National Library of Energy BETA

Sample records for tswana tumbuka tupi

  1. Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

    E-Print Network [OSTI]

    Heil, Matthias

    Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: Ignition and combustion of an initially spherical pocket of fuel, the results provide a good appreciation of the dynamics of the combustion process. For example, it is found

  2. Signals at ground level of relativistic solar particles associated to the "All Saints" filament eruption on 2014

    E-Print Network [OSTI]

    Augusto, C R A; de Oliveira, M N; Shigueoka, H; Nepomuceno, A A; Fauth, A C


    Far away from any sunspot, a bright flare erupted on November 1st, 2014, with onset at 4:44 UT and a duration of around three hours, causing a C2.7-class flare. The blast was associated with the sudden disappearance of a large dark solar filament. The rest of the filament flew out into space, forming the core of a massive CME. Despite the location of the explosion over the sun's southeastern region (near the eastern edge of the sun) not be geoeffective, a radiation storm, that is, solar energetic particles (SEP) started to reach the Earth around 14:00 UT, reaching the condition of an S1 (minor) radiation storm level on Nov. 2th. In coincidence with onset of the S1 radiation storm (SEP above 5 MeV), the Tupi telescopes located at $22^090'$S; $43^020'$W, within the South Atlantic Anomaly (SAA) detected a muon enhancement caused by relativistic protons from this solar blast. In addition an increase in the particle intensity was found also at South Pole neutron monitor. This means that there was a transverse prop...