample records for tubing suction tubing

  1. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOE Patents [OSTI]

    Vasilow, Theodore R. (Penn Township, Westmoreland County, PA); Zymboly, Gregory E. (Murrysville, PA)

    1991-01-01

    An electrode is deposited on a support by providing a porous ceramic support tube (10) having an open end (14) and closed end (16); masking at least one circumferential interior band (18 and 18') inside the tube; evacuating air from the tube by an evacuation system (30), to provide a permeability gradient between the masked part (18 and 18') and unmasked part (20) of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating (42) over the unmasked support part (20) and a tapered coating over the masked part (18 and 18').

  2. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOE Patents [OSTI]

    Vasilow, T.R.; Zymboly, G.E.

    1991-12-17

    An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.

  3. Protective tubes for sodium heated water tubes

    DOE Patents [OSTI]

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  4. Multiple tube premixing device

    DOE Patents [OSTI]

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  5. Multiple tube premixing device

    DOE Patents [OSTI]

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  6. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  7. Electron tube

    DOE Patents [OSTI]

    Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  8. Tube furnace

    DOE Patents [OSTI]

    Foster, Kenneth G. (Livermore, CA); Frohwein, Eugene J. (San Ramon, CA); Taylor, Robert W. (Livermore, CA); Bowen, David W. (Livermore, CA)

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  9. Tapered pulse tube for pulse tube refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  10. Tube-in-tube thermophotovoltaic generator

    DOE Patents [OSTI]

    Ashcroft, John (Scotia, NY); Campbell, Brian (Scotia, NY); DePoy, David (Clifton Park, NY)

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  11. Tube-in-tube thermophotovoltaic generator

    DOE Patents [OSTI]

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  12. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  13. Microhole Tubing Bending Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Oglesby, Ken

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  14. Conduction cooled tube supports

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  15. Sapphire tube pressure vessel

    DOE Patents [OSTI]

    Outwater, John O. (Cambridge, MA)

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  16. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  17. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  18. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  19. Coiled tubing apparatus

    SciTech Connect (OSTI)

    Baugh, B.F.

    1981-05-05

    Disclosed are coiled tubing apparatus for operating on wells. A tubing injector head is supported on a mast and is moveable to selected elevations along the mast. The mast includes a lower section maintained in upright orientation, and an upper section which is pivotally joined to the lower section. The injector head may be lowered below the pivot point and the mast folded for transportation purposes. A chain drive maneuvers the injector head in one horizontal direction, and a fluid pressure cylinder maneuvers the injector head in a second horizontal direction generally orthogonal to the first. The chain drive is fitted with a worm gear coupling to positively lock the injector head in position. A height-adjustable level wind tubing guide directs the tubing onto or off of a reel. The base of the apparatus is fitted with a track along which a blowout preventer may be moved for subsequent positioning over a well.

  20. Helically coiled tube heat exchanger

    SciTech Connect (OSTI)

    Harris, A.M.

    1981-08-18

    In a heat exchanger such as a steam generator for a nuclear reactor, two or more bundles of helically coiled tubes are arranged in series with the tubes in each bundle integrally continuing through the tube bundles arranged in series therewith. Pitch values for the tubing in any pair of tube bundles, taken transverse to the path of the reactor coolant flow about the tubes, are selected as a ratio of two unequal integers to permit efficient operation of each tube bundle while maintaining the various tube bundles of the heat exchanger within a compact envelope. Preferably, the helix angle and tube pitch parallel to the path of coolant flow are constant for all tubes in a single bundle so that the tubes are of approximately the same length within each bundle.

  1. Coiled tubing operations and services

    SciTech Connect (OSTI)

    Jaworsky, A.S. II )

    1991-11-01

    Coiled tubing offers many advantages over conventional jointed tubing used for drilling in oil fields, including time savings, pumping flexibility, fluid placement, reduced formation damage and safety. The article gives an overview of coiled tubing history and development. Operating concepts are explained, along with descriptions of the major equipment and components associated with coiled tubing use in the oil field today.

  2. Coiled tubing working life prediction

    SciTech Connect (OSTI)

    Wu, J.

    1995-12-31

    Failure of coiled tubing, due to the repeated bending and plastic deformation of coiled tubing on and off the reel and gooseneck, is of great concern in coiled tubing operations. This paper discusses the coiled tubing working life based on one of the coiled tubing life models published in the literature, and compares the results with other models. Certain agreements are found among these models. A group of curves is presented to illustrate the coiled tubing working life affected by coiled tubing size and wall thickness, internal pressure, yield strength, reel diameter, gooseneck radius, operation condition (corrosion) and butt-welded connection (stress concentration). The results show that coiled tubing life can be greatly increased by increasing CT wall thickness and CT strength, while the coiled tubing working life decreases under high internal pressure, corrosion, and butt-weld conditions. These curves can be easily used in estimating coiled tubing life for the field use.

  3. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  4. Fluorescent Tube Lamps

    Broader source: Energy.gov [DOE]

    FEMP temporarily suspended its energy efficiency requirements for fluorescent tube lamps as it evaluates the market impact of the pending 2012 minimum efficiency standards for fluorescent lamps. The program will issue updated energy efficiency requirements when the market distribution of this product category stabilizes and when doing so has the potential to result in significant Federal energy savings.

  5. Novel Tube-in-Tube System Simplifies Subsurface Fluid Sampling

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-01-21

    Barry Freifeld of Berkeley Lab has developed a device that simplifies subsurface fluid sampling. The technology’s tube-within-a-tube construction is a substantial improvement to the U-tube sampling system widely used for borehole sampling today. Using only one line, instead of two, the tube-in-tube system enables the sampling device to get lowered easily through a pressure control device (such as a grease head or pack-off) for discrete level sampling of live oil and gas wells...

  6. Collapse pressure of coiled tubing

    SciTech Connect (OSTI)

    Yang, Y.S.

    1996-09-01

    The collapse pressure is a measure of an external force required to collapse a tube in the absence of internal pressure. It is defined as the minimum pressure required to yield the tube in the absence of internal pressure. Coiled tubing is sometimes used in high-pressure wells. If the external pressure becomes too high, the coiled tubing will collapse. This could not only lead to serious well-control problems, but may result in extensive fishing operations. A reliable safety criterion of collapse pressure for the coiled tubing is needed by the coiled tubing operators. Theoretical models of collapse pressure are well developed for perfectly round coiled tubing but not for oval coiled tubing. Coiled tubing is initially manufactured with nearly perfect roundness, sometimes having a small ovality (typically {le} 0.5%). Perfectly round CT becomes oval owing to the plastic mechanical deformation of the coiled tubing as it spooled on and off the reel and over the gooseneck. As the cycling continues, the ovality usually increases. This ovality significantly decreases the collapse failure pressure as compared to perfectly round tubing. In this paper, an analytical model of collapse pressure for oval tubing under axial tension or compression is developed based on elastic instability theory and the von Mises criterion. The theoretical model shows satisfactory agreement with experimental data.

  7. Induction plasma tube

    DOE Patents [OSTI]

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  8. Induction plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM)

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  9. Joined concentric tubes

    DOE Patents [OSTI]

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  10. Concentric tube support assembly

    DOE Patents [OSTI]

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  11. Ion plated electronic tube device

    DOE Patents [OSTI]

    Meek, T.T.

    1983-10-18

    An electronic tube and associated circuitry which is produced by ion plating techniques. The process is carried out in an automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  12. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Welch, J.L.; Stephens, R.K. )

    1992-09-01

    This paper reports on coiled tubing units which are used for many types of remedial well operations, including sand plugbacks, cement squeezes, fill cleanouts, underreaming, acid stimulations, and fishing. Fishing operations include removal of inflatable bridge plugs, lock mandrels stuck in profile nipples, coiled tubing, coiled tubing bottomhole assemblies (BHAs) and wireline. Recommended guidelines for selecting candidates, proper tool string configuration and operational techniques are presented here to assist coiled tubing supervisors and company representatives in the planning and implementation of efficient and effective fishing operations. Treatment of these areas are not intended to be exhaustive, but rather generally representative of common applications. Each fishing operation requires individualized analysis and planning.

  13. Coiled tubing. operations and services

    SciTech Connect (OSTI)

    Hightower, C.M. )

    1992-11-01

    Coiled tubing is being used with increasing frequency in conventional or traditional production operations. Demand for coiled pipe in these types of applications is expected to experience rapid growth as standard 2 (3/8) and 2 (7/8)-in. OD tubing sizes and units equipped to run larger pipe become more readily available. This paper reports on a recent market survey which indicated that coiled tubing used for velocity strings and standard production tubing installations are two areas with the most potential for immediate and near-term expansion. Other applications include: well casing and liners, gravel packing, artificial lift, flowlines and pipelines.

  14. Reduced-vibration tube array

    DOE Patents [OSTI]

    Bruck, Gerald J.; Bartolomeo, Daniel R.

    2004-07-20

    A reduced-vibration tube array is disclosed. The array includes a plurality of tubes in a fixed arrangement and a plurality of damping members positioned within the tubes. The damping members include contoured interface regions characterized by bracing points that selectively contact the inner surface of an associated tube. Each interface region is sized and shaped in accordance with the associated tube, so that the damping member bracing points are spaced apart a vibration-reducing distance from the associated tube inner surfaces at equilibrium. During operation, mechanical interaction between the bracing points and the tube inner surfaces reduces vibration by a damage-reducing degree. In one embodiment, the interface regions are serpentine shaped. In another embodiment, the interface regions are helical in shape. The interface regions may be simultaneously helical and serpentine in shape. The damping members may be fixed within the associated tubes, and damping member may be customized several interference regions having attributes chosen in accordance with desired flow characteristics and associated tube properties.

  15. Method for producing a tube

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Pfeifer, Kent B. (Los Lunas, NM); Turner, Timothy S. (Rio Rancho, NM)

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  16. Hydrogen Tube Trailers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery » Gaseous Hydrogen » Hydrogen Tube Trailers Hydrogen Tube Trailers Trucks that haul gaseous hydrogen are called tube trailers. Gaseous hydrogen is compressed to pressures of 180 bar (~2,600 psig) or higher into long cylinders that are stacked on a trailer that the truck hauls. This gives the appearance of long tubes, hence the name tube trailer. Tube trailers are currently limited to pressures of 250 bar by U.S. Department of Transportation (DOT) regulations. Steel tube

  17. Equations determine coiled tubing collapse pressure

    SciTech Connect (OSTI)

    Avakov, V.; Taliaferro, W.

    1995-07-24

    A set of equations has been developed for calculating pipe collapse pressure for oval tubing such as coiled tubing. When coiled tubing is placed onto a reel, the tubing is forced into an oval shape and never again returns to perfect roundness because the coiling process exceeds the plasticity limits of the tubing. Straightening the tubing for the trip into the well does not restore roundness. The consequence of this physical property is that all coiled tubing collapse pressure calculations should be made considering oval tubing, not round tubing. Tubing collapse can occur when formation pressure against the coiled tubing exceeds the collapse resistance inherent in the coiled tubing. As coiled tubing becomes more oval in shape, it becomes more oval in shape, it becomes more susceptible to collapse from outside pressure.

  18. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Gronseth, J.M. )

    1993-04-01

    Drilling with a continuous (rather than jointed) drill string is an old concept that is gaining new attention as a result of recent advances made in coiled tubing and drilling technology. The development of larger diameter, reliable, high-strength coiled tubing and smaller diameter, positive displacement motors, orienting tools, surveying systems and fixed cutting drill bits have given drilling with a continuous drill string a capability that was previously unattainable. Like its many other uses, (e.g., squeeze cementing, wellbore cleanouts, flow initiation, logging) the continuity of coiled tubing gives it several advantages over conventional drill strings. These include: drilling underbalanced safely, significantly reduced trip time, continuous circulation, smaller surface requirements. Coiled tubing drilling operations have smaller surface lease requirements than most conventional rigs due to the smaller footprint of the coiled tubing unit and associated equipment. Current coiled tubing drilling operations have the following limitations: conventional rig assistance is required for well preparation; conventional rigs must assist in running long protective and production casing strings or liners; hole sizes are smaller; working depth capabilities are shallower, coiled tubing life is less. This paper goes on to discuss the history of continuous drill strings and includes information on tubing units, circulating systems, drilling fluids, well control systems, downhole tools, orientation tools, and bottomhole assemblies. It then gives a cost comparison and an application of this type of drilling.

  19. Eddy current signal comparison for tube identification

    SciTech Connect (OSTI)

    Glass, S. W. E-mail: Ratko.Vojvodic@areva.com; Vojvodic, R. E-mail: Ratko.Vojvodic@areva.com

    2015-03-31

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  20. Widget:YouTube | Open Energy Information

    Open Energy Info (EERE)

    This widget displays a YouTube video. Parameters id - the YouTube video id (this is the v parameter or the code at the end of the YouTube url. width - the width of video...

  1. Method of making straight fuel cell tubes

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    2001-01-01

    A method and an apparatus for making straight fuel cell tubes are disclosed. Extruded tubes comprising powders of fuel cell material and a solvent are dried by rotating the extruded tubes. The rotation process provides uniform circumferential drying which results in uniform linear shrinkage of the tubes. The resultant dried tubes are very straight, thereby eliminating subsequent straightening steps required with conventional processes. The method is particularly useful for forming inner air electrode tubes of solid oxide fuel cells.

  2. Titanium vs. traditional coiled tubing

    SciTech Connect (OSTI)

    1997-06-01

    The development of composite and titanium pipe has the potential to eliminate many of the issues facing coiled-tubing (CT) work on platforms with restricted lift capability in the North Sea, such as the time to mobilize and set up the CT reel, additional personnel requirements, and weather dependence. A number of methods are available to overcome reel-weight limitations when conventional steel Ct is used. These include Ct welding, split reels, boat spooling, and tube/tube connectors. These factors are discussed then the paper discusses results from 3 field tests on gas and oil wells.

  3. Power Tube Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Tube Inc Jump to: navigation, search Name: Power Tube Inc Place: Houston, Texas Zip: 77060 Sector: Geothermal energy Product: Texan geothermal systems developer. Has...

  4. Vertical tube liquid pollutant separators

    SciTech Connect (OSTI)

    Lynch, W.M.

    1982-06-08

    A plurality of elongated hollow, circular, foraminous substantially vertical tubes contiguously stacked transversely to the direction flowing liquid such as waste water containing foreign matter, I.E., settable solids and free oil, in a coalescer-separator apparatus provide a filter body providing for significant surface area contact by the liquid on both inside and outside surfaces of the tubes to entrap the foreign matter but defining substantially vertical passages permitting the entrapped foreign matter to be gravity separated with the lighter matter coalescing and floating upwardly and the heavier matter settling downwardly so that substantially clarified effluent flows from the apparatus. The stacked tube filter body is contained within an insulated closed container of a sufficient capacity, and the arrays of holes in the tube walls are coordinated with respect to the intended volumetric capacity of the apparatus, so that turbulence in the liquid flowing through the filter body is minimized.

  5. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  6. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  7. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Welch, J.L. ); Whitlow, R.R. )

    1992-07-01

    This paper reports that pulling tubing to clean out a production liner at Prudhoe Bay Unit Western Operating Area (PBU WOA) averages $600,000 to $800,000. Coiled tubing underreaming was developed to accomplish this objective at lower costs. Beginning in 1988, these operations have been improved through several generations of procedures and tool designs. Using current technology, the underreamer, in conjunction with coiled tubing, can reduce the cost of drilling out to a liner to about $50,000 or $100,000, depending on the amount and type of material to be removed. PBU WOA, operated by BP Exploration, produces about 600,000 bopd from 395 wells. Another 61 wells are used to inject produced water, seawater and miscible fluids. Most of the remedial well servicing operations are conducted using coiled tubing (CT). Three contract coiled tubing units (CTUs) work daily, performing wellbore cleanouts, stimulations, inflatable bridge plug installations and cement squeeze operations. About 42 underreaming jobs were performed from 1990 to 1991 at PBU WOA for an average cost of between $75,000 and $100,000, a cost savings of $500,000 power well compared to pulling tubing and cleaning out the wells conventionally.

  8. Tube wall thickness measurement apparatus

    DOE Patents [OSTI]

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  9. Tube wall thickness measurement apparatus

    DOE Patents [OSTI]

    Lagasse, Paul R. (Santa Fe, NM)

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  10. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Rich, D.A.; Blue, T.H. )

    1993-03-01

    Sand production can severely impact well performance and profitability by damaging production equipment or plugging wellbores. Sand control in existing wells may be required because of inadequate initial completion design, recompletion to new intervals or changes in reservoir production characteristics. The most durable and reliable sand control is by conventional gravel packing, but in some cases, conventional packs may not be economic or feasible. Improvements in coiled tubing technology and reliability have resulted in better application and increased acceptance of through-tubing sand control. Concentric gravel packing and sand consolidation are being used more because of advances in equipment, services, downhole tools and fluids. Candidates for these techniques include conventional completions that begin producing sand and wells with gravel pack failures. Economical jobs have been performed successfully in several different wellbore configurations. Some initially non-gravel packed wells are now being designed for possible through-tubing gravel packing, anticipating sand production later in the completion's producing life. This paper reviews the general procedures for installing a through-tubing, washdown mechanical gravel pack using coiled tubing conveyance and placement techniques.

  11. Inspecting coiled tubing for well operations

    SciTech Connect (OSTI)

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  12. Coiled tubing -- Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II ); Blount, C.G. ); Tailby, R.J. )

    1993-06-01

    This paper reviews three industry authority's views on developments that will impact coiled tubing equipment and techniques for conventional land locations, Arctic and harsh offshore environments. Examples which are provided include the development of high-strength steels, composite pipe, integral lift devices, abrasive jet drilling, and extended reach drilling. It discusses the application of coiled tubing to well completion and maintenance, including the applications to plugged pipelines. The use of new steels and alloys help increase the corrosion resistance of the drilling stem along with greater load-bearing capacity. The economic advantages of coiled drilling versus jointed tubing drilling is somewhat more questionable as the cost for downhole motors and directional tools remain prohibitively high and borehole diameters remain small.

  13. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Brown, P.T.; Wimberly, R.D.

    1992-10-01

    Oil and gas wells that flow on initial completion eventually reach a condition of liquid loading that kills the wells. This results form declining reservoir pressure, decreased gas volume (velocity), increased water production and other factors that cause liquids to accumulate at the bottom of the well and exert back pressure on the formation. This restricts or in some cases prevents fluid entry into the wellbore form the formation. Flowing production can be restored or increased by reducing surface backpressure, well bore stimulation, pressure maintenance or by installing a string of smaller diameter tubing. This paper reports on installation (hanging off) of a concentric string of coiled tubing inside existing production tubing which is an economically viable, safe, convenient and effective alterative for returning some of these liquid loaded )logged-up) wells to flowing status.

  14. End Calorimeter Warm Tube Heater

    SciTech Connect (OSTI)

    Primdahl, K.; /Fermilab

    1991-08-06

    The Tevatron accelerator beam tube must pass through the End Calorimeter cryostats of the D-Zero Collider Detector. Furthermore, the End Calorimeter cryostats must be allowed to roll back forty inches without interruption of the vacuum system; hence, the Tev tube must slide through the End Calorimeter cryostat as it is rolled back. The Tev pass through the End Calorimeter can actually be thought of as a cluster of concentric tubes: Tev tube, warm (vacuum vessel) tube, IS layers of superinsulation, cold tube (argon vessel), and Inner Hadronic center support tube. M. Foley generated an ANSYS model to study the heat load. to the cryostat. during collider physics studies; that is, without operation of the heater. A sketch of the model is included in the appendix. The vacuum space and superinsulation was modeled as a thermal solid, with conductivity derived from tests performed at Fermilab. An additional estimate was done. by this author, using data supplied by NR-2. a superinsulation manufacturer. The ANSYS result and hand calculation are in close agreement. The ANSYS model was modified. by this author. to incorporate the effect of the heater. Whereas the earlier model studied steady state operation only. the revised model considers the heater-off steady state mode as the initial condition. then performs a transient analysis with a final load step for time tending towards infinity. Results show the thermal gradient as a function of time and applied voltage. It should be noted that M. Foley's model was generated for one half the warm tube. implying the tube to be symmetric. In reality. the downstream connection (relative to the collision point) attachment to the vacuum shell is via several convolutions of a 0.020-inch wall bellows; hence. a nearly adiabatic boundary condition. Accordingly. the results reported in the table reflect extrapolation of the curves to the downstream end of the tube. Using results from the ANSYS analysis, that is, tube temperature and corresponding heat flux, temperature of the nichrome wire can be estimated. The possibility of frost is of genuine concern, as evidenced by the 250 K minimum temperature for the warm tube while heaters are not operating. Noting that steady state operation at 1 Amp (40 volts) allows the nichrome wire to stay below the critical temperature for Kapton, a conservative plan is to allow several days of heater operation, at 1 Amp (40 volts), before roll-back. Warm-up can be accelerated by operating the heaters in excess of 1 Amp, as evidenced by the test where a maximum of 3.2 Amp was supplied. Operating the heaters in excess of 1 Amp must be done with care since a rapid rise in temperature will likely occur once any ice present has been melted.

  15. Opposed slant tube diabatic sorber

    DOE Patents [OSTI]

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  16. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II )

    1991-12-01

    This article outlines the minimum safety requirements that should be considered for onshore and offshore oil well service operations with coiled tubing equipment. These guidelines comply with Minerals Management Service (MMS) regulations issued on May 31, 1988, for offshore work. Where specific MMS regulations are sited, the regulation reference, Incident of Non-Compliance (INC), number is provided. These guidelines can be used by operators and contractors, and although U.S. offshore operations are emphasized, they are applicable wherever coiled tubing services are used.

  17. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II )

    1992-03-01

    Operations involving sand or solids washing are the most common of today's coiled tubing workover services. Wellbore cleanouts require pumping fluid that will entrain solids and return them to the surface. In most cases, wash fluids and solids are captured in surface tanks of sufficient volume to allow solids to settle out. Where practical, fluids are recirculated to reduce cost. An important concern when designing sand wash programs is correct fluid system selection. Wash fluids should closely balance BHP and provide piston like displacement for solids removal. This paper is an overview of compressible and incompressible fluids commonly used for coiled tubing services.

  18. Coiled tubing 1994: Enhanced value through innovation

    SciTech Connect (OSTI)

    Teel, M.E.

    1994-01-01

    This paper discusses the growth in use of coiled tubing in well completion and development processes. Larger tubing is now available and operations expand into more demanding and critical areas as a result of research and development, innovation, and better understanding of materials and tube development. This article highlights significant coiled tubing operations, services, practices, and applications since 1990. It describes the types of materials used in coiled tubing and the strength associated with each type. Various case studies are described which use this tubing in both horizontal and directional drilling. It also is discussed as it relates to various types of enhanced recovery techniques for oil and gas wells.

  19. Coiled-tubing logging system

    SciTech Connect (OSTI)

    Howell, E.P.; Smith, L.J.; Blount, C.G.

    1988-03-01

    Techniques have been developed to use coiled tubing containing a seven-conductor wireline to facilitate logging operations. Equipment has been designed to permit the connection of conventional logging tools to the tubing and the recording of logs. Operating techniques have been developed and applied under various wellbore conditions. The system allows traditional log measurements in a well while wellbore conditions are controlled. Advantages of the system include reduced wellbore pressure during peroration to maximize perforation performance; lubrication during pulling or pushing a logging tool through a borehole so that a more uniform velocity can be maintained with a logging sonde; continued circulation and thus borehole stability during logging; temperature reduction for improved reliability of logging sonde electronics in hot holes; and more stable positioning of perforation equipment. The ability of coiled tubing to push tools down highly deviated or horizontal wellbores makes logging or perforating feasible in these wells. Expenses can often be reduced with coiled-tubing logging because a rig is unnecessary during many operations.

  20. Coiled-tubing logging system

    SciTech Connect (OSTI)

    Howell, E.P.; Smith, L.J.; Blount, C.G.

    1986-01-01

    Techniques have been developed which use coiled tubing containing a seven-conductor wireline to facilitate logging operations. Equipment has been designed which permits the connection of conventional logging tools to the tubing and the recording of logs. Also, operating techniques have been developed and applied under various wellbore conditions. The system allows traditional log measurements in a well while controlling wellbore conditions. Advantages of the system include: reduced wellbore pressure during perforation to minimize formation damage: lubrication while pulling or pushing a logging tool through a borehole so that a more uniform velocity can be maintained with a logging sonde; continued circulation and thus borehole stability while logging; temperature reduction for improved reliability of logging sonde electronics in hot holes; and more stable positioning of perforation equipment. The ability of coiled tubing to push tools down highly deviated, or even horizontal wellbores, makes logging or perforating feasible in these wells. Expenses can often be reduced with coiled-tubing logging, since a rig is unnecessary during many operations.

  1. Apparatus for connecting aligned abutted tubes

    DOE Patents [OSTI]

    Williams, R.E.

    1984-11-29

    An apparatus for connecting abutted tubes and for maintaining their rotary alignment during connection. The apparatus comprises first and second tubes, a rotation prevention element, a collar and a retainer. Each tube has inside and outside walls, and first and second ends, each end having an inside and outside edge. The first tube has portions defining a first plurality of cavities located at the outside edge of its first end. An external threaded portion is on the outside wall of the first tube and next to the first plurality of cavities. The second tube has portions defining a second plurality of cavities located at the outside edge of its first end. The first plurality has a different number than the second plurality. The first ends of the first and second tubes have substantially the same outside diameter and are abutted during connection so that an orifice is formed whenever first and second tube cavities substantially overlap. A rotation prevension element is placed in the orifice to prevent rotation of the first and second tubes. A collar with an internal threaded portion is slidably disposed about the second tube. The internal threaded portion engages the external threaded portion of the first tube to connect the tubes. A lip connected to the collar prevents separation of the collar from the second tube.

  2. Small bore ceramic laser tube inspection light table

    DOE Patents [OSTI]

    Updike, Earl O. (Tracy, CA)

    1990-01-01

    Apparatus for inspecting small bore ceramic laser tubes, which includes a support base with one or more support rollers. A fluorescent light tube is inserted within the laser tube and the laser tube is supported by the support rollers so that a gap is maintained between the laser tube and the fluorescent tube to enable rotation of the laser tube. In operation, the ceramic tube is illuminated from the inside by the fluorescent tube to facilitate visual inspection. Centering the tube around the axial light of the fluorescent tube provides information about straightness and wall thickness of the laser tube itself.

  3. Coiled tubing solves multiple downhole problems

    SciTech Connect (OSTI)

    Bedford, S. ); Smith, I. )

    1994-11-01

    Declining reservoir pressure and water breakthrough in the UK North Sea Magnus field has coincided with general advances in application of coiled tubing and a continuous drive to reduce operating costs, particularly in a climate of weak oil prices. These factors have led to a dramatic increase in diversity and volume of coiled tubing interventions. In the following article, coiled tubing interventions, and results of those interventions, are discussed. An assessment of future coiled tubing activity on Magnus field is provided.

  4. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, E.E.; Lawson, C.N.

    1993-11-23

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

  5. Spring/dimple instrument tube restraint

    DOE Patents [OSTI]

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  6. Improving Efficiency of Tube Drawing Bench

    Broader source: Energy.gov [DOE]

    Greenville Tube Company, a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This four-page case study summarizes their experience.

  7. Manual tube-to-tubesheet welding torch

    DOE Patents [OSTI]

    Kiefer, Joseph H. (Tampa, FL); Smith, Danny J. (Tampa, FL)

    1982-01-01

    A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.

  8. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, R.F. Jr.

    1994-12-13

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.

  9. Ionization tube simmer current circuit

    DOE Patents [OSTI]

    Steinkraus, Jr., Robert F. (Livermore, CA)

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  10. Coiled tubing - Operations and services

    SciTech Connect (OSTI)

    Blount, C.G. )

    1993-05-01

    Perhaps the most exciting area of coil tubing technology in the oil and gas industry is the development and testing of specialized tools for improving existing operations or meeting the requirements of new applications and techniques. A new generation of surface equipment and downhole tools will greatly expand through-tubing well servicing utility. This paper provides descriptions of current peripheral devices for concentric well work. It also includes a look at what's needed to meet future challenges and advance this technology. It specifically discusses various forms of fishing tools, power tongs used for bring drill stem, orienting tools for drilling, downhole adjustment tools, steering tools, well casing materials, perforation tools, and various other support equipment.

  11. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  12. Coiled tubing; Operations and services

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. )

    1993-01-01

    Coiled tubing can be used to wash or spot acid across completion intervals in vertical and high-angle wells. This technique allows easy wellbore cleanout, fluid placement flexibility and convenient flowback, and reduces damage from tubular deposits. Better zone coverage and rapid load recovery can improve well productivity. Oil and gas completions are intended to provide for efficient fluid transfer from permeable zones. When fluid inflow is less than optimum, the blockage or restriction is called 'formation damage,' and production or injection can be significantly affected. Damage mitigation treatments range form simple acid soaks to massive hydraulic fracturing, depending on damage type and severity. This article covers planning, designing and implementing treatments using coiled tubing.

  13. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, Gordon E. (Albuquerque, NM)

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  14. Underbalanced coiled tubing sidetrack successful

    SciTech Connect (OSTI)

    Adam, J.; Berry, M.

    1995-12-18

    The technique of drilling through a completion string, underbalanced, with coiled tubing eliminated some of the problems encountered with overbalanced drilling in a group of offset wells. This project confirmed that performing drilling operations in live wells can be carried out safely and effectively. Dalen is a sour gas field in the eastern part of The Netherlands and produces from vertical fractures in the Zechstein carbonate reservoir. The proposal for Dalen 2 was to abandon the lower section of the original hole and subsequently sidetrack conventionally to the top of the reservoir, run and cement a 5-in. liner, complete the well with a 5-in. monobore completion, and install the christmas tree. This part of the operation would be performed with a workover hoist. Thereafter, a 3 3/4-in. hole would be drilled through the completion and into the reservoir, underbalanced with coiled tubing. The drilling proposal had to address a number of key issues: creating underbalanced conditions; handling sour gas production at surface; handling and treating drilling fluids at surface; removing drilled solids from the returned fluid system; and deploying a long coiled tubing drilling bottom hole assembly (BHA) into a live well. The paper discusses planning, legislative issues, well preparation, the drilling program, and lessons learned.

  15. Coiled tubing 1995 update: Production applications

    SciTech Connect (OSTI)

    Sas-Jaworsky II; Teel, M.E.

    1995-06-01

    This article reviews the use of coiled tubing in oil and gas well development and servicing. It reviews the new technology in tool development, concentric services, installation, and performance associated with coiled tubing. It provides numerous case studies of various offshore applications of coiled tubing for servicing of live wells without loosing production. Surface equipment and tool modifications allow tool segments to be connected, deployed, and retrieved in one trip. It also reviews the performance of the tubing for sand cleanouts, operation under high pressure environments, and for screen repairs. Finally, the article reviews the use of coiled tubing to enhance artificial lift technology.

  16. Turbine nozzle stage having thermocouple guide tube

    DOE Patents [OSTI]

    Schotsch, Margaret Jones (Greer, SC); Kirkpatrick, Francis Lawrence (late of Galway, NY); Lapine, Eric Michael (Northwood, NH)

    2002-01-01

    A guide tube is fixed adjacent opposite ends in outer and inner covers of a nozzle stage segment. The guide tube is serpentine in shape between the outer and inner covers and extends through a nozzle vane. An insert is disposed in the nozzle vane and has apertures to accommodate serpentine portions of the guide tube. Cooling steam is also supplied through chambers of the insert on opposite sides of a central insert chamber containing the guide tube. The opposite ends of the guide tube are fixed to sleeves, in turn fixed to the outer and inner covers.

  17. YouTube | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    YouTube YouTube Note: Since the YouTube platform is always evolving, so are our best practices for using it. We welcome feedback and suggestions to keep processes current and up-to-date. For more information, read our social media policy. What is YouTube and Why Should I Use It? YouTube is a video platform that allows users to publish and share videos for both public and private consumption with no hosting cost. Visitors to the site watch over 2 billion videos per day, much of which is

  18. Novel Tube-in-Tube System Simplifies Subsurface Fluid Sampling - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Geothermal Geothermal Find More Like This Return to Search Novel Tube-in-Tube System Simplifies Subsurface Fluid Sampling Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryBarry Freifeld of Berkeley Lab has developed a device that simplifies subsurface fluid sampling. The technology's tube-within-a-tube construction is a substantial improvement to the U-tube sampling system

  19. Minimum wear tube support hole design

    DOE Patents [OSTI]

    Glatthorn, Raymond H. (St. Petersburg, FL)

    1986-01-01

    A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.

  20. Multi-tube arrangement for combustor and method of making the multi-tube arrangement

    DOE Patents [OSTI]

    Ziminsky, Willy Steve (Simpsonville, SC)

    2012-07-31

    A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.

  1. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  2. Cold cathode vacuum discharge tube

    DOE Patents [OSTI]

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  3. Large diameter lasing tube cooling arrangement

    DOE Patents [OSTI]

    Hall, Jerome P. (Livermore, CA); Alger, Terry W. (Tracy, CA); Anderson, Andrew T. (Livermore, CA); Arnold, Phillip A. (Livermore, CA)

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17, 31) and mounting members (18, 34) that position the metal members (17, 31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  4. Large Diameter Lasing Tube Cooling Arrangement

    DOE Patents [OSTI]

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  5. Various factors affect coiled tubing limits

    SciTech Connect (OSTI)

    Yang, Y.S.

    1996-01-15

    Safety and reliability remain the primary concerns in coiled tubing operations. Factors affecting safety and reliability include corrosion, flexural bending, internal (or external) pressure and tension (or compression), and mechanical damage due to improper use. Such limits as coiled tubing fatigue, collapse, and buckling need to be understood to avoid disaster. With increased use of coiled tubing, operators will gain more experience. But at the same time, with further research and development of coiled tubing, the manufacturing quality will be improved and fatigue, collapse, and buckling models will become more mature, and eventually standard specifications will be available. This paper reviews the uses of coiled tubing and current research on mechanical behavior of said tubing. It also discusses several models used to help predict fatigue and failure levels.

  6. Tube support grid and spacer therefor

    DOE Patents [OSTI]

    Ringsmuth, Richard J. (Solano Beach, CA); Kaufman, Jay S. (Del Mar, CA)

    1986-01-01

    A tube support grid and spacers therefor provide radially inward preloading of heat exchange tubes to minimize stress upon base welds due to differential thermal expansion. The grid comprises a concentric series of rings and spacers with opposing concave sides for conforming to the tubes and V-shaped ends to provide resilient flexibility. The flexibility aids in assembly and in transmitting seismic vibrations from the tubes to a shroud. The tube support grid may be assembled in place to achieve the desired inwardly radial preloading of the heat exchange tubes. Tab and slot assembly further minimizes stresses in the system. The radii of the grid rings may be preselected to effect the desired radially inward preloading.

  7. Preparation of nitrogen-doped carbon tubes

    DOE Patents [OSTI]

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  8. Acoustic resonance in heat exchanger tube bundles

    SciTech Connect (OSTI)

    Blevins, R.D. )

    1994-02-01

    A series of experiments has been made on aeroacoustic tones produced by flow over tubes in a duct. The sound is characterized by the onset of a loud and persistent acoustic resonance. The acoustic resonance occurs at the frequency of the acoustic modes. The magnitude and extent of the resonance are functions of tube pattern and tube pitch. The sound levels increase in proportion with Mach number, dynamic head and pressure drop. A design procedure for predicting the magnitude of the sound within the tube array is presented. Methods of resonance avoidance are illustrated. An example is made for a large petrochemical heat exchanger.

  9. Eddy current measurement of tube element spacing

    DOE Patents [OSTI]

    Latham, Wayne Meredith (Forest, VA); Hancock, Jimmy Wade (Lynchburg, VA); Grut, Jayne Marie (Madison Heights, VA)

    1998-01-01

    A method of electromagnetically measuring the distance between adjacent tube elements in a heat exchanger. A cylindrical, high magnetic permeability ferrite slug is placed in the tube adjacent the spacing to be measured. A bobbin or annular coil type probe operated in the absolute mode is inserted into a second tube adjacent the spacing to be measured. From prior calibrations on the response of the eddy current coil, the signals from the coil, when sensing the presence of the ferrite slug, are used to determine the spacing between the tubes.

  10. True Color Tube Borescope Inspection System

    Energy Science and Technology Software Center (OSTI)

    1997-08-07

    The overall purpose of TCTBIS is to determine the quality of the inside surface of a tube. This is done by acquiring multiple images along the inside of a tube and converting these images into one unwrapped image of the inside of a tube. This resultant image is the same as if you had slit a tube length-wise, flattened it out, and then taken a picture of it. What is unique about this system ismore » that the picture is acquired in a non-destructive manner. TCTBIS also analyzes the unwrapped images for oxidation, foreign particles, and surface imperfections, scratches.« less

  11. Loose-tube optical-fiber cable

    DOE Patents [OSTI]

    Lowell, Mark Edmund; Angers, Tyler Louis; Jonker, Jan Wigger

    2015-01-06

    The present invention relates to loose-tube optical-fiber cables that are capable of operating in high-temperature environments.

  12. Innovative applications stimulate coiled tubing development

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II; Bell, S.

    1996-06-01

    Coiled tubing (CT) is increasingly becoming a viable option to many conventional well operations worldwide. Advanced technology, new equipment and recent field applications have shown CT to be a lower-cost, reliable and effective tool for drilling and recompleting certain wells. Seven example applications from two recent coiled tubing technical conferences are described.

  13. How loads affect coiled tubing life

    SciTech Connect (OSTI)

    Walker, E.J. Inc., AK )

    1992-01-01

    Fatigue testing was performed on 1-3/4-in OD, 0.125 in. wall thickness (WT) coiled tubing using a standard coiled tubing unit (CTU) as shown in this paper. Testing was conducted under Prudhoe Bay, Alaska oil well, conditions to determine the effects of axial load, internal pressure and bending stress on the longevity, or usable running footage, that can be expected with larger diameter tubing. The CTU was rigged up in a standard configuration with injector head 50 ft off the ground, the worst case for bending on most currently available North Slope units. Internal pressure was supplied by a small triplex pump and the end of tubing was closed off with a fishing neck and bull plug. Weight, for the first four tests, was suspended from the coiled tubing by a special clamp. The tubing was cycled up and over the guide arch until a loss of internal coiled tubing pressure (CTP) occurred, or until the tubing became stuck in the stripper brass.

  14. Winning the fight against boiler tube failure

    SciTech Connect (OSTI)

    Cohen, J.; Dooley, B.

    1986-12-01

    Eliminating boiler tube failures could be worth $5 billion a year to the electric power industry. The causes and cures for the great majority of these ubiquitous failures are now known, with implications for change ranging from senior management to the maintenance crew. Methods for preventing boiler tube failure are discussed.

  15. Ultra-fast framing camera tube

    DOE Patents [OSTI]

    Kalibjian, Ralph (1051 Batavia Ave., Livermore, CA 94550)

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  16. Evolution of coiled tubing drilling technology accelerates

    SciTech Connect (OSTI)

    Simmons, J.; Adam, B.

    1993-09-01

    This paper reviews the status of coiled tubing technology in oil and gas drilling operations. The paper starts with a description of current coiled tubing technology and provides a cost comparison between conventional and coiled tubing drilling. The results show that offshore operations are already competitive while onshore operations will still lag behind conventional drilling methods. A list of known coiled tubing drilling operations is provided which gives the current borehole diameters and depths associated with this technology. The paper then goes on to provide the advantages and disadvantages of the technology. The advantages include improved well control, a continuous drillstring, reduced mobilization costs, simplified logging and measurement-while drilling measurements, and less tripping required. The disadvantages include high friction with the borehole wall, downhole motors required, limited drillhole size, and fatigued or damaged sections of the tubing cannot be removed. Finally, a review of the reliability of this technology is provided.

  17. Coiled tubing flowline cuts wetlands disturbance

    SciTech Connect (OSTI)

    Coats, E.A.; Marinello, S.A.

    1993-12-01

    Operators in environmentally sensitive wetland areas of South Louisiana have used jointed, or stickpipe flowlines to transmit oil and gas to and from wellsites and production facilities. Recently, a new method featuring coiled tubing was introduced, using it as a recyclable gas flowline. The coiled tubing method eliminates potential environmental damage that could occur when stickpipe is used and it allows the tubing to be easily recovered and reused when the well is taken out of service. This article describes economic advantages of using coiled tubing and how its use simplified environmental constraints encountered in swamps. It is an expanded version of the authors` presentation to World Oil`s Coiled Tubing Conference, Houston, March, 1993.

  18. Squeeze cement method using coiled tubing

    SciTech Connect (OSTI)

    Underdown, D.R.; Ashford, J.D.; Harrison, T.W.; Eastlack, J.K.; Blount, C.G.; Herring, G.D.

    1986-12-09

    A method is described of squeeze cementing a well wherein the well has a casing throughout the wellbore, casing cement between the casing and the wellbore of the well, perforations through the casing and the casing cement to establish fluid communication between the interior of the casing and a formation adjacent the perforations, channels in the casing cement in fluid communication with at least some of the perforations, a well tubing string in the casing extending from the surface to the proximity of the perforations, and a packer means for sealing between the tubing and the casing above the perforations. The method consists of: isolating the casing adjacent the perforations; lowering a coiled tubing down the well tubing string to a point adjacent the perforations; flowing uncontaminated squeeze cement through the coiled tubing and through the perforations into the channels; flowing a cement contaminating liquid down the coiled tubing to mix with the squeeze cement remaining in the casing; allowing the uncontaminated squeeze cement in the channels to harden; and removing the contaminated squeeze cement from the casing through the coiled tubing.

  19. Improving Efficiency of Tube Drawing Bench | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Efficiency of Tube Drawing Bench Improving Efficiency of Tube Drawing Bench Greenville Tube Company, a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This four-page case study summarizes their experience. PDF icon Improving Efficiency of Tube Drawing Bench (February 1997) More Documents & Publications Impacts of IPv6 on Infrastructure

  20. Multi-tube fuel nozzle with mixing features

    DOE Patents [OSTI]

    Hughes, Michael John

    2014-04-22

    A system includes a multi-tube fuel nozzle having an inlet plate and a plurality of tubes adjacent the inlet plate. The inlet plate includes a plurality of apertures, and each aperture includes an inlet feature. Each tube of the plurality of tubes is coupled to an aperture of the plurality of apertures. The multi-tube fuel nozzle includes a differential configuration of inlet features among the plurality of tubes.

  1. The Challenge: Improving the Efficiency of a Tube Drawing Bench

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHALLENGE: IMPROVING THE EFFICIENCY OF A TUBE DRAWING BENCH Showcase Demonstration Greenville Tube Production Facility CASE STUDY Industry: Process: System: Technology: Project Profile Summary Greenville Tube Company (GT), a manufacturer of high-precision, small-diameter stainless steel tubing, conducted an in-house system performance optimization project to improve the efficiency of its No. 6 tube drawing bench. This tube drawing bench plays an integral role in the production process, but

  2. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  3. Scintillation probe with photomultiplier tube saturation indicator

    DOE Patents [OSTI]

    Ruch, Jeffrey F. (Bethel Park, PA); Urban, David J. (Glassport, PA)

    1996-01-01

    A photomultiplier tube saturation indicator is formed by supplying a supplemental light source, typically an light emitting diode (LED), adjacent to the photomultiplier tube. A switch allows the light source to be activated. The light is forwarded to the photomultiplier tube by an optical fiber. If the probe is properly light tight, then a meter attached to the indicator will register the light from the LED. If the probe is no longer light tight, and the saturation indicator is saturated, no signal will be registered when the LED is activated.

  4. Corrosion degradation mechanisms in coiled tubing

    SciTech Connect (OSTI)

    Kane, R.D.; Cayard, M.S.

    1994-12-31

    This paper reviews the historical aspects related to the development of coiled tubing for oilfield drilling, logging, workover and production operations. It focuses on the metallurgical and process variables of coiled tubing and their interrelationship with aspects of the downhole service environment and the resultant corrosion performance. Special emphasis is placed on (1) operating conditions that can lead to excessive corrosion and/or cracking damage and corrosion fatigue and (2) metallurgical and processing parameters which can be controlled to maximize coiled tubing resistance to corrosion degradation.

  5. Coiled tubing facilitates deep underbalanced workover

    SciTech Connect (OSTI)

    Adams, L.S.; Overstreet, C.C.

    1997-03-31

    A recent workover shows the technical capability and cost effectiveness of coiled tubing for cleaning out scale in a 22,611-ft, low pressure, high-temperature gas well. The well, operated by Chevron USA Production Co., is in the Fort Stockton Gas Unit 5-1 Gomez (Ellenburger) field, in West Texas. The development of reliable 100,000-psi minimal yield strength coiled tubing was a major factor that allowed this work to succeed. The methods demonstrated by this workover are becoming a standard for deep well cleanouts in the Gomez (Ellenburger) field. The paper describes coiled tubing advantages, well history, and implementation.

  6. Collapse tests expand coiled tubing uses

    SciTech Connect (OSTI)

    Walker, E.J.; Mason, C.M. )

    1990-03-05

    Tests on coiled tubing have allowed the authors' company to decrease well work costs for some operations, especially squeeze cementing. They conducted collapse tests of 1.5 in. (0.095 in. and 0.109-in. wall thickness) and 1.75-in. (0.109-in. wall thickness) OD coiled tubing while under imposed axial load and differential pressure. These tests were performed to define accurate field operating limits for this size of coiled tubing. Findings from these tests are reported and discussed.

  7. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (969 Nambe Loop, Los Alamos, NM 87544); Bieniewski, Thomas M. (285 Donna Ave., Los Alamos, NM 87544)

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  8. MHK Technologies/Anaconda bulge tube drives turbine | Open Energy...

    Open Energy Info (EERE)

    Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile...

  9. Performance of a tapered pulse tube

    SciTech Connect (OSTI)

    Swift, G.; Allen, M.; Woolan, J.J.

    1998-02-01

    In a well instrumented pulse tube refrigerator having 1,500 W of cooling power at 125 K, the authors have measured the figure of merit of a tapered pulse tube at several operating points. At operating points near the operating point for which the taper was designed, the figure of merit is 0.96. This is close to the theoretical optimum figure of merit 0.97 calculated for this pulse tube considering only two loss mechanisms: heat conduction in the metal pulse tube wall and ordinary thermoacoustic heat transport in the gas within a few thermal penetration depths of the wall. At operating points farther from the design operating point, the measured figure of merit is much lower, as streaming driven convection adds a third loss mechanism.

  10. Sample inlet tube for ion source

    DOE Patents [OSTI]

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  11. High-Pressure Tube Trailers and Tanks

    Broader source: Energy.gov [DOE]

    Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

  12. Sidetracking technology for coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  13. Staged multi-tube premixing injector

    DOE Patents [OSTI]

    Zuo, Baifang; Khan, Abdul Rafey; York, William David; Ziminsky, Willy Steve

    2012-10-02

    A fuel injection nozzle includes a body member having an upstream wall opposing a downstream wall, and an internal wall disposed between the upstream wall and the downstream wall, a first chamber partially defined by the an inner surface of the upstream wall and a surface of the internal wall, a second chamber partially defined by an inner surface of the downstream wall and a surface of the internal wall a first gas inlet communicative with the first chamber operative to emit a first gas into the first chamber, a second gas inlet communicative with the second chamber operative to emit a second gas into the second chamber, and a plurality of mixing tubes, each of the mixing tubes having a tube inner surface, a tube outer surface, a first inlet communicative with an aperture in the upstream wall operative to receive a third gas.

  14. Coiled tubing cuts horizontal screen repair cost

    SciTech Connect (OSTI)

    Crow, W.; Hill, P.; Johnston, R.

    1996-01-01

    This article presents a case history of the successful workover performed by a coiled tubing unit (CTU) on Mississippi Canyon (MC) Block 109 Well A-24 in the US Gulf of Mexico to clean out sand and install new concentric screen for sand control. Workover design and operational details discussed are: Workover design -- hole-cleaning hydraulics, CT and screen predictions and comparison considerations; Workover operations -- cleanout, running packer and screens, coiled tubing (CT) weights, acid treatment and nitrogen lift and flow back.

  15. Tube construction for fluidized bed combustor

    DOE Patents [OSTI]

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  16. Fluidized bed combustor and tube construction therefor

    DOE Patents [OSTI]

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  17. Coiled tubing as initial production tubing: An overview of case histories

    SciTech Connect (OSTI)

    Nirider, H.L.; Snider, P.M.; Walsh, K.D.; Cordera, J.R.; Williams, J.

    1994-12-31

    From January, 1993 through July, 1994 Marathon Oil, Company completed ten newly drilled gas wells using coiled tubing as the initial production string. This paper reviews the operational aspects of each job and summarizes the areas where improvements in equipment and technique were implemented. The use of coiled tubing allows the tubing size to be closely matched to the performance of these relatively low rate wells, minimizing the tubular costs and improving the well`s ability to stay unloaded. The main areas of improvement from one job to the next involved the use of a pressurized, hydraulically operated access window, ensuring that all frac sand was cleaned out prior to landing the coiled tubing and employing a ``hot cut off`` system to make the final cut on the coil tubing. Lessons learned include keeping the coiled tubing size large enough to run smaller coiled tubing through it for clean out and slickline work, care in closing the BOP rams to avoid damaging the pipe and the use of wellhead equipment specifically designed for coiled tubing. This technique is especially suited to low pressure and water sensitive reservoirs where loss of fluid is of concern. An additional benefit is the cost savings from reducing the hole and casing sizes to match the reservoir potential. This completion technique is often quicker than using a conventional completion rig and jointed tubing.

  18. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, Richard T. (Worthington, OH); Middleton, Marc G. (West Jefferson, OH)

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  19. Suction muffler for refrigeration compressor

    DOE Patents [OSTI]

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  20. Ultrasonic liquid-in-line detector for tubes

    DOE Patents [OSTI]

    Piper, Thomas C.

    1991-01-01

    An apparatus and method for detecting the presence of liquid in pipes or tubes using ultrasonic techniques A first piezoelectric crystal is coupled to the outside of the pipe or tube at the location where liquid in the tube is to be detected. A second piezoelectric crystal is coupled to the outside of the pipe or tube at the same location along the tube but circumferentially displaced from the first crystal by an angle around the pipe or tube of less than 180.degree.. Liquid in the pipe or tube is detected by measuring the attenuation of an ultrasonic signal sent by the first piezoelectric crystal and received by the second piezoelectric crystal.

  1. Pumpdown assistance extends coiled tubing reach

    SciTech Connect (OSTI)

    Tailby, R.J. )

    1992-07-01

    One of the most challenging coiled tubing applications to emerge in the last few years is horizontal well maintenance. When wireline cannot be used, techniques that offer some of the same flexibility, availability and relatively low cost must be used. During this same period, however, drilling technology has also made huge strides in horizontal and extended-reach areas. Wells are now being drilled with horizontal lengths in excess of 6,000 ft and measured depths of more than 22,000 ft. This paper reports that although horizontal wells are definitely here to stay, many operators have had to reevaluate their positions after being confronted with the problem of recompleting these wells to eliminate excessive water or gas production. A full workover with workstring using either a drilling rig or snubbing unit can be expensive and may lead to lost production because of limited rig availability. Coiled tubing has successfully been used in most cases thus far, but it has length and horizontal reach limitations that drilling technology will soon overtake. Within the constraints of current technology and tube capabilities, coiled tubing does not have the buckling resistance or reel capacity to service today's longest horizontal and extended reach wells or those planned and foreseen in the future. Even if coiled tubing can reach TD, operations requiring downward force are severely restricted.

  2. Zero dead volume tube to surface seal

    DOE Patents [OSTI]

    Benett, William J.; Folta, James A.

    2000-01-01

    A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.

  3. Tube curvature measuring probe and method

    DOE Patents [OSTI]

    Sokol, George J. (Scotia, NY)

    1990-01-01

    The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.

  4. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  5. Sidetracking technology for coiled tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  6. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOE Patents [OSTI]

    Obermeyer, F.D.

    1993-11-16

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint there between. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint. 10 figures.

  7. Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube

    DOE Patents [OSTI]

    Obermeyer, Franklin D. (Pensacola, FL)

    1993-01-01

    Segmented instrumentation tube including a locking sleeve for interlocking the segments of the instrumentation tube, so that the threaded ends of the instrumentation tube do not unthread when subjected to vibration, such an instrumentation tube being suitable for use in a nuclear reactor pressure vessel. The instrumentation tube has a first member having a threaded end portion that has a plurality of first holes circumferentially around the outside surface thereof. The instrumentation tube also has a second member having a threaded end portion that has a plurality of second holes circumferentially around the outside surface thereof. The threads of the second member are caused to threadably engage the threads of the first member for defining a threaded joint therebetween. A sleeve having an inside surface surrounds the end portion of the first member and the end portion of the second member and thus surrounds the threaded joint. The sleeve includes a plurality of first projections and second projections that outwardly extend from the inside surface to engage the first holes and the second holes, respectively. The outside surface of the sleeve is crimped or swaged at the locations of the first projections and second projections such that the first projections and the second projections engage their respective holes. In this manner, independent rotation of the first member with respect to the second member is prevented, so that the instrumentation tube will not unthread at its threaded joint.

  8. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  9. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  10. Equation determines pressure drop in coiled tubing

    SciTech Connect (OSTI)

    Yang, Y.S.

    1995-12-04

    A single equation can determine the pressure drop in wells with laminar, transitional, and turbulent incompressible fluid flow in coiled tubing or other steel tubulars. The single equation is useful, especially in computer-aided design and operations. The equation is derived and illustrated by an example.

  11. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  12. Instrumented tube burns: theoretical and experimental observations

    SciTech Connect (OSTI)

    Yarrington, Cole Davis; Obrey, Stephen J; Foley, Timothy J; Son, Steven F

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  13. EBR-II Superheater Duplex Tube Examination

    SciTech Connect (OSTI)

    Daniel M. Wachs; Dennis D. Keiser; Douglas L. Porter; Naoyuki Kisohara

    2008-12-01

    After 30 years of operation, the Experimental Breeder Reactor II (EBR-II) Superheater 710 at Argonne National Laboratory-West (now Idaho National Laboratory) was decommissioned. As part of its post-service examination, four duplex tube sections were removed and Charpy impact testing was performed to characterize the crack arresting ability of nickel-bonded tube interfaces. Scanning electron microscopy (SEM) examination was also performed to characterize and identify changes in bond material microstructure. From room temperature to 400 degrees C, all samples demonstrated ductility and crack-stopping ability similar to that exhibited by beginning-of-life samples. However, at low temperature (-5 degrees C), samples removed from the lower region of the superheater (near the sodium inlet) failed while those from the upper region (near the sodium outlet) did not. SEM analysis revealed that all the tube-tube interfaces showed evidence of iron diffusion into the nickel braze, which resulted in the formation of a multiphase diffusion structure. Yet, significant void formation was only observed in the bond layer of the tubes removed from the lower region. This may be due to a change in the crystal microstructure of one of the phases within the bond layer that occurs in the 350 to 450 degrees C temperature range, which results in a lower density and the formation of porosity. Apparently, only the samples from the higher temperature region were exposed to this transition temperature, and the resulting large voids that developed acted as stress concentrators that led to low-temperature embrittlement and failure of the Charpy impact specimens.

  14. Coiled tubing operations and services. Part 3; Tube technology and capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.I.I. )

    1992-01-01

    This article offers an overview of developments in commercial coiled tubing for oil wells including continuous coiled pipe manufacturing and production. Pipe behavior under various stresses and forces encountered during typical workover operations is addressed.

  15. Insulated laser tube structure and method of making same

    DOE Patents [OSTI]

    Dittbenner, Gerald R. (4353 Findlay Way, Livermore, CA 94550)

    1999-01-01

    An insulated high temperature ceramic laser tube having substantially uniform insulation along the length of the tube is disclosed having particulate ceramic insulation positioned between the outer wall of the ceramic laser tube and the inner surface of tubular ceramic fiber insulation which surrounds the ceramic laser tube. The particulate ceramic insulation is preferably a ceramic capable of sintering to the outer surface of the ceramic laser tube and to the inner surface of the tubular ceramic fiber insulation. The addition of the particulate ceramic insulation to fill all the voids between the ceramic laser tube and the fibrous ceramic insulation permits the laser tube to be operated at a substantially uniform temperature throughout the length of the laser tube.

  16. Modeling coiled tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1995-12-31

    Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.

  17. Coiled tubing technology advances to a bright future

    SciTech Connect (OSTI)

    Ghiselin, R.

    1998-07-01

    This supplement contains six short articles on coiled tubing, its advantages, performance, and materials. The articles are: Coiled Tubing--On the Brink of a New Millennium; CT Advances Promise a Broad, Dynamic Future; Performance, Safety and Cost Make the Case for HPCT; Fast and Accurate, CTD Helps Drillers Hit Their Targets; Composite Tubing Rapidly Proves Advantages in the Field; and People and Performance are Key to Coiled Tubing Growth.

  18. Device and method for shortening reactor process tubes

    DOE Patents [OSTI]

    Frantz, Charles E. (Richland, WA); Alexander, William K. (Richland, WA); Lander, Walter E. B. (Richland, WA)

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  19. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Manohar S. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID)

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  20. Performance investigation of finned tube condensers

    SciTech Connect (OSTI)

    Mathur, G.D.

    1996-12-31

    A computer program has been developed to optimize the performance of finned tube condensers. The developed program is used to predict the thermal and hydrodynamic performance of finned tube condensers. The model is based on a steady-state finite difference model. The correlations for predicting the heat transfer and pressure drop are used from the literature. In this paper, the performance of a condenser of a 2-1/2 ton residential air conditioning system (split type) is optimized. The working fluid used in this investigation is R-22. ASHRAE`s condition A [Outside 95 F DBT/75 F WBT; Inside 80 F/67 F WBT] is used in this investigation. The predicted performance of the condenser is within {+-}5% of the experimental data.

  1. Coiled tubing applications for underground gas storage

    SciTech Connect (OSTI)

    Fowler, H.; Holcombe, D.

    1994-12-31

    Technological advances in coiled tubing (CT), CT handling equipment, and application techniques have provided new opportunities for the effective, economic use of CT for gas storage and retrieval. This paper presents a review of the CT capabilities that can be used for improving the performance of gas storage wells and discusses applications that could be performed with CT in the near future. For more than 25 years, coiled tubing has been use as an effective, economic means of performing remedial well services. In response to the demand for better horizontal drilling equipment, the strength and diameter of CT has been increased, while surface equipment and downhole tools have become more sophisticated. CT is also widely used in well servicing after initial completion, especially since declining oil prices have made it imperative that operators find more cost-effective methods of increasing production and reducing maintenance costs. The gas storage industry can effectively take advantage of the many recent advancements in CT technology.

  2. Advanced composites enhance coiled tubing capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.; Williams, J.G.

    1994-04-01

    From early coiled tubing (CT) use to recent operations, most concerns have been about tube damage from past service and remaining safe working life. Composite CT (CCT) is designed and constructed to exhibit unique anisotropic characteristics relative to steel or alternative isotropic materials that expand burst, collapse, tensile and compressive load performance capabilities. In 1988, Conoco Inc. began a development effort focused on using high-performance composite materials to meet numerous challenges associated with current and future oil and gas exploration and development. At that time, Conoco initiated a project to explore composite materials use for high-pressure, long-length, non-corroding tubulars with primary application as onshore water injection lines. In 1989, Conoco awarded a contract to AMAT a/s in Sandefjord, Norway to develop spoolable composite pipe for small diameter subsea lines. Concurrent with ongoing spoolable composite subsea lines, Conoco also began to explore high-performance CCT development in 1989.

  3. Coupled-cavity drift-tube linac

    DOE Patents [OSTI]

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  4. Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube

    SciTech Connect (OSTI)

    Bucholz, J.A.

    2000-07-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

  5. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, Jerome P. (Livermore, CA); Sawvel, Robert M. (Modesto, CA); Draggoo, Vaughn G. (Livermore, CA)

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  6. Tube cutter tool and method of use for coupon removal

    DOE Patents [OSTI]

    Nachbar, Henry D. (Ballston Lake, NY); Etten, Jr., Marvin P. (Ballston Lake, NY); Kurowski, Paul A. (Scotia, NY)

    1997-01-01

    A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place.

  7. Tube cutter tool and method of use for coupon removal

    DOE Patents [OSTI]

    Nachbar, H.D.; Etten, M.P. Jr.; Kurowski, P.A.

    1997-05-06

    A tube cutter tool is insertable into a tube for cutting a coupon from a damaged site on the exterior of the tube. Prior to using the tool, the damaged site is first located from the interior of the tube using a multi-coil pancake eddy current test probe. The damaged site is then marked. A fiber optic probe is used to monitor the subsequent cutting procedure which is performed using a hole saw mounted on the tube cutter tool. Prior to completion of the cutting procedure, a drill in the center of the hole saw is drilled into the coupon to hold it in place. 4 figs.

  8. Recirculating wedges for metal-vapor plasma tubes

    DOE Patents [OSTI]

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  9. Segmented lasing tube for high temperature laser assembly

    DOE Patents [OSTI]

    Sawicki, Richard H. (Danville, CA); Alger, Terry W. (Tracy, CA); Finucane, Raymond G. (Pleasanton, CA); Hall, Jerome P. (Livermore, CA)

    1996-01-01

    A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

  10. Coiled tubing velocity string hangoff method and apparatus

    SciTech Connect (OSTI)

    Gipson, T.C.

    1991-07-02

    This patent describes a method for hanging off a coiled tube velocity string in an active gas production well tubing run, the run having at least a master valve and a first line valve. It includes installing a hangoff assembly in the production well tubing run between the master valve and the first line valve the hangoff assembly comprising a hangoff head, a second line valve, an upper valve, and a hydraulic packoff valve, the hangoff head further comprising a threaded body member, a slip bowl and a threaded cap; inserting through the hydraulic packoff valve, the upper valve, and the hangoff head, coiled tubing for fluid communication with well gases and fluids in the production well tubing run, the coiled tubing having a first downhole end being open to immediately receive and conduct the gases and fluids; opening gas and fluid communication between the production well tubing run and the open end of the coiled tubing whereby the well gases and fluid may pass up through the coiled tubing, the hangoff head sealing the gases and fluids from passing to the hydraulic packoff valve, the upper valve and the second line valve; further inserting the coiled tubing to a desired depth in the production well tubing run; and rotating the cap of the hangoff head to expose the slip bowl.

  11. Coiled tubing drilling requires economic and technical analyses

    SciTech Connect (OSTI)

    Gary, S.C. )

    1995-02-20

    Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

  12. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg; Ward, Stephen L.; Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  13. Logging of subterranean wells using coiled tubing

    SciTech Connect (OSTI)

    Pilla, J.

    1991-01-15

    This patent describes an apparatus for production logging of a well utilizing artificial lift in a wellbore. It comprises: coiled tubing extending into the wellbore having wireline electrical cable passing through a central bore thereof and having a remote end within the wellbore which end is connected to gas injector means. The wireline cable passing through the gas injector means to a flexible electrically conductive support spacer having an end portion remote from the gas injector means and logging means connected to the end portion of the support spacer.

  14. Developments in coiled tubing BOP ram design

    SciTech Connect (OSTI)

    Palmer, R.; Newman, K.; Reaper, A.

    1995-12-31

    Significant technical improvements have been made recently in the design of coiled tubing (CT) blowout preventer (BOP) shear and slip rams. This technology is constantly being enhanced and refined as the CT service industry continues to mature and new operational demands are placed on the CT pressure control equipment. Larger CT sizes require better BOP shearing capabilities. Advancements in the understanding of CT fatigue life have caused the life reducing affects of the slip ram markings on the pipe to be examined. This paper explores the circumstances that have precipitated these improvements, and the research and development methods involved in developing better BOP rams.

  15. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S.; Paterson, S.R.; Grunloh, H.

    1995-08-01

    Creep rupture failure of superheater(SH)/-reheater(RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI researchers has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assemblies is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growth laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establish a road map for assessing the remaining life of SH/RH tubes.

  16. Life assessment of superheater/reheater tubes in fossil boilers

    SciTech Connect (OSTI)

    Viswanathan, R.; Gehl, S. ); Paterson, S.R. ); Grunloh, H. )

    1994-02-01

    Creep rupture failure of superheater (SH)/reheater (RH) tubes is a major cause of forced outages of power boilers. A methodology developed recently by EPRI and its contractors has helped utilities make more informed run/replace decisions for tubes by judiciously combining calculational, nondestructive, and destructive evaluations. In this methodology, the tubes/tube assemblies at risk are identified by ultrasonically measuring the thickest steamside oxide scale and thinnest wall thickness in the tubes. The remaining life of each tube/tube assembly is predicted using a computer code known as TUBELIFE, thus achieving a further level of focus on the tubes/assemblies in the highest risk'' category. Sacrificial tube samples are then removed from the select locations and subjected to laboratory metallurgical evaluation and isostress rupture testing to refine the remaining life estimates. Research has further refined this methodology by validating the ultrasonic technique for scale measurement, identifying the appropriate stress formula and oxide growths laws and evaluating the limitations of creep damage summation rules and isostress rupture test procedures. This paper provides an overview of the research in the field, and establishes a road map for assessing the remaining life of SH/RH tubes.

  17. Fuel cell tubes and method of making same

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    1999-11-30

    A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.

  18. Coiled tubing as initial production tubing: An overview of case histories

    SciTech Connect (OSTI)

    Nirider, H.L.; Snider, P.M.; Walsh, K.D.; Williams, J.D.; Cordera, J.R.

    1995-05-01

    From Jan. 1993 through Feb. 1995 Marathon Oil Co. completed 23 newly drilled gas wells with coiled tubing as the initial production string. This paper reviews operational aspects of representative jobs, summarizes areas where improvements in equipment and technique were implemented, and addresses cost and productivity benefits of rigless completions. A summary of lessons learned is also included.

  19. Coiled tubing 1994 update: Expanding applications

    SciTech Connect (OSTI)

    Teel, M.E.

    1994-06-01

    The coiled tubing (CT) resurgence, which began in late 1989 shows little sign of moderating in spite of lower oil and gas prices. In fact, this so-called revolution continues to expand into major new services and applications. CT units are replacing workover rigs and snubbing units in some areas and have recently started to replace drilling rigs even outside Alaska's North Slope Prudhoe Bay field. Activity is reaching record levels in many areas. Although drilling, completions and flowlines generate a lot of interest, these are currently only a small part of total CT business. About 75% of activity is split evenly between nitrogen, acidizing and cleanouts. The other 25% includes newer services like cementing, fishing, sliding sleeves, logging, underreaming to remove scale or cement and drilling. CT is used to drill slimholes and reentry drainholes up to 6 1/8-in. CT has been used as casing and more casing applications are planned. CT ODs to 3 1/2-in. are produced and 4 1/2-in. OD CT production is scheduled later this year. Larger ODs make CT feasible for replacing conventional jointed tubing and welded flowlines.

  20. New coiled tubing jet cleaning system reduces costs

    SciTech Connect (OSTI)

    Cobb, C.C.; Zublin, C.W.

    1985-11-01

    This paper describes Chevron's water blsting system, called Hyperclean, which uses N80 tubing with a special high-pressure power swivel to supply rotation connected via jointed tubing to a replaceable jet stack. One licensee was able to develop the system into a more practical field form and has had good success in in situ liner perforation and slot cleaning. The Hyperclean system is effective, but limited to wells where the production tubing's ID is large enough to allow the collars on the system's 1 1/4-in. tubing easy and safe passage. If smaller tubing is in the well, the tubing must be removed before the Hyperclean tools are lowered into the well.

  1. dc-plasma-sprayed electronic-tube device

    DOE Patents [OSTI]

    Meek, T.T.

    1982-01-29

    An electronic tube and associated circuitry which is produced by dc plasma arc spraying techniques is described. The process is carried out in a single step automated process whereby both active and passive devices are produced at very low cost. The circuitry is extremely reliable and is capable of functioning in both high radiation and high temperature environments. The size of the electronic tubes produced are more than an order of magnitude smaller than conventional electronic tubes.

  2. Improved Grooving Tool for Tubing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Improved Grooving Tool for Tubing Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (746 KB) Technology Marketing SummarySandia has developed an improved grooving tool for Teflon or other plastic tubing. Grooving tools are used at the end of a tubing section to provide a better seal with compressionn fittings for connections to equipment. When used

  3. Composite Tube Trailer Design/Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Tube Trailer Design/Manufacturing Needs Composite Tube Trailer Design/Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Composite Tube Trailer Design/Manufacturing Needs More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Fuel Tank Manufacturing, Testing, Field Performance, and Certification High Pressure Hydrogen Tank Manufacturing

  4. DOE - Office of Legacy Management -- Wolverine Tube Division - MI 05

    Office of Legacy Management (LM)

    Wolverine Tube Division - MI 05 FUSRAP Considered Sites Site: Wolverine Tube Division (MI.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Wolverine Tube Division of Calumet & Hecla Consolidated Copper Co. Star Tool Hermes Automotive Manufacturing Corporation MI.05-1 MI.05-2 Location: 1411 Central Avenue , Detroit , Michigan MI.05-3 Evaluation Year: 1990 MI.05-2 Site Operations: 1943 - Conducted research and development of methods for spinning

  5. Simple method for elimination of theromoacoustic oscillations in cryogenic tubes

    SciTech Connect (OSTI)

    Gorbachev, S.P.; Korolev, A.V.; Sysoev, V.A.

    1986-08-01

    The authors show that thermoacoustic oscillations of gas in cryogenic tubes can be eliminated by changing their length. Geometric dimensions that do not produce oscillations are given.

  6. Jiangsu Yizheng Electron Tube Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Jiangsu Yizheng Electron Tube Co.,Ltd Place: Jiangsu Province, China Product: Energy saving high pressure sodium (HPS) light manufacturer References: Jiangsu Yizheng Electron...

  7. Big Hopes for Little Tubes: Local Collaboration Produces Nanotubes That

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Work as Heat Shields (Inside Business) | Jefferson Lab insidebiz.com/news/big-hopes-little-tubes Submitted: Monday, December 14

  8. Assembly and method for testing the integrity of stuffing tubes

    DOE Patents [OSTI]

    Morrison, E.F.

    1997-08-26

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally there along and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube. 5 figs.

  9. Assembly and method for testing the integrity of stuffing tubes

    DOE Patents [OSTI]

    Morrison, Edward Francis

    1997-01-01

    A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally therealong and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube.

  10. Coiled tubing used for slim hole re-entry

    SciTech Connect (OSTI)

    Traonmilin, E. ); Newman, K. )

    1992-02-17

    A coiled tubing unit with slim hole tools successfully re-entered and cored an existing Elf Aquitaine vertical well in the Paris basin in France. This experiment proved that coiled tubing could be used to drill, core, and test a slim hole well. Elf Aquitaine studied the use of coiled tubing for drilling inexpensive exploration wells in the Paris basin. As a result of this study, Elf believed that coiled tubing exploration drilling could significantly reduce exploration costs. This paper reports on a number of questions raised by this study: Can coiled tubing be used effectively to drill slim open hole How would the drilling rate compare with that of a conventional drilling rig If the rate were too slow, coiled tubing might not be economical. Can a straight vertical well be drilled Coiled tubing pipe has a residual curvature from bending over the reel and gooseneck. Will this curvature make it impossible to drill straight Can the coiled tubing also be used to take cores Once the hole is drilled, can it be tested with coiled tubing

  11. Working session 3: Tubing integrity Cueto-Felgueroso, C. [Tecnatom...

    Office of Scientific and Technical Information (OSTI)

    Tecnatom, S.A., San Sebastian de los Reyes, Madrid (Spain); Strosnider, J. NRC, Washington, DC (United States) 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; TUBES;...

  12. Method Of Making Closed End Ceramic Fuel Cell Tubes

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    2002-04-30

    A method of manufacturing closed end ceramic fuel cell tubes with improved properties and higher manufacturing yield is disclosed. The method involves bonding an unfired cap to a hollow unfired tube to form a compound joint. The assembly is then fired to net shape without subsequent machining. The resultant closed end tube is superior in that it provides a leak-tight seal and its porosity is substantially identical to that of the tube wall. The higher manufacturing yield associated with the present method decreases overall fuel cell cost significantly.

  13. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  14. Penetrameter positioner for bore-side radiography of tubes

    DOE Patents [OSTI]

    Davis, E.V.; Foster, B.E.

    1980-02-05

    A positioner is provided for placing plaque or wire penetrameters, as used in radiographic inspection, in close proximity with the inner wall of tubing at any desired location along the tubing. The positioner head carrying the penetrameter is inflatable whereby it is positioned in tte deflated condition, inflated to place the penetrameter against a weld to be inspected in the tubing wall, and then deflated during removal. If desired, the penetrameter holder may be used to center the radiographic source on the axis of the tube.

  15. Penetrameter positioner for bore-side radiography of tubes

    DOE Patents [OSTI]

    Davis, Earl V. (Oak Ridge, TN); Foster, Billy E. (Oak Ridge, TN)

    1983-01-01

    A positioner is provided for placing plaque or wire penetrameters, as used in radiographic inspection, in close proximity with the inner wall of tubing at any desired location along the tubing. The positioner head carrying the penetrameter is inflatable whereby it is positioned in the deflated condition, inflated to place the penetrameter against a weld to be inspected in the tubing wall, and then deflated during removal. If desired, the penetrameter holder may be used to center the radiographic source on the axis of the tube.

  16. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D. (Lakewood, CO); Vansant, James H. (Tracy, CA)

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  17. Coiled tubing sidetrack: Slaughter Field case history

    SciTech Connect (OSTI)

    Hightower, C.M.; Blount, C.G.; Ward, S.L.; Martin, R.F.; Cantwell, D.L.; Ackers, M.J.

    1995-03-01

    The paper describes the successful sidetrack of an oil well in the Slaughter Field in West Texas using coiled tubing (CT). Several first-time CT operations performed during this workover include: setting a whipstock in casing on CT; cutting a window with CT; using mud pulse measurement-while-drilling (MWD) with CT in a real well; use of a fluid-operated orientation tool for in-hole toolface changes; successful use of an autodriller to maintain weight on bit while drilling. Directional control of the sidetracked hole proved to be ineffective due to a surface software problem. The resultant wellbore was not horizontal as planned, but instead closely paralleled the original well for much of its length. However, the previously non-productive well flowed 1,000 barrels of fluid per day (BFPD) from the sidetrack following the workover.

  18. Flash photolysis-shock tube studies

    SciTech Connect (OSTI)

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  19. MULTI-ELECTRODE TUBE PULSE MEMORY CIRCUIT

    DOE Patents [OSTI]

    Gundlach, J.C.; Reeves, J.B.

    1958-05-20

    Control circuits are described for pulse memory devices for scalers and the like, and more particularly to a driving or energizing circuit for a polycathode gaseous discharge tube having an elongated anode and a successive series of cathodes spaced opposite the anode along its length. The circuit is so arranged as to utilize an arc discharge between the anode and a cathode to count a series of pulses. Upon application of an input pulse the discharge is made to occur between the anode and the next successive cathode, and an output pulse is produced when a particular subsequent cathode is reached. The circuit means for transfering the discharge by altering the anode potential and potential of the cathodes and interconnecting the cathodes constitutes the novel aspects of the invention. A low response time and reduced number of circuit components are the practical advantages of the described circuit.

  20. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  1. Drift tube suspension for high intensity linear accelerators

    DOE Patents [OSTI]

    Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  2. Variable-energy drift-tube linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM); Potter, James M. (Los Alamos, NM); Stovall, James E. (Los Alamos, NM)

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  3. Nondestructive evaluation of new coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-09-01

    The nondestructive testing (NDT) and evaluation (NDE) of coiled tubing and pipe during manufacture has not previously been described. This paper outlines the NDE methods employed during the production of such material, along with flaw removal criteria. This paper describes coiled tubing and pipe up to 3.5 inches diameter for both downhole and line pipe use.

  4. Coiled-tubing applications for blowout-control operations

    SciTech Connect (OSTI)

    Adams, N.J.; Mack, S.K.; Fannin, V.R.; Rocchi, T.

    1996-05-01

    Coiled-tubing drilling is now being used in various operations. Its complete field of applications is not currently established. Coiled tubing used for well control while drilling is a new field where its limits are being explored. This paper provides guidelines on topics to be considered in determining the applicability of coiled tubing for well-control problems. The information provided is based on recent field experiences with several well-control problems when drilling vent and relief wells. In some cases, coiled-tubing drilling capabilities, by necessity, were significantly extended beyond levels the industry considered to be upper limits. Well control cannot always be handled by coiled tubing. It is a special-application tool that can handle many situations and is, in some cases, clearly the optimum choice for the application. This paper presents guidelines for selecting coiled tubing for each application and discusses economics. It also describes coiled-tubing operations for regaining control of blowout wells in certain situations and gives technical requirements for planning and executing these types of jobs. Case histories where coiled-tubing units (CTU`s) have been used to regain control of drilling and producing wells are provided for illustration.

  5. Produce through coiled tubing to keep marginal wells unloaded

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The use of coiled tubing as an alternate production tubing string has been attempted or considered by numerous operators in the past. However, its use has been tempered due to several problems known to be inherent with coiled tubing recompletions. Some of the problems encountered are: Killing the well to allow for tubing installation always carries the risk of formation damage; Candidate wells normally are marginal producers and may not produce sufficient revenue to justify the cost of a major workover; Procedures followed to install surface equipment may be hazardous; Previous installation designs required running the coiled tubing to the top of the tree, affecting the functional loss of all existing wellhead equipment; Often substandard modifications were required to reconnect into existing production facilities. However, a prototype spool and tubing hanger that incorporated modifications designed to solve these problems has been developed jointly by Reeled Tubing, Inc., and Well-head Control Systems. The solution is a new concept in the coiled tubing hanger. The design incorporates a floating element, which is a combination slip bowl, seal element and retaining sub. The entire assembly is installed and activated in the bore of a specially designed spool installed between the primary and secondary master valves of the existing wellhead.

  6. Downhole control -- The key to coiled tubing drilling efficiency

    SciTech Connect (OSTI)

    1996-10-01

    Coiled tubing drilling has experienced dramatic growth in recent years. Originally a step-child, the technique now claims built-for-purpose equipment and promises cost-effective drilling with little damage to formations. The paper describes a bottom hole assembly and an orienting tool designed to be used to control coiled tubing drilling.

  7. Aquifer Sampling Tube Results for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Peterson, Robert E.

    2003-10-27

    This report presents and discusses results of the fiscal year 2003 sampling event associated with aquifer tubes along the Columbia River in the northern Hanford Site. Aquifer tube data help define the extent of groundwater contamination near the river, determine vertical variations in contamination, monitor the performance of interim remedial actions near the river, and support impact studies.

  8. Heat exchanger with leak detecting double wall tubes

    DOE Patents [OSTI]

    Bieberbach, George (Tampa, FL); Bongaards, Donald J. (Seminole, FL); Lohmeier, Alfred (Tampa, FL); Duke, James M. (St. Petersburg, all of, FL)

    1981-01-01

    A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.

  9. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  10. Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.

  11. SINGLE CRYSTAL NIOBIUM TUBES FOR PARTICLE COLLIDERS ACCELERATOR CAVITIES

    SciTech Connect (OSTI)

    MURPHY, JAMES E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratorys International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred ?C of the melting temperature of niobium, which is 2477 ?C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 ?C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was increased 0.18 mm and eventually to 0.21 mm. Again, with these larger tubes, single crystal tubes were usually produced by the crystallization process. The power supply was generally operated at full output during these tests, and the traverse rate was 5 cm per hour. In a few tests, the traverse rate was increased to 10 cm per hour, and at the faster traverse rate, single crystal growth was not achieved. In these tests with a faster traverse rate, it was thought that the tube was not heated to a high enough temperature to achieve single crystal growth. In the next series of tests, the tube OD was unchanged at 3.8 cm and the wall thickness was increased to 0.30 mm. The increased wall thickness made it difficult to reach an operating temperature above 2,000 ?C, and although the single crystal process caused a large increase in the crystal grains, no single crystal tubes were produced. It was assumed that the operating temperature in these tests was not high enough to achieve single crystal growth. In FY 2012, a larger power supply was purchased and installed. With the new power supply, temperatures above the melting point of Nb were easily obtained regardless of the tube thickness. A series of crystallization tests was initiated to determine if indeed the operating temperature of the previous tests was too low to achieve single crystal growth. For these tests, the Nb tube OD remained at 3.8 cm and the wall thickness was 0.30 mm. The first test had an operating temperature of 2,000 ?C. and the operating temperature was increased by 50 ?C increments for each successive test. The final test was very near the Nb melting temperature, and indeed, the Nb tube eventually melted in the center of the tube. These tests showed that higher temperatures did yield larger grain sizes if the traverse rate was held constant at 5 cm per hour, but no single crystal tubes were produced even at the highest operating temperature. In addition, slowing the traverse rate to as low as 1 cm per hour did not yield a single crystal tube regardless of operating temperature. At this time, it

  12. Advances in coiled-tubing operating systems

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-06-01

    The expansion of coiled tubing (CT) applications into spooled flowlines, spooled completions, and CT drilling continues to grow at an accelerated rate. For many users within the oil and gas industry, the CT industry appears to be poised on the threshold of the next logical step in its evolution, the creation of a fully integrated operating system. However, for CT to evolve into such an operating system, the associated services must be robust and sufficiently reliable to support the needs of exploration, development drilling, completion, production management, and wellbore-retirement operations both technically and economically. The most critical hurdle to overcome in creating a CT-based operating system is a fundamental understanding of the operating scope and physical limitations of CT technology. The complete list of mechanisms required to advance CT into an operating system is large and complex. However, a few key issues (such as formal education, training, standardization, and increased levels of experience) can accelerate the transition. These factors are discussed.

  13. Defining coiled tubing limits -- A new approach

    SciTech Connect (OSTI)

    Newman, K.R.; Sathuvalli, U.B.; Stone, L.R.; Wolhart, S.

    1996-12-31

    The burst, collapse and axial load operating limits for Coiled Tubing (CT) are currently established using the Von Mises incipient yield criterion. This criterion has historically been used to calculate the limits for oil country tubular goods (OCTG). The limits according to this criterion are based on the point at which the pipe material reaches a load state in which it begins to yield. Because of the bending that occurs when the CT is spooled on and off the reel, and when it is bent over the guide arch, the CT is already far beyond the yield point before it enters a well. Thus, this criterion does not really apply to CT. This paper describes a research project currently in progress. The purpose of this project is to define a new set of CT limits based on criteria other than incipient yield. This new approach to setting CT operating limits takes into account the internal residual stresses in the CT which are a consequence of repeated bending cycles and the accompanying change in material properties.

  14. Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling

    SciTech Connect (OSTI)

    Rolovic, R.; Tipton, S.M.

    2000-04-01

    Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.

  15. Explosively driven air blast in a conical shock tube

    SciTech Connect (OSTI)

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  16. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  17. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    Cayard, M.S.; Kane, R.D.

    1996-08-01

    Coiled tubing is an extremely useful tool in many well logging and workover applications in oil and gas production operations. Several important concerns regarding its use include the need for improved guidelines for the assessment of mechanical integrity, fatigue damage, and the effects of hydrogen sulfide in sour oil and gas production environments. This paper provides information regarding the use of coiled tubing in sour environments with particular emphasis on sulfide stress cracking, hydrogen induced cracking and stress-oriented hydrogen induced cracking and how they work synergistically with cyclic cold working of the steel tubing.

  18. CALiPER: Troffers, Kits, and Tubes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Webcasts » CALiPER: Troffers, Kits, and Tubes CALiPER: Troffers, Kits, and Tubes This June 20, 2013 webcast reviewed the recently completed CALiPER Study, Recessed Troffer Lighting, in which a group of lighting designers, engineers, and facility managers compared the performance of conventional fluorescent troffers with T8 LED tube retrofits, LED retrofit kits, and dedicated LED troffers. Troffers (1'×4', 2'×2', and 2'×4') comprise more than half of all luminaires

  19. Fluidized bed heat exchanger utilizing angularly extending heat exchange tubes

    DOE Patents [OSTI]

    Talmud, Fred M. (Berkeley Heights, NJ); Garcia-Mallol, Juan-Antonio (Morristown, NJ)

    1980-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided and includes a steam drum disposed adjacent the fluidized bed and a series of tubes connected at one end to the steam drum. A portion of the tubes are connected to a water drum and in the path of the air and the gaseous products of combustion exiting from the bed. Another portion of the tubes pass through the bed and extend at an angle to the upper surface of the bed.

  20. In-bed tube bank for a fluidized-bed combustor

    DOE Patents [OSTI]

    Hemenway, Jr., Lloyd F. (Morgantown, WV)

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  1. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.

    1995-05-01

    The use of coiled tubing (CT) to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefits of being able to drill at balance, safely and in a controlled manner, with nitrogen to reduce downhole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing formation damage. This paper describes such a horizontal re-entry drilled in the shallow depleted waterflooded reservoir Barenburg in northern Germany. The scope of work for this project included (1) cutting windows through 6 5/8- and 9 5/8-in. casing, (2) drilling a 5 7/8-in.-medium-radius curve, (3) running a 5-in. liner and a 5 1/2-in. parasitic string for nitrogen injection, (4) drilling a 4 3/8-in. horizontal with nitrogen to maintain a balanced condition, (5) running openhole logs, and (6) running 3 1/2-in. slotted liner. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the CT injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting pipe and downhole tools was placed on the substructure. The development of a surface-controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8-in. CT. This program represents a significant extension of the capabilities of drilling with CT.

  2. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  3. Ultrasonic probe for inspecting double-wall tube

    DOE Patents [OSTI]

    Cook, Kenneth V. (Clinton, TN); Cunningham, Jr., Robert A. (Powell, TN); Murrin, Horace T. (Alcoa, TN)

    1983-01-01

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  4. Ultrasonic probe for inspecting double-wall tube. [Patent application

    DOE Patents [OSTI]

    Cook, K.V.; Cunningham, R.A. Jr.; Murrin, H.T.

    1981-05-29

    An ultrasonic probe for inspecting the interface between the walls of a double-wall tube comprises a cylindrical body member having two cavities axially spaced apart thereon. The probe is placed in the tube and ultrasonic energy is transmitted from a transducer in its body member to a reflector in one of its cavities and thence into the inner wall of the tube. A second transducer in the probe body member communicates with the second cavity through a collimation passage in the body member, and the amount of ultrasonic energy reflected from the interface between the walls of the tube to a second reflector through the collimation passage to the second transducer depends upon the characteristics of said interface.

  5. Alternative Electrostatic Green's Function for a Long Tube

    SciTech Connect (OSTI)

    Barlow, Stephan E.

    2003-11-01

    This note describes an expression for the electrostatic Green's function in a long conducting tube. The expression allows one to readily compute the potentials and fields at and in the vicinity of the singularity where other methods have difficulty.

  6. Modeling coiled-tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1998-02-01

    Because of its ability to prolong well life, its relatively low expense, and the relative ease with which it is installed, coiled tubing has become a preferred remedial method of tubular completion for gas wells. Of course, the difficulty in procuring wireline-test data is a drawback to verifying the accuracy of the assumptions and predictions used for coiled-tubing selection. This increases the importance of the prediction-making process, and, as a result, places great emphasis on the modeling methods that are used. This paper focuses on the processes and methods for achieving sound multiphase-flow predictions by looking at the steps necessary to arrive at coiled-tubing selection. Furthermore, this paper examines the variables that serve as indicators of the viability of each tubing size, especially liquid holdup. This means that in addition to methodology, emphasis is placed on the use of a good wellbore model. The computer model discussed is in use industry wide.

  7. World Oils`s 1995 coiled tubing tables

    SciTech Connect (OSTI)

    1995-03-01

    Increasingly in demand in almost every aspect of today`s E and P market because of flexibility, versatility and economy, coiled tubing is being used for a variety of drilling, completion and production operations that previously required conventional jointed pipe, workover and snubbing units, or rotary drilling rigs. For 1995 the popular coiled tubing tables have been reformatted, expanded and improved to give industry engineering and field personnel additional, more specific selection, operational and installation information. Traditional specifications and dimensions have been augmented by addition of calculated performance properties for downhole workover and well servicing applications. For the first time the authors are presenting this information as a stand-alone feature, separate from conventional jointed tubing connection design tables, which are published annually in the January issue. With almost seven times as much usable data as previous listings, the authors hope that their new coiled tubing tables are even more practical and useful to their readers.

  8. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect (OSTI)

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  9. Specialized equipment enabled completions with large coiled tubing

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-02-19

    Specialized equipment enabled successful well completions in Oman with large 3{1/2}-inch coiled tubing. Conventional drilling or completion rigs were not needed. Although the use of 3{1/2}-inch coiled tubing to complete wells is relatively new, it is gaining widespread industry application. One Middle East operating company felt that if downhole completion equipment could be successfully run using coiled tubing, greater cost efficiency, both in initial deployment and in maintenance, could be derived. The paper lists some of the technical considerations for these assumptions. The long-term advantages regarding production and well maintenance cannot yet be determined, but experience in Oman has confirmed the belief that large coiled tubing completions can be technically achieved.

  10. Eddy sensors for small diameter stainless steel tubes.

    SciTech Connect (OSTI)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  11. Bundled multi-tube nozzle for a turbomachine

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Ziminsky, Willy Steve; Johnson, Thomas Edward; Zuo, Baifang; York, William David; Uhm, Jong Ho

    2015-09-22

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a cap member having a first surface that extends to a second surface. The cap member further includes a plurality of openings. A plurality of bundled mini-tube assemblies are detachably mounted in the plurality of openings in the cap member. Each of the plurality of bundled mini-tube assemblies includes a main body section having a first end section and a second end section. A fluid plenum is arranged within the main body section. A plurality of tubes extend between the first and second end sections. Each of the plurality of tubes is fluidly connected to the fluid plenum.

  12. Signature of the Fragmentation of a Color Flux Tube

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of a $q$-$\\bar q$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $\\Delta y$ falling within the window of $|\\Delta y | morethe near side at $(\\Delta \\phi, \\Delta y) \\sim 0$, but an enhanced azimuthal correlation on the back-to-back, away side at $(\\Delta \\phi$$\\sim$$ \\pi,\\Delta y$$\\sim$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $|\\Delta y | 1/(dN_\\pi/dy)$. These properties may be used as the signature for the fragmentation of a color flux tube.less

  13. OBSERVATION OF FLUX-TUBE CROSSINGS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Arnold, L.; Li, G.; Li, X.; Yan, Y.

    2013-03-20

    Current sheets are ubiquitous in the solar wind. They are a major source of the solar wind MHD turbulence intermittency. They may result from nonlinear interactions of the solar wind MHD turbulence or are the boundaries of flux tubes that originate from the solar surface. Some current sheets appear in pairs and are the boundaries of transient structures such as magnetic holes and reconnection exhausts or the edges of pulsed Alfven waves. For an individual current sheet, discerning whether it is a flux-tube boundary or due to nonlinear interactions or the boundary of a transient structure is difficult. In this work, using data from the Wind spacecraft, we identify two three-current-sheet events. Detailed examination of these two events suggests that they are best explained by the flux-tube-crossing scenario. Our study provides convincing evidence supporting the scenario that the solar wind consists of flux tubes where distinct plasmas reside.

  14. X-ray tube with magnetic electron steering

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Turman, Bobby N. (Albuquerque, NM); Kaye, Ronald J. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  15. Porous coolant tube holder for fuel cell stack

    DOE Patents [OSTI]

    Guthrie, Robin J. (East Hartford, CT)

    1981-01-01

    A coolant tube holder for a stack of fuel cells is a gas porous sheet of fibrous material adapted to be sandwiched between a cell electrode and a nonporous, gas impervious flat plate which separates adjacent cells. The porous holder has channels in one surface with coolant tubes disposed therein for carrying coolant through the stack. The gas impervious plate is preferably bonded to the opposite surface of the holder, and the channel depth is the full thickness of the holder.

  16. DOE - Office of Legacy Management -- Summerville Tube Co - PA 24

    Office of Legacy Management (LM)

    Summerville Tube Co - PA 24 FUSRAP Considered Sites Site: SUMMERVILLE TUBE CO. (PA.24) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bridgeport , Pennsylvania PA.24-1 Evaluation Year: 1987 PA.24-1 Site Operations: Metal fabrication research and development on uranium metal in the early 1940s - Cold drawing of tuballoy aluminum sheathing. PA.24-1 Site Disposition: Eliminated - Potential for residual radioactive contamination

  17. Recomplete deep hot wells successfully with coiled tubing

    SciTech Connect (OSTI)

    Garner, T.; Fleckenstein, W.; Shelley, B.

    1995-06-01

    A squeeze reperforation procedure in the Elk Hills, California field using coiled tubing included contaminating excess cement and jetting it from the well bore to eliminate the need to drill out cement before shooting new perforations. The 324-7R well was producing 260 b/d of oil through 2 7/8-in. production tubing, with a 20,000-scf/bbl gas-oil ratio (GOR). Bottomhole static temperature was 250 F. After pumping a cement squeeze to 9,000 ft trough 1{1/2}-in. coiled tubing (CT) run inside the production tubing, oil production increased to 550 b/d of oil, and the GOR decreased to 5,000 scf/bbl when new perforations were shot. Cement was pumped 9,000 ft through the CT and circulated back through the production tubing/CT annulus. Operation cost was estimated at 20% less than for a comparable job performance with conventional tubing. Cost of the CT squeeze was recovered by 58 days incremental production.

  18. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect (OSTI)

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  19. Why high-frequency pulse tubes can be tipped

    SciTech Connect (OSTI)

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  20. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOE Patents [OSTI]

    Walker, Charles A. (Albuquerque, NM); Trowbridge, Frank R. (Albuquerque, NM)

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  1. The effect of voltage waveform and tube diameter on transporting cold plasma strings through a flexible dielectric tube

    SciTech Connect (OSTI)

    Sohbatzadeh, Farshad; Omran, Azadeh Valinataj

    2014-11-15

    In this work, we developed transporting atmospheric pressure cold plasma using single electrode configuration through a sub-millimetre flexible dielectric tube beyond 100?cm. It was shown that the waveform of the applied high voltage is essential for controlling upstream and downstream plasma inside the tube. In this regard, sawtooth waveform enabled the transport of plasma with less applied high voltage compared to sinusoidal and pulsed form voltages. A cold plasma string as long as 130?cm was obtained by only 4?kV peak-to-peak sawtooth high voltage waveform. Optical emission spectroscopy revealed that reactive chemical species, such as atomic oxygen and hydroxyl, are generated at the tube exit. The effect of tube diameter on the transported plasma was also examined: the smaller the diameter, the higher the applied voltage. The device is likely to be used for sterilization, decontamination, and therapeutic endoscopy as already suggested by other groups in recent past years.

  2. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    SciTech Connect (OSTI)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placed within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.93.6 mGy.

  3. Modernizing a Technology From Vacuum Tube Era To Generate Cheap Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernizing a Technology From Vacuum Tube Era To Generate Cheap Power

  4. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  5. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  6. An evaluation of large diameter coiled tubing for subsurface production tubulars

    SciTech Connect (OSTI)

    Adams, L.S.; Smith, L.W.

    1995-12-31

    This paper provides an economic and technological perspective for use of large diameter coiled tubing relative to threaded tubulars for subsurface production tubing. This new advancement in coiled tubing technology can significantly reduce the expense for purchasing and installing production tubing while increasing hydrocarbon reserve recovery and providing a safer, more desirable ecosystem interrelation.

  7. Los Alamos National Laboratory W76 Pit Tube Lifetime Study

    SciTech Connect (OSTI)

    Abeln, Terri G.

    2012-04-25

    A metallurgical study was requested as part of the Los Alamos National Laboratory (LANL) W76-1 life-extension program (LEP) involving a lifetime analysis of type 304 stainless steel pit tubes subject to repeat bending loads during assembly and disassembly operations at BWXT/Pantex. This initial test phase was completed during the calendar years of 2004-2006 and the report not issued until additional recommended tests could be performed. These tests have not been funded to this date and therefore this report is considered final. Tubes were reportedly fabricated according to Rocky Flats specification P14548 - Seamless Type 304 VIM/VAR Stainless Steel Tubing. Tube diameter was specified as 0.125 inches and wall thickness as 0.028 inches. A heat treat condition is not specified and the hardness range specification can be characteristic of both 1/8 and 1/4 hard conditions. Properties of all tubes tested were within specification. Metallographic analysis could not conclusively determine a specified limit to number of bends allowable. A statistical analysis suggests a range of 5-7 bends with a 99.95% confidence limit. See the 'Statistical Analysis' section of this report. The initial phase of this study involved two separate sets of test specimens. The first group was part of an investigation originating in the ESA-GTS [now Gas Transfer Systems (W-7) Group]. After the bend cycle test parameters were chosen (all three required bends subjected to the same amount of bend cycles) and the tubes bent, the investigation was transferred to Terri Abeln (Metallurgical Science and Engineering) for analysis. Subsequently, another limited quantity of tubes became available for testing and were cycled with the same bending fixture, but with different test parameters determined by T. Abeln.

  8. Crimp sealing of tubes flush with or below a fixed surface

    DOE Patents [OSTI]

    Fischer, J.E.; Walmsley, D.; Wapman, P.D.

    1996-08-20

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. 8 figs.

  9. Crimp sealing of tubes flush with or below a fixed surface

    DOE Patents [OSTI]

    Fischer, Jon E. (Concord, CA); Walmsley, Don (Livermore, CA); Wapman, P. Derek (Livermore, CA)

    1996-01-01

    An apparatus for crimp sealing and severing tubes flush or below a fixed surface. Tube crimping below a fixed surface requires an asymmetric die and anvil configuration. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes. This asymmetric die and anvil is used when a ductile metal tube and valve assembly are attached to a pressure vessel which has a fixed surface around the base of the tube at the pressure vessel. A flat anvil is placed against the tube. Die guides are placed against the tube on a side opposite the anvil. A pinch-off die is inserted into the die guides against the tube. Adequate clearance for inserting the die and anvil around the tube is needed below the fixed surface. The anvil must be flat so that, after crimping, it may be removed without deforming the crimped tubes.

  10. Disposal of Draeger Tubes at Savannah River Site

    SciTech Connect (OSTI)

    Malik, N.P.

    2000-10-13

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

  11. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect (OSTI)

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  12. Multiaxial plasticity and fatigue life prediction in coiled tubing

    SciTech Connect (OSTI)

    Tipton, S.M.

    1996-12-31

    Coiled tubing is being used increasingly in the oil well drilling and servicing industry. Continuous steel tubing of structural dimensions (up to 89 mm or 3.5 in. in diameter) is wound onto a large-diameter reel for repeated deployment into and out of a well bore. The bending strain range associated with each wrap-unwrap cycle can exceed 3% with lives well below 100 cycles. During constant internal pressure fatigue testing, tubing has been observed to grow in diameter by as much as 30%. This paper describes an analytical model to predict the fatigue behavior of coiled tubing subjected to variable pressure service conditions. The approach utilizes standard low-cycle fatigue data but requires additional experimental results from constant pressure fatigue testing. The algorithm is based on estimates of biaxial ratcheting from an incremental plasticity model using a hybrid associated flow rule, a modified kinematic hardening rule with multiple von Mises yield surfaces, and a specialized limit surface concept. An empirical damage parameter was formulated based on constant pressure fatigue data using mean and fluctuating von Mises equivalent strain components occurring throughout the life of a section of tubing. This parameters is used with the Palmgren-Miner definition of cumulative damage to track damage that is accumulating nonlinearly under constant or variable pressure histories. Modifications to standard incremental plasticity components and implementation assumptions used to apply the model are presented and discussed. The predictive capability of the model is demonstrated relative to data generated under constant and variable pressure histories.

  13. Case studies from Oman for coiled tubing deployed completion techniques

    SciTech Connect (OSTI)

    Taylor, R.W.; Conrad, B.

    1996-09-01

    Although the use of ultra-large coiled tubing to complete wells is relatively new, it is gaining widespread industry application. This paper will detail the equipment necessary to perform an operation of this type and will present information from several case studies in Oman in which an operator has successfully deployed completion equipment on 3-1/2-inch-OD coiled tubing. In addition to a discussion of the equipment required to perform the necessary operations, the trial parameters that were established by this operator will be given. The information presented has been selected to allow an initial evaluation to be made of coiled tubing completions in general and will help to determine whether this method can prove to be less expensive than traditional rig-based completions. The topics presented have been chosen to provide the reader with a thorough understanding of the techniques and preparation needed to execute a coiled tubing completion. The summary of experiences will conclude that this innovative completion technique can be a viable method for completing wells. Although long-term advantages regarding production and well maintenance cannot yet be determined, the operator`s experiences to date have confirmed his initial belief that use of coiled tubing in ultra-large continuous-pipe applications can be cost effective.

  14. A comparison of the heat transfer and pressure drop performance of R-134a-lubricant mixtures in different diameter smooth tubes and micro-fin tubes

    SciTech Connect (OSTI)

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    The average heat transfer coefficients and pressure drops during evaporation and condensation are reported for mixtures of R-134a and an ester lubricant in tubes of 12.7 mm (1/2 in.) outer diameter. The objective of this paper is to evaluate the performance of the R-134a-lubricant mixtures in these tubes and determine the performance benefits of the micro-fin tube. The performance benefits of the tubes with 12.7 mm (1/2 in.) outer diameter are compared to those of smaller tubes with 9.52 mm (3/8 in.) outer diameter. The lubricant used was a 169 SUS penta erythritol ester mixed-acid lubricant. The lubricant concentration was varied from 0--5.1% in the mixture. The average heat transfer coefficients in the 12.7 mm (1/2 in.) micro-fin tube were 50--150% higher than those for the 12.7 mm (1/2 in.) smooth tube, while pressure drops in the micro-fin tube were 5% to 50% higher than in the smooth tube. The addition of lubricant degraded the average heat transfer coefficients in all cases except during evaporation at low lubricant concentrations. Pressure drops were always increased with the addition of lubricant. The experimental results also indicate that tube diameter has some effect on the performance benefits of the micro-fin tube over that of the smooth tube.

  15. Pair creation in an electric flux tube and chiral anomaly

    SciTech Connect (OSTI)

    Iwazaki, Aiichi [International Economics and Politics, Nishogakusha University, Ohi Kashiwa, Chiba 277-8585 (Japan)

    2009-11-15

    Using the chiral anomaly, we discuss the pair creation of massless fermions under the effect of a magnetic field B-vector when an electric flux tube E-vector parallel to B-vector is switched on. The tube is axially symmetric and infinitely long. For the constraint B>>E, we can analytically obtain the spatial and temporal behaviors of the number density of the fermions, the azimuthal magnetic field generated by the fermions, and so on. We find that the lifetime t{sub c} of the electric field becomes shorter as the width of the tube becomes narrower. Applying it to the plasma in high-energy heavy-ion collisions, we find that the color electric field decays quickly such that t{sub c}{approx_equal}Q{sub s}{sup -1}, in which Q{sub s} is the saturation momentum.

  16. More collapse tests add to coiled tubing applications

    SciTech Connect (OSTI)

    Walker, E.J. ); Costall, D. )

    1991-06-17

    The collapse limits of thicker-walled coiled tubing have been determined to ensure safe and successful workover operations. Prudhoe Bay has been using 1.75-in OD coiled tubing for 2 years. When BP Exploration (Alaska) Inc. initially started using this larger size coil, collapse tests were run on 0.109-in. wall thickness coil. These tests provide a base curve by which much work has been performed in the western operating area of the Prudhoe Bay Unit. However, use of 1.75-in. coiled tubing has been expanded to include wall thickness of 0.125, 0.134, and 0.156-in. Except for theoretical calculations, no data were available to ensure that we would know the collapsed limitations for these sizes. To fill in this gap, further collapse testing has been done.

  17. Consumers' Gas lays coiled steel tubing in Lake Erie

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Forty-four miles of polypropylene-coated, coiled steel tubing have been laid underwater by the Consumers' Gas Co. of Toronto. Laid in 33,000-ft sections from a giant reel, the tubing is used for the remote control of subsea hydraulically operated line valves and the distribution of methyl alcohol to subsea gas wells. The installation is the first of long, continuous tubing underwater using this technology in Canada. The line was installed in conjunction with a newly completed gas well gathering system and processing plant that is expected to yield more than 35 billion cu ft of fuel over the next 15 yr. The new system under W.-Central Lake Erie provides consumers with a cost-effective method for remotely controlling underwater hydraulic valves and distributing methyl alcohol to eliminate hydrate build-up in the gas gathering lines.

  18. The effect of fluid flow on coiled tubing reach

    SciTech Connect (OSTI)

    Bhalla, K.; Walton, I.C.

    1996-12-31

    A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.

  19. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    SciTech Connect (OSTI)

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes contained tube portions with FBW and IFW welded MA956. Field testing of the probes and remaining heat exchanger design activity will be performed by Oak Ridge National Laboratory under DOE Contract DE-AC05-00OR22725.

  20. Coiled tubing: Applications for today`s challenges

    SciTech Connect (OSTI)

    Connell, M.; Headrick, D.; Isennock, C.

    1999-07-01

    Although coiled tubing (CT) was introduced to the oil and gas industry in the 1960s, the product was used for little more than nitrogen jetting and sand removal for nearly two decades. Then, in the 1990s, the availability of CT with large diameters (up to 4 inch OD) and higher strength enabled its use for more complicated and demanding jobs. For the first time, CT could provide the high flow rates and withstand the pressures required for production tubulars, without a rig or hoist unit. The paper describes composite coiled tubing, fracturing, laying offshore flow lines, and a gas storage well cleanout, and a geothermal well cleanout.

  1. An overview of McKittrick coiled tubing drilling project

    SciTech Connect (OSTI)

    Ewert, D.P.; Ramagno, R.A.; Hurkmans, R.S.

    1995-12-31

    In an effort to reduce drilling costs on thermal wells, service companies began reducing casing sizes and well pad location sizes in 1993. Based on a successful four-well pilot project completed in early 1994 at the Belridge Field, a 115-well steam injector project was completed in the McKittrick Field in late 1994, of which 68 wells were drilled with coiled tubing. This paper will discuss why slimhole completions and coiled tubing drilling were selected for this project, the operational aspects of drilling 68 wells in 92 working days, and conclusions about the project.

  2. High voltage supply for neutron tubes in well logging applications

    DOE Patents [OSTI]

    Humphreys, D. Russell

    1989-01-01

    A high voltage supply is provided for a neutron tube used in well logging. The "biased pulse" supply of the invention combines DC and "full pulse" techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  3. Workover well control. Part 4. Coiled-tubing pigs speed workover operations

    SciTech Connect (OSTI)

    Adams, N.

    1981-09-14

    Many workover operations can be completed quickly and efficiently by using coiled tubing instead of jointed tubing or conventional rigs. In general, coiled tubing is a continuous string of small-diameter tubing that can be run into the well without the necessity of making joint connections. The operations are safe, involve small amounts of rig time, and usually are more economical than other forms of concentric work. Coiled tubing work is usually conducted on producing wells, which necessitates pressure-control precautions. Applications for coiled tubing involve all aspects of workover operations except wire-line work. Coiled tubing can be used in initiating flow, cleaning out sand in tubing, and performing stimulation operations. In addition, drilling can be conducted with coiled tubing when down-hole motors are used.

  4. Method for forming a layer of synthetic corrosion products on tubing surfaces

    DOE Patents [OSTI]

    Lane, Michael H. (Clifton Park, NY); Salamon, Eugene J. M. (Clifton Park, NY)

    1996-01-01

    A method is provided for forming a synthetic corrosion product layer on tube surfaces. The method utilizes two dissimilar materials with different coefficients of thermal expansion. An object tube and sacrificial tube are positioned one inside the other such that an annular region is created between the two tubes' surfaces. A slurry of synthetic corrosion products is injected into this annular region and the assembly is heat treated. This heat causes the tubes to expand, the inner tube with the higher coefficient of expansion expanding more than the outer tube, thereby creating internal pressures which consolidate the corrosion products and adhere the corrosion products to the tubing surfaces. The sacrificial tube may then be removed by conventional chemical etching or mechanical methods.

  5. In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube. Part 1: Evaporation

    SciTech Connect (OSTI)

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1994-12-31

    In-tube heat transfer coefficients and pressure drops during evaporation are reported for mixtures of refrigerant R-134a and a penta erythritol ester mixed-acid lubricant. The ester lubricant was tested at viscosities of 169 SUS and 369 SUS over a lubricant concentration range of 0% to 5% in both a smooth tube and a micro-fine tube. The average saturation temperature used was 1 C (33.8 F). Measurements were taken for the refrigerant-lubricant mixture over a mass flux range of 85 kg/m{sup 2}{center_dot}s (62,700 lb/ft{sup 2}{center_dot}h) to 375 kg/m{sup 2}{center_dot}s (276,640 lb/ft{sup 2}{center_dot}h) in test tubes with an outer diameter of 9.52 mm (3/8 in.). Heat transfer coefficients during evaporation increased at low concentrations of the 169-SUS ester lubricant and then dropped off at high lubricant concentrations in both the smooth tube and the micro-fin tube. The higher viscosity 369-SUS lubricant decreased the heat transfer coefficients in both tubes over the range of lubricant concentrations tested. Pressure drops during evaporation increased in both the smooth tube and the micro-fin tube with the addition of ester lubricant of either viscosity. The heat transfer coefficients for the micro-fin tube were 100% to 50% higher than those for the smooth tube, with the higher values occurring at low mass fluxes. Pressure drops in the micro-fin tube were 10% to 20% higher than those in the smooth tube.

  6. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOE Patents [OSTI]

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  7. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect (OSTI)

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  8. SpyroCor(tm) Radiant Tube Heater Inserts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SpyroCor(tm) Radiant Tube Heater Inserts SpyroCor(tm) Radiant Tube Heater Inserts Unique Twisted Design of Ceramic Insert Saves Energy for Metal Heat-Treating Furnaces Radiant tube heaters are typically used in metal heat-treating furnaces. The heaters are long tubes, often in a U shape, which have natural-gas fired burners at one end of the tube (the burner leg) to produce a flame and heated gas that flows through the tube to produce heat for conditioning metals (e.g., strengthening them or

  9. Acoustic recovery of lost power in pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.W.; Gardner, D.L.; Backhaus, S.

    1999-02-01

    In an efficient Stirling-cycle cryocooler, the cold piston or displacer recovers power from the gas. This power is dissipated into heat in the orifice of an orifice pulse tube refrigerator, decreasing system efficiency. Recovery of some of this power in a pulse tube refrigerator, without sacrificing the simplicity and reliability inherent in a system with no cold moving parts, is described in this paper. In one method of such power recovery, the hot ends of both the regenerator and the pulse tube are connected to the front of the piston driving the refrigerator. Experimental data is presented demonstrating this method using a thermoacoustic driver instead of a piston driver. Control of time-averaged mass flux through the refrigerator is crucial to this power recovery, lest the refrigerator{close_quote}s cooling power be overwhelmed by a room-temperature mass flux. Two methods are demonstrated for control of mass flux: a barrier method, and a hydrodynamic method based on turbulent irreversible flow. At {minus}55{degree}C, the refrigerator provided cooling with 9{percent} of the Carnot coefficient of performance. With straightforward improvements, similar refrigerators should achieve efficiencies greater than those of prior pulse tube refrigerators and prior standing-wave thermoacoustic refrigerators, while maintaining the advantages of no moving parts. {copyright} {ital 1999 Acoustical Society of America.}

  10. New guidelines should enhance coiled tubing well control security

    SciTech Connect (OSTI)

    Sas-Jaworsky, A. II

    1997-12-01

    The use of coiled tubing (CT) technology in well servicing operations has expanded dramatically in recent years, becoming a staple of remedial and workover programs. The advantages of CT services are numerous and well defined. As a result, the capabilities of this continuous-length tube technology have been exploited in applications such as high-pressure CT (HPCT), pushing the performance envelope into critical operations. In recent years, the mechanical capability and limitations of CT equipment components have become further defined, enhancing the safe working conditions of the prescribed operations. However, safety in coiled tubing operations is not only the product of equipment design, but of proper planning and identification of potential hazards. The following article highlights safety guidelines related to CT well control stack components as published in API RP 5C7, Recommended Practice for Coiled Tubing Operations in Oil and Gas Well Services (Dec. 1, 1996). API standards are published to facilitate the broad availability of proven engineering and operating practices, and are not intended to obviate the need for applying sound engineering judgment regarding when and where these standards should be utilized. Therefore, these standards should be considered the minimum safety requirements for well service operations, both onshore and offshore. These recommended practice guidelines have been prepared to reflect use by both operators and contract personnel.

  11. Proper bit selection improves ROP in coiled tubing drilling

    SciTech Connect (OSTI)

    King, W.W. )

    1994-04-18

    Using the correct type of bit can improve the rate of penetration (ROP) and therefore the economics of coiled tubing drilling operations. Key factors, based on studies of the coiled tubing jobs to date, are that the drilling system must be analyzed as a whole system and that both the drill bit type and the formation compressive strength are critical components in this analysis. Once a candidate job has been qualified technically for drilling with coiled tubing, the job will have to be justified economically compared to conventional drilling. A key part of the economic analysis is predicting the ROP in each formation to be drilled to establish a drilling time curve. This prediction should be based on the key components of the system, including the following: hydraulics, motor capabilities, weight on bit (WOB), rock compressive strength, and bit type. This analysis should not base expected ROPs and offset wells drilled with conventional rigs and equipment. Furthermore, a small-diameter bit should not be selected simply by using the International Association of Drilling Contractor (IADC) codes of large-diameter bits used in offset wells. Coiled tubing drilling is described, then key factors in the selection are discussed.

  12. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  13. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOE Patents [OSTI]

    Dusek, Joseph T. (Lombard, IL)

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  14. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOE Patents [OSTI]

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  15. Rigid indented cylindrical cathode for X-ray tube

    DOE Patents [OSTI]

    Hudgens, Claude R. (Dayton, OH)

    1985-01-01

    A cathode assembly for a vacuum tube includes a wire filament, a straight bular anode parallel to and surrounding the wire filament, and insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  16. Hand held sample tube manipulator, system and method

    DOE Patents [OSTI]

    Kenny, Donald V. (Liberty Township, OH) [Liberty Township, OH; Smith, Deborah L. (Liberty Township, OH) [Liberty Township, OH; Severance, Richard A. (late of Columbus, OH) [late of Columbus, OH

    2001-01-01

    A manipulator apparatus, system and method for measuring analytes present in sample tubes. The manipulator apparatus includes a housing having a central bore with an inlet end and outlet end; a plunger mechanism with at least a portion thereof slideably disposed for reciprocal movement within the central bore, the plunger mechanism having a tubular gas channel with an inlet end and an outlet end, the gas channel inlet end disposed in the same direction as said inlet end of the central bore, wherein the inlet end of said plunger mechanism is adapted for movement so as to expel a sample tube inserted in the bore at the outlet end of the housing, the inlet end of the plunger mechanism is adapted for connection to gas supply; a first seal is disposed in the housing for sealing between the central bore and the plunger mechanism; a second seal is disposed at the outlet end of the housing for sealing between the central bore and a sample tube; a holder mounted on the housing for holding the sample tube; and a biasing mechanism for returning the plunger mechanism to a starting position.

  17. Rigid indented cylindrical cathode for x-ray tube

    DOE Patents [OSTI]

    Hudgens, C.R.

    1983-06-03

    A cathode assembly for a vacuum tube includes a wire filament, a straight tubular anode parallel to and surrounding the wire filament, insulating spacers for rigidly fastening the filament with respect to the anode, and with one side of the anode indented or flattened such that only one portion of the anode is heated to emitting temperatures by the filament.

  18. Etching of Copper Coated Mylar Tubes With CF-4 Gas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ecklund, Karl M.; Hartman, Keith W.; Hebert, Michael J.; Wojcicki, Stanley G.

    1996-04-01

    Using 5 mm diameter copper coated mylar straw tubes at a potential of 2.30 KV relative to a concentric 20 (mu)m diameter gold-plated tungsten anode, it has been observed that with very low flow rates of CF4-based gases the conductive copper cathode material may be removed entirely from the mylar surface.

  19. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    SciTech Connect (OSTI)

    G.R. Goddard

    2004-12-15

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle concentration within the system. The effects of tubing, fluid, and particle material properties, tube geometry, fluid flow, and tube length on the structural excitation and consequently power requirements and concentration quality within the tube were investigated theoretically and experimentally. Limitations of the method are discussed, as well as ways to minimize or compensate for deleterious effects. Finally a preliminary demonstration of the efficacy of acoustic concentration is presented.

  20. An overview of the nondestructive inspection techniques for coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-11-01

    Coiled steel tubing and pipe in the diameter range 20--90 mm (0.75--3.5 in.) are replacing conventional oilfield materials for a variety of purposes including workovers, drilling, production tubing, umbilicals, and flowlines. They offer all the advantages of long tubes with no threaded connections. Because coiled tubing is being produced to high quality standards, it is lasting longer than ever before, and the need has arisen for careful nondestructive inspection at frequent intervals to determine accumulated damage to the string and the need for repair. Currently, derating of used coiled tubing using nondestructive testing (NDT) is not performed. While NDT devices for oilfield tubulars have been well documented, little has been written regarding the NDT of coiled tubing. This paper outlines the current NDT methods used during the manufacture of new tubing and the inspection of used coiled tubing.

  1. The Effect of Element Formulation on the Prediction of Boost Effects in Numerical Tube Bending

    SciTech Connect (OSTI)

    Bardelcik, A.; Worswick, M.J.

    2005-08-05

    This paper presents advanced FE models of the pre-bending process to investigate the effect of element formulation on the prediction of boost effects in tube bending. Tube bending experiments are conducted with 3'' (OD) IF (Interstitial-Free) steel tube on a fully instrumented Eagle EPT-75 servo-hydraulic mandrel-rotary draw tube bender. Experiments were performed in which the bending boost was varied at three levels and resulted in consistent trends in the strain and thickness distribution within the pre-bent tubes. A numerical model of the rotary draw tube bender was used to simulate pre-bending of the IF tube with the three levels of boost from the experiments. To examine the effect of element formulation on the prediction of boost, the tube was modeled with shell and solid elements. Both models predicted the overall strain and thickness results well, but showed different trends in each of the models.

  2. DOE - Office of Legacy Management -- U S Steel Co National Tube...

    Office of Legacy Management (LM)

    Steel Co National Tube Div Christy Park Works - PA 35 FUSRAP Considered Sites Site: U. S. STEEL CO., NATIONAL TUBE DIV., CHRISTY PARK WORKS (PA.35) Eliminated from further...

  3. Through tubing window milling -- A cost effective method of casing exit

    SciTech Connect (OSTI)

    Blizzard, B.; Carter, T.; Roberts, J.

    1996-12-31

    Through tubing operations currently provide oilfield operators with an attractive method for significantly enhancing production at a relatively low cost. This paper will present a newly developed and innovative system for initiating a production casing sidetrack below the production tubing. The system uses coiled tubing technology and blends the special techniques of both drilling and window milling operations using coiled tubing. Development details emphasized will be the overall system design, performance criteria and equipment evaluation.

  4. Minimizing the life cycle costs attributed to boiler tubing in fossil-fueled plants

    SciTech Connect (OSTI)

    Paterson, S.R.

    1995-08-01

    During the past quarter century, much has been learned about tube degradation, the factors which lead to and influence the rate of damage, and measures to mitigate or eliminate the damage in boiler tubing. This paper will describe some of the knowledge which has been compiled regarding two of the most significant degradation modes--corrosion-fatigue of waterwall tubes and high temperature creep of superheater and reheater tubes.

  5. Large-diameter coiled tubing completions decrease risk of formation damage

    SciTech Connect (OSTI)

    Norton, V. ); Edens, F. ); Coker, G. ); King, G. )

    1992-07-20

    Amoco Production Co. has used large-diameter coiled tubing strings to avoid damaging gas wells with kill fluids. The coiled tubing is stripped in the gas well under pressure. In Amoco's case, the gas flows up the tubing/casing annulus. The coiled tubing string provides a way to blow down the well whenever the well loads up with liquids from completion, workover, or naturally produced fluids. This paper reports that to date, Amoco has installed coiled tubing in four wells. The oldest has 18 months of service. Although some turbine longevity questions must be answered, the first four completions have proven fast and trouble free. The basic equipment for handling coil tubing is shown. The transport trailer and tubing injector head are similar to standard servicing equipment and not considered experimental. The production tubing reel is capable of carrying 14,000 ft of 2-in tubing or 18,000 ft of 1 3/4-in. tubing. For shallower wells, multiple tubing strings can be would on the same spool. Because of handling difficulties of large tubing, spools must be wound at the factory. Most of the largest sizes are made to order, making lead time a necessary consideration.

  6. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect (OSTI)

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  7. The challenge of performing safer coiled tubing operations

    SciTech Connect (OSTI)

    Van Adrichem, W.P.; Dowell, S.; Godsman, J.M.

    1996-12-31

    The substantial growth in coiled tubing services over the past several years has increased both the frequency of lost time injuries and potential for job execution related incidents. As the industry realizes the additional benefits of coiled tubing e.g. well intervention under pressure, efficiency, selective placement of fluids down hole and drilling, it is obvious that pipe size has, and will continue to increase. Pipe size has increased from a modest 1 {1/4} inches outside diameter ten years ago to outside diameters in excess of 2 7/8 inch being used on a regular basis today. In addition the development of programs to predict pipe fatigue and down hole stresses have encouraged operators to become more confident with the service.

  8. Novel coiled tubing application controls large LPG storage well fire

    SciTech Connect (OSTI)

    Gebhardt, F.; Eby, D.; Barnett, D.

    1996-06-01

    Conventional well control techniques for normal oil and gas wells are widely known and have been presented on numerous occasions. However, LPG storage (or cavern) wells rarely blow out and/or catch on fire. As a result, little information has been presented on the topic of well control for these types of wells. This article chronicles a case history of a high-volume liquid propane storage well fire. Because conventional wellhead removal methods could not be applied in this case, the capping/kill plan called for use of coiled tubing in a novel manner to cut the tubing downhole and install an inflatable packer to shut off propane flow. The plan was successfully executed, saving the operator millions of dollars in LPC product loss and cost of control.

  9. Low Power Photomultiplier Tube Circuit And Method Thereor

    DOE Patents [OSTI]

    Bochenski, Edwin B. (Tracy, CA); Skinner, Jack L. (Brentwood, CA); Dentinger, Paul M. (Sunol, CA); Lindblom, Scott C. (Tracy, CA)

    2006-04-18

    An electrical circuit for a photomultiplier tube (PMT) is disclosed that reduces power consumption to a point where the PMT may be powered for extended periods with a battery. More specifically, the invention concerns a PMT circuit comprising a low leakage switch and a high voltage capacitor positioned between a resistive divider and each of the PMT dynodes, and a low power control scheme for recharging the capacitors.

  10. PREDICTION OF OXIDE SCALE EXFOLIATION IN STEAM TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2010-01-01

    Numerical simulation results are presented for the prediction of the likelihood of oxide scale exfoliation from superheater tubes. The scenarios considered involved alloys T22, TP347H, and TP347HFG subjected to a simplified operating cycle in a power plant generating supercritical steam. The states of stress and strain of the oxides grown in steam were based solely on modeling the various phenomena experienced by superheater tubes during boiler operation, current understanding of the oxidation behavior of each alloy in steam, and consideration of operating parameters such as heat flux, tube dimensions, and boiler duty cycle. Interpretation of the evolution of strain in these scales, and the approach to conditions where scale failure (hence exfoliation) is expected, makes use of the type of Exfoliation Diagrams that incorporate various cracking and exfoliation criteria appropriate for the system considered. In these diagrams, the strain accumulation with time in an oxide is represented by a strain trajectory derived from the net strain resulting from oxide growth, differences in coefficients of thermal expansion among the components, and relaxation due to creep. It was found that an oxide growing on a tube subjected to routine boiler load cycling conditions attained relatively low values of net strain, indicating that oxide failure would not be expected to occur during normal boiler operation. However, during a boiler shut-down event, strains sufficient to exceed the scale failure criteria were developed after times reasonably in accord with plant experience, with the scales on the ferritic steel failing in tension, and those on the austenitic steels in compression. The results presented illustrate that using this approach to track the state of strain in the oxide scale through all phases of boiler operation, including transitions from full-to-low load and shut-down events, offers the possibility of identifying the phase(s) of boiler operation during which oxide failure is most likely to occur.

  11. Rotor for processing liquids using movable capillary tubes

    DOE Patents [OSTI]

    Johnson, W.F.; Burtis, C.A.; Walker, W.A.

    1987-07-17

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

  12. Development of a coiled tubing cable installation system

    SciTech Connect (OSTI)

    Newman, K.R.; Haver, N.A.; Stone, L.R.

    1995-12-31

    A system has been developed which installs and de-installs an electric wireline cable in coiled tubing (CT) while the CT is still on the reel. This cable installation system reduces the cost of a cable installation significantly compared with previous installation methods. This paper discusses the need for such a system, the theory used to develop this system, the various concepts considered, the system that was developed and test installation cases.

  13. Rotor for processing liquids using movable capillary tubes

    DOE Patents [OSTI]

    Johnson, Wayne F. (Loudon, TN); Burtis, Carl A. (Oak Ridge, TN); Walker, William A. (Knoxville, TN)

    1989-01-01

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  14. Rotor for processing liquids using movable capillary tubes

    DOE Patents [OSTI]

    Johnson, Wayne F. (Loudon, TN); Burtis, Carl A. (Oak Ridge, TN); Walker, William A. (Knoxville, TN)

    1989-05-30

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  15. Acetone sensor based on zinc oxide hexagonal tubes

    SciTech Connect (OSTI)

    Hastir, Anita Singh, Onkar Anand, Kanika Singh, Ravi Chand

    2014-04-24

    In this work hexagonal tubes of zinc oxide have been synthesized by co-precipitation method. For structural, morphological, elemental and optical analysis synthesized powders were characterized by using x-ray diffraction, field emission scanning microscope, EDX, UV-visible and FTIR techniques. For acetone sensing thick films of zinc oxide have been deposited on alumina substrate. The fabricated sensors exhibited maximum sensing response towards acetone vapour at an optimum operating temperature of 400C.

  16. Short-Pulse Beam Transport Tube - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulse Beam Transport Tube - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director Map to LLE LLE Tours LLE Building Map Partnerships Careers Education Undergraduate Program Graduate Program High School Program Faculty Contacts Computational Astrophysics H-E-D Physics Inertial Confinement Fusion Laser-Plasma Interaction Radiative Hydrodynamics Plasma Astrophysics Organization Director's Office

  17. Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube

    SciTech Connect (OSTI)

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    This paper reports average heat transfer coefficients and pressure drops during the evaporation and condensation of mixtures of R-134a and a 150 SUS penta erythritol ester branched-acid lubricant. The smooth tube and micro-fin tube tested in this study had outer diameters of 9.52 mm (3/8 in.). The micro-fin tube had 60 fins, a fin height of 0.2 mm (0.008 in), and a spiral angle of 18{degree}. The objective of this study is to evaluate the effectiveness of the micro-fin tube with R-134a and to determine the effect of circulating lubricant. The experimental results show that the micro-fin tube has distinct performance advantages over the smooth tube. For example, the average heat transfer coefficients during evaporation and condensation in the micro-fin tube were 50--200% higher than those for the smooth tube, while the average pressure drops were on average only 10--50% higher. The experimental results indicate that the presence of a lubricant degrades the average heat transfer coefficients during both evaporation and condensation at high lubricant concentrations. Pressure drops during evaporation increased with the addition of a lubricant in both tubes. For condensation, pressure drops were unaffected by the addition of a lubricant.

  18. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S; Rother, Gernot; Wesolowski, David J; Cole, David R; Wallacher, Dirk

    2012-01-01

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  19. Use of coiled tubing fans out among well sites of the world

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    Better operator understanding of coiled tubing improvements is generating a burst of applications at well sites around the world. Prompted by economics, producers are using coiled tubing in a wide range of well maintenance and remediation procedures to lower costs and increase recovery. Some more common workovers using coiled tubing--production tubing cleanouts and matrix acidizing, for example--not only are lowering costs but also are achieving better results. Other less known uses--logging, recompletions, and reentry drilling--until recently were thought unreliable or impossible. But better management of tubing fatigue, better materials, and larger tubing sizes are combining to boost producers' confidence in the relatively old technology. The paper describes coiled tubing opportunities, modeling fatigue, and then discusses some of its current applications.

  20. Handling state-of-the-art large-diameter coiled tubing

    SciTech Connect (OSTI)

    Courville, P.

    1994-12-31

    Completion and workover demands placed on coiled tubing technology in the last 10 years have shown the limitations of small-diameter (1- to 1{1/2}-in.) coiled tubing. The small tubing tends to buckle when used at lengths greater than 1,500 ft in most horizontal applications. Large-diameter coiled tubing (up to 3{1/2} in.) provides greater flexibility of job design and increases horizontal reach possibilities for drilling, completion, and workover activities. Transportation and handling equipment to accommodate the larger, heavier tubing is naturally a critical component of the system. This paper will present the benefits of large-diameter coiled tubing including completion and workover for greater depth and more extended horizontal reach. It will also discuss the unique concerns of transportation and handling of large diameter tubing and associated equipment.

  1. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  2. Coiled tubing workover saves horizontal well in Lake Maracaibo

    SciTech Connect (OSTI)

    Lizak, K.; Patterson, J.; Suarez, D.; Salas, J.

    1996-12-31

    A slotted liner horizontal completion became stuck while being run. Inflatable packers were to be used to isolate the productive interval from a water-bearing, unconsolidated sand in the curved section of this well. While personnel were deciding how to cement the well, the liner was left in the hole with the inflatable packers unset, and the production tubing was run. Coiled tubing was used to log the well, isolate the productive interval, and remove damage to restore well productivity. Personnel considered all possible options, and a thorough decision-making process guided the workover. Because of severe lost-circulation problems, extensive ``what if`` scenarios were made and updated daily for the engineers on location. Service company and oil company personnel worked together to guarantee the job designs were practical and did not exceed the limits of the equipment on location. Computer simulations of all operations were run to allow corrective action to be taken if unusual circumstances arose. All fluids were thoroughly laboratory tested and witnessed by oil company personnel to ensure job success. Problems on the job included lost circulation, locating the exact positions of the packers and water zone, ensuring correct cement placement, removing mud and workover fluids without damaging the squeeze, and bad weather on Lake Maracaibo. Advantages and disadvantages of all the solutions that were considered are included to assist anyone in a similar situation. Post-job oil production has stabilized at 900 BOPD with no water or sand production. Careful job planning and the versatility of coiled tubing saved this well and proved economical with an estimated payout of 33 days, assuming a price of $12 per barrel of oil.

  3. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  4. Coiled tubing completions: An economic discussion of procedures

    SciTech Connect (OSTI)

    Courville, P.W.; Clark, T.R.

    1995-11-01

    The introduction of 2- to 3 {1/2}-in. coiled tubing (CT) sizes provides economical alternative completion opportunities for both new and existing wells. Smaller diameters of CT can also be incorporated into completion designs on existing tubular completions for rigless workovers. This paper will discuss the evaluation method for CT completions in relatively low bottom-hole pressure wells in a non-hostile environment. It will concentrate on two major methods of artificial lift: (1) the use of electric submersible pumps (ESPs) on new wells or (2) the use of gas lift methods to extend the production life of existing wells.

  5. Cooling for a rotating anode X-ray tube

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1998-01-01

    A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

  6. Condensation of Refrigerant-11 on the outside of vertical enhanced tubes

    SciTech Connect (OSTI)

    Domingo, N.

    1981-08-01

    Experiments were conducted to determine heat transfer performance of single vertical tubes with Refrigerant-11 condensing on its outside surface. Twelve enhanced (fluted, spiraled, roped, and corrugated) tubes of 2.54-cm (1-in.) nominal outside diameter and 1.2-m (4-ft) length were tested. Several of the tested tubes featured internal enhanced geometries. A previously tested smooth tube served as the basis for comparison. Composite heat transfer coefficients (coefficients that include the resistances of both the condensing film and the tube wall), based on the total tube outside surface area, ranged from 850 to 6530 W/m/sup 2/ . K (150 to 1150 Btu/h . ft/sup 2/ . /sup 0/F) over the heat flux range of 5675 to 31,375 W/m/sup 2/ (1800 to 9950 Btu/h . ft/sup 2/). The primary conclusions from this study are: (1) for a given heat flux, an external fluted tube can increase composite condensing heat transfer coefficients by up to 5.5 times the smooth tube values, giving better condensing performance than any of the other geometries tested; (2) further increase in composite condensing coefficients can be achieved by using skirts to divide the fluted tube into equal condensing lengths; and (3) for a given overall temperature difference and water flow rate, internal flutes can increase the overall performance by up to 17% over that for a tube with identical outside flutes and a smooth inside surface.

  7. Temperature Profile in Fuel and Tie-Tubes for Nuclear Thermal Propulsion Systems

    SciTech Connect (OSTI)

    Vishal Patel

    2015-02-01

    A finite element method to calculate temperature profiles in heterogeneous geometries of tie-tube moderated LEU nuclear thermal propulsion systems and HEU designs with tie-tubes is developed and implemented in MATLAB. This new method is compared to previous methods to demonstrate shortcomings in those methods. Typical methods to analyze peak fuel centerline temperature in hexagonal geometries rely on spatial homogenization to derive an analytical expression. These methods are not applicable to cores with tie-tube elements because conduction to tie-tubes cannot be accurately modeled with the homogenized models. The fuel centerline temperature directly impacts safety and performance so it must be predicted carefully. The temperature profile in tie-tubes is also important when high temperatures are expected in the fuel because conduction to the tie-tubes may cause melting in tie-tubes, which may set maximum allowable performance. Estimations of maximum tie-tube temperature can be found from equivalent tube methods, however this method tends to be approximate and overly conservative. A finite element model of heat conduction on a unit cell can model spatial dependence and non-linear conductivity for fuel and tie-tube systems allowing for higher design fidelity of Nuclear Thermal Propulsion.

  8. Double wall vacuum tubing and method of manufacture

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1989-01-01

    An evacuated double wall tubing is shown together with a method for the manufacture of such tubing which includes providing a first pipe of predetermined larger diameter and a second pipe having an O.D. substantially smaller than the I.D. of the first pipe. An evacuation opening is then in the first pipe. The second pipe is inserted inside the first pipe with an annular space therebetween. The pipes are welded together at one end. A stretching tool is secured to the other end of the second pipe after welding. The second pipe is then prestressed mechanically with the stretching tool an amount sufficient to prevent substantial buckling of the second pipe under normal operating conditions of the double wall pipe. The other ends of the first pipe and the prestressed second pipe are welded together, preferably by explosion welding, without the introduction of mechanical spacers between the pipes. The annulus between the pipes is evacuated through the evacuation opening, and the evacuation opening is finally sealed. The first pipe is preferably of steel and the second pipe is preferably of titanium. The pipes may be of a size and wall thickness sufficient for the double wall pipe to be structurally load bearing or may be of a size and wall thickness insufficient for the double wall pipe to be structurally load bearing, and the double wall pipe positioned with a sliding fit inside a third pipe of a load-bearing size.

  9. Coiled tubing drilling (CTD) moves to commercial viability

    SciTech Connect (OSTI)

    Romagno, R. ); Walker, R. )

    1994-12-01

    Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

  10. Coiled tubing deployed ESP on the Auk platform

    SciTech Connect (OSTI)

    Stewart, D.W.; Watkins, P.; Holtslag, R.J.; Hudson, A.; Wee, P.Y.; McCleery, B.

    1996-12-31

    In March 1995, what is believed to be the world`s first offshore coiled tubing deployed electrical submersible pump (ESP) was successfully commissioned in well AA-03S1 on Shell U.K. Exploration and Production (Shell Expro) Auk platform in the United Kingdom`s Central North Sea. The ESP provides a new and important method of artificial lift for the 21 year old Auk platform, which hitherto had relied upon downhole hydraulic jet pumps to lift approximately half of the platform`s oil production. The coiled tubing deployment proved the viability of performing future workovers with or without the assistance or indeed the presence of a drilling package. The novel completion design successfully catered to the wide variety of customer requirements; Well Engineering for a rigless workover, Petroleum Engineering for reservoir access and Facilities Engineering for a specified flowline height. The experience gained during this project will be a valuable input in determining the future artificial lift strategy for this platform and for other prospects in terms of performance, reliability and operating costs.

  11. Coiled tubing enables rapid CO{sub 2} completions

    SciTech Connect (OSTI)

    Payton, R.; Baker, R.; Turner, D.; Bertrand, B.

    1996-08-01

    In the Bravo Dome field of northeastern New Mexico, Amoco has doubled their expected carbon dioxide (CO{sub 2}) production and reduced completion costs by 7.5% using coiled tubing in conjunction with other technologies. Amoco initially expected to produce an average 2.6 MMcfd per well. Instead, six months after completing the 31-well package, the company is producing an average 5.1 MMcfd. Important elements contributing cost and time savings on the project were: Log analysis to select perforations and help prevent water production, and lost circulation; the mobility and flexibility of coiled tubing; using cement for low-cost lost circulation control; using thermoplastic film to prevent proppant flowback; fracture designs optimized for each well; and forming an alliance between Amoco and vendors and developing of mutual trust. Amoco and other producing companies use about 95% of the CO{sub 2} produced at Amoco`s Bravo Dome field for enhanced oil recovery (EOR) projects in the Permian Basin area. Amoco sells 5% of the purest product to companies in the US food industry. While the low price of CO{sub 2}, about one-fourth that of methane, furnished part of the impetus for Amoco to implement the cost-cutting methods at Bravo Dome, the methods can be applied in many completion applications and are discussed in this paper.

  12. Fouling of HVAC fin and tube heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Carey, Van P.

    2001-07-01

    Fin and tube heat exchangers are used widely in residential, commercial and industrial HVAC applications. Invariably, indoor and outdoor air contaminants foul these heat exchangers. This fouling can cause decreased capacity and efficiency of the HVAC equipment as well as indoor air quality problems related to microbiological growth. This paper describes laboratory studies to investigate the mechanisms that cause fouling. The laboratory experiments involve subjecting a 4.7 fins/cm (12 fins/inch) fin and tube heat exchanger to an air stream that contains monodisperse particles. Air velocities ranging from 1.5-5.2 m/s (295 ft/min-1024 ft/min) and particle sizes from 1--8.6 {micro}m are used. The measured fraction of particles that deposit as well as information about the location of the deposited material indicate that particles greater than about 1 {micro}m contribute to fouling. These experimental results are used to validate a scaling analysis that describes the relative importance of several deposition mechanisms including impaction, Brownian diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The analysis is extended to apply to different fin spacings and particle sizes typical of those found in indoor air.

  13. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  14. Retention sleeve for a thermal medium carrying tube in a gas turbine

    DOE Patents [OSTI]

    Lathrop, Norman Douglas (Ballston Lake, NY); Czachor, Robert Paul (Cincinnati, OH)

    2003-01-01

    Multiple tubes are connected to steam supply and spent cooling steam return manifolds for supplying cooling steam to buckets and returning spent cooling steam from the buckets to the manifolds, respectively. The tubes are prevented from axial movement in one direction by flanges engaging end faces of the spacer between the first and second-stage wheels. Retention sleeves are disposed about cantilevered ends of the tubes. One end of the retention sleeve engages an enlarged flange on the tube, while an opposite end is spaced axially from an end face of the adjoining wheel, forming a gap, enabling thermal expansion of the tubes and limiting axial displacement of the tube in the opposite direction.

  15. Coiled tubing: Early warning system to detect flaws in flat sheet prior to rolling and welding

    SciTech Connect (OSTI)

    Edens, C.W. )

    1994-05-01

    Through experimentation and dynamic evaluation of skelp at a coiled tubing mill, the use of leakage flux solid state sensing devices shows clearly that the requirement for nondestructively testing skelp can be met. As coiled tubing for drilling purposes gains wider usage, its skelp can take advantage of upstream inspection prior to forming the tubes. A reliable coiled tubing product is one in which every aspect of its manufacturing was considered, from raw material through final inspection. In no other way can the concept of total quality management be satisfied providing reliability of product use. A guarantee of fitness for purpose falls directly on the coiled tubing manufacturer. Purveyors of jointed electronic resistance weld tubulars may also take advantage of this inspection method. The American Petroleum Institute (API) has recently established a committee to study and formulate recommended practices for coiled tubing operations.

  16. Coiled tubing velocity string set at record 20,500 ft

    SciTech Connect (OSTI)

    Adams, L.S. )

    1992-04-13

    This paper reports that coiled tubing, set at record depth, significantly reduced costs and posed lower mechanical failure risk for recompleting a gas well in the Delaware basin of West Texas. Alternative completions such as replacing the existing tubing string with smaller diameter conventional API production tubing was deemed less economical and effective. The gas well, George M. Shelton No. 2, was recompleted on July 18, 1991, by Chevron U.S.A. Production Co. The gas is produced from the deep, low-pressure Ellenburger formation in the Gomez field. The hang-off depth of 20,500 ft set a world record for the deepest permanently installed coiled tubing. The 1-1/2 in. coiled tubing velocity string, run within the existing 4-1/2 and 4-in. tapered production tubing string, consists of seven segments that vary in wall thickness from 0.087 to 0.156 in.

  17. Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass

    Office of Scientific and Technical Information (OSTI)

    Defects (Journal Article) | SciTech Connect Journal Article: Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass Defects Citation Details In-Document Search Title: Fabrication Of Surface Bumps On A Capsule To Simulate Fill Tube Mass Defects Precision single bumps were deposited on the surface of ICF capsules to simulate the hydrodynamic instability caused by a fill tube. The bump is fabricated by placing an aperture mask on the capsule and coating plasma polymer through the

  18. Air feed tube support system for a solid oxide fuel cell generator

    DOE Patents [OSTI]

    Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  19. Text-Alternative Version: CALiPER: Troffers, Kits, and Tubes Webcast

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "CALiPER: Troffers, Kits, and Tubes" webcast, held June 20, 2013.

  20. CONDITIONS FOR TRANSVERSE WAVES PROPAGATION ALONG THIN MAGNETIC FLUX TUBES ON THE SUN

    SciTech Connect (OSTI)

    Lopin, Igor; Nagorny, Ivan

    2013-09-10

    The propagation of kink waves in the thin gravity stratified flux tubes with a generalized magnetic field distribution model is considered in cylindrical geometry. The new kink wave equations for both wave variables are obtained. It is shown that the inclusion of the radial component of an unperturbed tube magnetic field sufficiently transforms the conditions for the propagation of transverse waves. It is demonstrated that, for the models of isothermal and polytropic atmosphere in the tube and its environment, the propagation of kink waves along thin magnetic flux tubes is cutoff-free.

  1. Enhanced heat transfer tubes for film absorbers of absorption chiller/heater

    SciTech Connect (OSTI)

    Sasaki, Naoe; Nosetani, Tadashi; Furukawa, Masahiro; Kaneko, Toshiyuki

    1995-12-31

    Absorption chiller/heaters using non-CFC refrigerants are attracting attention as environmentally friendly energy systems. As the refrigerant/absorbent pair, the water/lithium bromide aqueous solution pair is preferably used for most absorption chiller/heaters in Japan. Absorption chiller/heaters, mainly used as water chillers and air-conditioners, are commercially available at least for unit cooling capacities above 60 kW. In absorption chiller/heaters, the absorber must be made compact, because the absorber has the largest heat transfer area of the four primary heat exchangers in the system: the evaporator, absorber, regenerator and condenser. Although a great amount of information is available on the evaporator and condenser, the same type of information concerning the absorber is lacking. This paper introduces two kinds of double fluted tubes called Arm tubs and Floral tubes for film absorbers. Arm tubes are manufactured using a two-pass drawbench process, while Floral tubes are made using a single pass drawbench process. The experiments using a lithium bromide aqueous solution with the addition of 250 ppm n-octyl alcohol as the surfactant showed that Arm tubes and Floral tubes had about 40% higher heat transfer performance than plain tubes. Therefore, Floral tubes are expected to realize a high performance at low cost. Furthermore, the optimization of the number of grooves on the outside of the tubes is also described here.

  2. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOE Patents [OSTI]

    DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

    1981-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  3. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOE Patents [OSTI]

    DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

    1983-01-01

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  4. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    SciTech Connect (OSTI)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

  5. Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper

    SciTech Connect (OSTI)

    Lam, Tyler

    2015-08-27

    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise, it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.

  6. Serviceability of coiled tubing for sour oil and gas wells

    SciTech Connect (OSTI)

    1997-06-01

    Hydrogen sulfide (H{sub 2}S) can reduce useful coiled-tubing (CT) life by strength degradation through a combination of hydrogen blistering, hydrogen-induced cracking (HIC), stress-oriented hydrogen-induced cracking (SOHIC), sulfide-stress cracking (SSC), and possible weight-loss corrosion. These effects may work synergistically with the cyclic cold working of the steel that takes place during spooling and running. Prior studies on carbon steels have shown that cold work may significantly reduce the SSC threshold stresses. To develop a CT performance database, CLI Intl. Inc. conducted a multiclient program to increase understanding of the combined effects of strain cycling and resistance of CT to cracking in H{sub 2}S environments. The program was supported by 14 sponsors consisting of major oil and gas companies, service companies, CT manufacturers, and materials suppliers.

  7. Technical and economical feasibility of coiled tubing drilling

    SciTech Connect (OSTI)

    Gary, S.C.; Doremus, D.M.

    1995-12-31

    The technique for evaluating coiled tubing (CT) drilling prospects is described. The technical and economic factors involved are discussed using a flowchart to guide the operator in the decision making process. In the technical analysis, the parameters limiting the feasibility of using CT for a given drilling project are reviewed. These parameters include CT tension, helical buckling which limits the weight on bit (WOB) and the horizontal reach, CT collapse pressure when drilling underbalanced, CT fatigue, and the usual hydraulic parameters such as annular velocity and pumping pressure. In today`s business environment, some projects, while technically feasible, may not be economically feasible. In the economic analysis, the competitiveness of each CT drilling application versus conventional solutions is evaluated, and factors such as project duration and equipment use are reviewed. The equipment normally required for a CT drilling job and the costs associated with mobilizing this equipment are discussed.

  8. Efficiently log and perforate 60 + wells with coiled tubing

    SciTech Connect (OSTI)

    Fertl, W.H.; Hotz, R.F.

    1987-07-01

    In today's petroleum industry, more and more emphasis is being placed on logging and completion techniques for highly deviated (extended-reach) and horizontal boreholes. This is the result of cost-effective development of oil and gas via: a minimum number of production platforms on large structures, incremental but marginal reserves in outlying and/or small fault blocks, shallow reservoirs in deep offshore waters, and significant hydrocarbon accumulations in environmentally sensitive and/or restrictive areas, e.g., perma-frost, urban areas, etc. The major challenge in logging such high-angle, extended-reach, and also horizontal boreholes is guiding the logging tool string to the bottom of the wellbore. In the horizontal portion of a borehole, the use of coiled tubing has proven successful in ''pushing'' the logging instrumentation toward the bottom (end) of the borehole.

  9. The challenge for the coiled-tubing industry

    SciTech Connect (OSTI)

    Blount, C.G.

    1994-05-01

    From Aug. 9 through 14, 1992, approximately 80 individuals from throughout the globe met in a seemingly remote area of the Colorado Rocky Mountains with one common bond: advancement of coiled-tubing (CT) technology. Numerous ideas and opinions were generated at the SPE Forum Series meeting to create a long list of areas with high leveraging potential (high return on investment) for an oil industry well below the crest of a boom'' cycle. However, from the master list, each individual was given the opportunity to vote for only three issues that they felt were the most pressing. The 17 items that survived the exercise are listed below, prioritized'' by this group's vote. A year and a half later, where do these leveraging ideas fit into the overall CT industry picture The paper reviews progress.

  10. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  11. Introducing thermally stable inter-tube defects to assist off-axial phonon transport in carbon nanotube films

    SciTech Connect (OSTI)

    Wang, Jing [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Chen, Di; Wallace, Joseph; Gigax, Jonathan; Wang, Xuemei [Department of Nuclear Engineering, Texas A and M University, College Station, Texas, 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-05-12

    Through integrated molecular dynamics (MD) simulations and experimental studies, we demonstrated the feasibility of an ion-irradiation-and-annealing based phonon engineering technique to enhance thermal conductivity of carbon nanotube (CNT) films. Upon ion irradiation of CNT films, both inter-tube defects and intra-tube defects are introduced. Our MD simulations show that inter-tube defects created between neighboring tubes are much more stable than intra-tube defects created on tube graphitic planes. Upon thermal annealing, intra-tube defects are preferentially removed but inter-tube defects stay. Consequently, axial phonon transport increases due to reduced phonon scattering and off-axial phonon transport is sustained due to the high stability of inter-tube defects, leading to a conductivity enhancement upon annealing. The modeling predictions agree with experimental observations that thermal conductivities of CNT films were enhanced after 2?MeV hydrogen ion irradiations and conductivities were further enhanced upon post irradiation annealing.

  12. Magnetohydrostatic equilibrium. II. Three-dimensional multiple open magnetic flux tubes in the stratified solar atmosphere

    SciTech Connect (OSTI)

    Gent, F. A.; Erdlyi, R.; Fedun, V.

    2014-07-01

    A system of multiple open magnetic flux tubes spanning the solar photosphere and lower corona is modeled analytically, within a realistic stratified atmosphere subject to solar gravity. This extends results for a single magnetic flux tube in magnetohydrostatic equilibrium, described in Gent et al. Self-similar magnetic flux tubes are combined to form magnetic structures, which are consistent with high-resolution observations. The observational evidence supports the existence of strands of open flux tubes and loops persisting in a relatively steady state. Self-similar magnetic flux tubes, for which an analytic solution to the plasma density and pressure distribution is possible, are combined. We calculate the appropriate balancing forces, applying to the equations of momentum and energy conservation to preserve equilibrium. Multiplex flux tube configurations are observed to remain relatively stable for up to a day or more, and it is our aim to apply our model as the background condition for numerical studies of energy transport mechanisms from the solar surface to the corona. We apply magnetic field strength, plasma density, pressure, and temperature distributions consistent with observational and theoretical estimates for the lower solar atmosphere. Although each flux tube is identical in construction apart from the location of the radial axis, combinations can be applied to generate a non-axisymmetric magnetic field with multiple non-uniform flux tubes. This is a considerable step forward in modeling the realistic magnetized three-dimensional equilibria of the solar atmosphere.

  13. Enhanced shell-and-tube heat eschangers for the power and process industries. Final report

    SciTech Connect (OSTI)

    Bergles, A.E.; Jensen, M.K.; Somerscales, E.F.; Curcio, L.A. Jr.; Trewin, R.R.

    1994-08-01

    Single-tube pool boiling tests were performed with saturated pure refrigerants and binary mixtures of refrigerants. Generally, with pure refrigerants, the High Flux surface performed better at the higher heat fluxes compared to the Turbo-B tube, and both enhanced surfaces performed significantly better than smooth surface. In tests of R-11/R-113 mixtures, the enhanced surfaces had much less degradation in heat transfer coefficient due to mixture effects compared to smooth tubes; the largest degradation occurred at a mixture of 25% R-11/75% R-113. Under boiling in saturated aqueous solution of calcium sulfate, with a single tube, effects of fouling were more pronounced at the higher heat fluxes for all surfaces. Two staggered tube bundles were tested with tube pitch-diameter ratios of 1.17 and 1.50. For the pure refrigerant, tests on the smooth-tube bundle indicated that the effects on the heat transfer coefficient of varying mass flux, quality, and tube-bundle geometry were small, except at low heat fluxes. Neither enhanced surface showed any effect with changing mass flux or quality. The binary mixture bundle-boiling tests had results that were very similar to those obtained with the pure refrigerants. When boiling a refrigerant-oil mixture, all three surfaces (smooth, High Flux, and Turbo-B) experienced a degradation in its heat transfer coefficient; no surface studied was found to be immune or vulnerable to the presence of oil than another surface.

  14. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect (OSTI)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  15. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect (OSTI)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  16. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect (OSTI)

    Liao, Y.; Vierow, K. [Purdue University (United States)

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  17. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect (OSTI)

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  18. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  19. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Johnson, Arvid C. (Lake in the Hills, IL); Moorhead, Arthur J. (Knoxville, TN)

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  20. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents.

    SciTech Connect (OSTI)

    Majumdar, S.; Diercks, D. R.; Shack, W. J.; Energy Technology

    2002-05-01

    This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents.

  1. MANAGING OXIDE SCALE EXFOLIATION IN BOILERS WITH TP347H SUPERHEATER TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G.; Shingledecker, John P.; Tortorelli, Peter F

    2014-01-01

    A model based on a concept of fraction of exfoliated area as a function of oxide scale strain energy was developed to predict the extent of exfoliation of steam-side scale from boiler tube superheater loops. As compared with the Armitt diagram, which can be used to predict when scale damage and exfoliation would be likely to occur, a fraction of exfoliated area approach provides an estimation of mass of scale released and the fraction of tube likely to be blocked by the exfoliation. This paper show results for the extent of blockage expected in a single bend of a superheater loop was predicted as a function of operating time, bend geometry, and outlet steam temperature under realistic service conditions that include outages. The deposits of exfoliated scale were assumed to be distributed horizontally the tubes bends. Three types of bends were considered: regular bends, short bends, and hairpin bends. The progressive increase in steam and tube temperatures along a single loop of superheater tubing and the ensuing variation of oxide scale thickness are considered. Numerical simulation results for a superheater loop made of TP347H austenitic steel indicated that tube blockage fractions larger than 50% are likely to occur within the first two years of boiler operation (with regularly scheduled outages) for outlet tube temperatures of 540-570oC, which is consistent with practical experience. Higher blockage fractions were predicted for tubes with short bends and hairpin bends than for tubes with regular bends, of length that are larger than five internal tube diameters. Finally, the blockage model presented can be used with some confidence to devise operating schedules for managing the consequences of oxide scale exfoliation based on projections of time to some critical blockage fraction for specific boiler operating conditions.

  2. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    SciTech Connect (OSTI)

    Carlson, Bryan J; Trujillo, Stephen; Willms, R. Scott

    2010-01-01

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO{sub 2} ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m{sup 2} and a catalyst volume to membrane area ratio of 4.63 cc/cm{sup 2} (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m{sup 2}). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m{sup 2}. The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm{sup 2}. The total membrane area of the 7-tube PMR (0.0851 m{sup 2}) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m{sup 2}). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR with realistic feed compositions; (6) Evaluate PMR performance with varying permeate pressures; (7) Study coking-related issues; and (8) Identify any unexpected behavior that may require further investigation (used to study transient behavior). This report presents the tests results defined by these objectives.

  3. Life Estimation of PWR Steam Generator U-Tubes Subjected to Foreign Object-Induced Fretting Wear

    SciTech Connect (OSTI)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-10-15

    This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube.

  4. Support tube for high temperature solid electrolyte electrochemical cell

    DOE Patents [OSTI]

    Ruka, Roswell J. (Churchill Boro, PA); Rossing, Barry R. (Pittsburgh, PA)

    1986-01-01

    Disclosed is a compound having a fluorite-like structure comprising a solid solution having the general formula [(ZrO.sub.2).sub.1-x (MO.sub.s).sub.x ].sub.1-y [(La.sub.m A.sub.1-m).sub.2-z (Mn.sub.n B.sub.1-n).sub.z O.sub.r ].sub.y where MO.sub.5 is an oxide selected from the group consisting of calcia, yttria, rare earth oxides, and mixtures thereof, x is about 0.1 to 0.3, y is about 0.005 to about 0.06, z is about 0.1 to about 1.9, A is yttrium, rare earth element, alkaline earth element, or mixture thereof, B is iron, nickel, cobalt, or mixture thereof, m is 0.3 to 1, n is 0.5 to 1, and r is 2 to 4. A porous tube made from such a composition can be coated with an electrically conducting mixed oxide electrode such as lanthanum manganite, and can be used in making high temperature electrochemical cells such as solid electrolyte fuel cells.

  5. Low-cost evacuated-tube solar collector. Final report

    SciTech Connect (OSTI)

    Beecher, D. T.

    1981-02-10

    A prototype design for an evacuated tube air cooled solar collector module has been completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performance of the module. Antireflective coatings (porous aluminum oxide) which could be formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient than acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 400/sup 0/C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in ..cap alpha.. decreasing to about 0.73 and epsilon increasing to 0.14. The product cost studies indicate that module design changes are warranted to reduce product cost prior to tooling for production.

  6. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  7. Field installation proves coiled tubing ESP completions successful

    SciTech Connect (OSTI)

    Tovar, J.J.; Head, P.; Jordan, R.

    1995-06-01

    Coiled tubing (CT) technology has contributed new and innovative solutions for wells using electrical submersible pumps (ESP). A CT-ESP deployment system was developed as part of a joint industry project to take advantage of this new technology. Ten oil and service companies and the EEC, under the Thermie program, participated in its development. Two main areas were identified to introduce these innovations. The first was deployment and well control. This area has a great impact on the safety and operational aspects of installing and servicing ESPs. The second is cost. As ESPs are considered for new field developments and recompletion of old fields, installation and workover costs play a major role in the selection of completion alternatives. One of the main limitations of ESPs in the past has been the economics of installation and uncertainty about pump life. With focus in these two major areas, a system was successfully produced that offers considerable advantages over existing technologies. The reduction in rig time and equipment cost makes this alternative very attractive for areas where technical and economic obstacles such as live well deployment and high operating cost limit the use of ESP technology. Two field tests have been carried successfully during the development of this system.

  8. Coiled tubing isolates zones, fractures wells with single trip service

    SciTech Connect (OSTI)

    Silverman, S.A.

    1999-04-01

    A system has been devised that combines high pressure coiled tubing (CT) and a selective isolation technique to frac multiple zones in a single operation. Multiple zones in one well can be individually isolated, fractured and flowed back simultaneously which results in reduced exposure to kill fluids and therefore higher retained conductivity for newly created fractures. The technique has been named CoilFRAC{trademark} by Dowell. The key benefits to the entire operation are reduced rig and operations time compared to conventional fracturing processes. Time savings, increased production, and environmental benefits are the economic drivers that result in rapid return on investment for production operators. The single trip concept for perforating and stimulation crews also brings additional benefits over multiple mobilizations. Wells which previously had only major zones perforated and stimulated and which are currently depleted can be revived economically using this system, giving the well a second life. The paper describes the equipment and its safety and contingency features, optimized shallow gas production in Alberta, and results from a South Texas oil well fracturing.

  9. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect (OSTI)

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  10. Directly connected heat exchanger tube section and coolant-cooled structure

    DOE Patents [OSTI]

    Chainer, Timothy J.; Coico, Patrick A.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2015-09-15

    A method is provided for fabricating a cooling apparatus for cooling an electronics rack, which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures, and a tube. The heat exchanger is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of coolant-carrying tube sections, each tube section having a coolant inlet and outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  11. Directly connected heat exchanger tube section and coolant-cooled structure

    DOE Patents [OSTI]

    Chainer, Timothy J; Coico, Patrick A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2014-04-01

    A cooling apparatus for an electronics rack is provided which includes an air-to-liquid heat exchanger, one or more coolant-cooled structures and a tube. The heat exchanger, which is associated with the electronics rack and disposed to cool air passing through the rack, includes a plurality of distinct, coolant-carrying tube sections, each tube section having a coolant inlet and a coolant outlet, one of which is coupled in fluid communication with a coolant loop to facilitate flow of coolant through the tube section. The coolant-cooled structure(s) is in thermal contact with an electronic component(s) of the rack, and facilitates transfer of heat from the component(s) to the coolant. The tube connects in fluid communication one coolant-cooled structure and the other of the coolant inlet or outlet of the one tube section, and facilitates flow of coolant directly between that coolant-carrying tube section of the heat exchanger and the coolant-cooled structure.

  12. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    SciTech Connect (OSTI)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  13. Results of industry experience survey on coiled tubing uses and failures

    SciTech Connect (OSTI)

    Maldonado, J.G.; Cayard, M.S.; Kane, R.D.

    1999-11-01

    A survey of coiled tubing failures in various field applications was conducted. The survey included the collection of information on failure type, number of strain cycles to failure, service environment, well depth, failure location on the coiled tubing string, and coiled tubing grade employed. The most prevalent causes of failures and the impact of localized corrosion on the performance of coiled tubing were assessed from over thirty case studies herein reported. Pitting and tensile overload were the primary causes for failure in fifty percent of the cases reported from the field. Fatigue and weld area failures were the next most common types of failure. Most failures occurred within the range of 10 to 50 strain cycles. H{sub 2}S and brine/water containing environments were the most prevalent service conditions. Most failures occurred at well depths between 5,001 to 10,000 feet (1,524.3 to 3,048 meters). Also, most failures occurred in the coiled tubing string near the surface (less than 1,000 feet (304.8 meters)). Failures in roughly similar numbers were reported in 70, 80 and 100 coiled tubing grades. The understanding of the principal modes of failure herein reported should help in the development of improved handling and running procedures to minimize coiled tubing failures.

  14. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  15. Fabrication of fine-grain tantalum diffusion barrier tube for Nb{sub 3}Sn conductors

    SciTech Connect (OSTI)

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-27

    Diffusion barriers used in Nb{sub 3}Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  16. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R.; Keiser, J.R.; Swindeman, R.W.

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  17. Flow distribution analysis on the cooling tube network of ITER thermal shield

    SciTech Connect (OSTI)

    Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon

    2014-01-29

    Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

  18. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    SciTech Connect (OSTI)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  19. Method and apparatus for fine tuning an orifice pulse tube refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W.; Wollan, John J.

    2003-12-23

    An orifice pulse tube refrigerator uses flow resistance, compliance, and inertance components connected to a pulse tube for establishing a phase relationship between oscillating pressure and oscillating velocity in the pulse tube. A temperature regulating system heats or cools a working gas in at least one of the flow resistance and inertance components. A temperature control system is connected to the temperature regulating system for controlling the temperature of the working gas in the at least one of the flow resistance and inertance components and maintains a control temperature that is indicative of a desired temporal phase relationship.

  20. Utilization of endless coiled tubing and nitrogen gas in geothermal well system maintenance

    SciTech Connect (OSTI)

    McReynolds, A.S.; Maxson, H.L.

    1980-09-01

    The use of endless coiled tubing and nitrogen gas combine to offer efficient means of initiating and maintaining geothermal and reinjection well productivity. Routine applications include initial flashing of wells in addition to the surging of the formation by essentially the same means to increase production rates. Various tools can be attached to the tubing for downhole measurement purposes whereby the effectiveness of the tools is enhanced by this method of introduction to the well bore. Remedial work such as scale and fill removal can also be accomplished in an efficient manner by using the tubing as a work string and injecting various chemicals in conjunction with specialized tools to remedy downhole problems.

  1. Reactance simulation for the defects in steam generator tube with outside ferrite sludge

    SciTech Connect (OSTI)

    Ryu, Kwon-sang; Kima, Yong-il; Son, Derac; Park, Duck-gun; Jung, Jae-kap

    2009-04-01

    A magnetic sludge is partly produced around the tube sheet outside a steam generator due to stress and heat. The sludge with magnetite is one of the important factors affecting eddy current signals. It causes trouble for the safety of the steam generator tubes and is difficult to detect by conventional eddy current methods. A new type of probe is needed to detect the signals for the magnetic sludge. We designed a new U-type yoke which has two kinds of coils--a magnetizing coil and the other a detecting coil--and we simulated the signal induced by the ferromagnetic sludge in the Inconel 600 tube.

  2. DOE - Office of Legacy Management -- U S Steel Co National Tube Div Christy

    Office of Legacy Management (LM)

    Park Works - PA 35 Steel Co National Tube Div Christy Park Works - PA 35 FUSRAP Considered Sites Site: U. S. STEEL CO., NATIONAL TUBE DIV., CHRISTY PARK WORKS (PA.35) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: National Tube Division PA.35-1 Location: McKeesport , Pennsylvania PA.35-1 Evaluation Year: 1994 PA.35-2 Site Operations: Metal fabrication operations. Pierced normal uranium billets by the three roll Assel Mill process. PA.35-1

  3. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect (OSTI)

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  4. Using coiled tubing in HP/HT corrosive gas wells

    SciTech Connect (OSTI)

    1997-06-01

    High-yield-strength (100,000 psi) coiled tubing (CT) material has allowed for CT intervention in Mobile Bay Norphlet completions. These wells are approximately 22,000-ft-vertical-depth, high-pressure, hydrogen sulfide (H{sub 2}S) gas wells. Operations performed on the Norphlet wells include a scale cleanout to approximately 22,000 ft, a hydrochloric acid (HCl) job at 415 F, and buildup removal from a safety valve. The scale cleanout was performed first with a spiral wash tool. The well was killed with 10-lbm/gal sodium bromide (NaBr) brine; the same brine was used for cleanout fluid. Cost savings of 60% were realized. A HCl matrix acid job at 415 F was performed next, followed by a scale cleanout across the downhole safety valve. The safety valve was cleared of debris in 1 operational day. Estimated cost of the CT operation was 5 to 10% less than that of a rig workover. The 100,000-psi-yield Ct material used for the Mobile Bay operations does not comply with the (NACE) Standard MR-0175. But on the basis of extensive laboratory testing by the CT manufacturer, the decision was made that the material would pass a modified test performed with decreased H{sub 2}S levels. A maximum level of 400 ppm H{sub 2}S was determined as the safe working limit. Because the maximum H{sub 2}S content in the wells described later was 120 ppm, the risk of sulfide-stress cracking (SSC) was considered acceptably low. Elevated bottomhole temperatures (BHT`s) increase the corrosion rate of metals exposed to corrosives. Extensive laboratory testing of corrosion inhibitors allowed for design of a matrix-acidizing treatment to remove near-wellbore damage caused by lost zinc bromide (ZnBr) completion brine.

  5. Two-phase frictional pressure drop of R-134a and R-410A refrigerant-oil mixtures in straight tubes and U-type wavy tubes

    SciTech Connect (OSTI)

    Chen, Ing Youn; Wu, Yu-Shi; Chang, Yu-Juei; Wang, Chi-Chuan

    2007-02-15

    This study presents single-phase and two-phase pressure drop data for R-134a/oil mixture flowing in a wavy tube with inner diameter of D=5.07mm and curvature ratio 2R/D=5.18 and R-410A/oil mixture flowing in a wavy tube of D=3.25mm and 2R/D=3.91. Both mixtures have oil concentration C=0%, 1%, 3% and 5% for the tests. The ratio of frictional factor between U-bend in wavy tube and straight tube (f{sub C}/f{sub S}) is about 3.5 for Re<2500 and is approximate 2.5 for Re=3500-25,000 for oil and liquid R-134a mixture flowing in the 5.07mm diameter wavy tube. The influence of oil concentration on single-phase friction factor is negligible, provided that the properties are based on the mixture of lubricant and refrigerant. The ratio between two-phase pressure gradients of U-bend and straight tube is about 2.5-3.5. This ratio is increased with oil concentration and vapor quality. The influence of oil is augmented at a higher mass flux for liquid spreading around the periphery at an annular flow pattern. Moreover, the influence of lubricant becomes more evident of a U-bend configuration. This is associated the induced swirled flow motion and an early change of flow pattern from stratified to annular flow pattern. The frictional two-phase multiplier for straight tube can be fairly correlated by using the Chisholm correlation for the data having Martinelli parameter X between 0.05 and 1.0. Fridel correlation also shows a good agreement with a mean deviation of 17.6% to all the straight tube data. For the two-phase pressure drop in U-bend, the revised Geary correlation agrees very well with the R-134a and R-410A oil-refrigerant data with a mean deviation of 16.4%. (author)

  6. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less

  7. Plasma ? scaling of anisotropic magnetic field fluctuations in the solar wind flux tube

    SciTech Connect (OSTI)

    Sarkar, Aveek; Bhattacharjee, Amitava; Ebrahimi, Fatima E-mail: amitava@princeton.edu

    2014-03-10

    Based on various observations, it has been suggested that at 1 AU, solar wind consists of 'spaghetti'-like magnetic field structures that have the magnetic topology of flux tubes. It is also observed that the plasma fluctuation spectra at 1 AU show a plasma ? dependence. Reconciling these two sets of observations and using the Invariance Principle, Bhattacharjee et al. suggested that the plasma inside every flux tube may become unstable with respect to pressure-driven instabilities and gives rise to fluctuation spectra that depend on the local plasma ?. The present work is the first direct numerical simulation of such a flux tube. We solve the full magnetohydrodynamic equations using the DEBS code and show that if the plasma inside the flux tube is driven unstable by spatial inhomogeneities in the background plasma pressure, the observed nature of the fluctuating power spectra agrees reasonably well with observations, as well as the analytical prediction of Bhattacharjee et al.

  8. Multi-tube thermal fuse for nozzle protection from a flame holding or flashback event

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Davis, Jr., Lewis Berkley; Johnson, Thomas Edward; York, William David

    2012-07-03

    A protection system for a pre-mixing apparatus for a turbine engine, includes: a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish a fuel delivery plenum; and a plurality of fuel mixing tubes that extend through at least a portion of the fuel delivery plenum, each of the plurality of fuel mixing tubes including at least one fuel feed opening fluidly connected to the fuel delivery plenum; at least one thermal fuse disposed on an exterior surface of at least one tube, the at least one thermal fuse including a material that will melt upon ignition of fuel within the at least one tube and cause a diversion of fuel from the fuel feed opening to at least one bypass opening. A method and a turbine engine in accordance with the protection system are also provided.

  9. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    SciTech Connect (OSTI)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied.

  10. FABRICATION AND ATTACHMENT OF POLYIMIDE FILL TUBES TO PLASTIC NIF CAPSULES

    SciTech Connect (OSTI)

    Takagi, M; Saito, K; Frederick, C; Nikroo, A; Cook, R

    2006-12-08

    We have developed a technique for drawing commercially available polyimide tubing to the required fill tube dimensions. The tubes are then precisely cut with an Excimer laser to produce a clean, flat tip. We have also demonstrated that one can use the Excimer laser to drill less than a 5 {micro}m diameter through hole in the {approx}150 wall of a NIF dimension GDP shell, and can then create a 10-15 {micro}m diameter, 20-40 {micro}m deep counterbore centered on the through hole with the same laser. Using a home built assembly station the tube is carefully inserted into the counterbore and glued in place with UV-cure epoxy, using a LED UV source to avoid heating the joint. We expect that the same joining technique can be used for Be shells.

  11. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOE Patents [OSTI]

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  12. EA-1131: Relocation of Neutron Tube Target Loading Operation, Los Alamos Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to relocate the Neutron Tube Target Loading operations at the U.S. Department of Energy Los Alamos National Laboratory in New Mexico from...

  13. New technologies address the problem areas of coiled-tubing cementing

    SciTech Connect (OSTI)

    Carpenter, R.B. )

    1992-05-01

    Coiled-tubing cementing has been practiced successfully on the Alaskan North Slope for several years. This paper discusses the special problems faced when this technology was applied to offshore U.S. gulf coast operations. The innovative solutions and procedures developed to improve the economic and technical success of coiled-tubing cementing are also discussed. Comparative laboratory and computer studies, as well as field case histories, will be presented to show the economic merit of this technology.

  14. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    SciTech Connect (OSTI)

    Lipton, Robert Polizzi, Anthony

    2014-10-14

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  15. JLab's YouTube Channel Attracts 100,000 Subscribers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's YouTube Channel Attracts 100,000 Subscribers In roughly six years, Jefferson Lab's YouTube channel has attracted 100,000 subscribers and has been viewed more than 30 million times. To celebrate this milestone, achieved on Feb. 8, Science Education posted an episode of Frostbite Theater, titled 100,000 Subscribers! (And some liquid nitrogen!). To mark the event, Frostbite Theater hosts Steve Gagnon, Science Education administrator, and Joanna Griffin, Public Affairs graphic artist, froze a

  16. Detection and Control of Deposition on Pendant Tubes in Kraft Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Boilers | Department of Energy Detection and Control of Deposition on Pendant Tubes in Kraft Chemical Recovery Boilers Detection and Control of Deposition on Pendant Tubes in Kraft Chemical Recovery Boilers Advanced Imaging System Improves Boiler Efficiency, Reduces Sootblowing Costs, and Improves Operational Safety The kraft chemical recovery boilers used for pulp processing are large and expensive and can be the limiting factor for mill capacity. Improvements in boiler efficiency

  17. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  18. Measurements of the efficiency and refrigeration power of pulse-tube refrigerators

    SciTech Connect (OSTI)

    Herrmann, S.; Radebaugh, R.

    1986-09-01

    Pulse-tube or thermoacoustic refrigerators have the potential for high reliability since they require only one moving part - an oscillating piston or diaphragm at room temperature. If a tube is closed at one end and connected to a pressure-wave generator at the open end, and if the phase angle between mass flow and pressure is shifted from 90/sup 0/, then refrigeration occurs at the open end. The shift in phase angle can be realized by thermal relaxation between the gas and the tube walls or by an orifice at the closed end. A low temperature of 60 K using helium gas in a one-stage orifice pulse tube has been achieved at NBS. The report describes the first measurements of the efficiency, refrigeration power, and refrigeration power per unit mass flow, for three pulse-tube refrigerators. Three tube sizes, differing in length and diameter, were studied over a frequency range of 3 to 11.5 Hz. Cooling efficiencies as high as 90% of the Carnot efficiency were obtained when compressor and regenerator losses are neglected.

  19. Manufacturing of SiCp Reinforced Magnesium Composite Tubes by Hot Extrusion Processes

    SciTech Connect (OSTI)

    Hwang, Yeong-Maw [National Sun Yat-Sen University-Department of Mechanical and Electro-mechanical Engineering, No.70, Lien-Hai Rd., Kaohsiung, Taiwan (China); Huang, Song-Jeng; Huang, Yu-San [National Chung Cheng University-Department of Mechanical Engineering, 168 University Rd. Ming-Hsiung, ChiaYi, Taiwan (China)

    2011-05-04

    Magnesium alloys have higher specific strength compared with other metals, such as aluminum, copper and steel. Nevertheless, their ductility is still not good for further metal forming and their strength is not large enough for real structure applications. The aim of this paper is to develop magnesium alloy composite tubes reinforced with SiC particulates by the stir-casting method and hot extrusion processes. At first, AZ61/SiCp composite ingots reinforced with 5 wt% SiC particulates are fabricated by the melt-stirring technique. Then, finite element simulations are conducted to analyze the plastic flow of magnesium alloy AZ61 within the die and the temperature distribution of the products. AZ61/SiCp composite tubes are manufactured by hot extrusion using a specially designed die-set for obtaining uniform thickness distribution tubes. Finally, the mechanical properties of the reinforced AZ61/SiCp composite and Mg alloy AZ61 tubes are compared with those of the billets to manifest the advantages of extrusion processes and reinforcement of SiC particulates. The microstructures of the billet and extruded tubes are also observed. Through the improvement of the strength of the tube product, its life cycle can be extended and the energy consumption can be reduced, and eventually the environmental sustainability is achieved.

  20. Internal thermal coupling in direct-flow coaxial vacuum tube collectors

    SciTech Connect (OSTI)

    Glembin, J.; Rockendorf, G.; Scheuren, J.

    2010-07-15

    This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)

  1. PLASMA SPRAYED Ni-Al COATINGS FOR SAFE ENDING HEAT EXCHANGER TUBES

    SciTech Connect (OSTI)

    ALLAN,M.L.; OTTERSON,D.; BERNDT,C.C.

    1998-11-01

    Brookhaven National Laboratory (BNL) has developed thermally conductive composite liners for corrosion and scale protection in heat exchanger tubes exposed to geothermal brine. The liners cannot withstand roller expansion to connect the tubes to the tubesheet. It is not possible to line the ends of the tubes with the same material after roller expansion due to the nature of the current liner application process. It was requested that BNL evaluate plasma sprayed Ni-Al coatings for safe ending heat exchanger tubes exposed to geothermal brine. The tubes of interest had an internal diameter of 0.875 inches. It is not typical to thermal spray small diameter components or use such small standoff distances. In this project a nozzle extension was developed by Zatorski Coating Company to spray the tube ends as well as flat coupons for testing. Four different Ni-Al coatings were investigated. One of these was a ductilized Ni-AIB material developed at Oak Ridge National Laboratory. The coatings were examined by optical and scanning electron microscopy. In addition, the coatings were analyzed by X-ray diffraction and subjected to corrosion, tensile adhesion, microhardness and field tests in a volcanic pool in New Zealand. It was determined that the Ni-Al coatings could be applied to a depth of two inches on the tube ends. When sprayed on flat coupons the coatings exhibited relatively high adhesion strength and microhardness. Polarization curves showed that the coating performance was variable. Measured corrosion potentials indicated that the Ni-Al coatings are active towards steel coated with thermally conductive polymers, thereby suggesting preferential corrosion. Corrosion also occurred on the coated coupons tested in the volcanic pool. This may have been exacerbated by the difficulty in applying a uniform coating to the coupon edges. The Ni-Al coatings applied to the tubes had significant porosity and did not provide adequate corrosion protection. This is associated with the short standoff distance and is not a reflection of the normal quality of plasma sprayed coatings. Even if coating porosity could be reduced, the coupling of an alloy coating to a polymer-based barrier coating in the same electrolyte is not recommended. Therefore, polymer coatings that can be field applied to the tube ends after roller expansion should be sought.

  2. Coiled tubing drilling: Real time MWD with dedicated powers to the BHA

    SciTech Connect (OSTI)

    Leismer, D.; Williams, B.; Pursell, J.

    1996-12-31

    This paper describes and analyzes the development and ongoing field trials of a Real Time MWD Coiled Tubing Drilling System. The new system holds great promise for advancing the state of coiled tubing drilling for certain applications. The system is designed for through-tubing, short radius re-entry and drilling highly deviated wells as horizontal laterals to a geologic target with minimum wellbore tortuosity. Currently, 4-1/2-in production tubing is the smallest re-entry candidate. Real time MWD and Bottom Hole Assembly (BHA) control is achieved by the use of a combination hydraulic and electric umbilical internal to the coiled tubing (CT), allowing continuous data collection and selective surface control of the BHA components. This communication line allows orientation in 10{degree} increments (or less) while drilling, applies weight-on-bit and operates a reusable circulating valve. In addition, the umbilical provides real-time monitoring of weight-on-bit, circulating pressures of the drilling fluid internal and external to the BHA, dedicated hydraulic system bottom hole pressure, downhole temperature and survey data from logging equipment.

  3. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    SciTech Connect (OSTI)

    Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

  4. Development of a computer wellbore simulator for coiled-tube operations

    SciTech Connect (OSTI)

    Gu, H.; Walton, I.C.; Dowell, S.

    1994-12-31

    This paper describes a computer wellbore simulator developed for coiled tubing operations of fill cleanout and unloading of oil and gas wells. The simulator models the transient, multiphase fluid flow and mass transport process that occur in these operations. Unique features of the simulator include a sand bed that may form during fill cleanout in deviated and horizontal wells, particle transport with multiphase compressible fluids, and the transient unloading process of oil and gas wells. The requirements for a computer wellbore simulator for coiled tubing operations are discussed and it is demonstrated that the developed simulator is suitable for modeling these operations. The simulator structure and the incorporation of submodules for gas/liquid two-phase flow, reservoir and choke models, and coiled tubing movement are addressed. Simulation examples are presented to show the sand bed formed in cleanout in a deviated well and the transient unloading results of oil and gas wells. The wellbore simulator developed in this work can assist a field engineer with the design of coiled tubing operations. By using the simulator to predict the pressure, flow rates, sand concentration and bed depth, the engineer will be able to select the coiled tubing, fluid and schedule of an optimum design for particular well and reservoir conditions.

  5. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  6. Development of a model of an x-ray tube transmission source

    SciTech Connect (OSTI)

    Goda, Joetta M; Ianakiev, Kiril D; Moss, Cal E

    2009-01-01

    In support of the development of an x-ray tube based source for transmission measurements of UF6 gas, we have developed a one-dimensional, spreadsheet-based model of the source. Starting with the spectrum produced by an x-ray tube we apply the linear attenuation coefficients for various notch filters, the aluminum pipe, and UF6 gas. This model allows calculation of the transmitted spectrum based on the type of filter, the thickness of the filter, the x-ray tube high voltage, the Al pipe thickness, and the UF6 gas pressure. The sensitivity of the magnitude of the transmission peak produced by the notch filter to any of these variables can be explored quickly and easily to narrow the choices for experimental measurements. To validate the spreadsheet based model, comparisons have been made to various experimental data.

  7. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOE Patents [OSTI]

    Warren, R.W.

    1992-09-01

    A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.

  8. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOE Patents [OSTI]

    Warren, Roger W. (Santa Fe, NM)

    1992-01-01

    A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  9. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    SciTech Connect (OSTI)

    Wong, W.A.; Cairelli, J.E.; Swec, D.M.; Doeberling, T.J.; Lakatos, T.F.; Madi, F.J.

    1994-09-01

    Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  10. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect (OSTI)

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  11. Multiaxial cyclic ratcheting in coiled tubing -- Part 2. Experimental program and model evaluation

    SciTech Connect (OSTI)

    Rolovic, R.; Tipton, S.M.

    2000-04-01

    An experimental program was conducted to evaluate the plasticity model proposed in a separate paper (Part 1). Constant pressure, cyclic bend-straighten tests were performed to identify material parameters required by the analytical model. Block pressure, bend-straighten tests were conducted to evaluate the proposed model. Experiments were performed on full-size coiled steel tubing samples using a specialized test machine. Two commonly used coiled tubing materials and four specimen sizes were subjected to load histories consisting of bending-straightening cycles with varying levels of internal pressure. It was observed that cyclic ratcheting rates can be reversed without reversing the mean stress, i.e., diametral growth of coiled tubing can be followed by diametral shrinkage even when the internal pressure is kept positive, depending on the loading history. This material behavior is explained in the context of the new theory. The correlation between the predictions and the test data is very good.

  12. Corrosion effects of hydrogen sulfide on coiled tubing and carbon steel in hydrochloric acid

    SciTech Connect (OSTI)

    1997-09-01

    Coiled tubing is commonly used in oilwell drilling and stimulation. It has been reported to be less susceptible to acid attack than carbon steel in acidizing. Corrosion problems are frequently reported from field activities and include corrosion/erosion, galvanic attack, brine/oxygen/acid attack, and HCl/H{sub 2}S attack. In this study, coiled tubing was exposed to inhibited HCl acid in the presence and absence of H{sub 2}S. Four HCl inhibitors and one H{sub 2}S inhibitor were evaluated, and the corrosion rates of coiled tubing, carbon steel (J-55), and carburized steel were compared. Tests were conducted at atmospheric pressure for temperatures less than and equal to 200 F. At temperatures greater than 200 F; tests were conducted at 4,000 psi.

  13. The use of coiled tubing during matrix acidizing of carbonate reservoirs

    SciTech Connect (OSTI)

    Thomas, R.L.; Milne, A.

    1995-10-01

    A laboratory and field study directed at improved well performance of horizontal wells is discussed. During the study, several wells were matrix acidized using bullhead and coiled tubing placement techniques. The study performed in carbonate reservoirs indicates acid placed with coiled tubing diverted with foam provides excellent zone coverage and damage removal. Conventional bullhead techniques do not result in effective damage removal. The study emphasizes the evaluation of the treatment results and the development of improved acidizing techniques. Laboratory simulations of matrix acidizing indicate proper placement techniques are essential. This observation is supported by field data in oil wells completed in carbonate reservoirs. The key to successful damage removal is (1) the placement of acid via coiled tubing and (2) proper diversion. Production logging and well performance data support this claim. The proposed treatment is applicable in both horizontal and vertical wells completed in carbonate reservoirs.

  14. Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa

    SciTech Connect (OSTI)

    Toloczko, Mychailo B.; Garner, F. A.; Voyevodin, V.; Bryk, V. V.; Borodin, O. V.; Melnichenko, V. V.; Kalchenko, A. S.

    2014-10-01

    In order to study the potential swelling behavior of the ODS ferritic alloy MA957 at very high dpa levels, specimens were prepared from pressurized tubes that were unirradiated archives of tubes previously irradiated in FFTF to doses as high at 110 dpa. These unirradiated specimens were irradiated with 1.8 MeV Cr+ ions to doses ranging from 100 to 500 dpa and examined by transmission electron microscopy. No coinjection of helium or hydrogen was employed. It was shown that compared to several ferritic/martensitic steels irradiated in the same facility, these tubes were rather resistant to void swelling, reaching a maximum value of only 4.5% at 500 dpa and 450C. In this fine-grained material, the distribution of swelling was strongly influenced by the presence of void denuded zones along the grain boundaries.

  15. Low-cost evacuated-tube solar collector appendices. Final report

    SciTech Connect (OSTI)

    Beecher, D.T.

    1980-05-31

    A low cost solar heat energy collector module and array has been designed using the evacuated tube, selective absorber, air cooled concept. Glass tubing as used in fluorescent lamps with automatic sealing methods is a key feature of the evacuated tube design. A molded fiber glass concentrating reflector panel and sheet metal header assembly are proposed. Major design problems involved included the cost of materials and labor, thermal expansion and distortion problems, high stagnation and operating temperatures, isolation, thermal efficiency, sealing, joining, air pressure drop, and weight of the preassembled module. A cost of less than $5 per active square foot of collecting surface has been estimated for materials and labor of the module and its mounting frame.

  16. Nuclear reactor fuel assembly duct-tube-to-inlet-nozzle attachment system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Smith, Bob G. (Kennewick, WA)

    1982-01-01

    A reusable system for removably attaching the lower end 21 of a nuclear reactor fuel assembly duct tube to an upper end 11 of a nuclear reactor fuel assembly inlet nozzle. The duct tube's lower end 21 has sides terminating in locking tabs 22 which end in inwardly-extending flanges 23. The flanges 23 engage recesses 13 in the top section 12 of the inlet nozzle's upper end 11. A retaining collar 30 slides over the inlet nozzle's upper end 11 to restrain the flanges 23 in the recesses 13. A locking nut 40 has an inside threaded portion 41 which engages an outside threaded portion 15 of the inlet nozzle's upper end 11 to secure the retaining collar 30 against protrusions 24 on the duct tube's sides.

  17. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  18. On-line mechanical tube cleaning for steam electric power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-02-18

    In July 1991, Superior I.D. Tube Cleaners, Inc. (SIDTEC{trademark}) received a grant through the Department of Energy and the Energy Related Invention Program to conduct a long term demonstration of a proprietary technology for on-line mechanical condenser tube cleaning in thermal Power plants on open or once-through cooling water systems where the warmed condenser cooling water is discharged through a canal. The purpose of the demonstration was to confirm and establish the use of this mechanical method as an alternative to the application of chemical biocides in condenser cooling water for the control of biofouling, the growth of micro-organisms which can reduce a unit`s operating efficiency. The SIDTEC on-line mechanical tube cleaner, the Rocket{trademark}, is used to physically remove accumulated deposits on the water side of the main steam condenser, and the non-intrusive tube cleaner recovery system, the Skimmer{trademark}, is used to recover and recirculate tube cleaners. The periodic circulation of tube cleaners can maintain optimum condenser cleanliness and improve unit heat rate. Thermal power plants which discharge condenser cooling water through a canal now have a viable alternative to the chemical treatment of condenser cooling water, whether the principal foulant is biofouling, chemical scaling, silting, or a combination of the three. At prices competitive with scale inhibitors, and a fraction of competing mechanical systems, this technology is provided as a service requiring no capital investment; minimal retrofit modifications to plant structures or equipment; can be installed and maintained without a unit shutdown; does not add any restrictions in the cooling water system; and is environmentally benign.

  19. Development of Radar Navigation and Radio Data Transmission for Microhole Coiled Tubing Bottom Hole Assemblies

    SciTech Connect (OSTI)

    Larry G. Stolarczyk; Gerald L. Stolarczyk; Larry Icerman; John Howard; Hooman Tehrani

    2007-03-25

    This Final Technical Report summarizes the research and development (R&D) work performed by Stolar Research Corporation (Stolar) under U.S. Department of Energy (DOE) Contract Number DE-FC26-04NT15477. This work involved the development of radar navigation and radio data transmission systems for integration with microhole coiled tubing bottom hole assemblies. Under this contract, Stolar designed, fabricated, and laboratory and field tested two advanced technologies of importance to the future growth of the U.S. oil and gas industry: (1) real-time measurement-while-drilling (MWD) for guidance and navigation of coiled tubing drilling in hydrocarbon reservoirs and (2) two-way inductive radio data transmission on coiled tubing for real-time, subsurface-to-surface data transmission. The operating specifications for these technologies are compatible with 3.5-inch boreholes drilled to a true vertical depth (TVD) of 5,000 feet, which is typical of coiled tubing drilling applications. These two technologies (i.e., the Stolar Data Transmission System and Drill String Radar) were developed into pre-commercial prototypes and tested successfully in simulated coiled tubing drilling conditions. Integration of these two technologies provides a real-time geosteering capability with extremely quick response times. Stolar is conducting additional work required to transition the Drill String Radar into a true commercial product. The results of this advanced development work should be an important step in the expanded commercialization of advanced coiled tubing microhole drilling equipment for use in U.S. hydrocarbon reservoirs.

  20. Dynamic stability of a spinning tube conveying a fluid through a symmetrical noncircular cross-section

    SciTech Connect (OSTI)

    Benedetti, G.A.

    1990-11-01

    When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.

  1. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    SciTech Connect (OSTI)

    Hershcovitch, A. Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R.; Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J.

    2015-05-15

    A novel robotic plasma magnetron mole with a 50?cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5?cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3?cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10??m copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  2. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    SciTech Connect (OSTI)

    Krause, H.H. ); Daniel, P.L.; Blue, J.D. )

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  3. A tool to detect external cracks from within a metal tube

    SciTech Connect (OSTI)

    Caffey, T.W.H.

    1997-01-01

    A tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is outlined for the detection of external sidewall cracks in boiler tubes. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to 40dB in thin-walled boiler tubes.

  4. Hydrogen consentration meter utilizing a diffusion tube composed of 2 1/4 C r

    DOE Patents [OSTI]

    Roy, Prodyot; Sandusky, David W.; Hartle, Robert T.

    1979-01-01

    A diffusion tube hydrogen meter for improving the sensitivity and response time for the measurement of hydrogen in liquid sodium. The improved hydrogen meter has a composite membrane composed of pure nickel sleeve fitted, for example, over a 2 1/4 Cr-1 Mo steel or niobium diffusion tube. Since the hydrogen permeation rate through 2 1/4 Cr-1 Mo steels is a factor of four higher than pure nickel, and the permeation rate of hydrogen through niobium is two orders of magnitude greater than the 2 1/4 Cr-1 Mo steel, this results in a decrease in response time and an increase in the sensitivity.

  5. Optimization of creep properties of welded header-stub tube connection for lif extension

    SciTech Connect (OSTI)

    Ram, R.; Cunningham, G.; Roberts, B.

    1996-12-31

    The failure of boiler tubes is the predominant cause of boiler outages. From a life-extension point of view, the critical components are large diameter thick-wall high-temperature headers. The primary aim of this research is to numerically analyze the stresses in the boiler tube-header weld connection and study the behavior of the material as it creeps. The focus is on the initial thermoelastic stresses at the beginning of operation and the distribution of stresses after approximately twenty years of operation when the stresses have relaxed. The study calculates creep life fractions of the assembly after twenty years of service.

  6. Horizontal slim-hole drilling with coiled tubing; An operator's experience

    SciTech Connect (OSTI)

    Ramos, A.B. Jr.; Faahel, R.A.; Chaffin, M.G.; Pulis, K.H. )

    1992-10-01

    What is believed to be the first horizontal well drilled with directionally controlled coiled tubing recently was completed in the Austin Chalk formation. an existing well was sidetracked out of 4 1/2-in. casing with a conventional whipstock. an average build rate of 15[degrees]/100 ft was achieved in the curve, and a 1,458-ft vertical section was drilled with 2-in. coiled tubing, downhole mud motors, wireline steering tools, a mechanical downhole orienting tool, and 3 7/8-in. bits. This paper discusses the orienting and directional tools and techniques developed during this operation. It also describes improvements made for the second well.

  7. Installation of 2 7/8-in. coiled-tubing tailpipes in live gas wells

    SciTech Connect (OSTI)

    Campbell, J.A.; Bayes, K.P.

    1994-05-01

    This paper describes a technique for installing 2 7/8-in. coiled tubing as tailpipe extensions below existing production packers in live gas wells. It also covers the use of coiled tubing as a way to complete wells. Large savings in rig time and deferred production have been realized with this technique. Fluid losses to the formation do not occur, and no expensive rig time is needed to kill or clean up the wells, as required for conventional workovers below existing production packers. This technique is particularly applicable in depleted reservoirs that could be impaired by traditional workover methods.

  8. Helical buckling and lock-up conditions for coiled tubing in curved wells

    SciTech Connect (OSTI)

    He, X.; Kyllingstad, A.

    1995-03-01

    An improved formula for critical buckling loads has been derived. This formula, which takes the well curvature into account, has been verified in small scale laboratory tests. The theory has been applied to survey data from a real horizontal well and it predicts that the well curvature substantially affects the critical force for helical buckling, and thereby also the maximum run-in length of coiled tubing. Criteria for operational limits, such as lock-up and tubing failure, are also discussed in the paper.

  9. High-voltage supply for neutron tubes in well-logging applications

    DOE Patents [OSTI]

    Humphreys, D.R.

    1982-09-15

    A high voltage supply is provided for a neutron tube used in well logging. The biased pulse supply of the invention combines DC and full pulse techniques and produces a target voltage comprising a substantial negative DC bias component on which is superimposed a pulse whose negative peak provides the desired negative voltage level for the neutron tube. The target voltage is preferably generated using voltage doubling techniques and employing a voltage source which generates bipolar pulse pairs having an amplitude corresponding to the DC bias level.

  10. Reduced coated-tubing failures cut costs at Dickinson Heath Sand Unit

    SciTech Connect (OSTI)

    Brus, K.R. )

    1990-03-01

    In the Dickinson Heath Sand Unit waterflood, corrosion-related failures of coated injection tubing began accelerating in 1979 with the increased water production attributed to waterflood response. The trend peaked in 1984 when $164,000 was spent pulling failed tubing (34 workovers). Starting in 1983, the selection of coatings, coating-application-process quality control, and handling/installation procedures were examined, modified, and refined. The author discusses how these changes and improvements resulted in fewer pulling jobs and less money spent on associated workovers during 1988.

  11. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOE Patents [OSTI]

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  12. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect (OSTI)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvn waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvn waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvn waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  13. ON THE ANISOTROPY IN EXPANSION OF MAGNETIC FLUX TUBES IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Malanushenko, A.; Schrijver, C. J.

    2013-10-01

    Most one-dimensional hydrodynamic models of plasma confined to magnetic flux tubes assume circular tube cross sections. We use potential field models to show that flux tubes in circumstances relevant to the solar corona do not, in general, maintain the same cross-sectional shape through their length and therefore the assumption of a circular cross section is rarely true. We support our hypothesis with mathematical reasoning and numerical experiments. We demonstrate that lifting this assumption in favor of realistic, non-circular loops makes the apparent expansion of magnetic flux tubes consistent with that of observed coronal loops. We propose that in a bundle of ribbon-like loops, those that are viewed along the wide direction would stand out against those that are viewed across the wide direction due to the difference in their column depths. That result would impose a bias toward selecting loops that appear not to be expanding, seen projected in the plane of sky. An implication of this selection bias is that the preferentially selected non-circular loops would appear to have increased pressure scale heights even if they are resolved by current instruments.

  14. CriTi-CAL: A computer program for Critical Coiled Tubing Calculations

    SciTech Connect (OSTI)

    He, X.

    1995-12-31

    A computer software package for simulating coiled tubing operations has been developed at Rogaland Research. The software is named CriTiCAL, for Critical Coiled Tubing Calculations. It is a PC program running under Microsoft Windows. CriTi-CAL is designed for predicting force, stress, torque, lockup, circulation pressure losses and along-hole-depth corrections for coiled tubing workover and drilling operations. CriTi-CAL features an user-friendly interface, integrated work string and survey editors, flexible input units and output format, on-line documentation and extensive error trapping. CriTi-CAL was developed by using a combination of Visual Basic and C. Such an approach is an effective way to quickly develop high quality small to medium size software for the oil industry. The software is based on the results of intensive experimental and theoretical studies on buckling and post-buckling of coiled tubing at Rogaland Research. The software has been validated by full-scale test results and field data.

  15. 150K - 200K miniature pulse tube cooler for micro satellites

    SciTech Connect (OSTI)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  16. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOE Patents [OSTI]

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  17. Mechanical design of ceramic beam tube braze joints for NOvA kicker magnets

    SciTech Connect (OSTI)

    Ader, C.R.; Reilly, R.E.; Wilson, J.H.

    2010-05-01

    The NO?A Experiment will construct a detector optimized for electron neutrino detection in the existing NuMI neutrino beam. The NuMI beam line is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

  18. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  19. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  20. Image intensifier gain uniformity improvements in sealed tubes by selective scrubbing

    DOE Patents [OSTI]

    Thomas, S.W.

    1995-04-18

    The gain uniformity of sealed microchannel plate image intensifiers (MCPIs) is improved by selectively scrubbing the high gain sections with a controlled bright light source. Using the premise that ions returning to the cathode from the microchannel plate (MCP) damage the cathode and reduce its sensitivity, a HeNe laser beam light source is raster scanned across the cathode of a microchannel plate image intensifier (MCPI) tube. Cathode current is monitored and when it exceeds a preset threshold, the sweep rate is decreased 1000 times, giving 1000 times the exposure to cathode areas with sensitivity greater than the threshold. The threshold is set at the cathode current corresponding to the lowest sensitivity in the active cathode area so that sensitivity of the entire cathode is reduced to this level. This process reduces tube gain by between 10% and 30% in the high gain areas while gain reduction in low gain areas is negligible. 4 figs.

  1. A creep damage estimation method for in-service fossil fuel boiler superheater tubes

    SciTech Connect (OSTI)

    Nogata, F. . Dept. of Mechanical Engineering); Takahashi, H. . Research Inst. of Fracture Technology)

    1995-02-01

    Because mechanical properties of structural materials for high-temperature use, such as boiler tubing, degrade during long-term service, it is essential to detect toughness degradation by means of a nondestructive and simple field test technique. A grain boundary etching technique is developed to detect material degradation, and assess creep strength and notch toughness. An etching test using a picric acid solution with a wetting agent or using 20 percent HNO[sub 3] with alcoholic solution was found to have great potential for the nondestructive estimation of grain boundary embrittlement caused by carbide and sigma precipitation in SUS stainless steel. The feasibility of this estimation procedure was determined showing the relationships between Charpy impact energy (CVN) and grooving width (W[sub GS]), and creep damage ratio ([Phi]) and W[sub GS]. Superheater tubes of fossil fuel boiler were tested on site to demonstrate the validity of this technique.

  2. Use of coiled tubing during the Wytch Farm extended-reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1995-05-01

    The largest onshore oil field in western Europe is in an environmentally sensitive coastal area in southern England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing {approx} 80 million bbl of recoverable oil. In 1991, the decision was made to access these reserves through extended-reach drilling (ERD) from an existing onshore wellsite. This development is currently under way, with 3 of 11 planned wells already drilled and producing. This paper describes the application of coiled tubing (CT) in the logging and completion phases of the ERD wells drilled to date. Conclusions are made as to the value of coiled tubing in ERD wells to minimize rig time and the current limits of technology.

  3. Image intensifier gain uniformity improvements in sealed tubes by selective scrubbing

    DOE Patents [OSTI]

    Thomas, Stanley W. (Livermore, CA)

    1995-01-01

    The gain uniformity of sealed microchannel plate image intensifiers (MCPIs) is improved by selectively scrubbing the high gain sections with a controlled bright light source. Using the premise that ions returning to the cathode from the microchannel plate (MCP) damage the cathode and reduce its sensitivity, a HeNe laser beam light source is raster scanned across the cathode of a microchannel plate image intensifier (MCPI) tube. Cathode current is monitored and when it exceeds a preset threshold, the sweep rate is decreased 1000 times, giving 1000 times the exposure to cathode areas with sensitivity greater than the threshold. The threshold is set at the cathode current corresponding to the lowest sensitivity in the active cathode area so that sensitivity of the entire cathode is reduced to this level. This process reduces tube gain by between 10% and 30% in the high gain areas while gain reduction in low gain areas is negligible.

  4. Controlled Thermal-Mechanical Processing of Tubes and Pipes for Enhanced Manufacturing and Performance

    SciTech Connect (OSTI)

    Kolarik, Robert V.

    2005-11-11

    The Alloy Steel Business of The Timken Company won an award for the controlled thermo-mechanical processing (CTMP) project and assembled a strong international public/private partnership to execute the project. The premise of the CTMP work was to combine Timken's product understanding with its process expertise and knowledge of metallurgical and deformation fundamentals developed during the project to build a predictive process design capability. The CTMP effort succeeded in delivering a pc-based capability in the tube optimization model, with a virtual pilot plant (VPP) feature to represent the desired tube making process to predict the resultant microstructure tailored for the desired application. Additional tasks included a system for direct, online measurement of grain size and demonstration of application of CTMP via robotically enhanced manufacturing.

  5. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers

    SciTech Connect (OSTI)

    Ghorbani, N. [School of Mechanical Engineering, University of Leeds, Leeds, England (United Kingdom); Taherian, H. [Department of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX (United States); Gorji, M. [Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol (Iran); Mirgolbabaei, H. [Department of Mechanical Engineering, Islamic Azad University, Jouybar branch, Jouybar (Iran)

    2010-10-15

    In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

  6. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  7. Fundamental Kinetics Database Utilizing Shock Tube Measurements (Volumes 1, 2, 3, 4, and Volume 6)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davidson, D. F.; Hanson, R. K

    The data from shock tube experiments generally takes three forms: ignition delay times, species concentration time-histories and reaction rate measurements. Volume 1 focuses on ignition delay time data measured and published by the Shock Tube Group in the Mechanical Engineering Department of Stanford University. The cut-off date for inclusion into this volume was January 2005. Volume 2 focuses on species concentration time-histories and was cut off December 2005. The two volumes are in PDF format and are accompanied by a zipped file of supporting data. Volume 3 was issued in 2009. Volume 4, Ignition delay times measurements came out in May, 2014, along with Reaction Rates Measurements, Vol 6. Volume 5 is not available at this time.

  8. Method and apparatus for detecting external cracks from within a metal tube

    DOE Patents [OSTI]

    Caffey, Thurlow W. H. (Albuquerque, NM)

    2001-08-07

    A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.

  9. Automatic ultrasonic inspection system for wear determination in calandria tubes of Embalse Nuclear Power Plant

    SciTech Connect (OSTI)

    Katchadjian, Pablo Desimone, Carlos Garcia, Alejandro; Antonaccio, Carlos; Schroeter, Fernando; Molina, Hctor

    2015-03-31

    Embalse Nuclear Power Plant (CNE) (CANDU design) is reaching its end of life and due to elapsed operating time the problem of deformation by accelerated creep occurs in the pressure tubes (PT), leading to a possible contact between calandria tubes (CT), concentric to the PT, and some Liquid Injection Shutdown System (LISS) nozzles that pass underneath them. With determination of CT wear, after the predicted contact occurs, the wear rate of the TC could be determined and thus take less conservative measures over the remaining life of the component. This paper presents the development of an ultrasonic technique for measuring wear in CT, with nominal thickness of 1.34 mm. Because the only access is through the interior of PT, to perform this measurement it is necessary to pass through three different interfaces.

  10. Limiting current of axisymmetric relativistic charged-particle beam propagating in strong axial magnetic field in coaxial drift tube

    SciTech Connect (OSTI)

    Yatsenko, T.; Ilyenko, K.; Sotnikov, G. V.

    2012-06-15

    In the strong axial magnetic field approximation, we calculate the space-charge limited (SCL) current of axisymmetric relativistic charged-particle beam in a coaxial drift tube of finite length. Results are compared to analytical estimates and numerical modeling of SCL current in the infinitely long drift tube. For the infinitely long drift tube, which inner conductor is biased and the outer conductor is lined with a finite-width dielectric insert, analytic approximations for the SCL current in the bias voltage are developed.

  11. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests. International Agreement Report

    SciTech Connect (OSTI)

    Cho, S.; Arne, N.; Chung, B.D.; Kim, H.J.

    1993-06-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Differences between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated.

  12. Thermal performance testing of two Thales 9310 pulse-tube cryocoolers for PHyTIR

    SciTech Connect (OSTI)

    Paine, Christopher G.

    2014-01-29

    PHyTIR is a NASA-funded technology demonstration for a near-term earth-observing instrument in the thermal infrared spectrum, intended for use in the HyspIRI mission. PHyTIR will use two Thales 9310 single-stage pulse tube cryocoolers, one to directly cool the FPA, the other to simulate a passive radiator. We report performance measurements for the two Thales 9310 cryocoolers intended for inclusion in the PHyTIR demonstrator.

  13. Geotechnical Analysis of Five Shelby Tube Samples from H-Area Retention Basin

    SciTech Connect (OSTI)

    Langton, C.A.

    1999-06-02

    Geotechnical and geochemical analyses were performed on five Shelby tube samples collected in the H-Area Retention Basin (HRB) during July and August of 1998. The samples were collected as part of the HRB characterization study. The test results, which are documented in this report, will be used to support the HRB contaminant fate and transport modeling/analysis and to evaluate remedial options. The results will also be used as a base line for future treatability studies.

  14. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOE Patents [OSTI]

    Kychakoff, George; Afromowitz, Martin A.; Hogle, Richard E.

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  15. Improved coiled-tubing squeeze-cementing techniques at Prudhoe Bay

    SciTech Connect (OSTI)

    Hornbrook, P.R.; Mason, C.M. )

    1991-04-01

    This paper presents major changes in coiled-tubing squeeze-cementing techniques used in the Prudhoe Bay Unit Western Operating Area (PBUWOA). Changes include introduction of a polymer diluent to replace borax contamination, increased differential pressures placed on squeeze and coil, reduced cement volumes, and incorporation of an inflow test and resqueeze procedure. These changes resulted in increased squeeze effectiveness by reducing equipment and engineering time requirements and by shortening well shut-in time after the workover.

  16. Evaluating electric-resistance-welded tubing for refinery and chemical plant applications

    SciTech Connect (OSTI)

    Polk, C.J.; Hotaling, A.C. )

    1993-02-01

    A laboratory technique was developed to assess the potential for preferential attack along the longitudinal seam of electric-resistance-welded (ERW) carbon steel tubing exposed to refinery and chemical plant process streams. Used in conjunction with an evaluation of mill fabrication practices, the test procedure can identify high-quality ERW products that can be used in many applications in place of seamless components at significant cost savings.

  17. Combustor with two stage primary fuel tube with concentric members and flow regulating

    DOE Patents [OSTI]

    Parker, David Marchant (Oviedo, FL); Whidden, Graydon Lane (Orlando, FL); Zolyomi, Wendel (Lawrenceville, GA)

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  18. Flexible stainless steel hose liner used to rehab drain pipe for seal gates and outlet tubes

    SciTech Connect (OSTI)

    Sauer, S.J.; Monsanto, R. )

    1993-08-01

    Not unlike other dams, the Bureau of Reclamation's 6,500-MW Grand Coulee Dam in Washington State has a large amount of embedded piping, conduits, and drains. Typically, these features were constructed of ductile iron, cast iron, or carbon steel materials. Over the years, excessive internal corrosion of the drains for 102-inch ring seal gates and outlet tubes created leaks that required attention. Reclamation performed a number of temporary repairs before it became evident that the drain system must be rehabilitated. After considering several alternatives for rehabilitation, Reclamation selected stainless steel flexible hose liners for the job. Reclamation is satisfied with the performance of the stainless steel flexible hose liner. The total cost for installing the liners for nine drain lines (for three outlet tubes) was $15,000. Of that, materials cost $7,500, and labor and overhead cost $7,500. The inserts themselves cost from $640 for an 18-foot by 6-inch section. While this was not the least expensive option, it was the best choice for this job. The procedure will be repeated for other outlet tubes at Grand Coulee. Information used in this rehabilitation is being made available to other Reclamation projects.

  19. GLOBAL AND LOCAL CUTOFF FREQUENCIES FOR TRANSVERSE WAVES PROPAGATING ALONG SOLAR MAGNETIC FLUX TUBES

    SciTech Connect (OSTI)

    Routh, S. [Department of Physics, R. V. College of Engineering, Bangalore (India)] [Department of Physics, R. V. College of Engineering, Bangalore (India); Musielak, Z. E. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)] [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Hammer, R., E-mail: routhswati@rvce.edu.in, E-mail: zmusielak@uta.edu, E-mail: hammer@kis.uni-freiburg.de [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, Freiburg, D-79104 Germany (Germany)

    2013-01-20

    It is a well-established result that the propagation of linear transverse waves along a thin but isothermal magnetic flux tube is affected by the existence of the global cutoff frequency, which separates the propagating and non-propagating waves. In this paper, the wave propagation along a thin and non-isothermal flux tube is considered and a local cutoff frequency is derived. The effects of different temperature profiles on this local cutoff frequency are studied by considering different power-law temperature distributions, as well as the semi-empirical VAL C model of the solar atmosphere. The obtained results show that the conditions for wave propagation strongly depend on the temperature gradients. Moreover, the local cutoff frequency calculated for the VAL C model gives constraints on the range of wave frequencies that are propagating in different parts of the solar atmosphere. These theoretically predicted constraints are compared to observational data and are used to discuss the role played by transverse tube waves in the atmospheric heating and dynamics, and in the excitation of solar atmospheric oscillations.

  20. Rigless multizone recompletion using a cement packer placed with coiled tubing: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Patout, T.S.

    1997-12-01

    Cement packers have been used for some time when reserve estimates have not justified the cost of major rig remedial work. They typically provide a means of zonal isolation of the last reserves in an existing wellbore. The success of these operations has historically been low. This is predominantly because of poor cement bonding in the annulus between the tubing and production casing. Because of the minimal amount of equipment on location and lack of upfront design work involved, most cement packers are doomed to failure before they are even placed. Cement packers have been placed using a large number of methods. In the Ship Shoal 181 field, Well B-4 would not economically justify a major rig workover, even though there were several uphole gas sands capable of producing in this well. With proper upfront planning and design, it would be economical; however, all these reserves could be produced in a through-tubing process using a cement packer. This case history presents a refined look at existing technology involving placement of a cement packer and reviews problems common to cement-packer completions, including a case history. Solutions are also discussed for successfully completing and recovering reserves from not one but several remaining gas intervals. This paper reviews the design considerations and precautions, along with the production results and economics, for placing what is believed to be the largest cement packer placed through coiled tubing.

  1. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect (OSTI)

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  2. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect (OSTI)

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ? 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup 1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  3. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect (OSTI)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

  4. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  5. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-11-01

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  6. Fluid-elastic Instability of Helical Tubes Subjected to Single-Phase External Flow and Two-Phase Internal Flow

    SciTech Connect (OSTI)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2004-07-01

    This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)

  7. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  8. Proceedings: Third international conference on boiler tube failures in fossil plants

    SciTech Connect (OSTI)

    1998-04-01

    The objectives of the conference were to review, document and transfer technology on all aspects of BTF. To meet these objectives, papers and presentations were provided on the following topics: general overview of BTF around the world; waterwall fireside corrosion; corrosion fatigue; root cause analysis; non-destructive evaluation for BTF; superheater failures; condition assessment and data acquisition; and boiler tube failure reduction programs. Each topic was discussed in a separate conference session. Discussions followed each paper and are included in the proceedings. A questionnaire was completed by the attendees on BTF and the remaining needs for research and development. The results are provided in Appendix A.

  9. Use of stress cycling to remove downhole scale from geothermal wells using coiled tubing

    SciTech Connect (OSTI)

    Portman, L.

    1997-12-31

    This paper describes the first application of a relatively new oil field technology to the geothermal industry. The technology is referred to as stress cycling and provides a method of removing hard deposits, such as silica or calcium scales, from tubulars using only jetting action. This new technology lends itself to coiled tubing operations and results in a very fast and efficient clean out operation. The paper describes the theory of stress cycling and lists the operational procedure used on the first job attempted on a geothermal well. The results of the operation are included.

  10. High-pressure coiled-tubing technology solves resin-sand-control problems

    SciTech Connect (OSTI)

    1997-06-01

    Operators of high-pressure offshore gas wells (> 5,000 psi) have had few options for controlling sand production. Sand-control (SC) processes can be economically prohibitive when they involve extensive mobilization, demobilization, and rig-up cost of the conventional offshore rig or hydraulic workover unit. Bullheading SC chemicals from the surface can damage the formation and prohibit production. Coiled-tubing (CT) technology now allows an offshore operator to remove extensive cement residue effectively from the wellbore and place chemical SC treatments in a high-pressure-gas environment. An example from the Gulf of Mexico illustrates the technology.

  11. Observations on Characterization of Defects in Coiled Tubing From Magnetic-Flux-Leakage Data

    SciTech Connect (OSTI)

    Timothy R. McJunkin; Karen S. Miller; Charles R. Tolle

    2006-04-01

    This paper presents observations on the sizing of automatically detected artificial flaws in coiled tubing samples using magnetic-flux-leakage data. Sixty-six artificial flaws of various shapes and types, ranging from 0.30 mm deep pits to slots with length of 9.5 mm, in 44.45 mm outer diameter pipe were analyzed. The detection algorithm and the information automatically extracted from the data are described. Observations on the capabilities and limitations for determining the size and shape of the flaws are discussed.

  12. Design, construction, and use of a coiled tubing drilling structure for onshore and offshore operations

    SciTech Connect (OSTI)

    Frishmuth, R.E.; Pursell, J.C.; Middleton, R.J.; Parker, C.O.

    1996-12-31

    This paper discusses the design, construction, and initial application of a structure for supporting a coiled tubing injector head, bottom hole drilling assembly and pressurized lubricator. The paper includes a discussion of the features desired for the structure and how these were addressed during the design. The manufacturing of the support tower and its support platform are then discussed. On site assembly procedures for the movable structure are presented along with photographs of the deployed rig in service. The versatility and usefulness of the structure are discussed from the end users point of view.

  13. Integrating a Traveling Wave Tube into an AECR-U ion source

    SciTech Connect (OSTI)

    Covo, Michel Kireeff; Benitez, Janilee Y.; Ratti, Alessandro; Vujic, Jasmina L.

    2011-07-01

    An RF system of 500W - 10.75 to 12.75 GHz was designed and integrated into the Advanced Electron Cyclotron Resonance - Upgrade (AECR-U) ion source of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The AECR-U produces ion beams for the Cyclotron giving large flexibility of ion species and charge states. The broadband frequency of a Traveling Wave Tube (TWT) allows modifying the volume that couples and heats the plasma. The TWT system design and integration with the AECR-U ion source and results from commissioning are presented.

  14. Field study results for VOCs with the Perkin-Elmer sequential tube sampler. Interim report

    SciTech Connect (OSTI)

    Colon, M.; McClenny, W.A.; Kronmiller, K.G.; Fortune, C.R.; Daughtrey, E.H.

    1995-10-01

    Two Perkin-Elmer Sequential Tube Samplers (Model STS-25) were evaluated for their performance, portability, and convenience of operation. Results obtained from both samplers and from a collocated Summa-polished stainless steel canister were compared for seven 3-h periods at three sites. Special attention was given to the monitoring of carbonyl sulfide and carbon disulfide. Advantages for the use of the STS-25 are low cost, portability, ease of use, and a design suitable for obtaining sub-part-per billion detection limits with a standard analytical finish. Disadvantages are that it is a one-short technique and no universal solid absorbent material exists.

  15. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard; Yarrison-Rice, Jan; Gao, Qiang; Tan, Hoe; Jagadish, Chennupati; Etheridge, Joanne; Wong, Bryan M.

    2013-12-04

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  16. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    SciTech Connect (OSTI)

    Hhne, Jens

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  17. Influence of the gas-flow Reynolds number on a plasma column in a glass tube

    SciTech Connect (OSTI)

    Jin, Dong Jun; Uhm, Han S.; Cho, Guangsup [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)] [Department of Electronic and Biological Physics, Kwangwoon University, 20 Kwangwon-Ro, Nowon-Gu, Seoul 139-701 (Korea, Republic of)

    2013-08-15

    Atmospheric-plasma generation inside a glass tube is influenced by gas stream behavior as described by the Reynolds number (Rn). In experiments with He, Ne, and Ar, the plasma column length increases with an increase in the gas flow rate under laminar flow characterized by Rn < 2000. The length of the plasma column decreases as the flow rate increases in the transition region of 2000 < Rn < 4000. For a turbulent flow beyond Rn > 4000, the length of the plasma column is short in front of the electrode, eventually leading to a shutdown.

  18. Method and device for demounting in a radiation detector a photomultiplier tube

    SciTech Connect (OSTI)

    Persyk, D.E.; Stoub, E.W.

    1986-03-11

    A device is described for demounting in a radiation detector a photomultiplier tube which is bonded with its scintillation crystal assembly by means of an elastic light transparent adhesive, comprising: (a) a music wire of about 0.01 to 0.03 inch diameter which forms a noose between its wire ends, the noose being provided for being placed aroung the bond; and (b) twisting means connected with both wire ends for twisting them such that the noose becomes smaller thereby sharing the bond.

  19. FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

    SciTech Connect (OSTI)

    Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  20. Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes

    DOE Patents [OSTI]

    Garrison, Melton E. (Powell, TN)

    1984-01-01

    The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.

  1. New coiled-tubing cementing techniques at Prudhoe developed to withstand higher differential pressure

    SciTech Connect (OSTI)

    Krause, R.E.; Reem, D.C. )

    1993-11-01

    The successful hydraulic fracturing program at Prudhoe Bay would not have been possible without an effective coiled-tubing-unit (CTU) cement-squeeze program. Many fracture stimulation candidates were wells that have been squeezed previously. Therefore, squeezed perforations were exposed to higher differential pressures during fracturing operations than normally were seen at Prudhoe. At the outset of the fracture stimulation program in 1990, squeeze perforations failed when subjected to fracture job pressures. It quickly became clear that more aggressive CTU squeeze techniques resulting in stronger squeezed perforations would be necessary if the Prudhoe fracture program were to achieve its goals. Arco Alaska Inc. implemented a more aggressive CTU squeeze program in the Eastern Operating Area (EOA) in mid-1990. This paper documents the results of the new squeeze program, in which increased surface coiled-tubing squeeze pressures from 1,500 to 3,500 psi for 1 hour were used. More resilient, acid-resistant latex cement also became the standard in late 1990 for squeeze cementing. Implementation of this program has resulted in a squeeze success rate approaching 90%.

  2. The Autoignition of iso-Cetane: Shock Tube Experiments and Kinetic Modeling

    SciTech Connect (OSTI)

    Oehlschlaeger, M A; Steinberg, J; Westbrook, C K; Pitz, W J

    2009-02-25

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {Phi} = 0.5 and 1.0 iso-cetane/air mixtures at temperatures ranging from 953 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements and detailed kinetic mechanism for isocetane presented here are the first of their kind.

  3. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect (OSTI)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  4. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOE Patents [OSTI]

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  5. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing dirty fuel mixtures, increased fouling of the tubes both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  6. Thermal behavior of spiral fin-and-tube heat exchanger having fly ash deposit

    SciTech Connect (OSTI)

    Nuntaphan, Atipoang; Kiatsiriroat, Tanongkiat

    2007-08-15

    This research investigates the effect of fly-ash deposit on thermal performance of a cross-flow heat exchanger having a set of spiral finned-tubes as a heat transfer surface. A stream of warm air having high content of fly-ash is exchanging heat with a cool water stream in the tubes. In this study, the temperature of the heat exchanger surface is lower than the dew point temperature of air, thus there is condensation of moisture in the air stream on the heat exchanger surface. The affecting parameters such as the fin spacing, the air mass flow rate, the fly-ash mass flow rate and the inlet temperature of warm air are varied while the volume flow rate and the inlet temperature of the cold water stream are kept constant at 10 l/min and 5 C, respectively. From the experiment, it is found that as the testing period is shorter than 8 h the thermal resistance due to the fouling increases with time. Moreover, the deposit of fly-ash on the heat transfer surface is directly proportional to the dust-air ratio and the amount of condensate on heat exchange surface. However, the deposit of fly-ash is inversely proportional to the fin spacing. The empirical model for evaluating the thermal resistance is also developed in this work and the simulated results agree well with those of the measured data. (author)

  7. Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements

    SciTech Connect (OSTI)

    Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

    2007-10-01

    Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

  8. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect (OSTI)

    Mumford, S. J.; Fedun, V.; Erdlyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above ? = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvn modes (?60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  9. Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes

    DOE Patents [OSTI]

    Garrison, M.E.

    1982-09-03

    The present invention is directed to a method of fabricating heat exchanger tubes in which twisted tapes are utilized for promoting turbulence and heat transfer. The method of the present invention provides for the brazing of the tapes to the inner walls of the tubes for enhancing heat transfer between the fluid within the conduit and a fluid medium outside of the conduit by conduction through the tape. The braze joint of the present invention is coextensive with the tape over the entire length thereof within the conduit. The practice of the present invention is achieved by placing a filler wire of brazing metal along the tape at a location removed from the side walls and then heating the conduit and tape sufficiently to effect the displacement of the filler metal by wicking to the contact point between the tape and the conduit wall to form a braze joint coextensive with the length of the tape within the conduit. This arrangement provides maximum heat transfer and assures that the tape is in contact with the conduit over the entire common length thereof.

  10. Targeted chlorination for biofouling control in steam electric power plant condenser tubes

    SciTech Connect (OSTI)

    Tewari, R.N.

    1991-01-01

    The objective of this study was to develop an understanding of the relationships between biofouling, heat transfer, and to assess the technical feasibility of the targeted chlorination (TC) concept as an alternative to conventional chlorination in once-through seawater cooling systems. A shell and tube type heat exchanger was designed and constructed. The test facility monitored biofouling growth by measuring heat transfer resistance (thermal performance), pressure drop (hydraulic performance), and biomass deposit. Biocide effectiveness was determined by triplicates average residual biomass. Tests were run to evaluate 18 treatment scenarios. Preliminary tests were done to determine variabilities between shells and among tubes, effect of heating, very high dose chlorine burn out and regrowth behavior. LOGIT, a software package by the National Bureau of Standards (NBS) for sigmoidal fit, was used for the preliminary test data. The other three tests studied effect of chlorine dosage (low, high), contact time, and frequency. To minimize variability in results, triplicates for each chlorination scheme were used. The total amount of chlorine applied (flow rate Q x C x T x F) ranged from about 400 to 4,000 pounds per million gallons per day (an equivalent to a CTF range of 6 to 60 ppm.min/day). With respect to efficiency of biofouling control, it was found by regression analysis that among four variables C, T, (CT) and F, F was most significant and C, T, and (CT) were relatively equal in ranking.

  11. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect (OSTI)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  12. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect (OSTI)

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  13. Influence of solid deposits on the inception of self-excited thermoacoustic oscillations in heat transfer to turbulent fluid flow in tubes

    SciTech Connect (OSTI)

    Kafengauz, N.L.; Borovitskii, A.B.

    1986-04-01

    It is established experimentally that solid carbon deposits formed in heat transfer to kerosene in small-bore tubes induce self-excited thermoacoustic oscillations.

  14. Commissioning of the first drift tube linac module in the Ground Test Accelerator

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Cole, R.; Connolly, R.; Denney, P.; Erickson, J.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Kraus, R.; Lysenko, W.P.; McMurry, D.; Mottershead, C.T.; Power, J.; Rose, C.; Rusthoi, D.P.; Sandoval, D.P.; Schneider, J.D.; Smith, M.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1993-06-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam-dynamics design of each major accelerator component as it is brought on-line. The major components are the 35-keV H{sup {minus}} injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2 MeV first 2{beta}{lambda} drift tube linac (DTL-1) module, and the 24-MeV GTA with 10 DTL modules. Results from the DTL-1 beam experiments will be presented.

  15. Development and utilization of a coiled tubing equipment package for work in high pressure wells

    SciTech Connect (OSTI)

    Adrichem, W.P. van; Gordon, D.G.; Newlands, D.J.

    1995-12-31

    Cleanouts of deep, high pressure, high temperature gas wells are a common operation in South Texas. Until recently, these cleanouts required the use of snubbing units due to the high pressures encountered. This resulted in time consuming (7--12 days) and thus expensive operations. Because of this expense, efforts have been made to extend the application of coiled tubing (CT) to operations where wellhead pressures approach 10,000 psi. Testing of a specially equipped 1-1/4 inch CT unit in conditions simulating a 10,000 psi South Texas well cleanout proved that the use of a CT unit was a viable alternative to snubbing operations. Since then, some 50 high pressure cleanouts have been successfully performed at an average cost saving of 50% while taking 1--3 days to complete. This paper will focus on the operating parameters, the design, the testing and the field implementation of a high pressure CT unit.

  16. Recent applications of coiled tubing in remedial wellwork at Prudhoe Bay

    SciTech Connect (OSTI)

    Loveland, K.R.; Bond, A.J.

    1996-12-31

    The vast number of wells and unique operating conditions in Alaska`s Prudhoe Bay field have presented many opportunities for those involved in remedial wellwork. Among the technologies that have either been pioneered, tested, or applied there, coiled tubing (CT) ranks as one of the most long lasting and widely used. This paper highlights the more recent applications of CT in the field. The paper begins with a brief overview of the Prudhoe Bay Unit`s (PBU) CT wellwork program and then follows with discussions on eight CT applications that have been developed or expanded in the last two years. Some are new technology and others are old techniques with a new design. Descriptions and procedures are given for each in addition to performance results thus far.

  17. Coiled tubing deployed ESP works well for Shell in North Sea field

    SciTech Connect (OSTI)

    Watkins, P.; Stewart, D.

    1996-06-01

    What is believed to be the world`s first offshore coiled tubing deployed ESP system was installed by Centrilift, a Division of Baker Hughes Ltd., on Shell Expro`s Auk field Alpha platform in March 1995. After one year, the system is working well and is now viewed as a major step forward in alternative deployment methods for ESPs. Basic features of the system and project background are overviewed here. Shell U.K. Exploration and Production (Expro) operates in the UK Sector of the North Sea on behalf of Shell and Esso. Centrilift worked closely with Shell on this high-profile project and is active on several others, all aimed at reducing the operator`s cost for installing ESPs by using alternative deployment methods.

  18. An algorithm to predict pressure and temperature profiles through a coiled tubing

    SciTech Connect (OSTI)

    Pilo, S.; Intevep, S.A.

    1995-12-31

    The scope of this work is to develop an algorithm to predict the temperature and pressure profiles in a compressible flow through a coiled tubing, taking into account both friction losses and heat transfer simultaneously. The algorithm combines the theory of gas dynamics (heat transfer process) and thermodynamics (energy balance) to predict pressure, temperature, density, velocity and Mach number profiles for either horizontal, inclined or vertical strings. The results of the algorithm were compared with the Cullender & Smith method, which is the standard correlation used for downward gas flow calculations. A strong agreement between them was obtained. The algorithm presented allows more reliable results because it only needs for start-up, gas data that is usually very precisely known in real conditions.

  19. The use of coiled tubing during the Wytch Farm extended reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1994-12-31

    The largest onshore oilfield in Western Europe is situated in an environmentally sensitive coastal area on the south coast of England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing some 80 million barrels of recoverable oil. In 1991, the decision was made to access these reserves through extended reach drilling (ERD) from an existing onshore well-site. This development is currently underway, with three out of a planned eleven wells already drilled and producing. This paper will describe the application of Coiled Tubing in the logging and completion phases of the ERD wells drilled to date.

  20. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  1. A 30 MW, 200 MHz Inductive Output Tube for RF Accelerators

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read

    2008-06-19

    This program investigated development of a multiple beam inductive output tube (IOT) to produce 30 MW pulses at 200 MHz. The program was successful in demonstrating feasibility of developing the source to achieve the desired power in microsecond pulses with 70% efficiency. The predicted gain of the device is 24 dB. Consequently, a 200 kW driver would be required for the RF input. Estimated cost of this driver is approximately $1.25 M. Given the estimated development cost of the IOT of approximately $750K and the requirements for a test set that would significantly increase the cost, it was determined that development could not be achieved within the funding constraints of a Phase II program.

  2. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  3. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  4. Two-dimensional positive column structure in a discharge tube with radius discontinuity

    SciTech Connect (OSTI)

    Zobnin, A. V. Usachev, A. D.; Petrov, O. F.; Fortov, V. E.

    2014-11-15

    The low-pressure (40 and 90?Pa) low-current (4 and 10?mA) direct current discharge in a tube with a sharp change of its radius is studied both numerically and experimentally. A fully self-consistent hybrid numerical model of a two-dimensional non-uniform positive column in neon is developed using a nonlocal approach. The model combines kinetic simulation of the electrons (under two-terms approach) and fluid description of the neon ions and permits to calculate the distribution of all plasma parameters in the direct current discharges in the cameras with cylindrical geometry and radius discontinuity. The simulation results are compared with the measured 585.3?nm neon spectral line absolute intensities and excited 1s{sub 3} metastable neon atom number densities. Non-local electron kinetics in the transition region and formation of standing strata are discussed.

  5. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  6. Combination induction plasma tube and current concentrator for introducing a sample into a plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1988-01-01

    An induction plasma tube in combination with a current concentrator. The rent concentrator has a substantially cylindrical body having an open end and a partially closed end which defines an aperture. A first slot extends the longitudinal length of the cylindrical body and a second slot extends radially outward from the aperture. Together the first and second slots form a single L-shaped slot. The current concentrator is disposed within a volume bounded by an induction coil substantially along the axis thereof, and when power is applied to the induction coil a concentrated current is induced within the current concentrator aperture. The concentrator is moveable relative to the coil along the longitudinal axis of the coil to control the amount of current which is concentrated at the aperture.

  7. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    DOE Patents [OSTI]

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  8. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  9. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect (OSTI)

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased. (author)

  10. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.

  11. Plasma Sprayed Pour Tubes and Other Melt Handling Components for Use in Gas Atomization

    SciTech Connect (OSTI)

    Byrd, David; Rieken, Joel; Heidloff, Andy; Besser, Matthew; Anderson, Iver

    2011-04-01

    Ames Laboratory has successfully used plasma sprayed ceramic components made from yttria stabilized zirconia as melt pouring tubes for gas atomization for many years. These tubes have proven to be strong, thermal shock resistant and versatile. Various configurations are possible both internally and externally. Accurate dimensions are achieved internally with a machined fugitive graphite mandrel and externally by diamond grinding. The previous study of the effect of spray parameters on density was extended to determine the effect of the resulting density on the thermal shock characteristics on down-quenching and up-quenching. Encouraging results also prompted investigation of the use of plasma spraying as a method to construct a melt pour exit stopper that is mechanically robust, thermal shock resistant, and not susceptible to attack by reactive melt additions. The Ames Laboratory operates two close-coupled high pressure gas atomizers. These two atomizers are designed to produce fine and coarse spherical metal powders (5{mu} to 500{mu} diameter) of many different metals and alloys. The systems vary in size, but generally the smaller atomizer can produce up to 5 kg of powder whereas the larger can produce up to 25 kg depending on the charge form and density. In order to make powders of such varying compositions, it is necessary to have melt systems capable of heating and containing the liquid charge to the desired superheat temperature prior to pouring through the atomization nozzle. For some metals and alloys this is not a problem; however for some more reactive and/or high melting materials this can pose unique challenges. Figure 1 is a schematic that illustrates the atomization system and its components.

  12. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Boroski, W.N.; Nicol, T.H. ); Pidcoe, S.V. . Space Systems Div.); Zink, R.A. )

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking device to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs.

  13. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    SciTech Connect (OSTI)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramn; Goossens, Marcel

    2013-11-10

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvn modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences.

  14. Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes

    SciTech Connect (OSTI)

    Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E. [Politecnico di Milano, Dept. of Energy, Nuclear Engineering Div. - CeSNEF, Via La Masa 34, 20156, Milano (Italy)

    2012-07-01

    Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have been studied at mass flux from 100 to 400 kg/m{sup 2}s and pressure from 10 to 20 bar, to confirm the particular behavior of the stability boundary in helical geometry at low pressure and low mass flow rate. Finally, starting from the unstable regions identified from the experimental channel characteristics, Ledinegg type instabilities have been investigated to drawn stability maps with complete stable and unstable regions in the dimensionless plane N sub-N pch. (authors)

  15. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    SciTech Connect (OSTI)

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-09-15

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm{sup 2}. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm{sup 2}, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately 3 mm in the radial and circumferential directions on the anode. Conclusions: Active shielding is an attractive solution for correcting the effects of magnetic fields on the x-ray focal spot. If extremely long fluoroscopic exposure times are required, longer operation times can be achieved by including a permanent magnet with the active shielding design.

  16. Two new design tools maximize safety and efficiency for coiled tubing pumping treatments

    SciTech Connect (OSTI)

    Gary, S.C.; Walton, I.C.; Gu, H.

    1995-10-01

    This paper describes the use of two new computer tools to assist the engineer in the design and evaluation of coiled tubing (CT) pumping treatments. Sand fill cleanouts and nitrogen kickoffs continue to comprise the majority of the operations performed by CT; however, the ability to design and evaluate jobs of this type has been limited for many years to simple steady-state calculations and general rules of thumb, both strictly applicable to vertical wells. Using these tools and an engineering design methodology, these treatments can be performed in the most efficient manner possible. The tools optimize the fluids, rates and penetration schedules by considering the effect of deviation on particle transport, reservoir influx or leakoff or both, mixing of gases in the wellbore, and other aspects of the operation. Additionally, by optimizing the required movement of the CT, pipe fatigue can be held to a minimum, providing safer and more cost-effective treatments. Examples that use these tools to design CT treatments are presented.

  17. Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir

    SciTech Connect (OSTI)

    1997-06-01

    The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

  18. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect (OSTI)

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  19. Transient aspects of unloading oil and gas wells with coiled tubing

    SciTech Connect (OSTI)

    Gu, H.

    1995-12-31

    Unloading oil and gas wells with coiled tubing (CT) conveyed nitrogen circulation is a transient process in which the original heavier fluid in a wellbore is displaced by nitrogen and lighter reservoir fluid. The transient aspects need to be considered when determining nitrogen volume and operation time for unloading a well. A computer wellbore simulator has been developed and used to study the transient effects. The simulator includes transient multiphase mass transport and takes into account the different fluids in the wellbore and from the reservoir. The simulator also includes the gas rise in the wellbore liquid below the CT and can be used for gas well unloading. The transient results of oil and gas well unloading are presented. The effects of CT size and depth, workover fluid, and nitrogen rate and volume on unloading are discussed. Unlike continuous gas lift, the total gas volume needed and the operation time in an unloading process can only be determined and optimized based on a transient analysis.

  20. Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    SciTech Connect (OSTI)

    STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

    1999-10-01

    Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

  1. Coiled tubing stimulations eliminate hole failures & condensate losses in Arun field

    SciTech Connect (OSTI)

    Bunnell, F.D.; Daud, M.M.

    1995-12-31

    Stimulation practices have evolved considerably over the life of the Arun Field. From the original HCl matrix treatments in the late 70`s to the organic matrix and acid fracture treatments through the early 90`s these techniques have proven effective. Beginning in recent years however, some problems have been observed. Problems include collapsing shales plugging one well and sharp drops in the condensate/gas ratio following stimulation in others. Open hole completions with a limited casing/cement barrier between the over pressured shale and the depleting Arun reservoir are subject to shale collapse and plugging when directly exposed to acid during conventional stimulations. Most Arun completions are subject to post stimulation condensate losses due to increasingly difficult conditions for effective diversion of acid treatment fluids. Acid stimulation using coiled tubing techniques effectively addresses these problems. In seven stimulations performed to date shale failures and condensate losses have been eliminated. Direct acid washing across deeper intervals helps protect the acid sensitive barrier in open hole completions and effectively treats the lower, condensate rich zones.

  2. Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling

    SciTech Connect (OSTI)

    Curran, H.J.; Dunphy, M.P.; Simmie, J.M.; Westbrook, C.K.; Pitz, W.J.

    1991-11-22

    The ignition of ethanol, isobutene and methyl tert-butyl ether (MTBE) has been studied experimentally in a shock tube and computationally with a detailed chemical kinetic model. Experimental results, consisting of ignition delay measurements, were obtained for a range of fuel/oxygen mixtures diluted in Argon, with temperatures varying over a range of 1100--1900 K. The numerical model consisted of a detailed kinetic reaction mechanism with more than 400 elementary reactions, chosen to describe reactions of each fuel and the smaller hydrocarbon and other species produced during their oxidation. The overall agreement between experimental and computed results was excellent, particularly for mixtures with greater than 0.3% fuel. The greatest sensitivity in the computed results was found to falloff parameters in the dissociation reactions of isobutene, ethane, methane, and ethyl and vinyl radicals, to the C{sub 3}H{sub 4} and C{sub 3}H{sub 5} reaction submechanisms in the model, and to the reactions in the H{sub 2}-O{sub 2}-Co submechanism.

  3. The dissociation of diacetyl : a shock-tube and theoretical study.

    SciTech Connect (OSTI)

    Yang, X.; Jasper, A. W.; Kiefer, J. H.; Tranter, R. S.

    2009-07-01

    The dissociation of diacetyl dilute in krypton has been studied in a shock tube using laser schlieren densitometry at 1200-1800 K and reaction pressures of 55 {+-} 2, 120 {+-} 3, and 225 {+-} 5 Torr. The experimentally determined rate coefficients show falloff and an ab initio/Master Equation/VRC-TST analysis was used to determine pressure-dependent rate coefficient expressions that are in good agreement with the experimental data. From the theoretical calculations k{sub {infinity}} (T) = 5.029 x 10{sup 19} (T/298 K){sup -3.40} exp(-37665/T) s{sup -1} for 300 < T < 2000 K. The laser schlieren profiles were simulated using a model for methyl recombination with appropriate additions for diacetyl. From the simulations rate coefficients were determined for CH{sub 3} + CH{sub 3} = C{sub 2}H{sub 6} and CH{sub 3} + C{sub 4}H{sub 6}O{sub 2} = CH{sub 3}CO + CH{sub 2}CO + CH{sub 4} (k(T) = 2.818T{sup 4.00} exp(-5737/T) cm{sup 3} mol{sup -1} s{sup -1}). Excellent agreement is found between the simulations and experimental profiles, and Troe type parameters have been calculated for the dissociation of diacetyl and the recombination of methyl radicals.

  4. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  5. Mist/steam cooling in a heated horizontal tube -- Part 1: Experimental system

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01

    To improve the airfoil cooling significantly for the future generation of advanced turbine systems (ATS), a fundamental experimental program has been developed to study the heat transfer mechanisms of mist/steam cooling under highly superheated wall temperatures. The mist/steam mixture was obtained by blending fine water droplets (3 {approximately} 15 {micro}m in diameter) with the saturated steam at 1.5 bars. Two mist generation systems were tested by using the pressure atomizer and the steam-assisted pneumatic atomizer, respectively. The test section, heated directly by a DC power supply, consisted of a thin-walled ({approximately} 0.9 mm), circular stainless steel tube with an ID of 20 mm and a length of 203 mm. Droplet size and distribution were measured by a phase Doppler particle analyzer (PDPA) system through view ports grafted at the inlet and the outlet of the test section. Mist transportation and droplet dynamics were studied in addition to the heat transfer measurements. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet mass ratios ranging from 1 {approximately} 6%.

  6. Columbia University flow instability experimental program: Volume 2. Single tube uniformly heated tests -- Part 2: Uncertainty analysis and data

    SciTech Connect (OSTI)

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1990-05-01

    In June 1988, Savannah River Laboratory requested that the Heat Transfer Research Facility modify the flow excursion program, which had been in progress since November 1987, to include testing of single tubes in vertical down-flow over a range of length to diameter (L/D) ratios of 100 to 500. The impetus for the request was the desire to obtain experimental data as quickly as possible for code development work. In July 1988, HTRF submitted a proposal to SRL indicating that by modifying a facility already under construction the data could be obtained within three to four months. In January 1990, HTFR issued report CU-HTRF-T4, part 1. This report contained the technical discussion of the results from the single tube uniformly heated tests. The present report is part 2 of CU-HTRF-T4 which contains further discussion of the uncertainty analysis and the complete set of data.

  7. Computer simulator of coiled tubing wellbore cleanouts in deviated wells recommends optimum pump rate and fluid viscosity

    SciTech Connect (OSTI)

    Walton, I.C.

    1995-12-31

    Key factors in the efficient removal of sand fill from deviated wells are the proper selection of a fluid and the pump rates. The operation should be designed to (1) reduce or eliminate the formation of beds of particles in the annulus between the casing and tubing, (2) maintain the particles in suspension and (3) transport the fill to the surface. A new design tool for coiled tubing (CT) cleanouts in deviated wells has been developed. Based on a mechanistic model of particle transport in deviated wells, it predicts the conditions under which a particle bed is formed, calculates the depth of the bed and determines whether the bed slides upward, remains stationary or slides back down the well. Moreover, it calculates the minimum pump rate required to achieve complete suspension of the fill for different fluid viscosities, sand pick-up rates and deviation angles, thereby allowing a simple assessment of the optimum design parameters.

  8. Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser

    SciTech Connect (OSTI)

    Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

    1985-12-01

    The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

  9. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube

    SciTech Connect (OSTI)

    Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-10-15

    In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

  10. Shut-off of a geopressured water channel behind casing via coiled tubing utilizing a dual slurry cement system: A case history

    SciTech Connect (OSTI)

    Nowak, T.W.; Lange, K.J.; Grant, W.H.; Patout, T.S.

    1995-12-31

    This paper presents a case history involving a unique dual cement system to shut off a geopressured water channel behind casing utilizing coiled tubing. The channeling problem was identified and documented using water flow logging techniques. Logging indicated the lower gravel packed selective could produce salt water if perforated without eliminating the suspected water channel. Reserves did not warrant a major rig workover, making a non-rig workover via coiled tubing the only viable option to repair the well. A unique dual cement system tested on a hesitation squeeze schedule pumped through coiled tubing with extremely limited thickening time was necessary to repair the primary cement job.

  11. The design and development of a single piece, sandwhich tube coldmass support post for the SSC Collider Dipole Magnets

    SciTech Connect (OSTI)

    Ahmad, A.; Mehle, G.

    1993-04-01

    This paper presents the design and development of the single piece, carbon/epoxy syntactic core sandwich tube support post concept for the 13-m and 15-m Collider Dipole Magnet (CDM). The engineering studies focus on balancing the structural and thermal requirements for the structure, and most importantly the implicit requirement of ``Designing for Producibility.`` Results from these studies, as well as the development program plan, will be presented.

  12. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine

    SciTech Connect (OSTI)

    Wuermel, J.; Silke, E.J.; Curran, H.J.; O Conaire, M.S.; Simmie, J.M.

    2007-10-15

    The diluent gas used in the preparation of test fuel/oxygen mixtures is inert and does not take part in the chemical reaction. However, it does have an effect on the measured ignition delay time both in rapid compression machines and in shock tubes - argon decelerates ignition in the RCM, but accelerates it in the shock tube under some conditions. This opposite effect is due to the times scales involved in these experimental devices. Typical ignition delay times in the RCM are in the region of 1-200 ms, while those in the shock tube are much shorter (10-1000 {mu}s). Comparative RCM experiments and simulations for helium, argon, xenon, and nitrogen have shown extreme heat loss in the postcompression period, particularly for helium. Autoignition measurements of 2,3-dimethylpentane have highlighted a direct dependency of ignition delay time on the type of diluent used, where longer ignition delay time were recorded with argon. This increased ignition delay time is due to the extreme cooling of argon in the postcompression period. This observation was strengthened by comparative experiments with helium and argon, where the diluent effect was even stronger for helium, caused by its higher thermal conductivity. In the shock tube, the diluent effect is opposite to that in the RCM. For dilute mixtures of isooctane, calculations have predicted that mixtures with argon will ignite faster than those with nitrogen, based on the relative heat capacities of the two diluent gases. Overall, we conclude that the choice of diluent gases in experimental devices must be made with care, as ignition delay times can depend strongly on the type of diluent gas used. (author)

  13. Effect of shell drilling stiffness on response calculations of rectangular plates and tubes of rectangular cross-section under compression.

    SciTech Connect (OSTI)

    Gorman, Jhana; Hales, Jason Dean; Corona, Edmundo

    2010-05-01

    This report considers the calculation of the quasi-static nonlinear response of rectangular flat plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateralshell finite element models. The principal objective is to assess the effect that the shell drilling stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor specifies the amount of artificial stiffness that is given to the shell element drilling Degree of freedom (rotation normal to the plane of the element). The element formulation has no stiffness for this degree of freedom, and this can lead to numerical difficulties. The results indicate that in the problems considered it is necessary to add a small amount of drilling tiffness to obtain converged results when using both implicit quasi-statics or explicit dynamics methods. The report concludes with a parametric study of the imperfection sensitivity of the calculated responses of the elastic-plastic tubes with rectangular cross-section.

  14. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect (OSTI)

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  15. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles

    SciTech Connect (OSTI)

    Moeykens, S.A.; Pate, M.B.

    1996-11-01

    This study evaluates the effects of lubricant on spray evaporation heat transfer performance. Tests were conducted with refrigerant R-134a and triangular-pitch tube bundles made from enhanced-condensation, enhanced-boiling, low-finned, and plain-surface tubes. A 340-SUS polyol-ester (POE) oil was used for the R-134a testing because this lubricant is being integrated into industry for use with this refrigerant. Refrigerant was sprayed onto the tube bundles with low-pressure-drop, wide-angle nozzles located directly above the bundle. Collector testing was conducted with both R-134a and R-22 to determine the percentage of refrigerant contacting the tue bundle. It was found that small concentrations of the polyol-ester lubricant yielded significant improvement in the heat transfer performance of R-134a. The shell-side heat transfer coefficient was more dependent on lubricant concentration than on film-feed supply rate within the range of the respective parameters evaluated in this study. As expected, pure R-22 results show higher heat transfer coefficients than those obtained with pure R-134a at the same saturation temperature of 2.0 C (35.6 F).

  16. Final Scientific/Technical Report "Arc Tube Coating System for Color Consistency"

    SciTech Connect (OSTI)

    Buelow, Roger; Jenson, Chris; Kazenski, Keith

    2013-03-21

    DOE has enabled the use of coating materials using low cost application methods on light sources to positively affect the output of those sources. The coatings and light source combinations have shown increased lumen output of LED fixtures (1.5%-2.0%), LED arrays (1.4%) and LED powered remote phosphor systems – Philips L-Prize lamp (0.9%). We have also demonstrated lifetime enhancements (3000 hrs vs 8000 hrs) and shifting to higher CRI (51 to 65) in metal halide high intensity discharge lamps with metal oxide coatings. The coatings on LEDs and LED products are significant as the market is moving increasingly more towards LED technology. Enhancements in LED performance are demonstrated in this work through the use of available materials and low cost application processes. EFOI used low refractive index fluoropolymers and low cost dipping processes for application of the material to surfaces related to light transmission of LEDs and LED products. Materials included Teflon AF, an amorphous fluorinated polymer and fluorinated acrylic monomers. The DOE SSL Roadmap sets goals for LED performance moving into the future. EFOI’s coating technology is a means to shift the performance curve for LEDs. This is not limited to one type of LED, but is relevant across LED technologies. The metal halide work included the use of sol-gel solutions resulting in silicon dioxide and titanium dioxide coatings on the quartz substrates of the metal halide arc tubes. The coatings were applied using low cost dipping processes.

  17. Shock-tube and modeling study of ethane pyrolysis and oxidation

    SciTech Connect (OSTI)

    Hidaka, Yoshiaki; Sato, Kazutaka; Hoshikawa, Hiroki; Nishimori, Toshihide; Takahashi, Rie; Tanaka, Hiroya; Inami, Koji; Ito, Nobuhiro

    2000-02-01

    Pyrolysis and oxidation of ethane were studied behind reflected shock waves in the temperature range 950--1,900 K at pressures of 1.2--4.0 atm. Ethane decay rates in both pyrolysis and oxidation were measured using time-resolved infrared (IR) laser absorption at 3.39 {micro}m, and CO{sub 2} production rates in oxidation were measured by time-resolved thermal IR emission at 4.24 {micro}m. The product yields were also determined using a single-pulse method. The pyrolysis and oxidation of ethane were modeled using a reaction mechanism with 157 reaction steps and 48 species including the most recent submechanisms for formaldehyde, ketene, methane, acetylene, and ethylene oxidation. The present and previously reported shock tube data were reproduced using this mechanism. The rate constants of the reactions C{sub 2}H{sub 6} {yields} CH{sub 3} + CH{sub 3}, C{sub 2}H{sub 5} + H {yields} H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were evaluated. These reactions were important in predicting the previously reported and the present data, which were for mixture compositions ranging from ethane-rich (including ethane pyrolysis) to ethane-lean. The evaluated rate constants of the reactions C{sub 2}H{sub 5} + H {yields} C{sub 2}H{sub 4} + H{sub 2} and C{sub 2}H{sub 5} + O{sub 2} {yields} C{sub 2}H{sub 4} + HO{sub 2} were found to be significantly different from currently accepted values.

  18. Integrated testing of the Thales LPT9510 pulse tube cooler and the iris LCCE electronics

    SciTech Connect (OSTI)

    Johnson, Dean L.; Rodriguez, Jose I.; Carroll, Brian A.; Bustamante, John G.; Kirkconnell, Carl S.; Luong, Thomas T.; Murphy, J. B.; Haley, Michael F.

    2014-01-29

    The Jet Propulsion Laboratory (JPL) has identified the Thales LPT9510 pulse tube cryocooler as a candidate low cost cryocooler to provide active cooling on future cost-capped scientific missions. The commercially available cooler can provide refrigeration in excess of 2 W at 100K for 60W of power. JPL purchased the LPT9510 cooler for thermal and dynamic performance characterization, and has initiated the flight qualification of the existing cooler design to satisfy near-term JPL needs for this cooler. The LPT9510 has been thermally tested over the heat reject temperature range of 0C to +40C during characterization testing. The cooler was placed on a force dynamometer to measure the selfgenerated vibration of the cooler. Iris Technology has provided JPL with a brass board version of the Low Cost Cryocooler Electronics (LCCE) to drive the Thales cooler during characterization testing. The LCCE provides precision closed-loop temperature control and embodies extensive protection circuitry for handling and operational robustness; other features such as exported vibration mitigation and low frequency input current filtering are envisioned as options that future flight versions may or may not include based upon the mission requirements. JPL has also chosen to partner with Iris Technology for the development of electronics suitable for future flight applications. Iris Technology is building a set of radiation-hard, flight-design electronics to deliver to the Air Force Research Laboratory (AFRL). Test results of the thermal, dynamic and EMC testing of the integrated Thales LPT9510 cooler and Iris LCCE electronics is presented here.

  19. Detailed analysis of the energy yield of systems with covered sheet-and-tube PVT collectors

    SciTech Connect (OSTI)

    Santbergen, R.; Rindt, C.C.M.; van Zolingen, R.J.Ch.; Zondag, H.A.

    2010-05-15

    Solar cells have a typical efficiency in the range of 5-20%, implying that 80% or more of the incident solar energy can be harvested in the form of heat and applied for low-temperature heating. In a PVT collector one tries to collect this heat. In this work, the electrical and thermal yield of solar domestic hot water systems with one-cover sheet-and-tube PVT collectors were considered. Objectives of the work were to understand the mechanisms determining these yields, to investigate measures to improve these yields and to investigate the yield consequences if various solar cell technologies are being used. The work was carried out using numerical simulations. A detailed quantitative understanding of all loss mechanisms was obtained, especially of those being inherent to the use of PVT collectors instead of PV modules and conventional thermal collectors. The annual electrical efficiencies of the PVT systems investigated were up to 14% (relative) lower compared to pure PV systems and the annual thermal efficiencies up to 19% (relative) lower compared to pure thermal collector systems. The loss of electrical efficiency is mainly caused by the relatively high fluid temperature. The loss of thermal efficiency is caused both by the high emissivity of the absorber and the withdrawal of electrical energy. However, both the loss of electrical and thermal efficiency can be reduced further by the application of anti-reflective coatings. The thermal efficiency can be improved by the application of a low-emissivity coating on the absorber, however at the cost of a reduced electrical efficiency. (author)

  20. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect (OSTI)

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)