National Library of Energy BETA

Sample records for true vertical depth

  1. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    SciTech Connect (OSTI)

    Wei X.; Braverman J.; Miranda, M.; Rosario, M.E.; Costantino, C.J.

    2015-02-25

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  2. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  3. TrueWind Solutions | Open Energy Information

    Open Energy Info (EERE)

    TrueWind Solutions Jump to: navigation, search Name: TrueWind Solutions Place: Albany, NY Website: www.awstruepower.com References: TrueWind Solutions1 Information About...

  4. ARM - Measurement - Snow depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Snow depth Snow depth measured at the surface Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  5. Protections = Defenses in Depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections = Defenses in Depth Protections = Defense in Depth We use a defense-in-depth strategy to protect the environment. August 1, 2013 Protections = Defense in Depth: Protection #1: Remove the source of contamination; Protection #2: Stabilize, retain or remove contaminated sediments; Protection #3: Sample for known and unexpected contaminants Clean the Past: Protections Protections: Cleanup Cleanup 101 Corrective Measures Process Protection #1: Remove the Source Example Cleanup: Removal of

  6. True: Order (2015-CE-42049) | Department of Energy

    Energy Savers [EERE]

    True: Order (2015-CE-42049) True: Order (2015-CE-42049) February 4, 2016 DOE ordered True Manufacturing Co., Inc., to pay a $36,400 civil penalty after finding True had manufactured and distributed in commerce in the U.S. 182 units of True commercial refrigerator basic models TCGG-72 and GCGG-72-S, which did not meet the application energy conservation standard. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and True. Federal law subjects manufacturers and

  7. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  8. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  9. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  10. Vertical Velocity Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically...

  11. Micromachined electrostatic vertical actuator

    DOE Patents [OSTI]

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  12. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, Peter M. (Hamburg, NY); Reger, Robert J. (Grand Island, NY)

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  13. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  14. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic Scintillation and Other Stereotactic Detectors

    SciTech Connect (OSTI)

    Pino, R; Therriault-Proulx, F; Wang, X; Yang, J; Beddar, S

    2014-06-01

    Purpose: To perform dose profile and output factor (OF) measurements with the Exradin W1 plastic scintillation detector (PSD) for small fields made by the high-definition multi-leaf collimator (MLC) on the TrueBeam STx system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new small volume near-water equivalent and energy independent PSD manufactured by Standard Imaging, Inc. All measurements were performed in an IBA Blue Phantom water tank. Square MLC-shaped fields with sides ranging from 0.5 cm to 2 cm and jawshaped fields with sides ranging from 1 cm to 40 cm were measured using an SAD setup at 10 cm depth. Dose profile and percent depth dose (PDD) measurements were also taken under the same conditions for MLC fields 0.5×0.5 and 1×1 cm2 in size with jaws at 2×2cm2. The CC01 and W1 were vertically mounted. Results: OFs measured with the W1 for jaw only square fields were consistent with the ones measured with a Farmers PTW TN33013 ion chamber (1.8% maximum deviation). OF and penumbra measurement results are presented below. PDDs measured for all detectors are within 1.5% for the 0.5×0.5 cm2 and within 1% for the 1×1 cm2 MLC fields.Output factors:MLC size W1 CC01 EDGE0.5cm 0.555 0.541 0.5851.0cm 0.716 0.702 0.7331.5cm 0.779 0.761 0.7772.0cm 0.804 0.785 0.796Penumbras (mm):MLC size W1 CC01 EDGE0.5cm 2.7 2.9 2.51.0cm 3.0 3.4 2. Conclusion: OFs measured for small MLC fields were consistent with the ones measured with the other stereotactic detectors. Measured penumbras are consistent with detector size. The Exradin W1 PSD is an excellent choice for characterizing MLC-shaped small beam dosimetry used for stereotactic radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIH/NCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: “Water-Equivalent Plastic Scintillation Detectors for Small Field Radiotherapy”.

  15. Microsoft Word - Tad True QER Testimony (2).docx

    Broader source: Energy.gov (indexed) [DOE]

    Tad True Vice President, Belle Fourche & Bridger Pipelines Casper, WY before the U.S. Department of Energy Quadrennial Energy Review Hearing in Permitting and Siting, Cheyenne, WY August 21, 2014 Good morning, my name is Tad True and I am the Vice President of Belle Fourche and Bridger Pipeline. I appreciate the opportunity to testify today. As background, our pipelines are part of a collection of family owned companies that we refer to as the True Companies. My grandfather, H.A.

  16. Integrated Microinverters for Enabling True ACPV Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Microinverters for Enabling True ACPV Modules Integrated Microinverters for Enabling True ACPV Modules solarbridge logo2.jpg This project, led by SolarBridge Technologies, is developing an innovative alternating-current photovoltaic (ACPV) module that consists of an integrated "Universal PV-Dock" and a high-reliability, low-cost, high-efficiency microinverter to substantially reduce balance of system (BOS) costs in residential and commercial PV systems. In 2011,

  17. How to Calculate the True Cost of Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A BestPractices Steam Technical Brief How To Calculate The True Cost of Steam U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Industrial Technologies Program Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance How To Calculate The True Cost of Steam Knowing the correct cost of steam is important for many reasons, and

  18. TruePeak Process Laser Analyzer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TruePeak Process Laser Analyzer TruePeak Process Laser Analyzer In-Situ Sensors Provide Real-Time Measurements Enabling Better Control and Process Optimization Current chemical process controls use few in-situ sensors, relying instead on analytic techniques that require sample conditioning and transport, and significant turnaround time. With few exceptions, these techniques lack speed of measurement, accuracy of measurement, sensitivity of measurement, and economical measurement. In-situ sensors

  19. Crayola's True Color Shines Through: Green | Department of Energy

    Office of Environmental Management (EM)

    Crayola's True Color Shines Through: Green Crayola's True Color Shines Through: Green August 13, 2010 - 10:00am Addthis The Crayola solar farm became fully operational this week. Ten children from around the country, known as the "Crayola Green Team," helped dedicate the newest addition to the Easton, Pa.-plant. Photos courtesy of Crayola. | Photo Courtesy of Crayola The Crayola solar farm became fully operational this week. Ten children from around the country, known as the

  20. Commissioning of the Varian TrueBeam linear accelerator: A multi-institutional study

    SciTech Connect (OSTI)

    Glide-Hurst, C.; Bellon, M.; Wen, N.; Zhao, B.; Chetty, I. J.; Foster, R.; Speiser, M.; Solberg, T.; Altunbas, C.; Westerly, D.; Miften, M.; Altman, M.

    2013-03-15

    Purpose: Latest generation linear accelerators (linacs), i.e., TrueBeam (Varian Medical Systems, Palo Alto, CA) and its stereotactic counterpart, TrueBeam STx, have several unique features, including high-dose-rate flattening-filter-free (FFF) photon modes, reengineered electron modes with new scattering foil geometries, updated imaging hardware/software, and a novel control system. An evaluation of five TrueBeam linacs at three different institutions has been performed and this work reports on the commissioning experience. Methods: Acceptance and commissioning data were analyzed for five TrueBeam linacs equipped with 120 leaf (5 mm width) MLCs at three different institutions. Dosimetric data and mechanical parameters were compared. These included measurements of photon beam profiles (6X, 6XFFF, 10X, 10XFFF, 15X), photon and electron percent depth dose (PDD) curves (6, 9, 12 MeV), relative photon output factors (Scp), electron cone factors, mechanical isocenter accuracy, MLC transmission, and dosimetric leaf gap (DLG). End-to-end testing and IMRT commissioning were also conducted. Results: Gantry/collimator isocentricity measurements were similar (0.27-0.28 mm), with overall couch/gantry/collimator values of 0.46-0.68 mm across the three institutions. Dosimetric data showed good agreement between machines. The average MLC DLGs for 6, 10, and 15 MV photons were 1.33 {+-} 0.23, 1.57 {+-} 0.24, and 1.61 {+-} 0.26 mm, respectively. 6XFFF and 10XFFF modes had average DLGs of 1.16 {+-} 0.22 and 1.44 {+-} 0.30 mm, respectively. MLC transmission showed minimal variation across the three institutions, with the standard deviation <0.2% for all linacs. Photon and electron PDDs were comparable for all energies. 6, 10, and 15 MV photon beam quality, %dd(10){sub x} varied less than 0.3% for all linacs. Output factors (Scp) and electron cone factors agreed within 0.27%, on average; largest variations were observed for small field sizes (1.2% coefficient of variation, 10 MV, 2 Multiplication-Sign 2 cm{sup 2}) and small cone sizes (<1% coefficient of variation, 6 Multiplication-Sign 6 cm{sup 2} cone), respectively. Conclusions: Overall, excellent agreement was observed in TrueBeam commissioning data. This set of multi-institutional data can provide comparison data to others embarking on TrueBeam commissioning, ultimately improving the safety and quality of beam commissioning.

  1. Multicolored Vertical Silicon Nanowires

    SciTech Connect (OSTI)

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  2. ARM - Measurement - Aerosol optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  3. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  4. SU-E-T-585: Commissioning of Electron Monte Carlo in Eclipse Treatment Planning System for TrueBeam

    SciTech Connect (OSTI)

    Yang, X; Lasio, G; Zhou, J; Lin, M; Yi, B; Guerrero, M

    2014-06-01

    Purpose: To commission electron Monte Carlo (eMC) algorithm in Eclipse Treatment Planning System (TPS) for TrueBeam Linacs, including the evaluation of dose calculation accuracy for small fields and oblique beams and comparison with the existing eMC model for Clinacs. Methods: Electron beam percent-depth-dose (PDDs) and profiles with and without applicators, as well as output factors, were measured from two Varian TrueBeam machines. Measured data were compared against the Varian TrueBeam Representative Beam Data (VTBRBD). The selected data set was transferred into Eclipse for beam configuration. Dose calculation accuracy from eMC was evaluated for open fields, small cut-out fields, and oblique beams at different incident angles. The TrueBeam data was compared to the existing Clinac data and eMC model to evaluate the differences among Linac types. Results: Our measured data indicated that electron beam PDDs from our TrueBeam machines are well matched to those from our Varian Clinac machines, but in-air profiles, cone factors and open-filed output factors are significantly different. The data from our two TrueBeam machines were well represented by the VTBRBD. Variations of TrueBeam PDDs and profiles were within the 2% /2mm criteria for all energies, and the output factors for fields with and without applicators all agree within 2%. Obliquity factor for two clinically relevant applicator sizes (1010 and 1515 cm{sup 2}) and three oblique angles (15, 30, and 45 degree) were measured for nominal R100, R90, and R80 of each electron beam energy. Comparisons of calculations using eMC of obliquity factors and cut-out factors versus measurements will be presented. Conclusion: eMC algorithm in Eclipse TPS can be configured using the VTBRBD. Significant differences between TrueBeam and Clinacs were found in in-air profiles and open field output factors. The accuracy of the eMC algorithm was evaluated for a wide range of cut-out factors and oblique incidence.

  5. Rotating drum variable depth sampler

    DOE Patents [OSTI]

    Nance, Thomas A. (Aiken, SC); Steeper, Timothy J. (Trenton, SC)

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  6. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect (OSTI)

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worlds first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARs spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  7. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  8. How to Calculate the True Cost of Steam | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Calculate the True Cost of Steam How to Calculate the True Cost of Steam This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements. PDF icon How to Calculate the True Cost of Steam (September 2003) More

  9. Property:Depth(m) | Open Energy Information

    Open Energy Info (EERE)

    Depth(m) Jump to: navigation, search This is a property of type String. Pages using the property "Depth(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft...

  10. Recommended Practice: Defense-in-Depth

    Energy Savers [EERE]

    External Report # INL/EXT-06-11478 Control Systems Cyber Security: Defense in Depth Strategies May 2006 Prepared by Idaho National Laboratory Recommended Best Practice: Defense in Depth 2 Table of Contents Keywords............................................................................................................................. 3 Introduction......................................................................................................................... 3 Background

  11. Vertical tube liquid pollutant separators

    SciTech Connect (OSTI)

    Lynch, W.M.

    1982-06-08

    A plurality of elongated hollow, circular, foraminous substantially vertical tubes contiguously stacked transversely to the direction flowing liquid such as waste water containing foreign matter, I.E., settable solids and free oil, in a coalescer-separator apparatus provide a filter body providing for significant surface area contact by the liquid on both inside and outside surfaces of the tubes to entrap the foreign matter but defining substantially vertical passages permitting the entrapped foreign matter to be gravity separated with the lighter matter coalescing and floating upwardly and the heavier matter settling downwardly so that substantially clarified effluent flows from the apparatus. The stacked tube filter body is contained within an insulated closed container of a sufficient capacity, and the arrays of holes in the tube walls are coordinated with respect to the intended volumetric capacity of the apparatus, so that turbulence in the liquid flowing through the filter body is minimized.

  12. Vertically Integrated Circuits at Fermilab

    SciTech Connect (OSTI)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  13. Uterine caliper and depth gauge

    DOE Patents [OSTI]

    King, Loyd L.; Wheeler, Robert G.; Fish, Thomas M.

    1977-01-01

    A uterine caliper and sound consisting of an elongated body having outwardly biased resilient caliper wings and a spring-loaded slidable cervical stop. A slide on the body is operatively connected to the wings by a monofilament and operates with respect to a first scale on the body as a width indicator. A rod extending longitudinally on the body is connected to the cervical stop and cooperates with a second scale on the body as a depth indicator. The instrument can be positioned to measure the distance from the outer cervical ostium to the fundus, as read on said second scale. The wings may be allowed to open by moving the slide, and when the wings engage the utero-tubal junctions, the width may be read on said first scale. By adjustment of the caliper wings the instrument may be retracted until the resistance of the inner ostium of the cervix is felt, enabling the length of the cervical canal to be read directly by the position of the longitudinal indicator rod with respect to said second scale. The instrument may be employed to measure the width of the uterine cavity at any position between the inner ostium of the cervix and the fundus.

  14. Vertically aligned nanostructure scanning probe microscope tips

    DOE Patents [OSTI]

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  15. Category:Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Vertical Flowmeter Test Jump to: navigation, search Geothermalpower.jpg Looking for the Vertical Flowmeter Test page? For detailed information on Vertical Flowmeter Test, click...

  16. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Packaged Vertical Units Single Packaged Vertical Units The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Single Packaged Vertical Units -- v2.0 More Documents

  17. ARM - Evaluation Product - Convective Vertical Velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsConvective Vertical Velocity ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these

  18. Category:Vertical Electrical Sounding Configurations | Open Energy...

    Open Energy Info (EERE)

    Vertical Electrical Sounding Configurations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Vertical Electrical Sounding...

  19. Vertical Flowmeter Logging | Open Energy Information

    Open Energy Info (EERE)

    Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vertical Flowmeter Logging Author U.S. Geological Survey Published USGS Groundwater...

  20. Vertical Circuits Inc | Open Energy Information

    Open Energy Info (EERE)

    and intellectual property for the manufacture of low cost ultra high-speedhigh-density semiconductor components. References: Vertical Circuits, Inc.1 This article is a...

  1. Vertical Flowmeter Test | Open Energy Information

    Open Energy Info (EERE)

    Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Vertical Flowmeter Test Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  2. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Single Packaged Vertical Units -- v2.0 More Documents & Publications Room Air Conditioners Commercial Refrigeration Equipment Commercial Refrigeration Equipment

  3. Vertical two chamber reaction furnace

    DOE Patents [OSTI]

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  4. Control of electrode depth in electroslag remelting

    DOE Patents [OSTI]

    Melgaard, David K.; Shelmidine, Gregory J.; Damkroger, Brian K.

    2002-01-01

    A method of and apparatus for controlling an electroslag remelting furnace by driving the electrode at a nominal speed based upon melting rate and geometry while making minor proportional adjustments based on a measured metric of the electrode immersion depth. Electrode drive speed is increased if a measured metric of electrode immersion depth differs from a set point by a predetermined amount, indicating that the tip is too close to the surface of a slag pool. Impedance spikes are monitored to adjust the set point for the metric of electrode immersion depth based upon one or more properties of the impedance spikes.

  5. Ultra-compact optical true time delay device for wideband phased array

    Office of Scientific and Technical Information (OSTI)

    radars. (Conference) | SciTech Connect Ultra-compact optical true time delay device for wideband phased array radars. Citation Details In-Document Search Title: Ultra-compact optical true time delay device for wideband phased array radars. An ultra-compact optical true time delay device is demonstrated that can support 112 antenna elements with better than six bits of delay in a volume 16-inch x 5-inch x 4-inch including the box and electronics. Free-space beams circulate in a White cell,

  6. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  7. Revealing the True Nature of a Metal Oxide | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealing the True Nature of a Metal Oxide Extensive calculations revealed that the calcium-iridium-oxygen compound CaIrO3 is a Slater-type insulator, putting to rest the debate of...

  8. Steam Technical Brief: How to Calculate the True Cost of Steam

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  9. True Colors

    SciTech Connect (OSTI)

    none,

    2014-10-01

    DOE Solid-State Lighting Program technology fact sheet on LEDs and the relationship between CCT, CRI, optical safety, material degradation, and photobiological stimulation

  10. Vertical dispersion of inertial waves in the upper ocean

    SciTech Connect (OSTI)

    Rubenstein, D.M.

    1983-05-20

    A linear model of the vertical dispersion of near-inertial waves is developed. A porosity distribution near the bottom of the computational domain minimizes bottom reflections and simulates an ocean of the infinite depth. The model is used to show that the vertical dispersion of near-inertial waves in the upper ocean may, under certain conditions, contribute significanlty to the observed rapid decay of inertial oscillations in the surface layer. The kinetic energy of inertial oscillations at mid-latitudes decays with an e folding time scale of 10 days or less, when the parameter lambda(km)/N(cph)d(m) is less than or of the order of unity, where lambda is the wavelength of the wind-generated near-inertial waves, N is the Vaeisaelae frequency in the upper pycnocline, and d is the surface layer thickness. At the top of the pycnocline the model predicts a velocity maximum, which develops as energy propagates downward, out of the surface layer. However, when the upper pycnocline is sufficiently peaked, a resonant frequency interference effect is predicted. This effect modulates the dissipation of surface layer inertial oscillations, and their magnitude after a storm need not decay monotonically. We also make qualitative comparisons with deep-ocean current meter observations taken during the Mixed Layer Experiment (MILE) and with shallow water (105 m) observations taken in the Baltic Sea.

  11. ARM - PI Product - Niamey Aerosol Optical Depths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Optical Depths ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Niamey Aerosol Optical Depths MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of

  12. Campbell penetration depth in Fe-based superconductors

    SciTech Connect (OSTI)

    Prommapan, Plegchart

    2011-08-15

    A 'true' critical current density, j{sub c}, as opposite to commonly measured relaxed persistent (Bean) current, j{sub B}, was extracted from the Campbell penetration depth, {lambda}{sub c}(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter {alpha}. At the equilibrium (upon field - cooling), {alpha}(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j{sub c}(2 K) {approx_equal} 1.22 x 10{sup 6} A/cm{sup 2} provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe{sub 2}As{sub 2} based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j{sub c}(2K) {approx_equal} 3.3 x 10{sup 6} A/cm{sup 2}. The magnetic-dependent feature was observed near the transition temperature in FeTe{sub 0.53}Se{sub 0.47} and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} (BaK122) and isovalent doped BaFe{sub 2}(As{sub 0.7}P{sub 0.3}){sub 2} (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.

  13. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis...

  14. User's manual for the vertical axis wind turbine performance...

    Office of Scientific and Technical Information (OSTI)

    User's manual for the vertical axis wind turbine performance computer code darter Citation Details In-Document Search Title: User's manual for the vertical axis wind turbine...

  15. Herrenknecht Vertical GmbH | Open Energy Information

    Open Energy Info (EERE)

    Specialized company that builds vertical drilling equipment for the development of geothermal resources. References: Herrenknecht Vertical GmbH1 This article is a stub....

  16. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymm...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Citation Details In-Document Search Title: Stabilization of the Vertical Mode in ...

  17. Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye...

  18. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At...

  19. Defense-in-Depth, How Department of Energy Implements Radiation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Defense-in-Depth, How Department of Energy Implements Radiation Protection in ...

  20. Electrically floating, near vertical incidence, skywave antenna

    DOE Patents [OSTI]

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  1. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  2. Vertical deformation at western part of Sumatra

    SciTech Connect (OSTI)

    Febriyani, Caroline Prijatna, Kosasih Meilano, Irwan

    2015-04-24

    This research tries to make advancement in GPS signal processing to estimate the interseismic vertical deformation field at western part of Sumatra Island. The data derived by Continuous Global Positioning System (CGPS) from Badan Informasi Geospasial (BIG) between 2010 and 2012. GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) software are used to process the GPS signal to estimate the vertical velocities of the CGPS station. In order to minimize noise due to atmospheric delay, Vienna Mapping Function 1 (VMF1) is used as atmospheric parameter model and include daily IONEX file provided by the Center for Orbit Determination in Europe (CODE) as well. It improves GAMIT daily position accuracy up to 0.8?mm. In a second step of processing, the GLOBK is used in order to estimate site positions and velocities in the ITRF08 reference frame. The result shows that the uncertainties of estimated displacement velocity at all CGPS stations are smaller than 1.5?mm/yr. The subsided deformation patterns are seen at the northern and southern part of west Sumatra. The vertical deformation at northern part of west Sumatra indicates postseismic phase associated with the 2010 and 2012 Northern Sumatra earthquakes and also the long-term postseismic associated with the 2004 and 2005 Northern Sumatra earthquakes. The uplifted deformation patterns are seen from Bukit Tinggi to Seblat which indicate a long-term interseismic phase after the 2007 Bengkulu earthquake and 2010 Mentawai earthquake. GANO station shows a subsidence at rate 12.25?mm/yr, indicating the overriding Indo-Australia Plate which is dragged down by the subducting Southeast Asian Plate.

  3. Long wavelength vertical cavity surface emitting laser

    DOE Patents [OSTI]

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  4. Description of true and delayed ternary nuclear fission accompanied by the emission of various third particles

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@vsu.ru; Kadmensky, S. S.; Lyubashevsky, D. E. [Voronezh State University (Russian Federation)

    2010-08-15

    The mechanisms and the features of the main types of nuclear ternary fission (that is, true ternary fission, in which a third particle is emitted before the rupture of the fissioning nucleus into fragments, and delayed ternary fission, in which a third particle is emitted from fission fragments going apart) are investigated within quantum-mechanical fission theory. The features of T-odd asymmetry in true ternary nuclear fission induced by cold polarized neutrons are investigated for the cases where alpha particles, prescission neutrons, and photons appear as third particles emitted by fissioning nuclei, the Coriolis interaction of the spin of the polarized fissioning nucleus with the spin of the third particle and the interference between the fission amplitudes for neutron resonances excited in the fissioning nucleus in the case of projectile-neutron capture being taken into account. For the cases where third particles emitted by fission fragments are evaporated neutrons or photons, T-odd asymmetries in delayed ternary nuclear fission induced by cold polarized neutrons are analyzed with allowance for the mechanism of pumping of large fission-fragment spins oriented orthogonally to the fragment-emission direction and with allowance for the interference between the fission amplitudes for neutron resonances.

  5. High vertical resolution crosswell seismic imaging

    DOE Patents [OSTI]

    Lazaratos, Spyridon K. (Houston, TX)

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  6. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V. (St. Louis County, MO)

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  7. Effective Higgs vertices in the generic MSSM

    SciTech Connect (OSTI)

    Crivellin, Andreas

    2011-03-01

    In this article we consider chirally enhanced corrections to Higgs vertices in the most general MSSM. We include the contributions stemming from bilinear terms, from the trilinear A terms, and from their nonholomorphic analogues, the A{sup '} terms, which couple squarks to the ''wrong'' Higgs field. We perform a consistent renormalization of the Higgs vertices beyond the decoupling limit (M{sub SUSY{yields}{infinity}}), using a purely diagrammatic approach. The cancellation of the different contributions in and beyond the decoupling limit is discussed and the possible size of decoupling effects which occur if the supersymmetry particles are not much heavier than the electroweak scale are examined. In the decoupling limit we recover the results obtained in the effective-field-theory approach. For the nonholomorphic A{sup '} terms we find the well known tan{beta} enhancement in the down sector similar to the one for terms proportional to {mu}. Because of the a priori generic flavor structure of these trilinear terms large flavor-changing neutral Higgs couplings can be induced. We also discover new tan{beta} enhanced contributions involving the usual holomorphic A terms, which were not discussed before in the literature. These corrections occur only if also flavor-diagonal nonholomorphic corrections to the Higgs couplings are present. This reflects the fact that the A terms, and also the chirality-changing self-energies, are physical quantities and cannot be absorbed into renormalization constants.

  8. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  9. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  10. Method and apparatus of prefetching streams of varying prefetch depth

    DOE Patents [OSTI]

    Gara, Alan; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan; Hoenicke, Dirk

    2012-01-24

    Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.

  11. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  12. Bouguer gravity anomalies, depth to bedrock, and shallow temperature...

    Open Energy Info (EERE)

    Bouguer gravity anomalies, depth to bedrock, and shallow temperature in the Humboldt House geothermal area, Pershing County, Nevada Jump to: navigation, search OpenEI Reference...

  13. A Comparison of Cirrus Cloud Visible Optical Depth Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory...

  14. Understanding Fault Characteristics And Sediment Depth For Geothermal...

    Open Energy Info (EERE)

    Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search OpenEI Reference...

  15. Control Systems Cyber Security: Defense in Depth Strategies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cyber Security: Defense in Depth Strategies Control Systems Cyber Security: Defense in ... strategies for organizations that use control system networks while maintaining a ...

  16. Average Depth of Crude Oil and Natural Gas Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  17. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    SciTech Connect (OSTI)

    Barlow, Anders J. Portoles, Jose F.; Cumpson, Peter J.

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-? dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025?nm/min (3.95??10{sup ?2}?amu/atom in ion) for 6?keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  18. Robotic platform for traveling on vertical piping network

    DOE Patents [OSTI]

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  19. Conventional Energy Forum & Associated Vertical Business Development: Best

    Energy Savers [EERE]

    Practices in Indian Country | Department of Energy Conventional Energy Forum & Associated Vertical Business Development: Best Practices in Indian Country Conventional Energy Forum & Associated Vertical Business Development: Best Practices in Indian Country March 1, 2012 Las Vegas, Nevada Mandalay Bay Resort & Casino The Office of Indian Energy Tribal Leader Energy Forum on "Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development: Best

  20. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric

    Office of Scientific and Technical Information (OSTI)

    Fields (Journal Article) | SciTech Connect Journal Article: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Citation Details In-Document Search Title: Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively

  1. Final Report: Depth-specific Hydraulic Testing of Yucca Flat and Frenchman Flat Environmental Restoration Wells, FY 2003

    SciTech Connect (OSTI)

    Oberlander, Phil; Russell, Charles

    2004-03-09

    Borehole flow logging contributes a greater understanding of subsurface conditions than measuring well discharge only at land surface. Combining the results of up to nine borehole flow logs to estimate hydraulic conductivity with depth includes data averaging over vertical intervals and averaging of calculated hydraulic conductivities among the various flow logs. Data filtering is also necessary to aid in differentiating between changes in borehole flow rate due to flow turbulence (and other causes) and those associated with groundwater inflow. Borehole flow logging during well pumping has provided the quantity of groundwater iniflow and hydraulic conductivity at depth for three wells. The results provided are believed to be an appropriate balance between predictive accuracy and preserving spatial resolution.

  2. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy ... Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ...

  3. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

  4. An ultimate storage ring lattice with vertical emittance generated...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ultimate storage ring lattice with vertical emittance generated by damping wigglers Citation Details In-Document Search Title: An ultimate storage ring lattice...

  5. Assessing Cloud Spatial and Vertical Distribution with Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on assessing cloud spatial and vertical distribution with a recently developed infrared (IR) cloud analyzer, named Nephelo. The experiment took place at the ARM's central facility,...

  6. Detecting Fractures Using Technology at High Temperatures and Depths -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal

  7. Electrode immersion depth determination and control in electroslag remelting furnace

    DOE Patents [OSTI]

    Melgaard, David K.; Beaman, Joseph J.; Shelmidine, Gregory J.

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  8. Engineering design of vertical test stand cryostat

    SciTech Connect (OSTI)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  9. Steerable vertical to horizontal energy transducer for mobile robots

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  10. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  11. Heat Flow At Standard Depth | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow At Standard Depth Abstract Secular and long-term periodic changes in surface...

  12. Confocal volume in laser Raman microscopy depth profiling

    SciTech Connect (OSTI)

    Maruyama, Yutaka; Kanematsu, Wataru

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  13. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  14. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1988-06-17

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

  15. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

    1990-12-04

    An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

  16. ARM - Evaluation Product - Vertical Air Motion during Large-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stratiform Rain ProductsVertical Air Motion during Large-Scale Stratiform Rain ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Vertical Air Motion during Large-Scale Stratiform Rain The Vertical Air Motion during Large-Scale Stratiform Rain (VERVELSR) value-added product (VAP) uses the unique

  17. Sidewall containment of liquid metal with vertical alternating magnetic fields

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL); Battles, James E. (Oak Forest, IL); Hull, John R. (Hinsdale, IL); Rote, Donald M. (Lagrange, IL)

    1990-01-01

    An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

  18. Vertical responses of Atlantic croaker to gas supersaturation and temperature change

    SciTech Connect (OSTI)

    Chamberlain, G.W.; Neill, W.H.; Romanowsky, P.A.; Strawn, K.

    1980-11-01

    Vertical responses of juvenile Atlantic croakers (Micropogon undulatus) to acute supersaturation of nitrogen and oxygen and to changing temperature were observed in a 2.5-m-tall test cylinder supplied with flowing estuarine water. Supersaturation of nitrogen caused an initial upward movement of fish, although a compensatory downward response seemed to occur after 2 to 4 hours of exposure. Supersaturation of oxygen resulted in an almost immediate downward movement of fish. Abrupt upward displacement of fish followed water-temperature changes, especially increases. Similarities between the behavior of croakers in these experiments and the behavior of other physoclists after swim-bladder volume manipulation suggested that gas supersaturation caused the swim bladders of our fish to inflate, resulting first in upward drift and then in downward swimming to restore neutral buoyancy. A nonlinear response model incorporating this hypothesis accounted for 62% of the variation (over all experiments) in mean vertical displacement of the croakers. Supersaturation-induced inflation of the swim bladder may provide physoclistous fishes a direct mechanism for avoiding gas bubble disease by stimulating the fish to descend to a depth at which no gas has a relative saturation value greater than 100%.

  19. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; Shippert, TR; Riihimaki, LD

    2015-07-01

    fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  20. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  1. Development and application of new methods to retrieve vertical structure

    Office of Scientific and Technical Information (OSTI)

    of precipitation above the ARM CART sites from MMCR measurements (Technical Report) | SciTech Connect Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements Citation Details In-Document Search Title: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements The main objective of this project was to develop, validate and apply

  2. Development and application of new methods to retrieve vertical structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of precipitation above the ARM CART sites from MMCR measurements (Technical Report) | SciTech Connect Technical Report: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements Citation Details In-Document Search Title: Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements The main objective of this project was to develop,

  3. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves

  4. Reveal the True Biology: Exploiting Single-Molecule Real-Time DNA Sequencing for Improved Microbial Assembly and Methylome Analysis ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Turner, Steve [Pacific Biosciences

    2013-03-22

    Steve Turner's talk "Reveal the True Biology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  5. P-odd, P-even, and T-odd asymmetries in true quaternary fission of nuclei

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V. [Voronezh State University (Russian Federation)] [Voronezh State University (Russian Federation)

    2013-04-15

    The coefficients of P-odd, P-even, and T -odd asymmetries for a third and a fourth prescission particle emitted in the true quaternary fission of nuclei that was induced by polarized cold neutrons were studied on the basis of quantum-mechanical fission theory. By using non-evaporation (nonadiabatic) mechanisms of light-particle emission, these coefficients were compared with the analogous coefficients for prescission third particles emitted in the ternary fission of nuclei.

  6. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  7. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

    2014-11-06

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  8. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss031_rask_2011_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology Vehicle Benchmark and Assessment

  9. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect (OSTI)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, Niranjan; Reddy, Kishore; Kotamarthi, Veerabhadra R.; Newsom, Rob K.; Ouarda, Taha B.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  10. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    SciTech Connect (OSTI)

    Kim, Hyunsoo

    2013-05-15

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti#12;cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s#6; superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  11. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  12. Vertical-cavity surface-emitting laser device

    DOE Patents [OSTI]

    Hadley, G. Ronald (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Awyoung, Adelbert (Albuquerque, NM); Choquette, Kent D. (Albuquerque, NM)

    1999-01-01

    A vertical-cavity surface-emitting laser device. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths.

  13. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  14. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  15. RFID tag modification for full depth backscatter modulation

    DOE Patents [OSTI]

    Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

    2010-07-20

    A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

  16. Impact of photonic crystals on LED light extraction efficiency: approaches and limits to vertical structure designs

    SciTech Connect (OSTI)

    Matioli, Elison; Weisbuch, Claude

    2010-08-19

    The enhancement of the extraction efficiency in light emitting diodes (LEDs) through the use of photonic crystals (PhCs) requires a structure design that optimizes the interaction of the guided modes with the PhCs. The main optimization parameters are related to the vertical structure of the LED, such as the thickness of layers, depth of the PhCs, position of the quantum wells as well as the PhC period and fill factor. We review the impact of the vertical design of different approaches of PhC LEDs through a theoretical and experimental standpoint, assessing quantitatively the competing mechanisms that act over each guided mode. Three approaches are described to overcome the main limitation of LEDs with surface PhCs, i.e. the insufficient interaction of low order guided modes with the PhCs. The introduction of an AlGaN confining layer in such structure is shown to be effective in extracting a fraction of the optical energy of low order modes; however, this approach is limited by the growth of the lattice mismatched AlGaN layer on GaN. The second approach, based on thin-film LEDs with PhCs, is limited by the presence of an absorbing reflective metal layer close to the guided modes that plays a major role in the competition between PhC extraction and metal dissipation. Finally, we demonstrate both experimentally and theoretically the superior extraction of the guided light in embedded PhC LEDs due to the higher interaction between all optical modes and the PhCs, which resulted in a close to unity extraction efficiency for this device. The use of high-resolution angle-resolved measurements to experimentally determine the PhC extraction parameters was an essential tool for corroborating the theoretical models and quantifying the competing absorption and extraction mechanisms in LEDs.

  17. Cryogenic vertical test facility for the SRF cavities at BNL

    SciTech Connect (OSTI)

    Than, R.; Liaw, CJ; Porqueddu, R.; Grau, M.; Tuozzolo, J.; Tallerico, T.; McIntyre, G.; Lederle, D.; Ben-Zvi, I.; Burrill, A.; Pate, D.

    2011-03-28

    A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars. The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.

  18. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-06-27

    The Sayers and Kachanov (1991) crack-influence parametersare shown to be directly related to Thomsen (1986) weak-anisotropyseismic parameters for fractured reservoirs when the crack density issmall enough. These results are then applied to seismic wave propagationin reservoirs having HTI symmetry due to aligned vertical fractures. Theapproach suggests a method of inverting for fracture density from wavespeed data.

  19. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect (OSTI)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  20. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

    SciTech Connect (OSTI)

    Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

    2010-12-23

    Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

  1. Vertical stability requirements for ARIES-I reactor

    SciTech Connect (OSTI)

    Bathke, C.G.; Jardin, S.C.; Leuer, J.A.; Ward, D.J.; Princeton Univ., NJ . Plasma Physics Lab.; General Atomics, San Diego, CA; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-01-01

    The vertical stability of the ARIES-I reactor design is analyzed with the NOVA-W, PSTAB, and TSC codes. A growth rate of {approximately}5.7 s{sup -1} is predicted for a vacuum vessel positioned behind the scrapeoff, first wall, and blanket (0.7 in inboard and 0.9 in outboard thickness) and acting as a passive stabilizer. A reactive power of {approximately}2 MV A would be required for active feedback coils located outside of the TF coils {approximately}3 m to correct a 50-mm vertical displacement of the magnetic axis. A multipolar expansion technique used in the TSC analysis is also used to examine options that minimize stored energy. 10 refs., 8 figs., 2 tabs.

  2. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOE Patents [OSTI]

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  3. Friction of partially embedded vertically aligned carbon nanofibers inside elastomers

    SciTech Connect (OSTI)

    Aksak, Burak; Sitti, Metin; Cassell, Alan; Li, Jun; Meyyappan, Meyya; Callen, Phillip [NanoRobotics Laboratory, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); NASA Ames Research Center, Moffett Field, California 94035 (United States); NASA Johnson Space Center, Houston, Texas 77058 (United States)

    2007-08-06

    Vertically aligned carbon nanofibers partially embedded inside polyurethane (eVACNFs) are proposed as a robust high friction fibrillar material with a compliant backing. Carbon nanofibers with 50-150 nm in diameter and 20-30 {mu}m in length are vertically grown on silicon and transferred completely inside an elastomer by vacuum molding. By using time controlled and selective oxygen plasma etching, fibers are partially released up to 5 {mu}m length. Macroscale friction experiments show that eVACNFs exhibit reproducible effective friction coefficients up to 1. Besides high friction, the proposed fabrication method improves fiber-substrate bond strength, and enables uniform height nanofibers with a compliant backing.

  4. Vertical-cavity surface-emitting laser device

    DOE Patents [OSTI]

    Hadley, G.R.; Lear, K.L.; Awyoung, A.; Choquette, K.D.

    1999-05-11

    A vertical-cavity surface-emitting laser device is disclosed. The vertical-cavity surface-emitting laser (VCSEL) device comprises one or more VCSELs with each VCSEL having a mode-control region thereabout, with the mode-control region forming an optical cavity with an effective cavity length different from the effective cavity length within each VCSEL. Embodiments of the present invention can be formed as single VCSELs and as one- or two-dimensional arrays of VCSELs, with either an index-guided mode of operation or an index anti-guided mode of operation being defined by a sign of the difference in the two effective cavity lengths. 10 figs.

  5. Method of fabricating vertically aligned group III-V nanowires

    DOE Patents [OSTI]

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  6. ARM - Publications: Science Team Meeting Documents: Modeling the vertical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles of aerosol characteristics and radiative impacts over the ARM sites Modeling the vertical profiles of aerosol characteristics and radiative impacts over the ARM sites Chuang, Catherine DOE/Lawrence Livermore National Laboratory Chin, Steve DOE/Lawrence Livermore National Laboratory Atmospheric aerosols play an important role in mediating the radiative balance of the Earth-atmosphere system. A global high-resolution aerosol modeling system developed by the Lawrence Livermore National

  7. Determination of vertical profiles of aerosol extinction, single scatter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo and asymmetry parameter at Barrow. Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period

  8. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  9. Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tethered Balloon Sounding System for Vertical Radiation Profiles C. D. Whiteman J. M. Alzheimer G. A. Anderson M. R. Garnich W. J. Shaw Pacific Northwest Laboratory Richland, WA 99352 platform is built on a triangular frame identical to the one on the Sky Platform, but the MSP carries no radiometric sensors, control loop, or leveling motors. Rather. the MSP is instrumented to measure the motions to which the Sky Platform will be subjected; the data provide engineering information to be used in

  10. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P. (Albuquerque, NM); Lott, James A. (Albuquerque, NM)

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  11. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Doppler Lidar Vertical Velocity Statistics Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  12. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  13. Passive recovery of DNAPL from clayey soil via vertical collection wells

    SciTech Connect (OSTI)

    Tease, B.; Gagnon, D.

    1995-12-01

    A release of dense non-aqueous phase liquids (DNAPL) from two underground storage tanks (USTs), created a contaminant plume that extended approximately 30 feet into lacustrine sediments comprised mainly of varved clay. Subsurfaces investigations indicated that the release was comprised primarily of the chlorinated solvent Trichloroethene which had migrated horizontally approximately 250 feet cross-gradient to groundwater flow. A relatively narrow zone of free phase product extended from the UST area approximately 150-200 feet along the plume of migration at a depth of 20-30 feet below the ground surface. Since clay varves interconnected by vertical fractures is believed to have facilitated the DNAPL migration, 4{close_quotes} diameter stainless steel collection recovery of 10-20 quarts of DNAPL per each collection event, over a 4 month period supported what is believed to be preferential DNAPL migration. DNAPL recovery continued for a total of 6 months before the point of diminimus return (1-2 quarts/month) resulted in adopting a quarterly recovery schedule. To date, 201 quarts of free phase DNAPL have been recovered. DNAPL mobility, delineation, well installation and collection techniques are discussed. Compared to conventional remediation alternatives, this passive recovery system provides an innovative approach to a difficult and costly problem; recovery of DNAPL isolated within clay.

  14. Low profile, high load vertical rolling positioning stage

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Barraza, Juan (Aurora, IL)

    1996-01-01

    A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

  15. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  16. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  17. Vertical Distribution of Contamination in Ground Water at the Tuba City,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona, Site | Department of Energy Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site PDF icon Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site More Documents & Publications EA-1268: Final Environmental Assessment Diffusion Multilayer

  18. Hanford Disposal Facility Expands Vertically to Make Room for More Waste |

    Energy Savers [EERE]

    Department of Energy Disposal Facility Expands Vertically to Make Room for More Waste Hanford Disposal Facility Expands Vertically to Make Room for More Waste February 11, 2016 - 12:25pm Addthis This photo illustration of the conceptual view shows the vertical expansion of the Environmental Restoration Disposal Facility. The large area on the right includes the uppermost surface of the vertical expansion, which will be shaped to form a crown and will be covered with a 2 percent grade and

  19. Numerical simulation model for vertical flow in geothermal wells

    SciTech Connect (OSTI)

    Tachimori, M.

    1982-01-01

    A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.

  20. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect (OSTI)

    Reuter, R.C. Jr.

    1980-09-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

  1. VERTICAL RELAXATION OF A MOONLET PROPELLER IN SATURN'S A RING

    SciTech Connect (OSTI)

    Hoffmann, H.; Seiss, M.; Spahn, F. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Golm (Germany)

    2013-03-01

    Two images, taken by the Cassini spacecraft near Saturn's equinox in 2009 August, show the Earhart propeller casting a 350 km long shadow, offering the opportunity to watch how the ring height, excited by the propeller moonlet, relaxes to an equilibrium state. From the shape of the shadow cast and a model of the azimuthal propeller height relaxation, we determine the exponential cooling constant of this process to be {lambda} = 0.07 {+-} 0.02 km{sup -1}, and thereby determine the collision frequency of the ring particles in the vertically excited region of the propeller to be {omega}{sub c}/{Omega} = 0.9 {+-} 0.2.

  2. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  3. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  4. Probabilities for the emission of light particles and their energy and angular distributions for true quaternary nuclear fission

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V. [Voronezh State University (Russian Federation)] [Voronezh State University (Russian Federation)

    2013-01-15

    On the basis of quantum-mechanical fission theory, the features of true quaternary nuclear fission are studied by treating this fission process as a sequence of three processes following one another in the course of time. The first two processes are the escape of the first and then the second of the two light particles emitted from the neck of a fissioning nucleus because of a nonadiabatic character of the collective deformation motion of this nucleus. Finally, the third process is the separation of the fissioning nucleus into two rather heavy fission fragments. The differences that arise in the emission probabilities and in the angular and energy distributions upon going over from the first emitted to the second emitted prescission third and fourth particles are analyzed by invoking experimental data on the spontaneous and thermalneutron-induced fission of nuclei, and it is shown that these differences are caused by the changes both in the geometric configuration of the fissioning nucleus and in the shell structure of its neck after the first prescission particle is emitted from it.

  5. Vertical distribution of structural components in corn stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; et al

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  6. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  7. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; Novak, Jeff M.; Halvorson, Ardell D.; Arriaga, Francisco; Lightle, David T.; Hoover, Amber; Emerson, Rachel; Barbour, Nancy W.

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 0.40 MJ kg?, but with an alkalinity measure of 0.83 g MJ?, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?, but it would be only 1000 L ha? if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  8. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  9. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C.

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  10. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 0.40 MJ kg?, but with an alkalinity measure of 0.83 g MJ?, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?, but it would be only 1000 L ha? if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  11. Intermediate depth burial of classified transuranic wastes in arid alluvium

    SciTech Connect (OSTI)

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States). Environmental Risk and Decision Analysis Dept.; Crowe, B.M. [Los Alamos National Lab., NM (United States). Geologic Integration Group; Di Sanza, F. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office

    1999-04-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE`s Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency`s (EPA`s) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA`s 40 CFR 191 requirements. This paper describes DOE`s actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA`s requirements, and are, therefore, protective of human health.

  12. Code System Calculate One-Dimensional Vertical Transport Unsaturated Soil Zone

    Energy Science and Technology Software Center (OSTI)

    1989-03-01

    SESOIL, as an integrated screening-level soil compartment model, is designed to simultaneously model water transport, sediment transport, and pollutant fate. SESOIL is a one-dimensional vertical transport model for the unsaturated soil zone. Only one compound at a time can be considered. The model is based on mass balance and equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapor, and pure). The SESOIL model was designed to perform long-term simulations of chemical transport andmore » transformations in the soil and uses theoretically derived equations to represent water transport, sediment transport on the land surface, pollutant transformation, and migration of the pollutant to the atmosphere and groundwater. Climatic data, compartment geometry, and soil and chemical property data are the major components used in the equations. SESOIL was developed as a screening-level model, utilizing less soil, chemical, and meteorological values as input than most other similar models. Output of SESOIL includes time-varying pollutant concentrations at various soil depths and pollutant loss from the unsaturated zone in terms of surface runoff, percolation to the groundwater, volatilization, and degradation. The February 1995 release corrects an error that caused the code to fail when average monthly air temperature was -10C and includes an improved iteration procedure for the mass balance equations in the model. PLEASE NOTE: The RISKPRO information management software (see OTHER PROG/OPER SYS INFO) was used by the developers of the New SESOIL User''s Guide in their study and revisions of SESOIL. Using RISKPRO in conjunction with SESOIL is an option, and it may provide the easiest way to use SESOIL. The other option, use of SESOIL in stand-alone mode, has been tested and used. The stand-alone option is covered in ''Instructions for Running Stand-Alone SESOIL Code'', and in ''A Seasonal Soil Compartment Model''.« less

  13. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  14. Vertically Aligned Carbon Nanofiber Based Biosensor Platform for Glucose Sensor

    SciTech Connect (OSTI)

    Mamun, Khandaker Abdullah Al; Tulip, Fahmida S; Macarthur, Kimberly C; McFarlane, Nicole M; Islam, Syed K

    2014-01-01

    Vertically aligned carbon nanofibers (VACNFs) have recently become an important tool for biosensor design. Carbon nanofibers (CNF) have excellent conductive and structural properties with many irregularities and defect sites in addition to exposed carboxyl groups throughout their surfaces. These properties allow a better immobilization matrix compared to carbon nanotubes and offer better resolution when compared with the FET-based biosensors. VACNFs can be deterministically grown on silicon substrates allowing optimization of the structures for various biosensor applications. Two VACNF electrode architectures have been employed in this study and a comparison of their performances has been made in terms of sensitivity, sensing limitations, dynamic range, and response time. The usage of VACNF platform as a glucose sensor has been verified in this study by selecting an optimum architecture based on the VACNF forest density. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0129156414500062

  15. Test reports for K Basins vertical fuel handling tools

    SciTech Connect (OSTI)

    Meling, T.A.

    1995-02-01

    The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

  16. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA); Bernhardt, Anthony F. (Berkeley, CA)

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  17. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    G. Patterson; P. Striffler

    2007-02-17

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel.

  18. SU-E-T-403: Measurement of the Neutron Ambient Dose Equivalent From the TrueBeam Linac Head and Varian 2100 Clinac

    SciTech Connect (OSTI)

    Harvey, M; Pollard, J; Wen, Z; Gao, S

    2014-06-01

    Purpose: High-energy x-ray therapy produces an undesirable source of stray neutron dose to healthy tissues, and thus, poses a risk for second cancer induction years after the primary treatment. Hence, the purpose of this study was to measure the neutron ambient dose equivalent, H*(10), produced from the TrueBeam and Varian 2100 linac heads, respectively. Of particular note is that there is no measured data available in the literature on H*(10) production from the TrueBeam treatment head. Methods: Both linacs were operated in flattening filter mode using a 15 MV x-ray beam on TrueBeam and an 18 MV x-ray beam for the Varian 2100 Clinac with the jaws and multileaf collimators in the fully closed position. A dose delivery rate of 600 MU/min was delivered on the TrueBeam and the Varian 2100 Clinac, respectively and the H*(10) rate was measured in triplicate using the WENDI-2 detector located at multiple positions including isocenter and longitudinal (gun-target) to the isocenter. Results: For each measurement, the H*(10) rate was relatively constant with increasing distance away from the isocenter with standard deviations on the order of a tenth of a mSv/h or less for the given beam energy. In general, fluctuations in the longitudinal H*(10) rate between the anterior-posterior couch directions were approximately a percent for both beam energies. Conclusion: Our preliminary results suggest an H*(10) rate of about 30 mSv/h (40 mSv/h) or less for TrueBeam (Varian Clinac 2100) for all measurements considered in this study indicating a relatively low contribution of produced secondary neutrons to the primary therapeutic beam.

  19. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect (OSTI)

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  20. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

    SciTech Connect (OSTI)

    J.F. McClelland; R.W. Jones; Siquan Luo

    2004-09-30

    FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

  1. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (12700 Indian School Rd. NE., Apt. 604, Albuquerque, NM 87112); Esherick, Peter (1105 Sagebrush Trail SE., Albuquerque, NM 87123); Jewell, Jack L. (12 Timberline Dr., Bridgewater, NJ 08807); Lear, Kevin L. (13713 Vic Rd. NE., Albuquerque, NM 87112); Olbright, Gregory R. (3875 Orange Ct., Boulder, CO 80304)

    1997-01-01

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications.

  2. Integration of photoactive and electroactive components with vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Esherick, P.; Jewell, J.L.; Lear, K.L.; Olbright, G.R.

    1997-04-29

    A monolithically integrated optoelectronic device is provided which integrates a vertical cavity surface emitting laser and either a photosensitive or an electrosensitive device either as input or output to the vertical cavity surface emitting laser either in parallel or series connection. Both vertical and side-by-side arrangements are disclosed, and optical and electronic feedback means are provided. Arrays of these devices can be configured to enable optical computing and neural network applications. 9 figs.

  3. Los Alamos Drills to Record-breaking Depths | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drills to Record-breaking Depths Los Alamos Drills to Record-breaking Depths November 26, 2014 - 12:00pm Addthis Workers reached a record-breaking depth of 1,100 feet with a sonic drill rig. Workers reached a record-breaking depth of 1,100 feet with a sonic drill rig. LOS ALAMOS, N.M. - The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of

  4. The impact of vertical shear on the sensitivity of tropical cyclogenes...

    Office of Scientific and Technical Information (OSTI)

    The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state: TROPICAL CYCLOGENESIS AND SHEAR Citation Details ...

  5. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  6. Kink modes and surface currents associated with vertical displacement events

    SciTech Connect (OSTI)

    Manickam, Janardhan; Boozer, Allen; Gerhardt, Stefan

    2012-08-15

    The fast termination phase of a vertical displacement event (VDE) in a tokamak is modeled as a sequence of shrinking equilibria, where the core current profile remains constant so that the safety-factor at the axis, q{sub axis}, remains fixed and the q{sub edge} systematically decreases. At some point, the n = 1 kink mode is destabilized. Kink modes distort the magnetic field lines outside the plasma, and surface currents are required to nullify the normal component of the B-field at the plasma boundary and maintain equilibrium at finite pressure. If the plasma touches a conductor, the current can be transferred to the conductor, and may be measurable by the halo current monitors. This report describes a practical method to model the plasma as it evolves during a VDE, and determine the surface currents, needed to maintain equilibrium. The main results are that the onset conditions for the disruption are that the growth-rate of the n = 1 kink exceeds half the Alfven time and the associated surface current needed to maintain equilibrium exceeds one half of the core plasma current. This occurs when q{sub edge} drops below a low integer, usually 2. Application to NSTX provides favorable comparison with non-axisymmetric halo-current measurements. The model is also applied to ITER and shows that the 2/1 mode is projected to be the most likely cause of the final disruption.

  7. Prefabricated vertical drains flow resistance under vacuum conditions

    SciTech Connect (OSTI)

    Quaranta, J.D.; Gabr, M.A.

    2000-01-01

    The results of experimental research are presented and discussed with focus on the internal well resistance of prefabricated vertical drains (PVD) under vacuum-induced water flow. Measured results included fluid flow rates for two different cross-sectional hydraulic profiles (Types 1 and 2 PVDs). Experimental results indicated linear relationship, independent of the PVD widths, between extracted fluid velocity and the applied hydraulic gradient. Data showed a laminar flow regime to predominate for test velocities corresponding to hydraulic gradients {lt}0.5. The larger nominal hydraulic radius of the Type 2 PVD is credited with providing a flow rate equal to approximately 3.2 times that of the Type 1 PVD at approximately the same operating total head. There was no apparent dependency of the transmissivity {theta} on the width or lengths (3, 4, and 5 m) of the PVDs tested. In the case of the 100-mm-wide Type 1 PVD, {theta} = 618 mm{sup 2}/s was estimated from the measured data versus {theta} = 1,996 mm{sup 2}/s for Type 2 PVD with the same dimensions.

  8. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1995-01-01

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  9. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  10. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  11. Rivulet Flow In Vertical Parallel-Wall Channel

    SciTech Connect (OSTI)

    D. M. McEligot; G. E. Mc Creery; P. Meakin

    2006-04-01

    In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.

  12. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  13. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    SciTech Connect (OSTI)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  14. Two weight system for measuring depth and sediment in slurry-supported excavations

    SciTech Connect (OSTI)

    Deming, P.; Good, D.

    1999-07-01

    This paper describes a two weight system using bar and flat shaped weights for measuring depth and detecting sediment at the bottom of slurry-supported excavations. Currently there are no standard depth measurement weights or methods for reliably identifying bottom sediment. Two weights and a procedural system for using the weights is described. Details suitable for manufacture are provided.

  15. Using the depth-velocity-size diagram to interpret equilibrium bed configurations in river flows

    SciTech Connect (OSTI)

    Southard, J.B. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1990-05-01

    Data from flume studies that report equilibrium bed configuration as well as water temperature, flow depth, flow velocity, and sediment size were used to develop the best approximation to the relationships among the various bed phases (ripples, dunes, lower regime plane bed, upper regime plane bed, and antidunes) in a three-axis graph (depth-velocity-size diagram) with dimensionless measures of mean flow depth, mean flow velocity, and sediment size along the axis. Relationships are shown in a series of depth-velocity and velocity-size sections through the diagram. Boundaries between bed-phase stability fields are drawn as surfaces that minimize, misplacement of data points. A large subset of the data, for which reliable values of bed shear stress are reported, was also used to represent the stability relationships in a graph of dimensionless boundary shear stress against dimensionless sediment size, but with results less useful for fluvial flow interpretation. The diagram covers about one order of magnitude in flow depth. To be useful for river flows, the diagram must be extrapolated in flow depth by about one more order of magnitude, but this is not a serious problem for approximate work. The depth-velocity-size diagram permits prediction of equilibrium bed configuration in river flows when the approximate flow depth and mean flow velocity are known. Because the diagram is essentially dimensionless, the effect of water temperature (via the fluid viscosity) on the bed configuration is easily accounted for by use of the diagram.

  16. Method for determining depth and shape of a sub-surface conductive object

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  17. Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide

    DOE Patents [OSTI]

    Vawter, G. Allen (Corrales, NM)

    2008-02-26

    A self-electrooptic effect device ("SEED") is integrated with waveguide interconnects through the use of vertical directional couplers. Light initially propagating in the interconnect waveguide is vertically coupled to the active waveguide layer of the SEED and, if the SEED is in the transparent state, the light is coupled back to the interconnect waveguide.

  18. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect (OSTI)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  19. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect (OSTI)

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  20. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect (OSTI)

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil, joints, and break-outs are presented. These are compared with static and fatigue allowables. Design for fatigue is much less demanding than for the ELM coils. A total of 30,000 cycles is required for VS design. Loads on the vessel due to the thermal expansion of the coil and spine are significant. Efforts to reduce these by reducing the cross section of the spine have been made but the vessel still must support loads resulting from restraint of thermal expansion.

  1. Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy Citation Details In-Document Search Title: Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy Depth profiling for the amount of lattice damage using a Confocal Micro-Raman (CMR) spectrometer is demonstrated in this paper. Samples of n-type silicon carbide were implanted with 2 MeV He and O ions at both room temperature and 500 C, and fluences between 10{sup 15} and 10{sup 17}

  2. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and

  3. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...

  4. Depth-dependent ordering, two-length-scale phenomena, and crossover...

    Office of Scientific and Technical Information (OSTI)

    behavior in a crystal featuring a skin layer with defects Citation Details In-Document Search Title: Depth-dependent ordering, two-length-scale phenomena, and crossover behavior ...

  5. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Mishra, X. Zhang, K. Chesnel, J.B. Kortright, S.K. Sinha, and I.K. Schuller,, "Depth Profile of Uncompensated Spins in an Exchange Bias System," Phys. Rev. Lett. 95, 047201...

  6. Method of varying a physical property of a material through its depth

    DOE Patents [OSTI]

    Daniel, Claus

    2015-04-21

    A method is disclosed for varying a mechanical property of a material at two depths. The method involves the application of at least two laser pulses of different durations. The method involves a determination of the density of the material from the surface to each depth, a determination of the heat capacity of the material from the surface to each depth, and a determination of the thermal conductivity of the material from the surface to each depth. Each laser pulse may affect the density, heat capacity, and thermal conductivity of the material, so it may be necessary to re-evaluate those parameters after each laser pulse and prior to the next pulse. The method may be applied to implantation materials to improve osteoblast and osteoclast activity.

  7. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  8. U.S. Average Depth of Crude Oil Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  9. U.S. Average Depth of Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  10. U.S. Average Depth of Dry Holes Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. U.S. Average Depth of Natural Gas Developmental Wells Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  14. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  16. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0...

  17. U.S. Average Depth of Crude Oil Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. U.S. Average Depth of Dry Exploratory and Developmental Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploratory and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  19. Method and apparatus for identifying conductive objects by monitoring the true resistive component of impedance change in a coil system caused by the object

    DOE Patents [OSTI]

    Gregory, William D.; Capots, Larry H.; George, James P.; Janik, Richard

    1981-01-01

    The type of conductor, its property, and if a metal, its type and cross-sectional area can be obtained from measurements made at different frequencies for the amount of unbalance created in a previously balanced stable coil detection system. The true resistive component is accurately measured and thus reflects only the voltage loss attributable to eddy currents caused by introduction of the test sample to the coil system. This voltage divided by corresponding applied frequency gives a curve which peaks at a frequency dependent upon type of conductor. For a metal this peak frequency is proportional to the samples resistivity divided by its cross-sectional area.

  20. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

  1. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

  2. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

  3. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

  4. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

  5. Depth Profile of Uncompensated Spins in an Exchange-Bias System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth Profile of Uncompensated Spins in an Exchange-Bias System Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Wednesday, 25 January 2006 00:00 The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used

  6. Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MISR, and MODIS Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, MISR, and MODIS Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas Pacific Northwest National Laboratory Category: Cloud Properties Joint histograms of Cloud Top Height (CTH) and Optical Depth (OD) derived by the International Satellite Cloud Climatology Project (ISCCP) are being widely used by the climate modeling community in evaluating global climate models. Similar joint histograms

  7. Defense-in-Depth, How Department of Energy Implements Radiation Protection

    Office of Environmental Management (EM)

    in Low Level Waste Disposal | Department of Energy Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Linda Suttora*, U.S. Department of Energy ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has adopted an integrated protection system for the safety of radioactive waste disposal similar to

  8. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOE Patents [OSTI]

    Xu, X. George (Clifton Park, NY); Naessens, Edward P. (West Point, NY)

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  9. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOE Patents [OSTI]

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  10. Sandia Energy - Sandia and Partners Complete Phase I of a Vertical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Texas A&M University have completed the first phase of a project to explore the feasibility of large-scale vertical-axis wind turbines (VAWTs) for deep-water offshore...

  11. Development of bottom-emitting 1300 nm vertical-cavity surface-emitting

    Office of Scientific and Technical Information (OSTI)

    lasers. (Journal Article) | SciTech Connect Journal Article: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. Citation Details In-Document Search Title: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. No abstract prepared. Authors: Fish, M. A. [1] ; Serkland, Darwin Keith ; Guilfoyle, Peter S. [1] ; Stone, Richard V. [1] ; Klem, John Frederick ; Louderback, Duane A. [1] ; Choquette, Kent D. [2] ; Pickrell, G. W. [1] + Show Author

  12. "Covalent functionalization and electron-transfer properties of vertically

    Office of Scientific and Technical Information (OSTI)

    aligned carbon nanofibers: The importance of edge-plane sites" (Journal Article) | SciTech Connect "Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: The importance of edge-plane sites" Citation Details In-Document Search Title: "Covalent functionalization and electron-transfer properties of vertically aligned carbon nanofibers: The importance of edge-plane sites" The use of covalently bonded molecular layers

  13. Design and analysis of a vertical axis ocean current power plant

    SciTech Connect (OSTI)

    Richard, C.C.; Hartzog, J.R.; Sorge, R.V.; Quigley, J.V.; Adams, G.R.

    1981-01-01

    This paper discusses a calculation of the power generated by a vertical axis ocean current power plant. An analytical model is presented and a computer solution described. Results of the calculation show the optimum angles of the blades about the vertical axis to maximize power output, as well as the total extractable power of the plant for various ocean current velocities. Tow tank tests are described for a scale model of the plant.

  14. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis

    Office of Scientific and Technical Information (OSTI)

    Tidal Current Turbine Under Operational Condition (Journal Article) | SciTech Connect Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Citation Details In-Document Search Title: Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its

  15. Electric characteristics of germanium Vertical Multijunction (VMJ) photovoltaic cells under high intensity illumination

    SciTech Connect (OSTI)

    Unishkov, V.A.

    1997-03-01

    This paper presents the results of the performance evaluation of Vertical Multijunction (VMJ) germanium (Ge) photovoltaic (PV) cells. Vertical Multijunction Germanium Photovoltaic cells offer several advantages for Thermophotovoltaic (TPV) applications such as high intensity light conversion, low series resistance, more efficient coupling to lower temperature sources, high output voltage, simplified heat rejection system as well as potentially simple fabrication technology and low cost photovoltaic converter device. {copyright} {ital 1997 American Institute of Physics.}

  16. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  17. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  18. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  19. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  20. Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector

    SciTech Connect (OSTI)

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc

    2011-10-15

    Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

  1. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  2. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  3. LINKING Ly? AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect (OSTI)

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Ly? emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Ly? emitters (LAEs). In the two GPs with the strongest Ly? emission, the Ly? line profiles show reduced signs of resonant scattering. Instead, the Ly? profiles resemble the H? line profiles of evolved star ejecta, suggesting that the Ly? emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Ly? emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Ly? profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Ly?, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Ly? emission, a low LyC optical depth may allow Ly? to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Ly? profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  4. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    SciTech Connect (OSTI)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

  5. Poles as the only true resonant-state signals extracted from a worldwide collection of partial-wave amplitudes using only one, well controlled pole-extraction method

    SciTech Connect (OSTI)

    Hadzimehmedovic, M.; Osmanovic, H.; Stahov, J.; Ceci, S.; Svarc, A.

    2011-09-15

    Each and every energy-dependent partial-wave analysis is parametrizing the pole positions in a procedure defined by the way the continuous energy dependence is implemented. These pole positions are, henceforth, inherently model dependent. To reduce this model dependence, we use only one, coupled-channel, unitary, fully analytic method based on the isobar approximation to extract the pole positions from each available member of the worldwide collection of partial-wave amplitudes, which are understood as nothing more but a good energy-dependent representation of genuine experimental numbers assembled in a form of partial-wave data. In that way, the model dependence related to the different assumptions on the analytic form of the partial-wave amplitudes is avoided, and the true confidence limit for the existence of a particular resonant state, at least in one model, is established. The way the method works and first results are demonstrated for the S{sub 11} partial wave.

  6. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  7. In-Depth: Cleantech at the National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Depth: Cleantech at the National Labs In-Depth: Cleantech at the National Labs January 7, 2014 - 5:30pm Addthis These solar power collection dishes at Sandia National Labs' National Solar Thermal Test Facility are capable of some of the highest solar to electricity conversion. In January 2008, this technology set a new solar-to-grid system conversion efficiency record of 31.25 percent net efficiency rate; the technology is still available to benefit the U.S. by delivering power at all hours

  8. Depth-dependent ordering, two-length-scale phenomena, and crossover

    Office of Scientific and Technical Information (OSTI)

    behavior in a crystal featuring a skin layer with defects (Journal Article) | SciTech Connect Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin layer with defects Citation Details In-Document Search Title: Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin layer with defects Structural defects in a crystal are responsible for the ''two-length-scale'' behavior in which a sharp

  9. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  10. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    DOE Patents [OSTI]

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  11. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect (OSTI)

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW30013, NACP-02, and Roos chambers agreed well with that of water by using the optimal EPOM. Therefore, the possibility of using cylindrical ionization chambers can be expected for PDD measurements in clinical electron beams.

  12. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOE Patents [OSTI]

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  13. Vertical dispersion methods in x-ray spectroscopy of high temperature plasmas

    SciTech Connect (OSTI)

    Renner, O.; Missalla, T.; Foerster, E.

    1995-12-31

    General formulae for the applying the vertical dispersion principle in x-ray spectroscopy of multiple charged ions are summarized, the characteristics of the experimental schemes based on flat and bent crystals are discussed. The unique properties of the novel spectroscopic methods, i.e., their extremely high dispersion, high spectral and 1-D spatial resolution and good collection efficiency, make them very attractive for ultrahigh-resolution spectroscopy. The examples of successful use of the vertical dispersion modifications of the double-crystal and the Johann spectrometer in diagnostics of several types of laser-generated plasma are presented.

  14. Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical

    Office of Scientific and Technical Information (OSTI)

    Configurations of a Profile System and CO2 Density Averaging (Journal Article) | SciTech Connect Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging Citation Details In-Document Search Title: Biases of CO2 Storage in Eddy Flux Measurements pertinent to Vertical Configurations of a Profile System and CO2 Density Averaging CO2 storage in a 30-minute period in a tall forest canopy often makes significant

  15. SU-E-T-128: Dosimetric Evaluation of MLC Modeling in Pinnacle V9.2 for Varian TrueBeam STx

    SciTech Connect (OSTI)

    Otageri, P; Grant, E; Maricle, S; Mathews, B

    2014-06-01

    Purpose: To evaluate the effects of MLC modeling after commissioning the Varian TrueBeam LINAC in Pinnacle version 9.2. Methods: Stepand-shoot IMRT QAs were investigated when we observed our measured absolute dose results using ion chamber (Capintec PR-05P) were uncharacteristically low; about 45% compared to doses calculated by Pinnacle{sup 3} (Phillips, Madison, WI). This problem was predominant for large and highly modulated head and neck (HN) treatments. Intuitively we knew this had to be related to shortcomings in the MLC modeling in Pinnacle. Using film QA we were able to iteratively adjust the MLC parameters. We confirmed results by re-testing five failed IMRT QA patients; and ion chamber measurements were verified in Quasar anthropomorphic phantom. Results: After commissioning the LINAC in Pinnacle version 9.2, the MLC transmission for 6X, 10X and 15X were 2.0%, 1.7% and 2.0%, respectively, and additional Interleaf leakage for all three energies was 0.5%. These parameters were obtained from profiles scanned with an Edge detector (Sun Nuclear, Melbourne, FL) during machine commissioning. A Verification testing with radiographic EDR2 film (Kodak, Rochester, NY) measurement was performed by creating a closed MLC leaf pattern and analyzing using RIT software (RIT, Colorado Springs, CO). This reduced MLC transmission for 6X, 10X and 15X to 0.7%, 0.9% and 0.9%, respectively; while increasing additional Interleaf leakage for all three energies to 1.0%. Conclusion: Radiographic film measurements were used to correct MLC transmission values for step and shoot IMRT fields used in Pinnacle version 9.2. After adjusting the MLC parameters to correlate with the film QA, there was still very good agreement between the Pinnacle model and commissioning data. Using the same QA methodology, we were also able to improve the beam models for the Varian C-series linacs, Novalis-Tx, and TrueBeam M-120 linacs.

  16. SU-E-T-71: Commissioning and Acceptance Testing of a Commercial Monte Carlo Electron Dose Calculation Model (eMC) for TrueBeam

    SciTech Connect (OSTI)

    Sheu, R; Tseng, T; Powers, A; Lo, Y

    2014-06-01

    Purpose: To provide commissioning and acceptance test data of the Varian Eclipse electron Monte Carlo model (eMC v.11) for TrueBeam linac. We also investigated the uncertainties in beam model parameters and dose calculation results for different geometric configurations. Methods: For beam commissioning, PTW CC13 thimble chamber and IBA Blue Phantom2 were used to collect PDD and dose profiles in air. Cone factors were measured with a parallel plate chamber (PTW N23342) in solid water. GafChromic EBT3 films were used for dose calculation verifications to compare with parallel plate chamber results in the following test geometries: oblique incident, extended distance, small cutouts, elongated cutouts, irregular surface, and heterogeneous layers. Results: Four electron energies (6e, 9e, 12e, and 15e) and five cones (66, 1010, 1515, 2020, and 2525) with standard cutouts were calculated for different grid sizes (1, 1.5,2, and 2.5 mm) and compared with chamber measurements. The results showed calculations performed with a coarse grid size underestimated the absolute dose. The underestimation decreased as energy increased. For 6e, the underestimation (max 3.3 %) was greater than the statistical uncertainty level (3%) and was systematically observed for all cone sizes. By using a 1mm grid size, all the calculation results agreed with measurements within 5% for all test configurations. The calculations took 21s and 46s for 6e and 15e (2.5mm grid size) respectively distributed on 4 calculation servants. Conclusion: In general, commissioning the eMC dose calculation model on TrueBeam is straightforward and thedose calculation is in good agreement with measurements for all test cases. Monte Carlo dose calculation provides more accurate results which improves treatment planning quality. However, the normal acceptable grid size (2.5mm) would cause systematic underestimation in absolute dose calculation for lower energies, such as 6e. Users need to be cautious in this situation.

  17. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael (El Sobrante, CA)

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  18. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  19. CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures

    SciTech Connect (OSTI)

    Wang, Min; Jang, Sung Kyu; Song, Young Jae; Lee, Sungjoo

    2015-01-15

    Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup ?1} s{sup ?1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO{sub 2}, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup ?1} s{sup ?1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems.

  20. Method to estimate the vertical dispersion parameter in a 10 Km range

    SciTech Connect (OSTI)

    Xiaoen, L.; Xinyuan, J.; Jinte, Y.

    1983-12-01

    Based on the Monin-Batchelor Similarity Theory and the concept of effective roughness length, this paper presented an empirical vertical dispersion model in a 10 kilometer range. It could be used under a flat and homogeneous, as well as complex, topographical condition.

  1. Coupled-resonator vertical-cavity lasers with two active gain regions

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-05-20

    A new class of coupled-resonator vertical-cavity semiconductor lasers has been developed. These lasers have multiple resonant cavities containing regions of active laser media, resulting in a multi-terminal laser component with a wide range of novel properties.

  2. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOE Patents [OSTI]

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  3. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    DOE Patents [OSTI]

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  4. Effect of Ion Skin Depth on Relaxation of Merging Spheromaks to a Field-Reversed Configuration

    SciTech Connect (OSTI)

    Kawamori, Eiichirou; Ono, Yasushi

    2005-08-19

    The effect of ion skin depth on the relaxation of merging spheromaks to a field-reversed configuration (FRC) is studied experimentally for a wide range of size parameter S* (ratio of minor radius to ion skin depth) from 1 to 7. The two merging spheromaks are observed to relax to an FRC or a new spheromak depending on whether the initial poloidal eigenvalue is smaller or larger than a threshold value. The bifurcation value is found to increase with decreasing size parameter S{sup *}, indicating that the low-S* condition provides a wide bifurcated range of relaxation to an FRC. The FRC-style relaxation under the low-S* conditions was accompanied by the suppression of the low-n modes (n is the toroidal mode number) activity. The fast rotations of the modes were followed by suppression of the low-n modes.

  5. Surface hardening of titanium alloys with melting depth controlled by heat sink

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR)

    1995-01-01

    A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

  6. Tsunami and acoustic-gravity waves in water of constant depth

    SciTech Connect (OSTI)

    Hendin, Gali; Stiassnie, Michael

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  7. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

    SciTech Connect (OSTI)

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

    2011-04-01

    A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

  8. DOE/SC-ARM/TR-129 Aerosol Optical Depth Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Aerosol Optical Depth Value-Added Product A Koontz C Flynn G Hodges J Michalsky J Barnard March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  9. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  10. NREL Takes First In-Depth Look at Solar Project Completion Timelines - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Takes First In-Depth Look at Solar Project Completion Timelines Report examines new data to show how long the PV interconnection process takes in the U.S. February 11, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has gathered and analyzed data for more than 30,000 solar photovoltaic (PV) installations across the United States to better understand how interconnection regulations align with actual project completion timelines. The findings indicate

  11. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    SciTech Connect (OSTI)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-03-28

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  12. STARSPOTS-TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b

    SciTech Connect (OSTI)

    Kawahara, Hajime; Kurosaki, Kenji; Ito, Yuichi; Ikoma, Masahiro; Hirano, Teruyuki

    2013-10-10

    Violent variation of transit depths and an ingress-egress asymmetry of the transit light curve discovered in KIC 12557548 have been interpreted as evidence of a catastrophic evaporation of atmosphere with dust ( M-dot {sub p}?>1 M{sub ?} Gyr{sup 1}) from a close-in small planet. To explore what drives the anomalous atmospheric escape, we perform time-series analysis of the transit depth variation of Kepler archival data for ?3.5 yr. We find a ?30% periodic variation of the transit depth with P {sub 1} = 22.83 0.21 days, which is within the error of the rotation period of the host star estimated using the light curve modulation, P {sub rot} = 22.91 0.24 days. We interpret the results as evidence that the atmospheric escape of KIC 12557548b correlates with stellar activity. We consider possible scenarios that account for both the mass loss rate and the correlation with stellar activity. X-ray and ultraviolet (XUV)-driven evaporation is possible if one accepts a relatively high XUV flux and a high efficiency for converting the input energy to the kinetic energy of the atmosphere. Star-planet magnetic interaction is another possible scenario, though huge uncertainty remains for the mass loss rate.

  13. Method for the depth corrected detection of ionizing events from a co-planar grids sensor

    DOE Patents [OSTI]

    De Geronimo, Gianluigi (Syosset, NY); Bolotnikov, Aleksey E. (South Setauket, NY); Carini, Gabriella (Port Jefferson, NY)

    2009-05-12

    A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

  14. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    death. It is the responsibility of each Eligible Survivor (or the Eligible Survivor's guardian) to keep the LANL Benefits Office advised of any change of address and to...

  15. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS 401(k) Savings Plan Summary Plan Description December 1, 2009 This Summary Plan Description (SPD) is intended to provide a summary of the principal features of the LANS 401(k) Savings Plan ("Plan") and is not meant to interpret, extend or change the Plan in any way. This SPD will continue to be updated. Please check back on a regular basis for the most recent version and check with the Los Alamos National Laboratory (LANL) Benefits Office for any changes to the Plan that may not

  16. Report (Vertical)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS HR-Benefits Group September 1, 2012 918425-3 LANS 401(k) Retirement Plan Summary Plan Description This Summary Plan Description (SPD) is intended to provide a summary of the principal features of the LANS 401(k) Retirement Plan ("Plan") and is not meant to interpret, extend or change the Plan in any way. This SPD will continue to be updated. Please check back on a regular basis for the most recent version and check with the Los Alamos National Laboratory (LANL) Benefits Office for

  17. Property Improvement in CZT via Modeling and Processing Innovations . Te-particles in vertical gradient freeze CZT: Size and Spatial Distributions and Constitutional Supercooling

    SciTech Connect (OSTI)

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2014-10-01

    A section of a vertical gradient freeze CZT boule approximately 2100-mm3 with a planar area of 300-mm2 was prepared and examined using transmitted IR microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. The boule section was approximately 50-mm wide by 60-mm in length by 7-mm thick and was doubly polished for TIR work. Te-particles were imaged through the thickness using extended focal imaging to locate the particles in thickness planes spaced 15-m apart and then in plane of the image using xy-coordinates of the particle center of mass so that a true three dimensional particle map was assembled for a 1-mm by 45-mm longitudinal strip and for a 1-mm by 50-mm radial strip. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips, and treating the particles as vertices of a network created a 3D image of the particle spatial distribution. Te-particles exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure throughout the boule that can be correlated to dislocation network sizes in CZT. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te to reduce the melting point below 1273 K (1000C). These solidification experiments were performed over a wide range of cooling rates and clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as 1) Te-particle direct capture from melt-solid growth instabilities, 2) Te-particle formation from dislocation core diffusion and the formation and breakup of Te-tubes, and 3) Te-particle formation due to classical nucleation and growth as precipitates.

  18. Report on the Depth Requirements for a Massive Detector at Homestake

    SciTech Connect (OSTI)

    Bernstein,A.; Blucher, E.; Cline, D. B.; Diwan, M. V.; Fleming, b.; Kadel, R.; Kearns, E.; Klein, J.; Lande, K.; Lanni, F.; Lissauer, D.; McKeown, R.; Morse, W.; Radeika, R.; Scholberg, K.; Smy, M.; Sobel, H.; Sullivan, G.; Svoboda, R.; Vagins, M.; Walter, C.; Zwaska, R.

    2008-12-22

    This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of tens of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent. Projections for signal and background capability for a larger and deeper (or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which provides enhanced capability for background rejection. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the depth should be sufficient for any possible future use of these cavities or the level which will be developed for these large structures. Along with these physics justifications there are practical issues regarding the existing infrastructure at Homestake and also the stress characteristics of the Homestake rock formations. In this report we will examine the various depth choices at Homestake from the point of view of the particle and nuclear physics signatures of interest. We also have sufficient information about the existing infrastructure and the rock characteristics to narrow the choice of levels for the development of large cavities with long lifetimes. We make general remarks on desirable ground conditions for such large cavities and then make recommendations on how to start examining these levels to make a final choice. In the appendix we have outlined the initial requirements for the detectors. These requirements will undergo refinement during the course of the design. Finally, we strongly recommend that the geotechnical studies be commenced at the 4850 ft level, which we find to be the most suitable, in a timely manner.

  19. Report on the Depth Requirements for a Massive Detector at Homestake

    SciTech Connect (OSTI)

    Kadel, Richard W.; Bernstein, Adam; Blucher, Edward; Cline, David B.; Diwan, Milind V.; Fleming, Bonnie; Kearns, Edward; Klein, Joshua; Lande, Kenneth; Lanni, Francesco; Lissauer, David; McKeown, Robert; Morse, William; Rameika, Regina; Scholberg, Kate; Smy, Michael; Sobel, Henry; Sullivan, Gregory; Svoboda, Robert; Vagins, Mark; Walter, Christopher; Zwaska, Robert

    2008-12-23

    This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of hundreds of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent in a mountain. Projections for signal and background capability for a larger and deeper(or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which should provide enhanced capability for background rejection. We have based background rejection on reasonable estimates of track and energy resolution, and in some cases scaled background rates from measurements in water. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the depth should be sufficient for any possible future use of these cavities or the level which will be developed for these large structures.Along with these physics justifications there are practical issues regarding the existing infrastructure at Homestake and also the stress characteristics of the Homestake rock formations. In this report we will examine the various depth choices at Homestake from the point of view of the particle and nuclear physics signatures of interest. We also have sufficient information about the existing infrastructure and the rock characteristics to narrow the choice of levels for the development of large cavities with long lifetimes. We make general remarks on desirable ground conditions for such large cavities and then make recommendations on how to start examining these levels to make a final choice. In the appendix we have outlined the initial requirements for the detectors. These requirements will undergo refinement during the course of the design. Finally, we strongly recommend that the geotechnical studies be commenced at the 4850 ft level, which we find to be the most suitable, in a timely manner.

  20. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    SciTech Connect (OSTI)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 ?M of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 ? coaxial input. Agreement between simulated and experimental results is shown.

  1. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

    SciTech Connect (OSTI)

    Bannochie, C. J.

    2015-11-30

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mL stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H2O. A 30 mL Teflon bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.

  2. THE VERTICAL COMPOSITION OF NEUTRINO-DOMINATED ACCRETION DISKS IN GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Liu, Tong; Xue, Li; Gu, Wei-Min; Lu, Ju-Fu, E-mail: tongliu@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)] [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-10

    We investigate the vertical structure and element distribution of neutrino-dominated accretion flows around black holes in spherical coordinates using the reasonable nuclear statistical equilibrium. According to our calculations, heavy nuclei tend to be produced in a thin region near the disk surface, whose mass fractions are primarily determined by the accretion rate and vertical distribution of temperature and density. In this thin region, we find that {sup 56}Ni is dominant for the flow with a low accretion rate (e.g., 0.05 M {sub Sun} s{sup -1}), but {sup 56}Fe is dominant for the flow with a high accretion rate (e.g., 1 M {sub Sun} s{sup -1}). The dominant {sup 56}Ni in the aforementioned region may provide a clue to understanding the bumps in the optical light curve of core-collapse supernovae.

  3. First measurements of Hiro currents in vertical displacement event in tokamaks

    SciTech Connect (OSTI)

    Xiong, Hao; Xu, Guosheng; Wang, Huiqian; Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    Specially designed tiles were setup in the 2012 campaign of the Experimental Advanced Superconducting Tokamak (EAST), to directly measure the toroidal surface currents during the disruptions. Hiro currents with direction opposite to the plasma currents have been observed, confirming the sign prediction by the Wall Touching Vertical Mode (WTVM) theory and numerical simulations. During the initial phase of the disruption, when the plasma begins to touch the wall, the surface currents can be excited by WTVM along the plasma facing tile surface, varying with the mode magnitude. The currents are not observed in the cases when the plasma moves away from the tile surface. This discovery addresses the importance of the plasma motion into the wall in vertical disruptions. WTVM, acting as a current generator, forces the Hiro currents to flow through the gaps between tiles. This effect, being overlooked so far in disruption analysis, may damage the edges of the tiles and is important for the ITER device.

  4. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; et al

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  5. Characterization of vertical strain silicon MOSFET incorporating dielectric pocket (SDP-VMOSFET)

    SciTech Connect (OSTI)

    Napiah, Z. A. F. M. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Makhtar, N. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Othman, M. A. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Idris, M. I. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Arith, F. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Yasin, N. Y. M. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com Taib, S. N. E-mail: nazirah6969@gmail.com E-mail: idzdihar@utem.edu.my E-mail: yashidar@yahoo.com

    2014-02-24

    The vertical Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) leads to a double channel width that can increase the packaging density. The strained silicon MOSFET was introduced to modify the carrier transport properties of silicon in order to enhance transport of both electrons and holes within strained layer. Dielectric pocket was act to control encroachment of the drain doping into the channel and reduce short channel effects (SCE). SDP-VMOSFET which was a combination of those advantages was proposed to overcome the SCE in term of leakage current, threshold voltage roll-off also Drain Induce Barrier Lowering (DIBL). As a result, SDP-VMOSFET produces a better threshold voltage and DIBL compared to related structures. Meanwhile, it gives slightly increased for leakage current compared to Vertical MOSFET Incorporating Dielectric Pocket. The characteristics of the SDP-VMOSFET are analyzed in order to optimize the performance of the device and leading to the next generation of IC technology.

  6. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect (OSTI)

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  7. In situ oil shale retort with a generally T-shaped vertical cross section

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1981-01-01

    An in situ oil shale retort is formed in a subterranean formation containing oil shale. The retort contains a fragmented permeable mass of formation particles containing oil shale and has a production level drift in communication with a lower portion of the fragmented mass for withdrawing liquid and gaseous products of retorting during retorting of oil shale in the fragmented mass. The principal portion of the fragmented mass is spaced vertically above a lower production level portion having a generally T-shaped vertical cross section. The lower portion of the fragmented mass has a horizontal cross sectional area smaller than the horizontal cross sectional area of the upper principal portion of the fragmented mass above the production level.

  8. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  9. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOE Patents [OSTI]

    Campbell, M.D.

    1994-01-11

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

  10. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOE Patents [OSTI]

    Campbell, Melvin D. (Richland, WA)

    1994-01-01

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

  11. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Márquez, Francisco; López, Vicente; Morant, Carmen; Roque-Malherbe, Rolando; Domingo, Concepción; Elizalde, Eduardo; Zamora, Félix

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800°C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  12. Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torque from Wind Conference Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  13. Bistable laser device with multiple coupled active vertical-cavity resonators

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  14. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect (OSTI)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  15. Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore,

  16. Current Drive for Plasma Via Vertically-Structured Permanent Magnet System.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Current Drive for Plasma Via Vertically-Structured Permanent Magnet System. This invention uses the rotatoin of permanent magnets to generate a plasma current with toroidal fusion confinement devices. This particular device strategically places two rings of magnets above and below the ferromagnetic core in order to maximize both the efficiency and plasma current. No.: M-872 Inventor(s): Ali Zolfaghari

  17. An after-market, five-port vertical beam line extension for the PETtrace

    SciTech Connect (OSTI)

    Barnhart, T. E.; Engle, J. W.; Severin, G. W.; Valdovinos, H. F.; Gagnon, K.; Nickles, R. J.

    2012-12-19

    Most commercial cyclotrons intended for medical isotope production provide a limited number of beam ports crowded into a minimal vault space. Taking advantage of our new lab construction, we planned and installed a beam-line on port Music-Sharp-Sign 2 of our GEMS PETtrace to bring beam to an additional 5 target positions. These are oriented in the vertical plane, with the downward directed beam well suited for molten target substrates.

  18. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    SciTech Connect (OSTI)

    Aravinth, K. Babu, G. Anandha Ramasamy, P.

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  19. Modification and Application of a New Method for Retrieving Water-Cloud Microphysics Vertical Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification and Application of a New Method for Retrieving Water-Cloud Microphysics Vertical Profile F.-L Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland X. Dong Department of Atmospheric Sciences University of North Dakota Grand Forks, North Dakota Introduction Low- level boundary layer clouds have the most significant influence on cloud radiative forcing

  20. Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities

    SciTech Connect (OSTI)

    Giangrande S. E.; Luke, E. P.; Kollias, P.

    2012-02-01

    Extended, high-resolution measurements of vertical air motion and median volume drop diameter D0 in widespread precipitation from three diverse Atmospheric Radiation Measurement Program (ARM) locations [Lamont, Oklahoma, Southern Great Plains site (SGP); Niamey, Niger; and Black Forest, Germany] are presented. The analysis indicates a weak (0-10 cm{sup -1}) downward air motion beneath the melting layer for all three regions, a magnitude that is to within the typical uncertainty of the retrieval methods. On average, the hourly estimated standard deviation of the vertical air motion is 0.25 m s{sup -1} with no pronounced vertical structure. Profiles of D0 vary according to region and rainfall rate. The standard deviation of 1-min-averaged D0 profiles for isolated rainfall rate intervals is 0.3-0.4 mm. Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that gamma functions better explain paired velocity observations and radar retrievals for the Oklahoma dataset. This study will be useful in assessing uncertainties introduced in the measurement of precipitation parameters from ground-based and spaceborne remote sensors that are due to small-scale variability.

  1. VERTICAL STRUCTURE AND CORONAL POWER OF ACCRETION DISKS POWERED BY MAGNETOROTATIONAL-INSTABILITY TURBULENCE

    SciTech Connect (OSTI)

    Uzdensky, Dmitri A.

    2013-10-01

    In this paper, we consider two outstanding intertwined problems in modern high-energy astrophysics: (1) the vertical-thermal structure of an optically thick accretion disk heated by the dissipation of magnetohydrodynamic turbulence driven by the magnetorotational instability (MRI), and (2) determining the fraction of the accretion power released in the corona above the disk. For simplicity, we consider a gas-pressure-dominated disk and assume a constant opacity. We argue that the local turbulent dissipation rate due to the disruption of the MRI channel flows by secondary parasitic instabilities should be uniform across most of the disk, almost up to the disk photosphere. We then obtain a self-consistent analytical solution for the vertical thermal structure of the disk, governed by the balance between the heating by MRI turbulence and the cooling by radiative diffusion. Next, we argue that the coronal power fraction is determined by the competition between the Parker instability, viewed as a parasitic instability feeding off of MRI channel flows, and other parasitic instabilities. We show that the Parker instability inevitably becomes important near the disk surface, leading to a certain lower limit on the coronal power. While most of the analysis in this paper focuses on the case of a disk threaded by an externally imposed vertical magnetic field, we also discuss the zero net flux case, in which the magnetic field is produced by the MRI dynamo itself, and show that most of our arguments and conclusions should be valid in this case as well.

  2. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    SciTech Connect (OSTI)

    Xu, Xiaoqing Parizi, Kokab B.; Huo, Yijie; Kang, Yangsen; Philip Wong, H.-S.; Li, Yang

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to IIIV nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surface leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.

  3. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

    SciTech Connect (OSTI)

    Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA

    2009-01-01

    Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

  4. Device and method for the measurement of depth of interaction using co-planar electrodes

    DOE Patents [OSTI]

    DeGeronimo, Gianluigi (Syosset, NY)

    2007-09-18

    A device and method for measuring a depth of interaction of an ionizing event and improving resolution of a co-planar grid sensor (CPG) are provided. A time-of-occurrence is measured using a comparator to time the leading edge of the event pulse from the non-collecting or collecting grid. A difference signal between the grid signals obtained with a differential amplifier includes a pulse with a leading edge occurring at the time-of-detection, measured with another comparator. A timing difference between comparator outputs corresponds to the depth of interaction, calculated using a processor, which in turn weights the difference grid signal to improve spectral resolution of a CPG sensor. The device, which includes channels for grid inputs, may be integrated into an Application Specific Integrated Circuit. The combination of the device and sensor is included. An improved high-resolution CPG is provided, e.g., a gamma-ray Cadmium Zinc Telluride CPG sensor operating at room temperature.

  5. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    SciTech Connect (OSTI)

    Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

    2010-04-01

    Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

  6. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

    SciTech Connect (OSTI)

    Adams, A; Brazier, R; Nyblade, A; Rodgers, A; Al-Amri, A

    2009-02-23

    Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated within the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.

  7. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    SciTech Connect (OSTI)

    Onstott, T. C.; Aubrey, A.D.; Kieft, T L; Silver, B J; Phelps, Tommy Joe; Van Heerden, E.; Opperman, D. J.; Bada, J L.

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  8. Process for mounting a protection diode on a vertical multijunction photovoltaic cell structure and photovoltaic cells obtained

    SciTech Connect (OSTI)

    Arnould, J.

    1982-09-07

    In a stack of diodes forming a vertical multijunction photovoltaic cell, an inversely connected diode is firmly secured to this stack with possible insertion of a intermediate wafer made from a conducting material.

  9. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    SciTech Connect (OSTI)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo E-mail: wkim@astro.snu.ac.kr E-mail: sshong@astro.snu.ac.kr

    2012-12-20

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c{sub eff} of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c{sub eff} and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  10. Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications

    SciTech Connect (OSTI)

    Fossa, M.; Menezo, C.; Leonardi, E.

    2008-02-15

    An experimental study on natural convection in an open channel is carried out in order to investigate the effect of the geometrical configuration of heat sources on the heat transfer behaviour. To this aim, a series of vertical heaters are cooled by natural convection of air flowing between two parallel walls. The objective of the work is to investigate the physical mechanisms which influence the thermal behaviour of a double-skin photovoltaic (PV) facade. This results in a better understanding of the related phenomena and infers useful engineering information for controlling the energy transfers from the environment to the PV surfaces and from the PV surfaces to the building. Furthermore increasing the heat transfer rate from the PV surfaces increases the conversion efficiency of the PV modules since they operate better as their temperature is lower. The test section consists in a double vertical wall, 2 m high, and each wall is constituted by 10 different heating modules 0.2 m high. The heater arrangement simulates, at a reduced scale, the presence of a series of vertical PV modules. The heat flux at the wall ranges from 75 to 200 W/m{sup 2}. In this study, the heated section is 1.6 m in height, preceded by an adiabatic of 0.4 m in height. Different heating configurations are analyzed, including the uniform heating mode and two different configurations of non uniform, alternate heating. The experimental procedure allows the wall surface temperature, local heat transfer coefficient and local and average Nusselt numbers to be inferred. The experimental evidences show that the proper selection of the separating distance and heating configuration can noticeably decrease the surface temperatures and hence enhance the conversion efficiency of PV modules. (author)

  11. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A. (Rolla, MO); Barker, Clark R. (Rolla, MO); Keith, H. Dean (Rolla, MO)

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  12. The Theory of the Kink Mode during the Vertical Disruption Events in Tokamaks

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2008-01-14

    This paper explains the locked m/n = 1/1 kink mode during the vertical disruption event when the plasma has an electrical contact with the plasma facing conducting surfaces. It is shown that the kink perturbation can be in equilibrium state even with a stable safety factor q > 1, if the halo currents, excited by the kink mode, can flow through the conducting structure. This suggests a new explanation of the so-called sideway forces on the tokamak in-vessel components during the disruption event. __________________________________________________

  13. Vertical borehole design and completion practices used to remove methane gas from mineable coalbeds

    SciTech Connect (OSTI)

    Lambert, S.W.; Trevits, M.A.; Steidl, P.F.

    1980-08-01

    Coalbed gas drainage from the surface in advance of mining has long been the goal of researchers in mine safety. Bureau of Mines efforts to achieve this goal started about 1965 with the initiation of an applied research program designed to test drilling, completion, and production techniques for vertical boreholes. Under this program, over 100 boreholes were completed in 16 different coalbeds. The field methods derived from these tests, together with a basic understanding of the coalbed reservoir, represent an available technology applicable to any gas drainage program whether designed primarily for mine safety or for gas recovery, or both.

  14. Result of MHI 2-Cell Seamless Dumb-Bell Cavity Vertical Test

    SciTech Connect (OSTI)

    Okihira, K.; Hara, H.; Ikeda, N.; Inoue, F.; Sennyu, K.; Geng, Rongli; Rimmer, Robert A.; Kako, E.

    2014-12-01

    MHI have supplied several 9-cell cavities for STF (R&D of ILC project at KEK) and have been considering production method for stable quality and cost reduction, seamless dumb-bell cavity was one of them. We had fabricated a 2 cell seamless dumb-bell cavity for cost reduction and measured RF performance in collaboration with JLab, KEK and MHI. Surface treatment recipe for ILC was applied for MHI 2-cell cavity and vertical test was performed at JLab. The cavity reached Eacc=32.4MV/m after BCP and EP. Details of the result are reported.

  15. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    SciTech Connect (OSTI)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-16

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.

  16. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    SciTech Connect (OSTI)

    Frougier, J. Jaffrs, H.; Deranlot, C.; George, J.-M.; Baili, G.; Dolfi, D.; Alouini, M.; Sagnes, I.; Garnache, A.

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  17. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOE Patents [OSTI]

    Chalmers, Scott A. (Albuquerque, NM); Killeen, Kevin P. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM)

    1995-01-01

    We report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, we can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%.

  18. Method for accurate growth of vertical-cavity surface-emitting lasers

    DOE Patents [OSTI]

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-03-14

    The authors report a method for accurate growth of vertical-cavity surface-emitting lasers (VCSELs). The method uses a single reflectivity spectrum measurement to determine the structure of the partially completed VCSEL at a critical point of growth. This information, along with the extracted growth rates, allows imprecisions in growth parameters to be compensated for during growth of the remaining structure, which can then be completed with very accurate critical dimensions. Using this method, they can now routinely grow lasing VCSELs with Fabry-Perot cavity resonance wavelengths controlled to within 0.5%. 4 figs.

  19. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  20. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect (OSTI)

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  1. Verification of theoretically computed spectra for a point rotating in a vertical plane

    SciTech Connect (OSTI)

    Powell, D.C.; Connell, J.R.; George, R.L.

    1985-03-01

    A theoretical model is modified and tested that produces the power spectrum of the alongwind component of turbulence as experienced by a point rotating in a vertical plane perpendicular to the mean wind direction. The ability to generate such a power spectrum, independent of measurement, is important in wind turbine design and testing. The radius of the circle of rotation, its height above the ground, and the rate of rotation are typical for those for a MOD-OA wind turbine. Verification of this model is attempted by comparing two sets of variances that correspond to individual harmonic bands of spectra of turbulence in the rotational frame. One set of variances is calculated by integrating the theoretically generated rotational spectra; the other is calculated by integrating rotational spectra from real data analysis. The theoretical spectrum is generated by Fourier transformation of an autocorrelation function taken from von Karman and modified for the rotational frame. The autocorrelation is based on dimensionless parameters, each of which incorporates both atmospheric and wind turbine parameters. The real data time series are formed by sampling around the circle of anemometers of the Vertical Plane Array at the former MOD-OA site at Clayton, New Mexico.

  2. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore » sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ångström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ångström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  3. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure

    SciTech Connect (OSTI)

    Chowdhury, S; Mishra, UK

    2013-10-01

    Power conversion losses are endemic in all areas of electricity consumption, including motion control, lighting, air conditioning, and information technology. Si, the workhorse of the industry, has reached its material limits. Increasingly, the lateral AlGaN/GaN HEMT based on gallium nitride (GaN-on-Si) is becoming the device of choice for medium power electronics as it enables high-power conversion efficiency and reduced form factor at attractive pricing for wide market penetration. The reduced form factor enabled by high-efficiency operation at high frequency further enables significant system price reduction because of savings in bulky extensive passive elements and heat sink costs. The high-power market, however, still remains unaddressed by lateral GaN devices. The current and voltage demand for high power conversion application makes the chip area in a lateral topology so large that it becomes more difficult to manufacture. Vertical GaN devices would play a big role alongside of silicon carbide (SiC) to address the high power conversion needs. In this paper, the development, performance, and status of lateral and vertical GaN devices are discussed.

  4. A systematic approach to vertically excited states of ethylene using configuration interaction and coupled cluster techniques

    SciTech Connect (OSTI)

    Feller, David, E-mail: dfeller@owt.com; Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States); Davidson, Ernest R. [Department of Chemistry, University of Washington, Seattle, Washington 98195-1700 (United States)

    2014-09-14

    A systematic sequence of configuration interaction and coupled cluster calculations were used to describe selected low-lying singlet and triplet vertically excited states of ethylene with the goal of approaching the all electron, full configuration interaction/complete basis set limit. Included among these is the notoriously difficult, mixed valence/Rydberg {sup 1}B{sub 1u} V state. Techniques included complete active space and iterative natural orbital configuration interaction with large reference spaces which led to variational spaces of 1.8 10{sup 9} parameters. Care was taken to avoid unintentionally biasing the results due to the widely recognized sensitivity of the V state to the details of the calculation. The lowest vertical and adiabatic ionization potentials to the {sup 2}B{sub 3u} and {sup 2}B{sub 3} states were also determined. In addition, the heat of formation of twisted ethylene {sup 3}A{sub 1} was obtained from large basis set coupled cluster theory calculations including corrections for core/valence, scalar relativistic and higher order correlation recovery.

  5. Experimental research on heat transfer of natural convection in vertical rectangular channels with large aspect ratio

    SciTech Connect (OSTI)

    Lu, Qing; Qiu, Suizheng; Su, Guanghui [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi'an JIaotong University, Xi'an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Tian, Wenxi; Ye, Zhonghao [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

    2010-01-15

    This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60-24) and the ratio of length to gap clearance (800-320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel's integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m{sup 2}, the maximum wall temperature was lower than 350 C. All this work is valuable for the plate type reactor's design and safety analysis. (author)

  6. VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Kim, S.; Cho, K.-S.; Nakariakov, V. M.

    2014-12-20

    Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 and 304 bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 and 304 are coherent, which indicates that the observed kink oscillation is collective, in which the rope moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 bandpass shows an oscillatory motion with the period of about 1000 s.

  7. Snow Depth and Density at End-of-Winter for NGEE Areas A, B, C and D, Barrow, Alaska, 2012-2014

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anna Liljedahl; Cathy Wilson

    2016-02-02

    End-of-winter snow depth and average snow density from area A, B, C and D, which include 1000's of point depth measurement located between approximately 20 and 50 cm apart.

  8. Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells

    SciTech Connect (OSTI)

    P. Oberlander; D. McGraw; C. Russell

    2007-10-31

    Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

  9. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    SciTech Connect (OSTI)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapid intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.

  10. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  11. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect (OSTI)

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  12. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  13. Metal affinity enrichment increases the range and depth of proteome identification for extracellular microbial proteins

    SciTech Connect (OSTI)

    Wheeler, Korin; Erickson, Brian K; Mueller, Ryan; Singer, Steven; Verberkmoes, Nathan C; Hwang, Mona; Thelen, Michael P.; Hettich, Robert {Bob} L

    2012-01-01

    Many key proteins, such as those involved in cellular signaling or transcription, are difficult to measure in microbial proteomic experiments due to the interfering presence of more abundant, dominant proteins. In an effort to enhance the identification of previously undetected proteins, as well as provide a methodology for selective enrichment, we evaluated and optimized immobilized metal affinity chromatography (IMAC) coupled with mass spectrometric characterization of extracellular proteins from an extremophilic microbial community. Seven different metals were tested for IMAC enrichment. The combined results added 20% greater proteomic depth to the extracellular proteome. Although this IMAC enrichment could not be conducted at the physiological pH of the environmental system, this approach did yield a reproducible and specific enrichment of groups of proteins with functions potentially vital to the community, thereby providing a more extensive biochemical characterization. Notably, 40 unknown proteins previously annotated as hypothetical were enriched and identified for the first time. Examples of identified proteins includes a predicted TonB signal sensing protein homologous to other known TonB proteins and a protein with a COXG domain previously identified in many chemolithoautotrophic microbes as having a function in the oxidation of CO.

  14. Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure

    SciTech Connect (OSTI)

    Berge, P A; Bonner, B P

    2002-01-03

    Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and a second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.

  15. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    SciTech Connect (OSTI)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  16. Aligned vertical fractures, HTI reservoir symmetry, and Thomsenseismic anisotropy parameters for polar media

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-12-12

    Sayers and Kachanov (1991) defined crack-influence parameters that are shown to be directly related to Thomsen (1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack/fracture density is small enough. These results are then applied to the problem of seismic wave propagation in polar (i.e., non-isotropic) reservoirs having HTI seismic wave symmetry due to the presence of aligned vertical fractures and resulting in azimuthal seismic wave symmetry at the earth's surface. The approach presented suggests one method of inverting for fracture density from wave-speed data. It is also observed that the angular location {theta}{sub ex} of the extreme value (peak or trough) of the quasi-SV-wave speed for VTI occurs at an angle determined approximately by the formula tan{sup 2} {theta}{sub ex} {approx_equal} tan {theta}{sub m} = [(c{sub 33} - c{sub 44})/(c{sub 11}-c{sub 44})]{sup 1/2}, where {theta}{sub m} is an angle determined directly (as shown) from the c{sub ij} elastic stiffnesses, whenever these are known from either quasi-static or seismic wave measurements. Alternatively, {theta}{sub ex} is given in terms of the Thomsen seismic anisotropy parameters by tan {theta}{sub ex} {approx_equal} ([v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]/[(1 + 2{epsilon})v{sub p}{sup 2}(0)-v{sub s}{sup 2}(0)]){sup 1/4}, where {epsilon} = (c{sub 11}-c{sub 33})/2c{sub 33}, v{sub p}{sup 2}(0) = c{sub 33}/{rho}, and v{sub s}{sup 2}(0) = c{sub 44}/{rho}, with {rho} being the background inertial mass density. The axis of symmetry is always treated here as the x{sub 3}-axis for either VTI symmetry (due, for example, to horizontal cracks), or HTI symmetry (due to aligned vertical cracks). Then the meaning of the stiffnesses is derived from the fracture analysis in the same way for VTI and HTI media, but for HTI the wave speeds relative to the earth's surface are shifted by 90{sup o} in the plane perpendicular to the aligned vertical fractures. Skempton's (1954) coefficient is used as a general means of quantifying the effects of fluids inside the fractures. Explicit formulas for Thomsen's parameters are also obtained for either drained or undrained fractures resulting in either VTI or HTI symmetry of the reservoir.

  17. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    SciTech Connect (OSTI)

    Yang, Qiguang; Williams, Frances; Zhao, Xin; Reece, Charles E.; Krishnan, Mahadevan

    2013-09-01

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials? microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials? crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surface?s top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  18. Engineering Task Plan for Development and Fabrication and Deployment of Nested Fixed Depth Fluidic Sampling and At Tank Analysis Systems

    SciTech Connect (OSTI)

    BOGER, R.M.

    2000-10-30

    This engineering task plan identifies the resources, responsibilities, and schedules for the development and deployment of a mobile, variable depth sampling system and an at-tank analysis system. The mobile, variable depth sampling system concept was developed after a cost assessment indicated a high cost for multiple deployments of the nested, fixed-depth sampling system. The sampling will provide double-shell tank (DST) staging tank waste samples for assuring the readiness of the waste for shipment to the LAW/HLW plant for treatment and immobilization. The at-tank analysis system will provide ''real-time'' assessments of the samples' chemical and physical properties. These systems support the Hanford Phase 1B vitrification project.

  19. Method of design for vertical oil shale retorting vessels and retorting therewith

    DOE Patents [OSTI]

    Reeves, Adam A.

    1978-01-03

    A method of designing the gas flow parameters of a vertical shaft oil shale retorting vessel involves determining the proportion of gas introduced in the bottom of the vessel and into intermediate levels in the vessel to provide for lateral distribution of gas across the vessel cross section, providing mixing with the uprising gas, and determining the limiting velocity of the gas through each nozzle. The total quantity of gas necessary for oil shale treatment in the vessel may be determined and the proportion to be injected into each level is then determined based on the velocity relation of the orifice velocity and its feeder manifold gas velocity. A limitation is placed on the velocity of gas issuing from an orifice by the nature of the solid being treated, usually physical tests of gas velocity impinging the solid.

  20. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOE Patents [OSTI]

    Dale, Steinar J. (Monroeville, PA)

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  1. Frequency-doubled vertical-external-cavity surface-emitting laser

    DOE Patents [OSTI]

    Raymond, Thomas D. (Edgewood, NM); Alford, William J. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    2002-01-01

    A frequency-doubled semiconductor vertical-external-cavity surface-emitting laser (VECSEL) is disclosed for generating light at a wavelength in the range of 300-550 nanometers. The VECSEL includes a semiconductor multi-quantum-well active region that is electrically or optically pumped to generate lasing at a fundamental wavelength in the range of 600-1100 nanometers. An intracavity nonlinear frequency-doubling crystal then converts the fundamental lasing into a second-harmonic output beam. With optical pumping with 330 milliWatts from a semiconductor diode pump laser, about 5 milliWatts or more of blue light can be generated at 490 nm. The device has applications for high-density optical data storage and retrieval, laser printing, optical image projection, chemical-sensing, materials processing and optical metrology.

  2. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Mreke, Janina Uren, Michael J.; Kuball, Martin; Novikov, Sergei V.; Foxon, C. Thomas; Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J.; Haigh, Sarah J.; Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain

    2014-07-07

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  3. On the role of disorder on graphene and graphene nanoribbon-based vertical tunneling transistors

    SciTech Connect (OSTI)

    Ghobadi, Nayereh; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2014-11-14

    In this work, the characteristics of vertical tunneling field-effect transistors based on graphene (VTGFET) and graphene nanoribbon heterostructure (VTGNRFET) in the presence of disorder are theoretically investigated. An statistical analysis based on an atomistic tight-binding model for the electronic bandstructure along with the non-equilibrium Green's function formalism are employed. We study the dependence of the averaged density of states, transmission probability, on- and off-state conductances, on/off conductance ratio, and transfer characteristics on the substrate induced potential fluctuations and vacancies. In addition, the variabilities of the device characteristics due to the presence of disorder are evaluated. It can be inferred from the results that while introducing vacancies cause a relatively modest suppression of the transmission probability, potential fluctuations lead to the significant increase of transmission probability and conductance of the device. Moreover, the results show that the transport properties of VTGFET are more robust against disorder compared to VTGNRFET.

  4. Radiation resistance of GaAs-GaAlAs vertical cavity surface emitting lasers

    SciTech Connect (OSTI)

    Jabbour, J.; Zazoui, M.; Sun, G.C.; Bourgoin, J.C.; Gilard, O.

    2005-02-15

    The variations of the optical and electrical characteristics of a vertical cavity surface emitting laser based on GaAs quantum wells have been monitored versus irradiation with 1 MeV electrons. The results are understood by the introduction of nonradiative recombination centers in the wells whose characteristics, capture cross section for minority carriers times their introduction rate, can be determined. A similar study performed for proton irradiation shows that the results can be explained in the same way when the introduction rate of the defects is replaced by the proton energy loss into atomic collisions. These results allow us to deduce the equivalence between electron and proton irradiations: A flux of 1 proton cm{sup -2} which loses an energy E{sub nl} (eV) into atomic collisions is equivalent to a fluence of about 9x10{sup -2} E{sub nl} cm{sup -2}, 1 MeV electrons.

  5. Numerical Investigation of Vertical Plunging Jet Using a Hybrid Multifluid–VOF Multiphase CFD Solver

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shonibare, Olabanji Y.; Wardle, Kent E.

    2015-01-01

    A novel hybrid multiphase flow solver has been used to conduct simulations of a vertical plunging liquid jet. This solver combines a multifluid methodology with selective interface sharpening to enable simulation of both the initial jet impingement and the long-time entrained bubble plume phenomena. Models are implemented for variable bubble size capturing and dynamic switching of interface sharpened regions to capture transitions between the initially fully segregated flow types into the dispersed bubbly flow regime. It was found that the solver was able to capture the salient features of the flow phenomena under study and areas for quantitative improvement havemore » been explored and identified. In particular, a population balance approach is employed and detailed calibration of the underlying models with experimental data is required to enable quantitative prediction of bubble size and distribution to capture the transition between segregated and dispersed flow types with greater fidelity.« less

  6. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect (OSTI)

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  7. Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2

    SciTech Connect (OSTI)

    Gu, Lianhong; Van Gorsel, Eva; Leuning, Ray; Delpierre, Nicolas; Black, Andy; Chen, Baozhang; Munger, J. William; Wofsy, Steve; Aubinet, M.

    2009-11-01

    Micrometeorological measurements of nighttime ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397 403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (FC) and change in storage (FS) of CO2 in the few hours after sundown. The sum of FC and FS reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration RRmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of Fc + Fs extrapolated to zero light, RLRC, and (3) with a detailed process-based forest ecosystem model, Rcast. At most sites respiration rates estimated using the u*-filter, Rust, were smaller than RRmax and RLRC. Agreement of our approach with independent measurements indicates that RRmax provides an excellent estimate of nighttime ecosystem respiration

  8. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect (OSTI)

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  9. Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser

    SciTech Connect (OSTI)

    Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

    1985-12-01

    The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

  10. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  11. Using computerized tomography to determine ionospheric structures. Part 2, A method using curved paths to increase vertical resolution

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1993-08-01

    A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.

  12. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001)

    Office of Scientific and Technical Information (OSTI)

    ceria (Journal Article) | SciTech Connect Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria Citation Details In-Document Search Title: Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process.

  13. Depth-resolved confocal micro-Raman spectroscopy for characterizing GaN-based light emitting diode structures

    SciTech Connect (OSTI)

    Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming, E-mail: ymchang@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China)] [Center for Condensed Matter Sciences, National Taiwan University, 10617 Taipei, Taiwan (China); Chang, Chiao-Yun; Huang, Huei-Min; Lu, Tien-Chang [Department of Photonics, National Chiao Tung University, 30010 Hsinchu, Taiwan (China)] [Department of Photonics, National Chiao Tung University, 30010 Hsinchu, Taiwan (China)

    2013-11-15

    In this work, we demonstrate that depth-resolved confocal micro-Raman spectroscopy can be used to characterize the active layer of GaN-based LEDs. By taking the depth compression effect due to refraction index mismatch into account, the axial profiles of Raman peak intensities from the GaN capping layer toward the sapphire substrate can correctly match the LED structural dimension and allow the identification of unique Raman feature originated from the 0.3 ?m thick active layer of the studied LED. The strain variation in different sample depths can also be quantified by measuring the Raman shift of GaN A{sub 1}(LO) and E{sub 2}(high) phonon peaks. The capability of identifying the phonon structure of buried LED active layer and depth-resolving the strain distribution of LED structure makes this technique a potential optical and remote tool for in operando investigation of the electronic and structural properties of nitride-based LEDs.

  14. Temporal variability of the trade wind inversion: Measured with a boundary layer vertical profiler. Master's thesis

    SciTech Connect (OSTI)

    Grindinger, C.M.

    1992-05-01

    This study uses Hawaiian Rainband Project (HaRP) data, from the summer of 1991, to show a boundary layer wind profiler can be used to measure the trade wind inversion. An algorithm has been developed for the profiler that objectively measures the depth of the moist oceanic boundary layer. The Hilo inversion, measured by radiosonde, is highly correlated with the moist oceanic boundary layer measured by the profiler at Paradise Park. The inversion height on windward Hawaii is typically 2253 + or - 514 m. The inversion height varies not only on a daily basis, but on less than an hourly basis. It has a diurnal, as well as a three to four day cycle. There appears to be no consistent relationship between inversion height and precipitation. Currently, this profiler is capable of making high frequency (12 minute) measurements of the inversion base variation, as well as other features.

  15. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    SciTech Connect (OSTI)

    Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known inscattering effect, whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the inout balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the inout balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the first time. The influences of both the collecting electrode radius and the width of the guard ring are reflecting the deep radial penetration of the electron transport processes into the gas-filled cavities and the need for appropriate corrections of the chamber reading. New values for these corrections have been established in two forms, one converting the indicated value into the absorbed dose to water in the front plane of the chamber, the other converting it into the absorbed dose to water at the depth of the effective point of measurement of the chamber. In the Appendix, the inout imbalance of electron transport across the lateral cavity boundary is demonstrated in the approximation of classical small-angle multiple scattering theory. Conclusions: The inout electron transport imbalance at the lateral boundaries of parallel-plate chambers in electron beams has been studied with Monte Carlo simulation over a range of depth in water, and new correction factors, covering all depths and implementing the effective point of measurement concept, have been developed.

  16. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    SciTech Connect (OSTI)

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.

  17. Buoyant instabilities in downward flow in a symmetrically heated vertical channel

    SciTech Connect (OSTI)

    Evans, G.; Greif, R.

    1996-07-01

    This study of the downward flow of nitrogen in a tall, partially heated vertical channel (upstream isothermal at T{sub in}*, heated region isothermal at T{sub s}* downstream adiabatic) shows the strong effects of buoyancy even for small temperature differences. Time-dependent oscillations including periodic flow reversals occur along the channel walls. Although the flow and heat transfer are asymmetric, the temperature and axial component of velocity show symmetric reflections at two times that are half a period apart and the lateral component of velocity shows antisymmetric reflections at the two times. There is strong interaction between the downward flow in the central region of the channel and the upward flow along the heated channel walls. At the top of the heated region, the upward buoyant flow turns toward the center of the channel and is incorporated into the downward flow. Along the channel centerline there are nonmonotonic variations of the axial component of velocity and temperature and a large lateral component of velocity that reverses direction periodically. Results are presented for Re = 219.7 and Gr/Re{sup 2} = 1.83, 8.0, and 13.7. The heat transfer and the frequency of the oscillations increases and the flow and temperature fields become more complex as Gr/Re{sup 2} increases. The results have applications to fiber drying, food processing, crystal growth, solar energy collection, cooling of electronic circuits, ventilation, etc.

  18. Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

    SciTech Connect (OSTI)

    Razek, Sara Abdel; Swillam, Mohamed A.; Allam, Nageh K.

    2014-05-21

    Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H{sub 2}O{sub 2} electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650?nm and lengths from 8 to 18??m. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670?nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ?670?nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ?660?nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

  19. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect (OSTI)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  20. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    SciTech Connect (OSTI)

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.

    2013-06-15

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  1. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOE Patents [OSTI]

    Chow, Weng W.; Choquette, Kent D.; Gourley, Paul L.

    1998-01-01

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n.gtoreq.2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n.gtoreq.2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum.

  2. Temperature-insensitive vertical-cavity surface-emitting lasers and method for fabrication thereof

    DOE Patents [OSTI]

    Chow, W.W.; Choquette, K.D.; Gourley, P.L.

    1998-01-27

    A temperature-insensitive vertical-cavity surface-emitting laser (VCSEL) and method for fabrication thereof are disclosed. The temperature-insensitive VCSEL comprises a quantum-well active region within a resonant cavity, the active region having a gain spectrum with a high-order subband (n {>=} 2) contribution thereto for broadening and flattening the gain spectrum, thereby substantially reducing any variation in operating characteristics of the VCSEL over a temperature range of interest. The method for forming the temperature-insensitive VCSEL comprises the steps of providing a substrate and forming a plurality of layers thereon for providing first and second distributed Bragg reflector (DBR) mirror stacks with an active region sandwiched therebetween, the active region including at least one quantum-well layer providing a gain spectrum having a high-order subband (n {>=} 2) gain contribution, and the DBR mirror stacks having predetermined layer compositions and thicknesses for providing a cavity resonance within a predetermined wavelength range substantially overlapping the gain spectrum. 12 figs.

  3. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less

  4. Design parameters and commissioning of vertical inserts used for testing the XFEL superconducting cavities

    SciTech Connect (OSTI)

    Schaffran, J.; Bozhko, Y.; Petersen, B.; Meissner, D.; Chorowski, M.; Polinski, J.

    2014-01-29

    The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconducting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.

  5. Design and commissioning of vertical test cryostats for XFEL superconducting cavities measurements

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Duda, P.; Bozhko, Y.; Petersen, B.; Schaffran, J.

    2014-01-29

    The European X-ray Free Electron Laser (XFEL), now under construction at DESY in Hamburg, will make an extensive use of 1.3 GHz superconducting cavities aimed at accelerating the electrons to the energy of 17.5 GeV. The cavities will be operated at 2 K with the use of saturated HeII. Prior to their assembly in accelerator cryomodules, the RF performance of the cavities will be cold-tested in two dedicated vertical cryostats. Each cryostat allows a simultaneous testing of 4 cavities mounted on a dedicated insert. The cryostats are equipped with external lines allowing their supply with liquid helium and further conversion of the helium into superfluid He II. The paper describes the test stand flow scheme, the technical key elements, including a recuperative heat exchanger, and the cold commissioning. The thermodynamic analysis of the cryostat cool down and steady-state operation is given. A Second Law of Thermodynamics based theoretical model of the heat exchanger performance, and the model experimental validation, is presented.

  6. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  7. Condensation of Refrigerant-11 on the outside of vertical enhanced tubes

    SciTech Connect (OSTI)

    Domingo, N.

    1981-08-01

    Experiments were conducted to determine heat transfer performance of single vertical tubes with Refrigerant-11 condensing on its outside surface. Twelve enhanced (fluted, spiraled, roped, and corrugated) tubes of 2.54-cm (1-in.) nominal outside diameter and 1.2-m (4-ft) length were tested. Several of the tested tubes featured internal enhanced geometries. A previously tested smooth tube served as the basis for comparison. Composite heat transfer coefficients (coefficients that include the resistances of both the condensing film and the tube wall), based on the total tube outside surface area, ranged from 850 to 6530 W/m/sup 2/ . K (150 to 1150 Btu/h . ft/sup 2/ . /sup 0/F) over the heat flux range of 5675 to 31,375 W/m/sup 2/ (1800 to 9950 Btu/h . ft/sup 2/). The primary conclusions from this study are: (1) for a given heat flux, an external fluted tube can increase composite condensing heat transfer coefficients by up to 5.5 times the smooth tube values, giving better condensing performance than any of the other geometries tested; (2) further increase in composite condensing coefficients can be achieved by using skirts to divide the fluted tube into equal condensing lengths; and (3) for a given overall temperature difference and water flow rate, internal flutes can increase the overall performance by up to 17% over that for a tube with identical outside flutes and a smooth inside surface.

  8. Vertical GaN power diodes with a bilayer edge termination

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; et al

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type driftmore » region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  9. Film condensation of saturated and superheated vapors along isothermal vertical surfaces in mixed convection

    SciTech Connect (OSTI)

    Winkler, C.M.; Chen, T.S.; Minkowycz, W.J.

    1999-09-01

    An analysis for condensation from an isothermal vertical flat plate in mixed convection is reported. The entire mixed convection regime is divided into two regions. One region covers the forced-convection-dominated regime, and the other covers the free-convection-dominated regime. The governing system of equations is first transformed into a dimensionless form by the nonsimilar transformation, separately for each regime, and then solved using the local nonsimilarity method along with a finite difference scheme. Two nonsimilarity parameters are introduced. The parameter {xi}{sub f} = Gr{sub x}/Re{sub x}{sup 2} characterizes the effect of buoyancy force on forced convection, while the parameter {xi}{sub n} = Re{sub x}/Gr{sub x}{sup 1/2} characterizes the effect of forced flow on free convection. Numerical results for pure steam and refrigerant R-134a are presented for both saturated and superheated cases. It is found that the buoyancy force significantly increases the wall shear stress and condensate mass flux. To a lesser degree, the buoyancy force also increases the wall heat flux. Superheating is found to have an insignificant effect on wall heat flux for a pure vapor.

  10. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    SciTech Connect (OSTI)

    Zanin, H.; Saito, E.; Ceragioli, H.J.; Baranauskas, V.; Corat, E.J.

    2014-01-01

    Graphical abstract: - Highlights: Graphene nanosheets were produced onto wire rods. RGO and VACNT-O were evaluated and compared as supercapacitor electrode. RGO and VACNT-O have structural and electrochemical properties quite similars. The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic chargedischarge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  11. Vertical GaN power diodes with a bilayer edge termination

    SciTech Connect (OSTI)

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; Fischer, Arthur J.; King, Michael P.; Moseley, Michael W.; Armstrong, Andrew M.; Kaplar, Robert J.; Kizilyalli, Isik C.; Aktas, Ozgur; Wierer, Jr., Jonathan J.

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (104 - 105 cm-2) GaN substrate, and has a 15-?m-thick n-type drift layer with a free carrier concentration of 5 1015 cm-3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p) layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.

  12. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ≃ 4.5 pN, corresponding to a critical current up to Jc ≃ 7×105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, λab = 320 ± 60 nm, which ismore » larger than previous bulk measurements.« less

  13. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    SciTech Connect (OSTI)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (00.5 or 010 cm) across the N-amendment gradient (0, 7, and 15 kg ha1 yr1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  14. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-09-04

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha–1 yr–1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

  15. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect (OSTI)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  16. Vertical Extraction Process Implemented at the 118-K-1 Burial Ground for Removal of Irradiated Reactor Debris from Silo Structures - 12431

    SciTech Connect (OSTI)

    Teachout, Douglas B.; Adamson, Clinton J.; Zacharias, Ames

    2012-07-01

    The primary objective of a remediation project is the safe extraction and disposition of diverse waste forms and materials. Remediation of a solid waste burial ground containing reactor hardware and irradiated debris involves handling waste with the potential to expose workers to significantly elevated dose rates. Therefore, a major challenge confronted by any remediation project is developing work processes that facilitate compliant waste management practices while at the same time implementing controls to protect personnel. Traditional burial ground remediation is accomplished using standard excavators to remove materials from trenches and other excavation configurations often times with minimal knowledge of waste that will be encountered at a specific location. In the case of the 118-K-1 burial ground the isotopic activity postulated in historic documents to be contained in vertical cylindrical silos was sufficient to create the potential for a significant radiation hazard to project personnel. Additionally, certain reported waste forms posed an unacceptably high potential to contaminate the surrounding environment and/or workers. Based on process knowledge, waste management requirements, historic document review, and a lack of characterization data it was determined that traditional excavation techniques applied to remediation of vertical silos would expose workers to unacceptable risk. The challenging task for the 118-K-1 burial ground remediation project team then became defining an acceptable replacement technology or modification of an existing technology to complete the silo remediation. Early characterization data provided a good tool for evaluating the location of potential high exposure rate items in the silos. Quantitative characterization was a different case and proved difficult because of the large diameter of the silos and the potential for variable density of attenuating soils and waste forms in the silo. Consequently, the most relevant information supporting job planning and understanding of the conditions was the data obtained from the gross gamma meter that was inserted into each casing to provide a rough estimate of dose rates in the tubes. No added value was realized in attempting to quantify the source term and/or associate the isotopic activity with a particular actual waste form (e.g., sludge). Implementing the WRM system allowed monitoring of worker and boundary exposure rates from a distance, maintaining compliance with ALARA principles. This system also provided the project team early knowledge of items being removed that had high exposure rates associated with them, thus creating an efficient method of acknowledging an issue and arriving at a solution prior to having an upset condition. An electronic dosimeter with telemetry capability replaced the excavator mounted AMP-100 system approximately half way through remediation of the silos. Much higher connectivity efficiency was derived from this configuration. Increasing the data feed efficiency additionally led to less interruption of the remediation effort. Early in system testing process a process handicap on the excavator operator was acknowledged. A loss of depth perception resulted when maneuvering the excavator and bucket using the camera feed to an in-cab monitor. Considerable practice and mock-up testing allowed this handicap to be overcome. The most significant equipment failures involved the cable connection to the camera mounted between the clamshell bucket jaws and the video splitter in the excavator cab. Rotation of the clamshell bucket was identified as the cause of cable connection failures because of the cyclic twisting motion and continuous mechanical jarring of the connection. In-cab vibration was identified as the culprit in causing connection failures of the video splitter. While these failures were repaired, substantial production time was lost. Ultimately, the decision was made to purchase a second cable and higher quality video splitter eliminate the down time. An engineering improvement for future operations would be i

  17. A Block-Structured KIVA Program for Engines with Vertical or Canted Valves

    Energy Science and Technology Software Center (OSTI)

    1999-08-23

    KIVA3VRELEASE2 is a computer program for the numerical calculation of transient, two and three-dimensional, chemically reactive flows with sprays. It is a newer version of the earlier KIVA3 (1993) that has now been extended to model vertical of canted valves in the cylinder head of a gasoline or diesel engine. KIVA3, in turn, was based on the earlier KIVA2 (1989) and uses the same numerical solution procedure and solves the same sort of equations. KIVA3VRELEASE2more » uses a block-structured mesh with connectivity defined through indirect addressing. The departure from a single rectangular structure in logical space allows complex geometries to be modeled with significantly greater efficiency because large regions of deactivated cells are no longer necessary. Cell-face boundary conditions permit greater flexibility and simplification in the application of boundary conditions. KIVA3VRELEASE2 contains a number of significant changes. New features enhance the robustness, efficiency, and usefullness of the overall program for engine modeling. Automatic restart of the cycle with a reduced timestep in case of iteration limit or temperature overflow will reduce code crashes. A new option provides automatic deactivation of a port region when it is closed from the cylinder and reactivation when it communicates with the cylinder. Corrections in the code improve accuracy; extensions to the particle-based liquid wall film model makes the model more complete and a spli injection option has been added. A new subroutine monitors the liquid and gaseous fuel phases and energy balance data and emissions are monitored and printed. New features have been added to the grid generator K3PREP and the graphics post processor, K3POST.« less

  18. Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers

    SciTech Connect (OSTI)

    Sciamanna, M.; Panajotov, K.

    2006-02-15

    We perform a theoretical investigation of the polarization dynamics in a vertical-cavity surface-emitting laser (VCSEL) subject to orthogonal optical injection, i.e., the injected field has a linear polarization (LP) orthogonal to that of the free-running VCSEL. In agreement with previous experiments [Z. G. Pan et al., Appl. Phys. Lett. 63, 2999 (1993)], an increase of the injection strength may lead to a polarization switching accompanied by an injection locking. We find that this route to polarization switching is typically accompanied by a cascade of bifurcations to wave-mixing dynamics and time-periodic and possibly chaotic regimes. A detailed mapping of the polarization dynamics in the plane of the injection parameters (detuning, injection strength) unveils a large richness of dynamical scenarios. Of particular interest is the existence of another injection-locked solution for which the two LP modes both lock to the master laser frequency, i.e., an elliptically polarized injection-locked (EPIL) steady state. Modern continuation techniques allow us to unveil an unfolding mechanism of the EPIL solution as the detuning varies and also to link the existence of the EPIL solution to a resonance condition between the master laser frequency and the free-running frequency of the normally depressed LP mode in the slave laser. We furthermore report an additional case of bistability, in which the EPIL solution may coexist with the second injection-locked solution (the one being locked to the master polarization). This case of bistability is a result of the interaction between optical injection and the two-polarization-mode characteristics of VCSEL devices.

  19. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  20. True Color Tube Borescope Inspection System

    Energy Science and Technology Software Center (OSTI)

    1997-08-07

    The overall purpose of TCTBIS is to determine the quality of the inside surface of a tube. This is done by acquiring multiple images along the inside of a tube and converting these images into one unwrapped image of the inside of a tube. This resultant image is the same as if you had slit a tube length-wise, flattened it out, and then taken a picture of it. What is unique about this system ismore » that the picture is acquired in a non-destructive manner. TCTBIS also analyzes the unwrapped images for oxidation, foreign particles, and surface imperfections, scratches.« less

  1. True Electric LLC | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 56298 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes This...

  2. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect (OSTI)

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2011-11-29

    Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

  3. Investigation of vertical distribution and morphology of indigenous organic matter Sleeping Bear site, Michigan

    SciTech Connect (OSTI)

    West, C.C.; Lyon, W.G.; Ross, D.L.

    1994-11-01

    This study evaluates the nature and origin of particulate organic carbon and organic coatings on aquifer sands upgradient from a fuel spill site near the Sleeping Bear Dunes National Lakeshore in Michigan. The distribution of carbon was found to be highly complex due to the occurrence of high organic carbon horizons, bounded above and below by high carbonate sediments. The organic coatings on the sands were examined using white light and fluorescence microscopy and by scanning electron microscopy. Core samples were analyzed for organic and inorganic carbon, solution pH, humic/fulvic acid ratios, and insoluable organic matter content (that is, humin) as function of depth from the ground surface. The organic geochemistry of the soil profile at this site was found to be significantly influenced by the carbonates producing a sharp boundary of precipitated organic matter. This boundary was followed by coatings of predominantly fulvic acid salts on mineral grains deeper in the soil column. The coatings extended into the aquifer. The existence of native organic films on sand grains is well documented in the soils literature. The study reported here was greatly aided by this information and provides the framework for future studies concerning the influence of carbon distribution, chemical identity, and morphology on contaminant fate and transport processes. 56 refs., 9 figs., 2 tabs.

  4. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    SciTech Connect (OSTI)

    Solovyov, VF; Wu, LJ; Rupich, MW; Sathyamurthy, S; Li, XP; Li, Q

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  5. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on(001) ceria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; Sathyamurthy, Srivatsan; Li, Xiaoping; Li, Qiang

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  6. Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

    SciTech Connect (OSTI)

    CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J.; KURTZ,STEVEN R.; BREILAND,WILLIAM G.; SIEG,ROBERT M.; GEIB,KENT M.; SCOTT,J.W.; NAONE,R.L.

    2000-06-05

    Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

  7. Comparison of practical vertical ground heat exchanger sizing methods to a Fort Polk data/model benchmark

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Hughes, P.J.

    1997-09-01

    The results of five practical vertical ground heat exchanger sizing programs are compared against a detailed simulation model that has been calibrated to monitored data taken from one military family housing unit at Fort Polk, Louisiana. The calibration of the detailed model to data is described in a companion paper. The assertion that the data/detailed model is a useful benchmark for practical sizing methods is based on this calibration. The results from the comparisons demonstrate the current level of agreement between vertical ground heat exchanger sizing methods in common use. It is recommended that the calibration and comparison exercise be repeated with data sets from additional sites in order to build confidence in the practical sizing methods.

  8. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    SciTech Connect (OSTI)

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; Nie, H.; Disney, D.; Wierer, Jr., J.; Allerman, A. A.; Moseley, M. W.; Kaplar, R. J.

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

  9. Experimental determination of lateral vibration of the 708 MVA Westinghouse vertical hydro generators at Grand Coulee Dam, Washington

    SciTech Connect (OSTI)

    Turner, R.L.

    1981-09-01

    The damped rotor bearing system of large vertical shaft systems presents special problems for high speed storage installations. The results of the first test of its kind have given experimental data contributing to this technology. Synchronous and non-synchronous vibrations were found to contribute to runout loading. Measurements on the pivot pad hydrodynamic bearings gave stiffness characteristics. Measurements showed that balancing the rotor reduced vibration levels. 1 ref.

  10. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    DOE Patents [OSTI]

    Hou, Hong Q. (Albuquerque, NM); Coltrin, Michael E. (Albuquerque, NM); Choquette, Kent D. (Albuquerque, NM)

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  11. Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud

  12. Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country

    Office of Environmental Management (EM)

    CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future

  13. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect (OSTI)

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9?kA/cm{sup 2}) and low ON-resistance (0.4 m? cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  14. Assessment of Barotrauma Resulting from Rapid Decompression of Depth Acclimated Juvenile Chinook Salmon Bearing Radio Telemetry Transmitters

    SciTech Connect (OSTI)

    Brown, Richard S.; Carlson, Thomas J.; Welch, Abigail E.; Stephenson, John R.; Abernethy, Cary S.; McKinstry, Craig A.; Theriault, Marie-Helene

    2007-09-06

    A multifactor study was conducted by Battelle for the US Army Corps of Engineers to assess the significance of the presence of a radio telemetry transmitter on the effects of rapid decompression from simulated hydro turbine passage on depth acclimated juvenile run-of-the-river Chinook salmon. Study factors were: (1) juvenile chinook salmon age;, subyearling or yearling, (2) radio transmitter present or absent, (3) three transmitter implantation factors: gastric, surgical, and no transmitter, and (4) four acclimation depth factors: 1, 10, 20, and 40 foot submergence equivalent absolute pressure, for a total of 48 unique treatments. Exposed fish were examined for changes in behavior, presence or absence of barotrauma injuries, and immediate or delayed mortality. Logistic models were used to test hypotheses that addressed study objectives. The presence of a radio transmitter was found to significantly increase the risk of barotrauma injury and mortality at exposure to rapid decompression. Gastric implantation was found to present a higher risk than surgical implantation. Fish were exposed within 48 hours of transmitter implantation so surgical incisions were not completely healed. The difference in results obtained for gastric and surgical implantation methods may be the result of study design and the results may have been different if tested fish had completely healed surgical wounds. However, the test did simulate the typical surgical-release time frame for in-river telemetry studies of fish survival so the results are probably representative for fish passing through a turbine shortly following release into the river. The finding of a significant difference in response to rapid decompression between fish bearing radio transmitters and those not implies a bias may exist in estimates of turbine passage survival obtained using radio telemetry. However, the rapid decompression (simulated turbine passage) conditions used for the study represented near worst case exposure for fish passing through turbines. At this time, insufficient data exist about the distribution of river-run fish entering turbines, and particularly, the distribution of fish passing through turbine runners, to extrapolate study findings to the population of fish passing through FCRPS turbines. This study is the first study examining rapid decompression study to include acclimation depth as an experimental factor for physostomous fish. We found that fish acclimated to deeper depth were significantly more vulnerable to barotrauma injury and death. Insufficient information about the distribution of fish entering turbines and their depth acclimation currently exists to extrapolate these findings to the population of fish passing through turbines. However, the risk of barotrauma for turbine-passed fish could be particularly high for subyearling Chinook salmon that migrate downstream at deeper depths late in the early summer portion of the outmigration. Barotrauma injuries led to immediate mortality delayed mortality and potential mortality due to increased susceptibility to predation resulting from loss of equilibrium or swim bladder rupture.

  15. Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site

    SciTech Connect (OSTI)

    Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

    2012-02-01

    The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

  16. The change of microstructure and thermal properties in ion irradiated carbon nanotube mats as a function of ion penetration depth

    SciTech Connect (OSTI)

    Aitkaliyeva, A. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States)] [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Shao, L. [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States) [Materials Science and Engineering Program, Texas A and M University, College Station, Texas 77843 (United States); Department of Nuclear Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2013-02-11

    A stack of three carbon nanotube (CNT) mats was irradiated with 3 MeV He ions. The change in structural and thermal properties of individual mats as a function of ion penetration depth was characterized using electron microscopy and laser flash techniques. Ion irradiation can enhance thermal conductivity of the mats by introducing inter-tube displacements, which improve phonon transport across adjacent nanotubes. The enhancement, however, is reduced at higher damage levels due to the increasing phonon-defect scattering within the tubes. This study demonstrates the feasibility of using ion irradiation to manipulate thermal transport in carbon nanotubes.

  17. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    SciTech Connect (OSTI)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  18. SU-E-T-406: Use of TrueBeam Developer Mode and API to Increase the Efficiency and Accuracy of Commissioning Measurements for the Varian EDGE Stereotactic Linac

    SciTech Connect (OSTI)

    Gardner, S; Gulam, M; Song, K; Li, H; Huang, Y; Zhao, B; Qin, Y; Snyder, K; Kim, J; Gordon, J; Chetty, I; Wen, N

    2014-06-01

    Purpose: The Varian EDGE machine is a new stereotactic platform, combining Calypso and VisionRT localization systems with a stereotactic linac. The system includes TrueBeam DeveloperMode, making possible the use of XML-scripting for automation of linac-related tasks. This study details the use of DeveloperMode to automate commissioning tasks for Varian EDGE, thereby improving efficiency and measurement consistency. Methods: XML-scripting was used for various commissioning tasks,including couch model verification,beam-scanning,and isocenter verification. For couch measurements, point measurements were acquired for several field sizes (22,44,1010cm{sup 2}) at 42 gantry angles for two couch-models. Measurements were acquired with variations in couch position(rails in/out,couch shifted in each of motion axes) compared to treatment planning system(TPS)-calculated values,which were logged automatically through advanced planning interface(API) scripting functionality. For beam scanning, XML-scripts were used to create custom MLC-apertures. For isocenter verification, XML-scripts were used to automate various Winston-Lutz-type tests. Results: For couch measurements, the time required for each set of angles was approximately 9 minutes. Without scripting, each set required approximately 12 minutes. Automated measurements required only one physicist, while manual measurements required at least two physicists to handle linac positions/beams and data recording. MLC apertures were generated outside of the TPS,and with the .xml file format, double-checking without use of TPS/operator console was possible. Similar time efficiency gains were found for isocenter verification measurements Conclusion: The use of XML scripting in TrueBeam DeveloperMode allows for efficient and accurate data acquisition during commissioning. The efficiency improvement is most pronounced for iterative measurements, exemplified by the time savings for couch modeling measurements(approximately 10 hours). The scripting also allowed for creation of the files in advance without requiring access to TPS. The API scripting functionality enabled efficient creation/mining of TPS data. Finally, automation reduces the potential for human error in entering linac values at the machine console,and the script provides a log of measurements acquired for each session. This research was supported in part by a grant from Varian Medical Systems, Palo Alto, CA.

  19. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    SciTech Connect (OSTI)

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.; /Argonne /INFN, Padova

    2011-04-13

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Significant improvement in the architecture of associative memory structures is needed to run fast pattern recognition algorithms of this scale. We are proposing the development of 3D integrated circuit technology as a way to implement new associative memory structures for fast pattern recognition applications. Adding a 'third' dimension to the signal processing chain, as compared to the two-dimensional nature of printed circuit boards, Field Programmable Gate Arrays (FPGAs), etc., opens up the possibility for new architectures that could dramatically enhance pattern recognition capability. We are currently performing preliminary design work to demonstrate the feasibility of this approach. In this proposal, we seek to develop the design and perform the ASIC engineering necessary to realize a prototype device. While our focus here is on the Energy Frontier (e.g. the LHC), the approach may have applications in experiments in the Intensity Frontier and the Cosmic Frontier as well as other scientific and medical projects. In fact, the technique that we are proposing is very generic and could have wide applications far beyond track trigger, both within and outside HEP.

  20. Time-resolved observation of fast domain-walls driven by vertical spin currents in short tracks

    SciTech Connect (OSTI)

    Sampaio, Joao; Lequeux, Steven; Chanthbouala, Andre; Cros, Vincent; Grollier, Julie; Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji

    2013-12-09

    We present time-resolved measurements of the displacement of magnetic domain-walls (DWs) driven by vertical spin-polarized currents in track-shaped magnetic tunnel junctions. In these structures, we observe very high DW velocities (600 m/s) at current densities below 10{sup 7} A/cm{sup 2}. We show that the efficient spin-transfer torque combined with a short propagation distance allows avoiding the Walker breakdown process and achieving deterministic, reversible, and fast (≈1 ns) DW-mediated switching of magnetic tunnel junction elements, which is of great interest for the implementation of fast DW-based spintronic devices.

  1. Development of vertically aligned ZnO-nanowires scintillators for high spatial resolution x-ray imaging

    SciTech Connect (OSTI)

    Kobayashi, Masakazu Komori, Jun; Shimidzu, Kaiji; Izaki, Masanobu; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio

    2015-02-23

    Newly designed scintillator of (0001)-oriented ZnO vertical nanowires (vnws) for X-ray imaging was prepared on a Ga-doped ZnO/soda-lime glass by electrodeposition, and the light emission feature was estimated in a synchrotron radiation facility. The ZnO-vnws scintillator revealed a strong light emission and improved resolution on CMOS image compared with that for the ZnO-layer scintillator, although the light emission performance was deteriorated in comparison to the Lu{sub 3}Al{sub 5}O{sub 12:}Ce{sup 3+}. The light emission property closely related to the nanostructure and the resultant photoluminescence characteristic.

  2. Hyperfine-induced hysteretic funnel structure in spin blockaded tunneling current of coupled vertical quantum dots at low magnetic field

    SciTech Connect (OSTI)

    Leary, A.; Wicha, A.; Harack, B.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline the properties of the hyperfine-induced funnel structure observed in the two-electron spin blockade region of a weakly coupled vertical double quantum dot device. Hysteretic steps in the leakage current occur due to dynamic nuclear polarization when either the bias voltage or the magnetic field is swept up and down. When the bias voltage is swept, an intriguing ?3 mT wide cusp near 0 T appears in the down-sweep position, and when the magnetic field is swept, the current at 0 T can be switched from 'low' to 'high' as the bias is increased.

  3. GaN-based vertical-cavity laser performance improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim

    2014-07-07

    This Letter investigates the output power enhancement achieved by tunnel junction insertion into the InGaN multi-quantum well (MQW) active region of a 410?nm vertical-cavity surface-emitting laser which enables the repeated use of carriers for light generation (carrier recycling). While the number of quantum wells remains unchanged, the tunnel junction eliminates absorption caused by the non-uniform MQW carrier distribution. The thermal resistance drops and the excess bias lead to a surprisingly small rise in self-heating.

  4. Assessment of CCFL model of RELAP5/MOD3 against simple vertical tubes and rod bundle tests. International Agreement Report

    SciTech Connect (OSTI)

    Cho, S.; Arne, N.; Chung, B.D.; Kim, H.J.

    1993-06-01

    The CCFL model used in RELAP5/MOD3 version 5m5 has been assessed against simple vertical tubes and bundle tests performed at a facility of Korea Atomic Energy Research Institute. The effect of changes in tube diameter and nodalization of tube section were investigated. The roles of interfacial drags on the flooding characteristics are discussed. Differences between the calculation and the experiment are also discussed. A comparison between model assessment results and the test data showed that the calculated value lay well on the experimental flooding curve specified by user, but the pressure jump before onset of flooding was not calculated.

  5. A Bayesian inversion framework for yield and height-of-burst/depth-of-burial for near-surface explosions

    SciTech Connect (OSTI)

    Johannesson, Gardar; Bulaevskaya, Vera; Ramirez, Abe; Ford, Sean; Rodgers, Artie

    2015-09-07

    A Bayesian inversion framework is presented to estimate the yield of an explosion and height-of-burst/depth-of-burial (HOB/DOB) using seismic and air pressure data. This is accomplished by first calibrating the parameters in the forward models that relate the observations to the yield and HOB/DOB and then using the calibrated model to estimate yield and HOB/DOB associated with a new set of seismic and air pressure observations. The MCMC algorithms required to perform these steps are outlined, and the results with real data are shown. Finally, an extension is proposed for a case when clustering in the seismic displacement occurs as a function of different types of rock and other factors.

  6. Depth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning

    SciTech Connect (OSTI)

    Aldous J. D.; Sanchez-Hanke C.; Burrows, C.W.; Maskery, I.; Brewer, M.S.; Hase, T.P.A.; Duffy, J.A.; Lees, M. Rs; Decoster, T.; Theis, W.; Quesada, A.; Schmid, A.K.; Bell, G.R.

    2012-03-15

    Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide {approx}4.5 nm thick covers air-exposed samples which increases the film's coercivity. HCl etching efficiently removes this oxide and in situ surface treatment of etched samples enables surface magnetic contrast to be observed in SPLEEM. A thin Sb capping layer prevents oxidation and preserves ferromagnetism throughout the MnSb film. The interpretation of Mn L{sub 3,2} edge XMCD data is discussed.

  7. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosovmore » vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  8. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    SciTech Connect (OSTI)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  9. Niamey Aerosol Optical Depths

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    2008-10-01

    MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of large dust particles in the atmosphere around Niamey.

  10. Phase transformations during the Ag-In plating and bonding of vertical diode elements of multijunction solar cells

    SciTech Connect (OSTI)

    Klochko, N. P. Khrypunov, G. S.; Volkova, N. D.; Kopach, V. R.; Lyubov, V. N.; Kirichenko, M. V.; Momotenko, A. V.; Kharchenko, N. M.; Nikitin, V. A.

    2013-06-15

    The conditions of the bonding of silicon multijunction solar cells with vertical p-n junctions using Ag-In solder are studied. The compositions of electrodeposited indium films on silicon wafers silver plated by screen printing and silver and indium films fabricated by layer-by-layer electrochemical deposition onto the surface of silicon vertical diode cells silver plated in vacuum are studied. Studying the electrochemical-deposition conditions, structure, and surface morphology of the grown layers showed that guaranteed bonding is provided by 8-min heat treatment at 400 Degree-Sign C under the pressure of a stack of metallized silicon wafers; however, the ratio of the indium and silver layer thicknesses should not exceed 1: 3. As this condition is satisfied, the solder after wafer bonding has the InAg{sub 3} structure (or InAg{sub 3} with an Ag phase admixture), due to which the junction melting point exceeds 700 Degree-Sign C, which guarantees the functioning of such solar cells under concentrated illumination.

  11. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; et al

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 ± 0.9%, whichmore » are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  12. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  13. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOE Patents [OSTI]

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  14. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOE Patents [OSTI]

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  15. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOE Patents [OSTI]

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  16. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions

    SciTech Connect (OSTI)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; Xiao, Kai

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.

  17. In-Depth Analysis of Simulation Engine Codes for Comparison with DOE s Roof Savings Calculator and Measured Data

    SciTech Connect (OSTI)

    New, Joshua Ryan; Levinson, Ronnen; Huang, Yu; Sanyal, Jibonananda; Miller, William A.; Mellot, Joe; Childs, Kenneth W.; Kriner, Scott

    2014-06-01

    The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNL studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.

  18. Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique

    SciTech Connect (OSTI)

    Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.

    2015-03-15

    Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.

  19. Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount

    SciTech Connect (OSTI)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavlyuchenko, A. S. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kukushkin, M. V.; Vasil'eva, E. D. [ZAO Innovation 'Tetis' (Russian Federation); Chernyakov, A. E. [Russian Academy of Sciences, Science-and-Technology Microelectronics Center (Russian Federation); Usikov, A. S. [De Core Nanosemiconductors Ltd. (India)

    2013-03-15

    Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm{sup 2} in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

  20. Magnetotransport properties of a few-layer graphene-ferromagnetic metal junctions in vertical spin valve devices

    SciTech Connect (OSTI)

    Entani, Shiro Naramoto, Hiroshi; Sakai, Seiji

    2015-05-07

    Magnetotransport properties were studied for the vertical spin valve devices with two junctions of permalloy electrodes and a few-layer graphene interlayer. The graphene layer was directly grown on the bottom electrode by chemical vapor deposition. X-ray photoelectron spectroscopy showed that the permalloy surface fully covered with a few-layer graphene is kept free from oxidation and contamination even after dispensing and removing photoresist. This enabled fabrication of the current perpendicular to plane spin valve devices with a well-defined interface between graphene and permalloy. Spin-dependent electron transport measurements revealed a distinct spin valve effect in the devices. The magnetotransport ratio was 0.8% at room temperature and increased to 1.75% at 50?K. Linear current-voltage characteristics and resistance increase with temperature indicated that ohmic contacts are realized at the relevant interfaces.

  1. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    SciTech Connect (OSTI)

    Fill, Matthias; Phocone AG, 8005 Zurich ; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  2. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  3. A high intensity solar cell invention: The edge-illuminated vertical multi-junction (VNJ) solar cell. Final report

    SciTech Connect (OSTI)

    Sater, B.L.

    1992-08-07

    This report contains a summary of a High Intensity Solar Cell (HI Cell) development carried out under the NIST/DOE Energy-Related Invention Program. The HI Cell, or Edge-Illuminated vertical Multi-junction Solar Cell, eliminates most major problems encountered with other concentrator solar cell designs. Its high voltage and low series resistance features make it ideally suited for efficient operation at high intensities. Computer modeling shows efficiencies near 30% at 500 suns intensity are possible with state-of-art processing. Development of a working model was largely successful before encountering an unexpected problem during the last fabrication step with the anti-reflection coating. Unfortunately, funding was exhausted before its resolution. Recommendations are made to resolve the AR coating problem and to integrate all the knowledge gained during this development into a viable prototype model. The invention will provide the technical and economic performance needed to make photovoltaic systems cost-effective for wide use.

  4. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    SciTech Connect (OSTI)

    Dan, Yaping, E-mail: yaping.dan@sjtu.edu.cn; Chen, Kaixiang [University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Crozier, Kenneth B. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-01-01

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

  5. High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS{sub 2}-metal heterostructures

    SciTech Connect (OSTI)

    Wi, Sungjin; Chen, Mikai; Nam, Hongsuk; Liu, Amy C.; Meyhofer, Edgar; Liang, Xiaogan

    2014-06-09

    We present a study on the photodiode response of vertically stacked graphene/MoS{sub 2}/metal heterostructures in which MoS{sub 2} layers are doped with various plasma species. In comparison with undoped heterostructures, such doped ones exhibit significantly improved quantum efficiencies in both photovoltaic and photoconductive modes. This indicates that plasma-doping-induced built-in potentials play an important role in photocurrent generation. As compared to indium-tin-oxide/ MoS{sub 2}/metal structures, the presented graphene/MoS{sub 2}/metal heterostructures exhibit greatly enhanced quantum efficiencies in the blue-near ultraviolet region, which is attributed to the low density of recombination centers at graphene/MoS{sub 2} heterojunctions. This work advances the knowledge for making photo-response devices based on layered materials.

  6. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect (OSTI)

    Castaeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Mndez-Pinzn, H. A.; Pedroza-Rodrguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40C.

  7. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    SciTech Connect (OSTI)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  8. Clinal morphological variation along a depth gradient in the living scleractinian reef coral Favia pallida: Effects on perceived evolutionary tempos in the fossil record

    SciTech Connect (OSTI)

    Cuffey, R.J. ); Pachut, J.F. )

    1990-12-01

    The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets. Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.

  9. Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 4.4.1 Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug (Baker Hughes Oilfield Operations Incorporated) Objectives: To develop an ultrasonic borehole televiewer that can operate at temperatures as high as 300 °C and in depths as great as 10,000 m. Average Overall Score: 3.3/4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Relevance/ Impact Scientific/ Technical Approach

  10. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect (OSTI)

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  11. An estimate for the sum of a Dirichlet series in terms of the minimum of its modulus on a vertical line segment

    SciTech Connect (OSTI)

    Gaisin, Ahtyar M; Rakhmatullina, Zhanna G

    2011-12-31

    The behaviour of the sum of an entire Dirichlet series is analyzed in terms of the minimum of its modulus on a system of vertical line segments. Also a more general problem, connected with the Polya conjecture is posed and solved. It concerns the minimum modulus of an entire function with Fabri gaps and its growth along curves going to infinity. Bibliography: 33 titles.

  12. On the Ramsey numbers for complete distance graphs with vertices in {l_brace}0,1{r_brace}{sup n}

    SciTech Connect (OSTI)

    Mikhailov, Kirill A; Raigorodskii, Andrei M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2009-12-31

    A new problem of Ramsey type is posed for complete distance graphs in R{sup n} with vertices in the Boolean cube. This problem is closely related to the classical Nelson-Erdos-Hadwiger problem on the chromatic number of a space. Several quite sharp estimates are obtained for certain numerical characteristics that appear in the framework of the problem. Bibliography: 15 titles.

  13. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect (OSTI)

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  14. Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition

    SciTech Connect (OSTI)

    Martinez-Suastegui, L. [Graduate Student, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico); Trevino, C. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, C.U., Mexico 04510 D.F. (Mexico)

    2007-10-15

    Particle image velocimetry (PIV) measurements were carried out in an experimental investigation of laminar mixed convection in a vertical duct with a square cross-section. The main downward water-flow is driven by gravity while a portion of a lateral side is heated, and buoyancy forces produce non-stationary vortex structures close to the heated region. Various ranges of the Grashof number, Gr are studied in combination with the Reynolds number, Re varying from 300 to 700. The values of the generalized buoyancy parameter or Richardson number, Ri = Gr/Re{sup 2} parallel to the Grashof number are included in the results. The influence of these nondimensional parameters and how they affect the fluid flow structure and vortex sizes and locations are reported. The flow patterns are nonsymmetric, periodic, and exhibit increasing complexity and frequency for increasing buoyancy. For the averaged values of the resulting vortex dimensions, it was found that a better and more congruent representation occurs when employing the Grashof and Reynolds numbers as independent parameters. (author)

  15. A study of the minimum wetting rate of isothermal films flowing down on outer surface of vertical pipes

    SciTech Connect (OSTI)

    Koizumi, Yasuo; Ohtake, Hiroyasu; Ueda, Tatsuhiro

    1999-07-01

    The minimum wetting rate (MWR) was investigated experimentally with an isothermal water film flowing down on the outer surface of test pipes arranged vertically. A dry patch was generated by blowing a small air jet onto the film temporally, and observation was made to discriminate whether the dry patch was rewetted or not. The contact angle of the film at the top edge of the dry patch and the amplitude, length and velocity of large waves on the film were measured. The MWR decreased rapidly as the film flowed down and reached a nearly constant value at a position around 0.6 m down from the film inlet. There were large waves on the film. The tendency of the variation of MWR with the distance coincided well with the growth of the amplitude of large waves with the distance. The contact angle at the top edge of the dry patch varied periodically in a range synchronizing with the arrival of the waves. When the contact angle exceeded the maximum advancing contact angle, the rewetting of the dry patch was initiated. The existing correlations where the smooth surface film was assumed considerably over-predicted the MWR. The MWR was properly given by supposing that the dry patch is rewetted when the maximum of the fluctuating dynamic pressure of the film exceeds the upward component of the surface tension corresponding to the maximum advancing contact angle at the top edge of the dry patch.

  16. Single Packaged Vertical Units

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  17. Vertical counterflow evaporative cooler

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  18. SU-E-I-11: Cascaded Linear System Model for Columnar CsI Flat Panel Imagers with Depth Dependent Gain and Blur

    SciTech Connect (OSTI)

    Peng, B; Lubinsky, A; Zheng, H; Zhao, W; Teymurazyan, A

    2014-06-01

    Purpose: To implement a depth dependent gain and blur cascaded linear system model (CLSM) for optimizing columnar structured CsI indirect conversion flat panel imager (FPI) for advanced imaging applications. Methods: For experimental validation, depth dependent escape efficiency, e(z), was extracted from PHS measurement of different CsI scintillators (thickness, substrate and light output). The inherent MTF and DQE of CsI was measured using high resolution CMOS sensor. For CLSM, e(z) and the depth dependent MTF(f,z), were estimated using Monte Carlo simulation (Geant4) of optical photon transport through columnar CsI. Previous work showed that Monte Carlo simulation for CsI was hindered by the non-ideality of its columnar structure. In the present work we allowed variation in columnar width with depth, and assumed diffusive reflective backing and columns. Monte Carlo simulation was performed using an optical point source placed at different depth of the CsI layer, from which MTF(z,f) and e(z) were computed. The resulting e(z) with excellent matching with experimental measurements were then applied to the CLSM, Monte Carlo simulation was repeated until the modeled MTF, DQE(f) also match experimental measurement. Results: For a 150 micron FOS HL type CsI, e(z) varies between 0.56 to 0.45, and the MTF at 14 cycles/mm varies between 62.1% to 3.9%, from the front to the back of the scintillator. The overall MTF and DQE(f) at all frequencies are in excellent agreement with experimental measurements at all frequencies. Conclusion: We have developed a CLSM for columnar CsI scintillators with depth dependent gain and MTF, which were estimated from Monte Carlo simulation with novel optical simulation settings. Preliminary results showed excellent agreement between simulation results and experimental measurements. Future work is aimed at extending this approach to optimize CsI screen optic design and sensor structure for achieving higher DQE(f) in cone-beam CT, which uses high kVp.

  19. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    SciTech Connect (OSTI)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ? 4.5 pN, corresponding to a critical current up to Jc ? 7105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, ?ab = 320 60 nm, which is larger than previous bulk measurements.

  20. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    SciTech Connect (OSTI)

    Mayr, Lukas; Kltzer, Bernhard; Penner, Simon; Rameshan, Raffael; Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin ; Rameshan, Christoph; Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/01, 1060 Vienna

    2014-05-15

    An ultra-high vacuum (UHV) setup for real and inverse model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7, magic angle) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  1. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOE Patents [OSTI]

    Finot, Marc (Somerville, MA); Kesler, Olivera (Cambridge, MA); Suresh, Subra (Wellesley, MA)

    1998-01-01

    A technique for determining properties such as Young's modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined.

  2. Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report

    SciTech Connect (OSTI)

    Hardage, Bob

    2013-07-01

    This 3-year project was terminated at the end of Year 1 because the DOE Geothermal project-evaluation committee decided one Milestone was not met and also concluded that our technology would not be successful. The Review Panel recommended a ?no-go? decision be implemented by DOE. The Principal Investigator and his research team disagreed with the conclusions reached by the DOE evaluation committee and wrote a scientifically based rebuttal to the erroneous claims made by the evaluators. We were not told if our arguments were presented to the people who evaluated our work and made the ?no-go? decision. Whatever the case regarding the information we supplied in rebuttal, we received an official letter from Laura Merrick, Contracting Officer at the Golden Field Office, dated June 11, 2013 in which we were informed that project funding would cease and instructed us to prepare a final report before September 5, 2013. In spite of the rebuttal arguments we presented to DOE, this official letter repeated the conclusions of the Review Panel that we had already proven to be incorrect. This is the final report that we are expected to deliver. The theme of this report will be another rebuttal of the technical deficiencies claimed by the DOE Geothermal Review Panel about the value and accomplishments of the work we did in Phase 1 of the project. The material in this report will present images made from direct-S modes produced by vertical-force sources using the software and research findings we developed in Phase 1 that the DOE Review Panel said would not be successful. We made these images in great haste when we were informed that DOE Geothermal rejected our rebuttal arguments and still regarded our technical work to be substandard. We thought it was more important to respond quickly rather than to take additional time to create better quality images than what we present in this Final Report.

  3. Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70BM blend

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.; Rysz, Jakub; Opitz, Andreas; Campoy-Quiles, Mariano; Wang, Ergang; Barr, Matthew G.; Kilcoyne, A. L. David; Zhou, Xiaojing; et al

    2015-02-13

    The distribution of electron donor and acceptor in the active layer is known to strongly influence the electrical performance of polymer solar cells for most of the high performance polymer:fullerene systems. The formulation of the solution from which the active layer is spincoated plays an important role in the quest for morphology control. We have studied how the choice of solvent and the use of small amounts of a low vapour pressure additive in the coating solution influence the film morphology and the solar cell performance for blends of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and [6,6]-phenyl C71-butyric acid methyl ester (PC70BM). We havemore » investigated the lateral morphology using atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM), the vertical morphology using dynamic secondary ion mass spectrometry (d-SIMS) and variable-angle spectroscopic ellipsometry (VASE), and the surface composition using near-edge X-ray absorption fine structure (NEXAFS). The lateral phase-separated domains observed in films spincoated from single solvents, increase in size with increasing solvent vapour pressure and decreasing PC70BM solubility, but are not observed when 1-chloronaphthalene (CN) is added. A strongly TQ1-enriched surface layer is formed in all TQ1:PC70BM blend films and rationalized by surface energy differences. The photocurrent and power conversion efficiency strongly increased upon the addition of CN, while the leakage current decreased by one to two orders of magnitude. The higher photocurrent correlates with the finer lateral structure and stronger TQ1-enrichment at the interface with the electron-collecting electrode. This indicates that the charge transport and collection are not hindered by this polymer-enriched surface layer. Neither the open-circuit voltage nor the series resistance of the devices are sensitive to the differences in morphology.« less

  4. A comparison of experimental and numerical results on convective thermal mixing of three vertical, quasi-planar jets

    SciTech Connect (OSTI)

    Tokuhiro, A.T.; Kimura, N.; Nishimura, M.; Kobayashi, J.; Miyakoshi, H.

    1999-07-01

    The thermal-hydraulic mixing of three quasi-planar vertical water jets was experimentally and numerically investigated. The central jet was initially 5 C lower in temperature than the other two. The hydraulic diameter and average exit velocity-based Reynolds and Richardson numbers were, Re{sub D} = 2 x 10{sup 4}, Ri{sub D} = 0.002. Besides temperature measurements from a traversing array of 37 thermocouples, velocity measurements were made using laser and ultrasound Doppler velocimetries (LDV and UDV). In parallel the in-house code, CASCADE, featuring a {kappa}-{epsilon} turbulence model was used to simulate the experimental flow configuration. A comparison of the experimental and numerical results showed that code validation by LDV/UDV was possible and in particular that time-averaged field and frequency characteristics of transversely swaying jets, even under Reynolds averaging of the conservation equations, could be simulated. A representative comparison of the amplitude of oscillation is shown in Figure A-1 with an inset of the visualized flow and sample time-series of the temperature fluctuations at the position indicated. The difference in the predominant frequency, the numerically predicted {approximately}1.6 Hz versus the experimental {approximately}2.25 Hz, is attributed to the turbulence model that overestimate thus effective fluid viscosity. Development of an accurate numerical simulation is of relevance to the design of the liquid metal fast breeder reactor (LMFBR), where the lack of mixing of the cold sodium may initiate thermal striping; that is, poorly mixed hot and cold streams may thermally stress the components onto which they impinge. Turbulent mixing of jets is equally of general interest to environmental and material processing flows.

  5. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on(001) ceria

    SciTech Connect (OSTI)

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; Sathyamurthy, Srivatsan; Li, Xiaoping; Li, Qiang

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 ?m long nano-rods with an average diameter of ?20 nm.

  6. 1.9 W continuous-wave single transverse mode emission from 1060?nm edge-emitting lasers with vertically extended lasing area

    SciTech Connect (OSTI)

    Miah, M. J. Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D.; Kettler, T.; Skoczowsky, D.; Pohl, J.; Weyers, M.

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060?nm range are investigated. Ridge waveguide (RW) lasers with 9??m stripe width and 2.64?mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060?nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9 in lateral and 14 (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup ?2}sr{sup ?1} is obtained. 100??m wide and 3?mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  7. Site characterization plan conceptual design report for a high-level nuclear waste repository in salt, vertical emplacement mode: Volume 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    This Conceptual Design Report describes the conceptual design of a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. Waste receipt, processing, packing, and other surface facility operations are described. Operations in the shafts underground are described, including waste hoisting, transfer, and vertical emplacement. This report specifically addresses the vertical emplacement mode, the reference design for the repository. Waste retrieval capability is described. The report includes a description of the layout of the surface, shafts, and underground. Major equipment items are identified. The report includes plans for decommissioning and sealing of the facility. The report discusses how the repository will satisfy performance objectives. Chapters are included on basis for design, design analyses, and data requirements for completion of future design efforts. 105 figs., 52 tabs.

  8. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    SciTech Connect (OSTI)

    Darby, J. W.

    2012-06-28

    A lessons learned is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  9. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silanemore » provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  10. Comparison of the Vertical Velocity Used to Calculate the Cloud Droplet Number Concentration in a Cloud Resolving and a Global Climate Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan Introduction Anthropogenic aerosols are effective cloud condensation nuclei (CCN). The availability of CCN affects the initial cloud droplet number concentration (CDNC) and droplet size; therefore, cloud optical

  11. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP B. Schmid and J. Redemann Bay Area Environmental Research Institute National Aeronautics and Space Administration Ames Research Center Moffett Field, California W. P. Arnott Desert Research Institute Reno, Nevada A. Bucholtz and J. Reid Naval Research Laboratory Monterey, California P. Colarco Earth System Science Interdisciplinary Center

  12. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOE Patents [OSTI]

    Benke, Roland R. (Helotes, TX); Kearfott, Kimberlee J. (Ann Arbor, MI); McGregor, Douglas S. (Ann Arbor, MI)

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  13. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOE Patents [OSTI]

    Finot, M.; Kesler, O.; Suresh, S.

    1998-12-08

    A technique for determining properties such as Young`s modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined. 11 figs.

  14. Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

    SciTech Connect (OSTI)

    Hammons, L.; Ke, M.

    2011-10-13

    A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of the chemical processing that the fine-grain gun cavity underwent along with the vertical test cathode, the geometry of these grooves was altered, presenting the possibility that multipacting may, in fact, be occurring in this area and contributing to the low gradients that have been observed in the fine-grain cavity. Therefore, the Survey and Alignment group in C-AD engaged in measurements of the cavity joint, shown in Figure 2 and the cathode weldment, shown in Figure 3 for the purpose of characterizing the grooves in both the cavity and the vertical test cathode and comparing the dimensions of the cathode with those of the prints supplied by Advanced Energy Systems (AES), the original designer and manufacturer of both the test cathode and the electron gun cavity, in preparation to have a new one manufactured. The goal was to ensure that the articles as built matched the design prints in preparation for manufacturing a new vertical test cathode. This report describes the data collected by the Survey group in these efforts. The endeavor was challenging for the group given the millimeter-scale dimensions of the grooves and the requirement for high precision.

  15. Growth of Multiwalled-Carbon Nanotubes using Vertically Aligned Carbon Nanofibers as Templates/Scaffolds and Improved Field-Emission Properties

    SciTech Connect (OSTI)

    Cui, Hongtao; Yang, X.; Baylor, Larry R; Lowndes, Douglas H

    2005-01-01

    Multiwalled-carbon nanotubes (MWCNTs) are grown on top of vertically aligned carbon nanofibers (VACNFs) via microwave plasma-enhanced chemical vapor deposition (MPECVD). The VACNFs are first grown in a direct-current plasma-enhanced chemical vapor deposition reactor using nickel catalyst. A layer of carbon-silicon materials is then deposited on the VACNFs and the nickel catalyst particle is broken down into smaller nanoparticles during an intermediate reactive-ion-plasma deposition step. These nickel nanoparticles nucleate and grow MWCNTs in the following MPECVD process. Movable-probe measurements show that the MWCNTs have greatly improved field-emission properties relative to the VACNFs

  16. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    SciTech Connect (OSTI)

    Zhang, Wenrui; Jiao, Liang; Li, Leigang [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Jian, Jie; Khatkhatay, Fauzia; Chu, Frank [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jia, Quanxi [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); MacManus-Driscoll, Judith L. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  17. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  18. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  19. Ni(OH){sub 2} nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors

    SciTech Connect (OSTI)

    Wang, Xin; Liu, Jiyue; Wang, Yayu; Zhao, Cuimei; Zheng, Weitao

    2014-04-01

    Highlights: Ni(OH){sub 2}/vertically oriented graphene nanosheets (V-GNs) was prepared. Ni(OH){sub 2}/V-GNs had enhanced specific capacitance, cycling reversibility and stability. Performance of Ni(OH){sub 2}/GNs/NF-AC asymmetric supercapacitor was studied. - Abstract: Binderless Ni(OH){sub 2} nanoflakes grown on Ni foam (NF)-supported vertically oriented graphene nanosheets (V-GNs) has been fabricated as a positive electrode material for asymmetric supercapacitor (ASC), coupled with activated carbon (AC) as a counter electrode material. The introduction of V-GNs leads to dense growth of nanocrystalline ?-Ni(OH){sub 2} that is confirmed by X-ray diffraction, transmission electron microscopic and scanning electron microscopic analyses. The electrochemical performances of the Ni(OH){sub 2}/GNs/NF electrode are characterized by cyclic voltammetry and chargedischarge tests, which exhibit high specific capacitance of 2215 F g{sup ?1} at a scan current density of 2.3 A g{sup ?1}, enhanced cycling stability and high rate capability. The Ni(OH){sub 2}/GNs/NF-AC-based ASC can achieve a cell voltage of 1.4 V and a specific energy density of 11.11 Wh kg{sup ?1} at 0.5 mA cm{sup ?2} with a nearly 100% coulombic efficiency at room temperature.

  20. Compositional analysis and depth profiling of thin film CrO{sub 2} by heavy ion ERDA and standard RBS: a comparison

    SciTech Connect (OSTI)

    Khamlich, S.; Msimanga, M.; Pineda-Vargas, C.A.; Nuru, Z.Y.; McCrindle, R.; Maaza, M.

    2012-08-15

    Chromium dioxide (CrO{sub 2}) thin film has generated considerable interest in applied research due to the wide variety of its technological applications. It has been extensively investigated in recent years, attracting the attention of researchers working on spintronic heterostructures and in the magnetic recording industry. However, its synthesis is usually a difficult task due to its metastable nature and various synthesis techniques are being investigated. In this work a polycrystalline thin film of CrO{sub 2} was prepared by electron beam vaporization of Cr{sub 2}O{sub 3} onto a Si substrate. The polycrystalline structure was confirmed through XRD analysis. The stoichiometry and elemental depth distribution of the deposited film were measured by ion beam nuclear analytical techniques heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS), which both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Moreover, the analysis carried out highlights the importance of complementary usage of the two techniques to obtain a more complete description of elemental content and depth distribution in thin films. - Graphical abstract: Heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS) both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Highlights: Black-Right-Pointing-Pointer Thin films of CrO{sub 2} have been grown by e-beam evaporation of Cr{sub 2}O{sub 3} target in vacuum. Black-Right-Pointing-Pointer The composition was determined by heavy ion-ERDA and RBS. Black-Right-Pointing-Pointer HI-ERDA and RBS provided information on the light and heavy elements, respectively.

  1. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  2. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  3. MHK ISDB/Sensors/True North Revolution | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  4. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    SciTech Connect (OSTI)

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  5. Hydro Power to Make the American Dream Come True

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume One Film Collection Volume Two 75th Anniversary Hydropower in the Northwest Woody Guthrie Videos Strategic Direction Branding & Logos Power of the River History Book...

  6. Y-12 uranium storage facility?a dream come true?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was Shirley Oden Cox, retiree from Y-12. Shirley came to Oak Ridge when her dad, William Lewis (Bill) Oden, moved his wife and two children to here in September, 1944 to take a...

  7. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 110{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 110{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

  8. Soil concentration, vertical distribution and inventory of plutonium, [sup 241]Am, [sup 90]Sr and [sup 137]Cs in the Marche Region of Central Italy

    SciTech Connect (OSTI)

    Jia, G.; Testa, C.; Desideri, D.; Guerra, F.; Meli, M.A.; Roselli, C. . Inst. of General Chemistry); Belli, M.E. )

    1999-07-01

    Soil concentrations of [sup 239+240]Pu, [sup 238]Pu, [sup 241]Am, [sup 90]Sr, and [sup 137]Cs are investigated in the Marche Region of Central Italy. Mean values in uncultivated soils are 3.5--8 times higher than the corresponding values in cultivated soils. Radionuclide inventories and ratios are consistent with values reported by the United nations Scientific Committee on the Effect of Atomic Radiation for this latitude. This suggests that radiocontamination in this region is mainly due to atmospheric deposition of nuclear weapon test fallout. The vertical distribution of these radionuclides is also studied. The results show that, with the exception of [sup 90]Sr, more than 90% of these radionuclides are contained in the first 20 cm of soil and that mobility follows the order [sup 90]Sr > [sup 241]Am > [sup 239+240]Pu, [sup 238]Pu > [sup 137]Cs.

  9. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  10. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    SciTech Connect (OSTI)

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-27

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  11. Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia

    SciTech Connect (OSTI)

    Han, Xiao; Zhang, Meigen; Liu, Xiaohong; Ghan, Steven J.; Xin, Jin-Yuan; Wang, Li-Li

    2009-11-16

    The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2?1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than ?25 and ?20 W m?2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.

  12. X6.9-CLASS FLARE-INDUCED VERTICAL KINK OSCILLATIONS IN A LARGE-SCALE PLASMA CURTAIN AS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Srivastava, A. K. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002 (India); Goossens, M. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)

    2013-11-01

    We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In the deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ? 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.

  13. Relational contracting and the law and economics of vertical integration: a study of the economics of petroleum coking, processing, and consumption

    SciTech Connect (OSTI)

    Erickson, J.R.

    1981-01-01

    The basis for this study was an antitrust suit brought by the Federal Trade Commission against the Great Lakes Carbon Corp., a processor and reseller of green petroleum coke, and eight petroleum refiners. The respondents in this case were accused of using long-term contracts to foreclose the markets for both green and processed petroleum coke. Chapter 1 develops a theory of exchange and the contracts governing exchange. Chapter 2 describes the petroleum-coke industry and the nature of green coke exchange. It explains the reasons for the highly concentrated structure of the green-coke market in terms of the technology of petroleum-coke production and consumption and the physical and byproduct nature of petroleum coke. Chapter 3 takes a large number of green-coke contracts and breaks them down into their various relevant provisions. These provisions are then grouped according to their purpose and the characteristics of the firms employing them and shows that differences between the contracts can be explained by differences in the risks to firms of engaging in green coke exchange. Chapter 4 discusses the implications of vertical restrictions from the point of view of relational contracting using the data adduced in Chapter 3.

  14. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfullymore » satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  15. Exergy Analysis of a Two-Stage Ground Source Heat Pump with a Vertical Bore for Residential Space Conditioning under Simulated Occupancy

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    This twelve-month field study analyzes the performance of a 7.56W (2.16- ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kWh at summer and winter thermostat set points of 24.4oC and 21.7oC, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources.

  16. Computing UV/vis spectra from the adiabatic and vertical Franck-Condon schemes with the use of Cartesian and internal coordinates

    SciTech Connect (OSTI)

    Gtze, Jan P.; Karasulu, Bora; Thiel, Walter

    2013-12-21

    We address the effects of using Cartesian or internal coordinates in the adiabatic Franck-Condon (AFC) and vertical Franck-Condon (VFC) approaches to electronic spectra. The adopted VFC approach is a simplified variant of the original approach [A. Hazra, H. H. Chang, and M. Nooijen, J. Chem. Phys. 151, 2125 (2004)], as we omit any contribution from normal modes with imaginary frequency. For our test molecules ranging from ethylene to flavin compounds, VFC offers several advantages over AFC, especially by preserving the properties of the FC region and by avoiding complications arising from the crossing of excited-state potential surfaces or from the failure of the harmonic approximation. The spectral quality for our target molecules is insensitive to the chosen approach. We also explore the effects of Duschinsky rotation and relate the need for internal coordinates to the absence of symmetry elements. When using Duschinsky rotation and treating larger systems without planar symmetry, internal coordinates are found to outperform Cartesian coordinates in the AFC spectral calculations.

  17. Data, exergy, and energy analysis of a vertical-bore, ground-source heat pump to for domestic water heating under simulated occupancy conditions

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2015-01-01

    Evidence is provided to support the view that greater than two-thirds of energy required to produce domestic hot water may be extracted from the ground which serves as renewable energy resource. The case refers to a 345 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days (3993 F-days) and CDD of 723 C-days (1301 F-days). The house is operated under simulated occupancy conditions in which the hot water use protocol is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which captures the water consumption lifestyles of the average family in the United States. The 5.275 (1.5-ton) water-to-water ground source heat pump (WW-GSHP) shared the same vertical bore with a 7.56 KW water-to-air ground source heat pump for space conditioning the same house. Energy and exergy analysis of data collected continuously over a twelve month period provide performance metrics and sources of inherent systemic inefficiencies. Data and analyses are vital to better understand how WW-GSHPs may be further improved to enable the ground to be used as a renewable energy resource.

  18. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  19. Horizontal and Vertical Erosion Flume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A One-of-a-Kind Testing Capability In WIPP Performance Assessment scenarios, an exploration borehole is hypothesized to penetrate the repository sometime in the future. Drilling fluid flowing up the borehole would apply a hydrodynamic shear stress to the material comprising the borehole wall. If the wall material is made up of TRU waste degraded to the point it could be eroded off the wall and carried uphole with the drilling fluid, radionuclides could possibly escape the repository. To address

  20. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Hannum, David W. (Albuquerque, NM); Conrad, Frank James (Russellville, SC)

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  1. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    SciTech Connect (OSTI)

    Kushwaha, S. K. Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8??10{sup 14}?cm{sup ?3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60?meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  2. Penetration depth and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} polycrystalline films by ferromagnetic resonance and spin pumping

    SciTech Connect (OSTI)

    Merodio, P.; Ghosh, A.; Lemonias, C.; Gautier, E.; Ebels, U.; Chshiev, M.; Béa, H. E-mail: helene.bea@cea.fr; Baltz, V. E-mail: helene.bea@cea.fr

    2014-01-20

    Spintronics relies on the spin dependent transport properties of ferromagnets (Fs). Although antiferromagnets (AFs) are used for their magnetic properties only, some fundamental F-spintronics phenomena like spin transfer torque, domain wall motion, and tunnel anisotropic magnetoresistance also occur with AFs, thus making AF-spintronics attractive. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} are determined by F-resonance and spin pumping. In particular, we find room temperature critical depths originating from different absorption mechanisms: dephasing for Ir{sub 20}Mn{sub 80} and spin flipping for Fe{sub 50}Mn{sub 50}.

  3. Multi-frequency optical-depth maps and the case for free-free absorption in two compact symmetric radio sources: The CSO candidate J1324 + 4048 and the CSO J0029 + 3457

    SciTech Connect (OSTI)

    Marr, J. M.; Read, J.; Morris, A. O.; Perry, T. M.; Taylor, G. B.

    2014-01-10

    We obtained dual-polarization very long baseline interferometry observations at six frequencies of the compact symmetric object J0029 + 3457 and the compact symmetric object candidate J1324 + 4048. By comparing the three lower-frequency maps with extrapolations of the high-frequency maps, we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324 + 4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption (FFA) model, with ?{sub ?}{sup 2}?2, better than a simple synchrotron self-absorption model, in which ?{sub ?}{sup 2}?3.5--5.5. We conclude that the case for FFA in J1324 + 4048 is strong. The optical-depth maps of J0029 + 3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple FFA model yields ?{sub ?}{sup 2}?1, but because the turnover is gradual, the fit is relatively insensitive to the input parameters. We find that FFA by a thin amount of gas in J0029 + 3457 is likely but not definitive. One compact feature in J0029 + 3457 has an inverted spectrum even at the highest frequencies. We infer this to be the location of the core and estimate an upper limit to the magnetic field of order 3 Gauss at a radius of order 1 pc. In comparison with maps from observations at earlier epochs, no apparent growth in either J1324 + 4048 or J0029 + 3457 is apparent, with upper limits of 0.03 and 0.02 mas yr{sup 1}, corresponding to maximum linear separation speeds of 0.6c and 0.4c.

  4. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins: Part 1: Evaluation of Phase 2 CO{sub 2} Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2: Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    SciTech Connect (OSTI)

    Richard Bowersox; John Hickman; Hannes Leetaru

    2012-12-01

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO{sub 2} in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO{sub 2} storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO{sub 2} were present in the deep subsurface. Injection testing with brine and CO{sub 2} was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole â?? including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite â?? at 1152â??2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO{sub 2} was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter. Operations in the Phase 2 testing program commenced with retrieval of the bridge plug and long-term pressure gauges, followed by mechanical isolation of the Gunter by plugging the wellbore with cement below the injection zone at 1605.7 m, then cementing a section of a 14-cm casing at 1470.4â??1535.6. The resultant 70.1-m test interval at 1535.6â??1605.7 m included nearly all of the Gunter sandstone facies. During the Phase 2 injection, 333 tonnes of CO{sub 2} were injected into the thick, lower sand section in the sandy member of the Gunter. Following the completion of testing, the injection zone below casing at 1116 m in the Marvin Blan No. 1 well, and wellbore below 305 m was permanently abandoned with cement plugs and the wellsite reclaimed. The range of most-likely storage capacities found in the Knox in the Marvin Blan No. 1 is 1000 tonnes per surface hectare in the Phase 2 Gunter interval to 8685 tonnes per surface hectare if the entire Knox section were available including the fractured interval near the base of the Copper Ridge. By itself the Gunter lacks sufficient reservoir volume to be considered for CO{sub 2} storage, although it may provide up to 18% of the reservoir volume available in the Knox. Regional extrapolation of CO{sub 2} storage potential based on the results of a single well test can be problematic, although indirect evidence of porosity and permeability can be demonstrated in the form of active saltwater-disposal wells injecting into the Knox. The western Kentucky region suitable for CO{sub 2} storage in the Knox is limited updip, to the east and south, by the depth at which the base of the Maquoketa shale lies above the depth required to ensure storage of CO{sub 2} in its supercritical state and the deepest a commercial well might be drilled for CO{sub 2} storage. The resulting prospective region has an area of approximately 15,600 km{sup 2}, beyond which it is unlikely that suitable Knox reservoirs may be developed. Faults in the subsurface, which serve as conduits for CO{sub 2} migration and compromise sealing strata, may mitigate the area with Knox reservoirs suitable for CO{sub 2} storage. The results of the injection tests in the Marvin Blan No. 1, however, provide a basis for evaluating supercritical CO{sub 2} storage in Cambro-Ordovician carbonate reservoirs throughout the Midcontinent. Reservoir seals were evaluated in the Knox and overlying strata. Within the Knox, permeabilities measured in vertical core plugs from the Beekmantown and Copper Ridge suggest that intraformational seals may problematic. Three stratigraphic intervals overlying the Knox in the Marvin Blan No. 1 well may provide seals for potential CO{sub 2} storage reservoirs in western Kentucky: Dutchtown Limestone, Black River Group, and Maquoketa Shale. The Dutchtown and Black River had permeabilities suggest that these intervals may act as secondary sealing strata. The primary reservoir seal for the Knox, however, is the Maquoketa. Maximum seal capacity calculated from permeabilities measured in vertical core plugs from the Maquoketa exceeded the net reservoir height in the Knox by about two orders of magnitude. Rock strength measured in core plugs from the Maquoketa suggest that it is unlikely that any CO{sub 2} migrating from the Knox would have sufficient pressure to fracture the Maquoketa. Part 2 of this report reviews the results of vertical seismic profiling in the Marvin Blan No. 1 well to model post-injection CO{sub 2} plume migration. Two three-dimensional vertical seismic profiles (3D-VSPâ??s) were acquired at the Kentucky Geological Survey Marvin Blan No. 1 CO{sub 2} sequestration research well, Hancock County, Kentucky. The initial (pre-injection) survey was performed on September 15â??16, 2010. This was followed by the injection of 333 tonnes of supercritical CO{sub 2} and then 584 m3 of 2% KCl water (to displace the remaining CO{sub 2} in the wellbore) on September 22, 2010. After injection, the well was shut in with a downhole pressure of 17.5 MPa at the injected reservoir depth of 1545.3 m. The second 3D-VSP was acquired on September 25â??26, 2010. These two 3D-VSP's were combined to produce a time-lapse 3D-VSP data volume in an attempt to monitor and image the subsurface changes caused by the injection. Less than optimum surface access and ambient subsurface noise from a nearby active petroleum pipeline hampered quality of the data, resulting in the inability to image the CO{sub 2} plume in the subsurface. However, some changes in the seismic response post-injection (both wavelet character and an apparent seismic "pull-down" within the injection zone) are interpreted to be a result of the injection process and imply that the technique could still be valid under different circumstances.

  5. Measured water heating performance of a vertical-bore water-to-water ground source heat pump (WW-GSHP) for domestic water heating over twelve months under simulated occupancy loads

    SciTech Connect (OSTI)

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D; Gehl, Anthony C

    2014-01-01

    This paper presents monthly performance metrics of a 5.275 kW (1.5 ton) WW-GSHP providing 227 L day-1 domestic hot water at 49 C. Daily water use is simulated as stipulated in the Building America Research Benchmark Definition capturing the living habits of the average U.S household. The 94.5m vertical-bore ground loop is shared with a separate GSHP for space conditioning the 251m2 residential home. Data on entering water temperatures, energy extracted from the ground, delivered energy, compressor electricity use, COP, WW-GSHP run times, and the impact of fan and pump energy consumption on efficiency are presented for each month. Factors influencing performance metrics are highlighted.

  6. Comment on A study of vertical and in-plane electron mobility due to interface roughness scattering at low temperature in InAs-GaSb superlattices [J. Appl. Phys. 114, 053712 (2013)

    SciTech Connect (OSTI)

    Szmulowicz, F.

    2014-04-14

    The purpose of this comment is to point out that the paper by Safa, Asgari, and Faraone [J. Appl. Phys. 114, 053712 (2013)] (SAF) on electronic transport in superlattices contains a number of errors in physics and execution. By dealing with a finite number of periods and forcing the wave function to be zero at the upper and lower boundaries of the superlattice stack, SAF have turned the system into a quantum well for which the momentum along the growth axis is not a good quantum number, so that the bands in the growth direction are flat and the corresponding carrier velocities and vertical mobilities are zero. A number of other errors allow the authors to get nonzero results and to reach conclusions that qualitatively mirror those of Szmulowicz, Haugan, Elhamri, and Brown [Phys. Rev. B 84, 155307 (2011)].

  7. A modeling study of the effect of depth of burial of depleted uranium and thorium on radon gas flux at a dry desert alluvial soil radioactive waste management site (RWMS)

    SciTech Connect (OSTI)

    Lindstrom, F.T.; Cawlfield, D.E.; Emer, D.F.; Shott, G.J.

    1993-08-01

    An integral part of designing low-level waste (LLW) disposal pits and their associated closure covers in very dry desert alluvium is the use of a radon gas transport and fate model. Radon-222 has the potential to be a real heath hazard. The production of radon-222 results from the radioactive decay (a particle emission) of radium-226 in the uranium-235 and 238 Bateman chains. It is also produced in the thorium-230 series. Both long lived radionuclides have been proposed for disposal in the shallow land burial pits in Area 5 RWMS compound of Nevada Test Site (NTS). The constructed physics based model includes diffusion and barometric pressure-induced advection of an M-chain of radionuclides. The usual Bateman decay mechanics are included for each radionuclide. Both linear reversible and linear irreversible first order sorption kinetics are assumed for each radionuclide. This report presents the details of using the noble gas transport model, CASCADR9, in an engineering design study mode. Given data on the low-level waste stream, which constitutes the ultimate source of radon-222 in the RWMS, CASCADR9 is used to generate the surface flux (pCi/cm{sup 2}-sec) of radon-222 under the realistic atmospheric and alluvial soil conditions found in the RWMS at Area 5, of the NTS. Specifically, this study examines the surface flux of radon-222 as a function of the depth of burial below the land surface.

  8. Origin And Characterization Of Geothermal Waters At Desert Queen...

    Open Energy Info (EERE)

    energy potential. Further investigation by drilling is necessary to determine the true nature of the waters at depth. Authors Laura Garchar and Greg Arehart Published GRC, 2008 DOI...

  9. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  10. Conventional Energy Forum & Associated Vertical Business Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New discoveries New oil and gas production methods Associated research and development Support industry opportunities and new markets emerging in the traditional energy sector This ...

  11. Vertical Seismic Profiling | Open Energy Information

    Open Energy Info (EERE)

    Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  12. Vertical Pretreatment Reactor System (Poster), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC....

  13. Vertical Velocities in Continental Boundary Layer Stratocumulus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    out of BL & Aerosol processing by clouds * Variety of conditions - Useful to evaluate LES models and GCM parameterizations Slingo et al. 2004; Kollias et al. (2007) Need of...

  14. Plasmon resonant cavities in vertical nanowire arrays

    DOE Patents [OSTI]

    Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.

    2014-07-15

    Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.

  15. Vertical Electrical Sounding Configurations | Open Energy Information

    Open Energy Info (EERE)

    faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal:...

  16. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    SciTech Connect (OSTI)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  17. Ultra-compact optical true time delay device for wideband phased...

    Office of Scientific and Technical Information (OSTI)

    The input is a fiber-and-microlens array, whose output spots are re-imaged multiple times ... The fiber-to-detector insertion loss is 7.82 dB for the shortest delay path. Authors: ...

  18. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic

    Office of Scientific and Technical Information (OSTI)

    system and to compare them to values measured with an IBA CC01 ionization chamber and a Sun Nuclear Edge detector diode for 6 MV photon beams. Methods: The Exradin W1 is a new...

  19. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    SciTech Connect (OSTI)

    Brian Wells

    2008-11-30

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

  20. MHK ISDB/Sensors/True North Revolution 2X | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  1. MHK ISDB/Sensors/True North Revolution LP | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  2. TRUE COLORS: LEDS AND THE RELATIONSHIP BETWEEN CCT, CRI, OPTICAL SAFETY, MATERIAL DEGRADATION, AND PHOTOBIOLOGICAL STIMULATION

    SciTech Connect (OSTI)

    Royer, Michael P.

    2014-08-30

    This document analyzes the optical, material, and photobiological hazards of LED light sources compared to conventional light sources. It documents that LEDs generally produce the same amount of blue light, which is the primary contributor to the risks, as other sources at the same CCT. Duv may have some effect on the amount of blue light, but CRI does not.

  3. SU-E-T-423: TrueBeam Small Field Dosimetry Using Commercial Plastic...

    Office of Scientific and Technical Information (OSTI)

    radiosurgery and body radiation therapy. Sam Beddar would like to disclose a NIHNCI SBIR Phase II grant (2R44CA153824-02A1) with Standard Imaging, Title: "Water-Equivalent Plastic...

  4. MHK ISDB/Sensors/True North Revolution GS | Open Energy Information

    Open Energy Info (EERE)

    GS < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help Under DevelopmentThis...

  5. MHK ISDB/Sensors/True North Revolution AV | Open Energy Information

    Open Energy Info (EERE)

    AV < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help Under DevelopmentThis...

  6. Y-12 uranium storage facility?a dream come true,? part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part 2 Last week we introduced Shirley Cox and began a two-part series on her career at Y-12 leading up to the recommendation that the Highly Enriched Uranium Materials Facility...

  7. Microsoft PowerPoint - Slice True-Up 101 pptx.pptx [Read-Only...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ted Barham, Janice Johnson and many others Content Organized and Presented by Craig Larson Slice History A Review of Subscription and RD(Regional Dialogue) Slice distinctions...

  8. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect (OSTI)

    Paul Liu

    2012-05-01

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a ??one-box? process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactor??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered ?90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

  9. U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system.

  10. An investigation of a model of the flow pattern transition mechanism in relation to the identification of annular flow of R134a in a vertical tube using various void fraction models and flow regime maps

    SciTech Connect (OSTI)

    Dalkilic, A.S. [Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, Istanbul 34349 (Turkey); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-09-15

    In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m{sup -2} s{sup -1}. The condensing temperatures are between 40 and 50 C; heat fluxes are between 12.65 and 66.61 kW m{sup -2}. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions. (author)

  11. Planning and well evaluations improve horizontal drilling results

    SciTech Connect (OSTI)

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using UVblue Satellite Measurements Cairns, B., and Alexandrov, M.D., Columbia University; Carlson, B.E., and...

  13. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    SciTech Connect (OSTI)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth ? and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosov vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.

  14. Assess in-depth contributions of selected scenarios to goals...

    Open Energy Info (EERE)

    and Storage in Industry Algae-Based Biofuels: Applications and Co-Products Asia-Energy Efficiency Guide to Industry Biomass Energy Technology Module Building Component Library...

  15. Changes in Uranium Speciation through a Depth Sequence of Contaminated...

    Office of Scientific and Technical Information (OSTI)

    G. ; McKinley, James P. ; Zachara, John M. ; Heald, Steve M. ; Smith, Steven C. ; Brown, Gordon E. Publication Date: 2006-04-16 OSTI Identifier: 882379 Report Number(s):...

  16. Uranium Speciation As a Function of Depth in Contaminated Hanford...

    Office of Scientific and Technical Information (OSTI)

    spots. In the groundwater zone, these particles were identified as the copper-uranyl-silicate cuprosklodowskite and the cupper-uranyl-phosphate more metatorbernite. In...

  17. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Heestand, Richard L. (Oak Ridge, TN)

    1993-01-01

    A method of skull-melting comprises the steps of: a. providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice in connecting the interior and the underside; b. disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; c. providing a signal energy transducer in signal communication with the waveguide; d. introducing into the vessel a molten working material; e. carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; f. activating the signal energy transducer so that a signal is propagated through the waveguide; and, g. controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  18. Device and method for skull-melting depth measurement

    DOE Patents [OSTI]

    Lauf, R.J.; Heestand, R.L.

    1993-02-09

    A method of skull-melting comprises the steps of: (a) providing a vessel adapted for a skull-melting process, the vessel having an interior, an underside, and an orifice connecting the interior and the underside; (b) disposing a waveguide in the orifice so that the waveguide protrudes sufficiently into the interior to interact with the skull-melting process; (c) providing a signal energy transducer in signal communication with the waveguide; (d) introducing into the vessel a molten working material; (e) carrying out the skull-melting process so that a solidified skull of the working material is formed, the skull and the vessel having an interface therebetween, the skull becoming fused to the waveguide so the signal energy can be transmitted through the waveguide and the skull without interference from the interface; (f) activating the signal energy transducer so that a signal is propagated through the waveguide; and, (g) controlling at least one variable of the skull-melting process utilizing feedback information derived from the propagated signal energy.

  19. NREL: State and Local Governments - In-Depth Solar Technical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policies to best practices with suggestions for policy changes to better serve the solar distributed generation market Unbiased analysis of economic and market impacts of...

  20. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting