National Library of Energy BETA

Sample records for tswana tumbuka tupi

  1. VARIATIONS OF THE MUON FLUX AT SEA LEVEL ASSOCIATED WITH INTERPLANETARY ICMEs AND COROTATING INTERACTION REGIONS

    SciTech Connect (OSTI)

    Augusto, C. R. A.; Kopenkin, V.; Navia, C. E.; Tsui, K. H.; Shigueoka, H.; Fauth, A. C.; Kemp, E.; Manganote, E. J. T.; Leigui de Oliveira, M. A.; Miranda, P.; Ticona, R.; Velarde, A.

    2012-11-10

    We present the results of an ongoing survey on the association between the muon flux variation at ground level (3 m above sea level) registered by the Tupi telescopes (Niteri-Brazil, 22.{sup 0}9S, 43.{sup 0}2W, 3 m) and the Earth-directed transient disturbances in the interplanetary medium propagating from the Sun (such as coronal mass ejections (CME), and corotating interaction regions (CIRs)). Their location inside the South Atlantic Anomaly region enables the muon telescopes to achieve a low rigidity of response to primary and secondary charged particles. The present study is primarily based on experimental events obtained by the Tupi telescopes in the period from 2010 August to 2011 December. This time period corresponds to the rising phase of solar cycle 24. The Tupi events are studied in correlation with data obtained by space-borne detectors (SOHO, ACE, GOES). Identification of interplanetary structures and associated solar activity was based on the nomenclature and definitions given by the satellite observations, including an incomplete list of possible interplanetary shocks observed by the CELIAS/MTOF Proton Monitor on the Solar and Heliospheric Observatory (SOHO) spacecraft. Among 29 experimental events reported in the present analysis, there are 15 possibly associated with the CMEs and sheaths, and 3 events with the CIRs (forward or reverse shocks); the origin of the remaining 11 events has not been determined by the satellite detectors. We compare the observed time (delayed or anticipated) of the muon excess (positive or negative) signal on Earth (the Tupi telescopes) with the trigger time of the interplanetary disturbances registered by the satellites located at Lagrange point L1 (SOHO and ACE). The temporal correlation of the observed ground-based events with solar transient events detected by spacecraft suggests a real physical connection between them. We found that the majority of observed events detected by the Tupi experiment were delayed in

  2. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomistic analysis of in-situ EXAFS data to determine the structure of bimetallic catalysts during aqueous phase reforming (APR) of ethylene glycol. Significance and Impact These results clearly indicate that bimetallic catalysts undergo structural transformation under reaction conditions, demonstrating the importance of in-situ techniques. Revealing Catalyst Structure under in-situ Conditions Work was performed at University of Delaware and BNL in collaboration with PNNL Tupy, S.A.; Karim,