Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

2

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

3

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

4

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

5

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

6

Estimation of Fuel Use by Idling Commercial Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

7

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

8

DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

Eric Fluga

2004-09-30T23:59:59.000Z

9

Projection of light-truck population to year 2025  

SciTech Connect

The recent growth in the number of light trucks is a matter of considerable interest in that it may have far-reaching implications for gasoline consumption. This paper forecasts the number of light trucks in the years to 2025. The forecast is based on economic scenarios developed by SRI International. Except for the case of the most-dismal economic forecast, the number of light trucks is predicted to increase monotonically and to show the greatest rate of increase between 1973 and 1980.

1978-10-01T23:59:59.000Z

10

Lighting in Commercial Buildings, 1986  

Gasoline and Diesel Fuel Update (EIA)

6 Lighting in Commercial Buildings Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial...

11

Commercial Lighting and LED Lighting Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

12

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

13

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

14

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

15

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

DOE Green Energy (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

16

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

17

Commercial Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Lighting Commercial Lighting At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and algorithms, researchers at the National Renewable Energy Lab developed an occupancy sensor can recognize the presence of human occupants more than 90 percent of the time -- an advancement that could lead to enormous energy savings in commercial buildings. At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. By combining an inexpensive camera with a high-speed microprocessor and

18

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

19

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

20

Cedarburg Light & Water Utility - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Cedarburg Light & Water Utility - Commercial Energy Efficiency Rebate Program Eligibility Agricultural Commercial Fed. Government Industrial Local...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Central Hudson Gas & Electric (Electric) - Commercial Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate Program Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate...

22

OTEC- Commercial Lighting Retrofit Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

23

Lighting Controls in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Controls in Commercial Buildings Lighting Controls in Commercial Buildings Title Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2012 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Erik Page, and Francis M. Rubinstein Series Title The Journal of the Illuminating Engineering Society of North America Volume 8 Document Number 3 Pagination 161-180 Date Published January ISBN Number 1550-2716 Keywords controls, daylighting, energy, occupancy sensors, tuning. Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of lighting energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, successive analytical filters are added to identify potential biases introduced to the estimates by different analytical approaches. Based on this meta-analysis, the bestestimates of average lighting energy savings potential are 24 percent for occupancy, 28 percent for daylighting, 31 percent for personal tuning, 36 percent for institutional tuning, and 38 percent for multiple approaches. The results also suggest that simulations significantly overestimate (by at least 10 percent) the average savings obtainable from daylighting in actual buildings.

24

Avista Utilities (Electric) - Commercial Lighting Energy Efficiency...  

Open Energy Info (EERE)

Applicable Sector Commercial Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

25

Flathead Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Flathead Electric Cooperative - Commercial Lighting Rebate Program Flathead Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Maximum Rebate 70% of project cost Program Info State Montana Program Type Utility Rebate Program Rebate Amount Retrofit Lighting: $3 - $400 per unit New Construction Lighting: $10 - $50 per unit Provider Flathead Electric Cooperative Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program and a new

26

Lakeview Light and Power - Commercial Lighting Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program Lakeview Light and Power - Commercial Lighting Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Funded by Bonneville Power Administration Expiration Date 9/1/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial Lighting Installation: Up to 70% of cost Provider Lakeview Light and Power Lakeview Light and Power offers a commercial lighting rebate program. Rebates apply to the installation of energy efficient lighting retrofits in non-residential buildings. The rebate program is funded by BPA and ends in September of 2010 or earlier if the funding is exhausted. Lakeview Light

27

Peninsula Light Company - Commercial Efficient Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peninsula Light Company - Commercial Efficient Lighting Rebate Peninsula Light Company - Commercial Efficient Lighting Rebate Program Peninsula Light Company - Commercial Efficient Lighting Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount General: 30% - 70% of cost Provider Peninsula Light Company Peninsula Light Company (PLC) offers a rebate program for commercial customers who wish to upgrade to energy efficient lighting. Participating customers must be served by PLC commercial service. Customers who upgrade to highly efficient fixtures and systems are eligible to receive a rebate generally covering 30% - 70% of the project cost. These retrofits improve light quality and reduce energy costs in participating facilities. PLC

28

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

29

Commercial Lighting and LED Lighting Incentives (Vermont) | Open...  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Commercial Lighting and LED Lighting Incentives (Vermont) This is the approved revision of this page, as well as...

30

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

31

Analysis of Major Trends in U.S. Commercial Trucking, 1977-2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Further, since single-unit trucks operate usually at part cargo load, the extra mass of CNG tanks is acceptable. For Class 8 combination trucks, the energy storage limitations of...

32

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

33

Pedernales Electric Cooperative - Commercial Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pedernales Electric Cooperative - Commercial Lighting Rebate Pedernales Electric Cooperative - Commercial Lighting Rebate Program Pedernales Electric Cooperative - Commercial Lighting Rebate Program < Back Eligibility Commercial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date Installation must be made within one year of the preliminary approval date State Texas Program Type Utility Rebate Program Rebate Amount 20-29 kW saved: $75/kW new; $150/kW retrofit 30-39 kW saved: $100/kW new; $200/kW retrofit 40-49 kW saved: $125/kW new; $250/kW retrofit 50 or more kW saved: $150/kW new; $300/kW retrofit Provider Conservation Section For existing and new commercial construction, Pedernales Electric Cooperative provides incentives for kW saved through efficient lighting.

34

Avista Utilities - Commercial Lighting Energy Efficiency Program...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Avista Utilities - Commercial Lighting Energy Efficiency Program (Idaho) This is the approved revision of this page, as well...

35

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) This is the approved revision of this page, as well...

36

Central Hudson Gas & Electric (Electric) - Commercial Lighting...  

Open Energy Info (EERE)

icon Twitter icon Central Hudson Gas & Electric (Electric) - Commercial Lighting Rebate Program (New York) This is the approved revision of this page, as well as...

37

Detroit Public Lighting Department - Commercial and Industrial...  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Detroit Public Lighting Department - Commercial and Industrial Energy Wise Program This is the approved...

38

Colton Public Utilities - Commercial Lighting Rebate Program...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Colton Public Utilities - Commercial Lighting Rebate Program (California) This is the approved revision of this page, as well as...

39

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Commercial Weatherization Water Heating Maximum Rebate Retrofit: 50% of cost...

40

Kansas City Power and Light - Commercial/Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Maximum custom incentive amount varies from...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

42

City Water Light and Power - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs Eligibility Commercial Nonprofit...

43

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

44

Columbia Water & Light- Commercial Super Saver Loans  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) provides Commercial Super Saver Loans, which allow C&I rate customers to replace a furnace along with a new central air conditioner or heat pump with an...

45

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

DOE Green Energy (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

46

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

47

Evaluation of commercially available lighting design software  

Science Conference Proceedings (OSTI)

This report addresses the need for commercially available lighting design computer programs and evaluates several of these programs. Sandia National Laboratories uses these programs to provide lighting designs for exterior closed-circuit television camera intrusion detection assessment for high-security perimeters.

McConnell, D.G.

1990-09-01T23:59:59.000Z

48

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back...

49

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

50

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

51

Carbon Power and Light - Residential and Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program < Back...

52

CoServ Electric Cooperative - Commercial Energy Efficient Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program Eligibility...

53

Randolph EMC - Commercial and Industrial Efficient Lighting Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Randolph EMC - Commercial and Industrial Efficient Lighting Rebate Program (North Carolina) Randolph EMC - Commercial and Industrial Efficient Lighting Rebate Program (North...

54

Cedarburg Light & Water Utility - Commercial Shared Savings Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate 50,000 Program Information Wisconsin Program...

55

Columbia Water & Light - Commercial Super Saver Loans | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Super Saver Loans Columbia Water & Light - Commercial Super Saver Loans Eligibility Commercial Fed. Government Industrial Nonprofit State Government Savings For Heating...

56

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

57

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

58

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

59

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

60

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

62

Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Rebate Program (Colorado) Commercial Lighting Rebate Program (Colorado) Poudre Valley REA - Commercial Lighting Rebate Program (Colorado) < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Retrofit: 50% of equipment cost, $20,000 LED Street Lighting/Induction Street Lighting: $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount LED Refrigerated Case Lighting (Top Lighting): $60 per ln ft LED Refrigerated Case Lighting (Case Lighting): $60 per door LED Street Lighting: $44 - $475 per fixture Induction Street Lighting: $33 - $355 per fixture Commercial Lighting Retrofit: $250 per kW saved Provider Poudre Valley REA Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy

63

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

64

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are...

65

Avista Utilities (Electric)- Commercial Lighting Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities' Commercial Lighting Program provides incentives for lighting upgrades. New construction projects and proved energy saving lighting measures not listed on rebate form are evaluated...

66

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

67

High Performance Windows Volume Purchase: For Light Commercial Buyers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Light For Light Commercial Buyers to someone by E-mail Share High Performance Windows Volume Purchase: For Light Commercial Buyers on Facebook Tweet about High Performance Windows Volume Purchase: For Light Commercial Buyers on Twitter Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Google Bookmark High Performance Windows Volume Purchase: For Light Commercial Buyers on Delicious Rank High Performance Windows Volume Purchase: For Light Commercial Buyers on Digg Find More places to share High Performance Windows Volume Purchase: For Light Commercial Buyers on AddThis.com... Home About For Builders For Residential Buyers For Light Commercial Buyers For Manufacturers For Utilities Information Resources For Light Commercial Buyers Significant energy savings from low-E window technology are possible in the

68

Duquesne Light Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duquesne Light Company - Commercial and Industrial Energy Duquesne Light Company - Commercial and Industrial Energy Efficiency Program Duquesne Light Company - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom: Varies Lighting: Varies widely by type Controls and Sensors: $10-$75 VFD for Chilled Water Loop $150/hp VFD for HVAC Fans: $80/hp Packaged Terminal AC: $45-$75/ton Food Service Equipment: Varies widely by type Refrigeration Equipment: Varies widely by type

69

Coldwater Board of Public Utilities - Commercial and Industrial Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coldwater Board of Public Utilities - Commercial and Industrial Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Heating & Cooling Commercial Heating & Cooling Cooling Buying & Making Electricity Maximum Rebate 50% of Project Cost Cannot exceed 100% of a single energy efficient measure's cost. Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom: Not Specified Lighting Fluorescent Lighting: $2 - $50/fixture HID Lighting: $20 - $25/fixture Induction Bulb: $10 Metal Halide PAR Bulb: $20

70

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

71

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

72

Commercial Lighting Requirements of the 2009 IECC | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center Commercial Lighting Requirements of the 2009 IECC This training provides an overview of the commercial...

73

Commercial Lighting Requirements of the 2006 IECC | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center Commercial Lighting Requirements of the 2006 IECC This training provides an overview of the commercial...

74

Information Resources: LED Site Lighting in the Commercial Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Commercial Building Energy Alliances' (CBEA) efforts to explore the viability of LED site lighting in commercial parking lots. LED technology has the potential for...

75

Kansas City Power & Light - Commercial/Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Kansas City Power & Light - CommercialIndustrial Energy Efficiency Rebate Program Kansas City Power & Light -...

76

Estes Park Light and Power Department - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate 50,000 per year Program Info State Colorado Program Type Utility Rebate...

77

Cedarburg Light & Water Utility- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Cedarburg Light and Water Utility provides incentives for commercial, industrial and agricultural customers to increase the energy efficiency of eligible facilities. Upon request, Cedarburg Light...

78

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program...

79

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

DOE Green Energy (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z

80

City Water Light and Power - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Light and Power - Commercial Energy Efficiency Rebate Water Light and Power - Commercial Energy Efficiency Rebate Programs City Water Light and Power - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Nonprofit Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Insulation: $3,000 Retro-Commissioning: $50,000 Lighting: $15,000 Program Info State Illinois Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: $300/ton Geothermal Heat Pump: $500/ton Insulation: 30% Retro-Commissioning Study: $0.30 per sq. ft. of conditioned space Retro-Commissioning EMC: varies Lighting: $3 - $35/unit Lighting (Custom): $0.28/Watt reduced Water Loop Heat Pump: Contact CWLP

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solid-State Lighting: LED Site Lighting in the Commercial Building Sector:  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Lighting in the Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification to someone by E-mail Share Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Facebook Tweet about Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Twitter Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Google Bookmark Solid-State Lighting: LED Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification on Delicious

82

Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hosts Solid-State Lighting DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Google Bookmark Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Delicious Rank Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts Solid-State Lighting Commercial Product Testing Program Workshop on

83

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lighting in Commercial Buildings - Full Report Types of Lighting in Commercial Buildings - Full Report file:///C|/mydocs/CBECS%20analysis/CBECS%20lighting/lighting_pdf.html[4/28/2009 9:20:44 AM] Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the

84

Detroit Public Lighting Department - Commercial and Industrial Energy Wise  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Public Lighting Department - Commercial and Industrial Detroit Public Lighting Department - Commercial and Industrial Energy Wise Program Detroit Public Lighting Department - Commercial and Industrial Energy Wise Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate $50,000 per customer/facility, or 100% of the project cost Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Light Fixtures: $2-$200 Lighting Controls: $0.10-$65 HVAC Equipment: $10-$30/ton Programmable Thermostat: $80 Window Glazing: $0.30/square foot

85

Columbia Water and Light - Commercial Super Saver Loans | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - Commercial Super Saver Loans Columbia Water and Light - Commercial Super Saver Loans Columbia Water and Light - Commercial Super Saver Loans < Back Eligibility Commercial Fed. Government Industrial Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Solar Maximum Rebate $30,000 Program Info Start Date 06/01/2010 State Missouri Program Type Utility Loan Program Rebate Amount Up to $30,000 Provider Columbia Water and Light Columbia Water and Light (CWL) provides Commercial Super Saver Loans, which allow C&I rate customers to replace a furnace along with a new central air conditioner or heat pump with an efficiency rating 11 EER or greater for units 6 tons or larger. No prepayment penalties are enforced through the

86

Solid-State Lighting: DOE Five Year Commercialization Support Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Five Year Commercialization Support Plan to someone by E-mail Share Solid-State Lighting: DOE Five Year Commercialization Support Plan on Facebook Tweet about Solid-State Lighting: DOE Five Year Commercialization Support Plan on Twitter Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Google Bookmark Solid-State Lighting: DOE Five Year Commercialization Support Plan on Delicious Rank Solid-State Lighting: DOE Five Year Commercialization Support Plan on Digg Find More places to share Solid-State Lighting: DOE Five Year Commercialization Support Plan on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos

87

Seattle City Light - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seattle City Light - Commercial Energy Efficiency Rebate Programs Seattle City Light - Commercial Energy Efficiency Rebate Programs Seattle City Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Institutional Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: $0.02 - $0.23/kWh saved or $3 - $86/fixture Lighting Controls: $0.20 - $0.26/kWh saved or $30 - $90/sensor HVAC Controls: $0.20 - $0.23 Chillers: $0.23-$0.34 per kWh saved Air Conditioners: $0.20 -$0.23 per kWh saved Heat Pumps $0.20-$0.27 per kWh saved

88

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ Electric Cooperative - Commercial Energy Efficient Lighting CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Via partnership with whole sale provider Brazos Electric Power, Inc. and escheat funds Start Date 09/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Custom Lighting Upgrade: 0.30/watt saved per fixture T8 Fluorescent Upgrade: 1.50 - 2.25/bulb per fixture Provider CoServ Electric Cooperative CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom lighting upgrades and a

89

Commercial Lighting Solutions, Webtool Peer Review Report  

SciTech Connect

The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energys Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the beta version of the CLS webtool, which contains retail box lighting solutions. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed about which feedback should be addressed for the release of version 1.0 of the webtool at the Lightfair conference in New York City in May 2009. Due to the volume of data (~500 comments) the methodology for addressing the peer review comments was central to the success of the ultimate goal of improving the tool. The comments were first imported into a master spreadsheet, and then grouped and organized in several layers. Solutions to each comment were then rated by importance and feasibility to determine the practicality of resolving the concerns of the commenter in the short-term or long-term. The rating system was used as an analytical tool, but the results were viewed thoughtfully to ensure that they were not the sole the factor in determining which comments were recommended for near-term resolution. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 1.0 as well as appendices containing the short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 1.0 are listed as long-term recommendations.

Jones, Carol C.; Meyer, Tracy A.

2009-06-17T23:59:59.000Z

90

Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Rebate Program Central Hudson Gas and Electric (Electric) - Commercial Lighting Rebate Program < Back Eligibility Commercial Installer/Contractor Institutional Local Government Nonprofit Schools Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Utility Rebate Program Rebate Amount Up to 70% of the equipment cost of a qualified efficiency upgrade Provider Central Hudson Gas and Electric Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam utilizes the services of Lime Energy to install new lighting fixtures with Central Hudson covering up to 70% of the cost. The 30 percent of cost remaining can be financed at

91

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

92

Alexandria Light and Power - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexandria Light and Power - Commercial Energy Efficiency Rebate Alexandria Light and Power - Commercial Energy Efficiency Rebate Program Alexandria Light and Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate All Incentives: Limited to 75% of total project cost Custom Program: $100,000 per calendar year per customer Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Targeted Audit: Varies by building type and size Lighting (New Construction): Varies widely Lighting (Existing Buildings): Varies widely Custom Measures: $300 kW; $0.01/kWh; $0.40/Therm

93

Independence Power and Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independence Power and Light - Commercial Energy Efficiency Rebate Independence Power and Light - Commercial Energy Efficiency Rebate Program Independence Power and Light - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000, or 30% of the total project cost annually per organization Program Info State Missouri Program Type Utility Rebate Program Rebate Amount High Performance T-8 Systems: $20-$30 Reduced-Wattage T-8 Systems: $20-$30 Standard T-8 Lamp: $2 Standard T-8 Electric Ballast: $10 400W HID Replacement (250W or less T8, T5, or T5HO Fluorescent): $75 Pulse Start Metal Halide Fixture: $50

94

Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cape Light Compact - Commercial, Industrial and Municipal Buildings Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program Cape Light Compact - Commercial, Industrial and Municipal Buildings Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Commercial Weatherization Water Heating Maximum Rebate Retrofit: 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. New Construction: 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple

95

Estes Park Light and Power Department - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estes Park Light and Power Department - Commercial and Industrial Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Custom Energy Incentive: $0.10 per annual kWh saved Demand Incentive: $500 per kW saved during Summer Peak Period Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum

96

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

97

Chicopee Electric Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Commercial Energy Efficiency Rebate Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) < Back Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $25,000; 30% of total cost if project did not recieve financing from CEL, 20% of total cost if project did recieve financing from CEL Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: $0.17 per annual kWh saved Lighting: $0.17 per annual kWh saved New Construction: $0.17 per annual kWh saved Provider Program Administrator Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue

98

Central Hudson Gas & Electric (Electric)- Commercial Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Central Hudson Gas & Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam...

99

Commercial Lighting Requirements of the 2012 IECC | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center Commercial Lighting Requirements of the 2012 IECC The materials for this course may be used for in-person...

100

CoServ Electric Cooperative - Commercial Energy Efficient Lighting...  

Open Energy Info (EERE)

icon Twitter icon CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program (Texas) This is the approved revision of this page, as well as being...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Columbia River PUD - Commercial Lighting Retrofit Program (Oregon...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Columbia River PUD - Commercial Lighting Retrofit Program (Oregon) This is the approved revision of this page, as well as...

102

Light Water Reactor Materials for Commercial Nuclear Power ...  

Science Conference Proceedings (OSTI)

Presentation Title, Light Water Reactor Materials for Commercial Nuclear ... First- Principles Theory of Magnetism, Crystal Field and Phonon Spectrum of UO2.

103

Concord Municipal Light Plant- Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Concord Municipal Light Plant (CMLP) offers rebates to commercial customers for a variety of appliances, ETS heating systems, general lighting upgrades, CFL bulbs, and exit sign retrofit kits. A...

104

Connecticut Light & Power - Commercial Energy Efficiency Rebates...  

Open Energy Info (EERE)

Technologies Lighting, Lighting ControlsSensors, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motors, HVAC Controls Active Incentive No...

105

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Lighting in Commercial Buildings Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

106

Lighting in Commercial Buildings (1986 data) -- Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

6 Lighting in Commercial Buildings > Executive Summary 6 Lighting in Commercial Buildings > Executive Summary Executive Summary Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy's (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration's(EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

107

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

DOE Green Energy (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

108

Richland Energy Services - Energy Efficient Commercial Lighting Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richland Energy Services - Energy Efficient Commercial Lighting Richland Energy Services - Energy Efficient Commercial Lighting Program Richland Energy Services - Energy Efficient Commercial Lighting Program < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of the total cost Program Info Expiration Date 9/30/2012 State District of Columbia Program Type Utility Rebate Program Rebate Amount T5/T8 with Electric Ballasts: $10 - $65 Hardwired CFL's: $40 - $80 Screw In CFL's: $3 - $12 Cold Cathode: $3 - $15 Ceramic Metal Halide Fixture: $30 - $50 LED's: $15 - $50 Induction: $80 - $400 High-output T5/T8: $50 - $180 Metal Halide/High Pressure Sodium: $80 - $400 Stairwell/Garage Fluorescent Fixture: $50 Occupancy Sensor/Timer: $30 - $60

109

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

110

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Lighting Market Characterization, Vol. 1: National Lighting Inventory and Energy Consumption Estimate, Office of Energy Efficiency and Renewable Energy,...

111

Comparing Commercial Lighting Energy Requirements | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparing Commercial Lighting Energy Requirements Comparing Commercial Lighting Energy Requirements ASHRAE Standard 90.1-2004 and the 2003 International Energy Conservation Code include requirements for interior and exterior lighting in new construction, additions, and alterations for all commercial buildings, including residential structures with four or more stories above grade. Publication Date: Wednesday, May 13, 2009 ta_comparing_commercial_lighting_energy_requirements.pdf Document Details Affiliation: DOE BECP Document Number: PNNL-SA-49098 Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-2004 2003 IECC Document type: Technical Articles Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies U.S. Department of Energy USA.gov Last Updated: Wednesday, July 25, 2012 - 15:22

112

Carbon Power and Light - Residential and Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Power and Light - Residential and Commercial Energy Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program Carbon Power and Light - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Water Heater: $75 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $1.50 - $3 /gallon, plus $50 Tri-State G&T incentive Resistive Heat: $8 /kW Electric Thermal Storage: $50 /unit or $12 /kW Air-Source Heat Pump: $125 - $150 /ton Geothermal Heat Pump: $150 /ton Terminal Unit: $85 Motors: $8 - $13 /hp (CPL and Tri-State Combined Rebate) Provider Carbon Power and Light, Inc.

113

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

Constraints on Occupant Lighting choices and Satisfaction: A007 "Intelligent Commercial Lighting: Demand-Responsivedirectly. Intelligent Commercial Lighting: Demand-Responsive

Agogino, Alice M.

2005-01-01T23:59:59.000Z

114

Lansing Board of Water and Light - Hometown Energy Savers Commercial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers Savers Commercial Rebates Lansing Board of Water and Light - Hometown Energy Savers Commercial Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 100% of the total project cost, or $50,000 per electric meter per year. Incentives for Custom measures may not exceed 40% of the total project cost, or $20,000. Program Info Expiration Date 11/30/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Small Business Direct Install Program: No cost or purchase necessary for participation Custom $0.08/kWh Commercial Cooking Equipment: Varies

115

Chicopee Electric Light - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: 0.17 per annual kWh saved Lighting: 0.17 per annual kWh saved New Construction: 0.17 per annual kWh saved...

116

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

117

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

118

McMinnville Water & Light- Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in...

119

EnergyUnited - Commercial Energy Efficient Lighting Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrades: 0.30watt saved Commercial and industrial members who upgrade to energy-efficient light bulbs which meet EnergyUnited's standards are eligible for a prescriptive,...

120

Lighting in Residential and Commercial Buildings (1993 and 1995 data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Light Type Used > Related Goverment Sites Light Type Used > Related Goverment Sites Links to Related Government Sites Publications list from U.S. Department of Energy's Office of Federal Energy Management Programs (FEMP) U.S. Environmental Protection Agency Green Lights Program Updated FLEX 3.0 Lighting software solution available from U.S. Department of Energy's Office of Federal Energy Management Programs Section 3.4 on Lighting and Section 7.2 on Lighting Control can be obtained at this site U.S. Department of Energy's Office of Federal Energy Management Programs lights basic training will be completed in FY '98 Lighting mailing list for exchange of information on lighting issues Lights in commercial buildings in the 21st Century List of major areas of expertise at Lawrence Berkeley National Laboratory, illustrated with specific projects

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

DOE Green Energy (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

122

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

123

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

124

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

DOE Green Energy (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

125

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lights > Lit Floorspace In Lit Buildings Types of Lights > Lit Floorspace In Lit Buildings Lit Floorspace in Lit Buildings To analyze the use of different kinds of lighting equipment with data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), building floorspace can be described in three different ways: total floorspace in all buildings; total floorspace in lit buildings; and total lit floorspace in buildings. The latter two measures of floorspace with lighting differ because not all of the floorspace in lit buildings is illuminated (see Table 1): Table 1: Floorspace Denominators Used To Analyze Lighting Equipment Usage (Million Square Feet) 1995 CBECS Total Floorspace in All Buildings: 58, 772 1995 CBECS Total Floorspace in Lit Buildings: 56, 261 1995 CBECS Total Lit Floorspace in Buildings: 50, 303

126

Industry Scalable Commercial Lighting Solutions for the Mainstream Market  

Science Conference Proceedings (OSTI)

Inevitably the greatest obstacles to deep energy savings and mainstream market transformation include complexity and cost. Currently there is a tremendous marketplace gap between the need for widespread integrated lighting solutions and the capacity of the market to provide them. This paper will describe how a new USDOE commercial lighting program provides a multi-faceted strategy to provide the needed how to guidance in support of the numerous mandates and programs that are reaching far beyond codes and standards. The program provides lighting energy-efficiency solutions using high performance products, daylighting, and lighting controls. These lighting solutions are widely applicable to common spaces and are delivered via an interactive webtool, making them scalable to the mainstream market. Complexity is reduced by providing pre-designed vignettes and controls strategies that can be reviewed and selected by the end user or design team. The webtool provides analysis and documentation to show performance against energy goals in support of end-user applications for incentives, which addresses the cost obstacle. Utilities and Energy Effiency Program Sponsors (EEPS) benefit by having actionable guidance for customers and energy analysis sufficient to create programs designed around kWh rather than LPD or component-based rebates. The program is organized around the major commercial market sectors: retail, commercial real estate (e.g., offices, developers, lodging), and institutional (e.g., healthcare, education). This allows design solutions to be developed specifically for each sector with the input of the appropriate end users. The partnership model for the program is robust (including end users, design professionals, manufacturers, Non-Governmental Organizations (NGOs), and EEPS) and provides the network by which feedback is gathered, lighting solutions are deployed, and performance is measured.

Jones, Carol C.; Puranik, Sucheta

2008-08-17T23:59:59.000Z

127

Centrally powered lighting systems: Renewed efforts for commercialization  

SciTech Connect

A new approach to powering fluorescent lamps, likely to be marketed aggressively in 1994, appears to be very efficient and reliable, and provides several other advantages over conventional ballast designs. It involves using a central rectifier to convert AC to DC to power lighting for an entire facility, rather than using rectifiers in each ballast as with typical fluorescent lighting systems. Although not practical for most retrofit applications, the centralized power approach is promising for new construction and major renovation, and users in several new installations are pleased with its operation. Brigham Young University (BYU), in cooperation with a newly licensed commercial partner, has renewed marketing efforts for this unique system, which has not succeeded commercially in prior licensing arrangements.

Howe, B.

1994-12-31T23:59:59.000Z

128

The Advantage of Highly Controlled Lighting for Offices and Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

The Advantage of Highly Controlled Lighting for Offices and Commercial The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings Title The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings Publication Type Conference Paper LBNL Report Number LBNL-2514E Year of Publication 2008 Authors Rubinstein, Francis M., Dmitriy Bolotov, Mark S. Levi, Kevin Powell, and P. Schwartz Conference Name 2008 ACEEE Summer Study on Energy Efficiency in Buildings Volume 78 Call Number LBNL-2514E Abstract A dual-cathode arc plasma source was combined with a computer-controlled bias amplifier such as to synchronize substrate bias with the pulsed production of plasma. In this way, bias can be applied in a material-selective way. The principle has been applied to the synthesis metal-doped diamond-like carbon films, where the bias was applied and adjusted when the carbon plasma was condensing, and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by too-energetic metal ions can be avoided while the sp3/sp2 ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias. The principle can be extended to multiple-material plasma sources and complex materials.

129

Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions  

SciTech Connect

The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energys Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.

Beeson, Tracy A.; Jones, Carol C.

2010-02-01T23:59:59.000Z

130

Evaluation of commercial lighting programs: A DEEP assessment  

SciTech Connect

In this paper, we present key findings from a Database on Energy Efficiency Programs (DEEP) report on commercial lighting programs. In the DEEP report, which is the first in a series, we examine the measured performance of 20 utility-sponsored, demand-side management (DSM), lighting efficiency programs in the commercial and industrial sectors. We assess the performance of the lighting programs based on four measures: the total resource costs of the programs, participation rates, energy savings per participant, and utility costs per participant. At an average cost of 3.9 C/kWh, these programs are judged to be cost-effective when compared to avoided costs in their areas. We critically examine participation rates, energy savings per participant, and utility costs per participant in order to understand precisely what aspects of program performance they measure. Finally, we summarize some of the primary difficulties in collecting DSM data in a consistent and comprehensive fashion, and offer some solutions to this challenging problem.

Vine, E.L.; Eto, J.; Shown, L.; Sonnenblick, R.; Payne, C.

1994-08-01T23:59:59.000Z

131

McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMinnville Water and Light - Commercial Energy Efficiency Rebate McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Oregon Program Type Utility Rebate Program Rebate Amount McMinnville Water and Light Company Provider McMinnville Water and Light McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in three categories: Lighting retrofits, motor replacements, and process efficiency. Past lighting projects have included fluorescent lighting retrofits, mercury vapor

132

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

133

Integrated envelope and lighting systems for commercial buildings: a retrospective  

SciTech Connect

Daylighting systems in use world-wide rarely capture the energy-savings predicted by simulation tools and that we believe are achievable in real buildings. One of the primary reasons for this is that window and lighting systems are not designed and operated as an integrated system. Our efforts over the last five years have been targeted toward (1) development and testing of new prototype systems that involve a higher degree of systems integration than has been typical in the past, and (2) addressing current design and technological barriers that are often missed with component-oriented research. We summarize the results from this body of cross-disciplinary research and discuss its effects on the existing and future practice of daylighting in commercial buildings.

Lee, Eleanor S.; Selkowitz, Stephen E.

1998-06-01T23:59:59.000Z

134

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

135

Memphis Light, Gas and Water (Electric) - Commercial Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rebates on a range of energy efficient equipment and measures for commercial and smaller industrial customers. Eligible customers include commercial customers on General Power...

136

Types of Lighting in Commercial Buildings - Principal Building...  

U.S. Energy Information Administration (EIA) Indexed Site

lit floorspace in commercial buildings. Figure 5. Office, education, and warehouse and storage buildings account for more than half of total lit floorspace in commercial...

137

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

138

Kansas City Power & Light- Commercial/Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Kansas City Power & Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

139

SEIS for the Production of Tritium in a Commercial Light Water...  

National Nuclear Security Administration (NNSA)

SEIS for the Production of Tritium in a Commercial Light Water Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

140

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Open Energy Info (EERE)

Central Air conditioners, Chillers, Compressed air, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting, Lighting Controls...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commercial Building Energy Alliance Exterior Lighting Scoping Study  

Science Conference Proceedings (OSTI)

This report is a scoping study about challenges and energy saving potential regarding exterior lighting.

Myer, Michael

2011-10-07T23:59:59.000Z

142

MIXED-OXIDE FUEL USE IN COMMERCIAL LIGHT WATER REACTORS  

E-Print Network (OSTI)

In a Commission briefing on high-bumup fuel on March 25, 1997, the staff said that they would prepare a white paper on mixed-oxide (MOX) fuel in anticipation of a DOE program to bum excess weapons plutonium in commercial reactors. This memorandum and its attachment comprise that paper and are provided to inform the Commissioners of technical issues associated with such a program. More recently, on February 5, 1999, I was contacted by the Nuclear Control Institute regarding a paper they have written on this subject. They presented that paper to the staff in a public meeting on April 7, 1999. The Nuclear Control Institute's written paper had been provided to the staff earlier, and we have taken the paper into consideration in preparing this memorandum. Back-ground In January 1997, the U.S. Department of Energy released a record of decision for the storage and disposition of weapons-usable fissile materials. In this record, DOE recommended that excess weapons-grade plutonium be disposed of by two methods: (1) reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning it in current light water reactors, and (2) immobilizing the plutonium in glass logs with appropriate radioactive isotopes to deter theft prior to geologic disposal. Based on current information, it now appears that, if the MOX fuel method is utilized, fuel fabrication will take place at the Savannah River site in South Carolina with burning in nearby Westinghouse-type PWRs. Although DOE will probably not receive funding in FY 2000 for developing a license application, Congress has already given its approval for NRC licensing authority over a MOX fuel fabrication facility operated under

United States; William D. Travers

1999-01-01T23:59:59.000Z

143

Coldwater Board of Public Utilities- Commercial & Industrial Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

144

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

145

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

experience in the nuclear fuels field. I am also extremelyreactor core components, nuclear fuel-element design hasreactors, commercial nuclear fuel still consists of uranium

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

146

Energy and economic efficiency alternatives for electric lighting in commercial buildings  

SciTech Connect

This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categories offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.

Robbins, C.L.; Hunter K.C.; Carlisle, N.

1985-10-01T23:59:59.000Z

147

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

148

Commercialization of Quantum Dot White Light Emitting Diode technology  

E-Print Network (OSTI)

It is well known that the use of high-brightness LEDs for illumination has the potential to substitute conventional lighting and revolutionize the lighting industry over the next 10 to 20 years. However, successful penetration ...

Zhao, Xinyue, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

149

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

52] J.H. Rust. Nuclear Power Plant Engineering. Buchanan,the economics of nuclear power plants. In addition, the longin commercial nuclear power plants. The fuel designs and

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

150

Evaluation of Commercial Lighting Programs: A DEEP Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

151

Chapter 2, Commercial and Industrial Lighting Evaluation Protocol...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

power density (lighting wattsft 2 ), calculated using simple spreadsheets. Other federal, state, and local standards may set additional baseline constraints on lamps,...

152

Types of Lighting in Commercial Buildings - Full Report  

Gasoline and Diesel Fuel Update (EIA)

Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (www1.eere.energy.govbuildingsssltechreports.htmllmcvol1final.pdf. (Back) Lighting in...

153

Carbon Power & Light- Residential and Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Power and Light, in collaboration with Tri-State Generation and Transmission Association, offers financial incentives for members to increase the energy efficiency of homes and facilities....

154

Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors  

Science Conference Proceedings (OSTI)

This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%.

Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

1985-04-01T23:59:59.000Z

155

Developing integrated envelop and lighting systems for commercial buildings  

SciTech Connect

Integrated envelope and lighting systems achieve significant energy, peak demand, and cost savings over typical component-by-component design practice by leveraging the interactive energy balance between electric lighting energy use and cooling due to lighting and solar radiation. We discuss how these savings can be achieved using conventional glazing and lighting components by taking an integrated systems design approach. We describe integrated dynamic envelope and lighting systems, currently under development, that actively achieve this energy balance through the use of intelligent control systems. We show how prototypical daylighting systems can be used to increase the efficacy and distribution of daylight throughout the space for the same or less glazing area as a typical window, while achieving greater energy savings with increased visual comfort. Energy performance simulations and field tests conducted to date illustrate significant energy savings, peak demand reductions, and potential practical implementation of these proposed systems.

Lee, E.S.; Selkowitz, S.E.; Rubinstein, F.M.; Klems, J.H.; Beltran, L.O.; DiBartolomeo, D.L.; Sullivan, R.

1994-03-01T23:59:59.000Z

156

Kansas City Power and Light - Commercial/Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fixture Standard T8 LampsBallasts: 2 - 10unit Lighting Power Density: 1watt per square foot High Intensity Fluorescent: 50fixture Pulse Star Metal Halide: 50fixture...

157

Evaluation of Commercial Lighting Programs: A DEEP Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

DEEP report, which is the first in a series, we examine the measured performance of 20 utility-sponsored, demand-side management (DSM), lighting efficiency programs in the...

158

Energymaster Desiccant System Application to Light Commercial Buildings  

E-Print Network (OSTI)

Desiccant cooling systems offer unique advantages over conventional equipment in certain applications. AskCorp's Energymaster unit has been applied in several commercial situations where these advantages are most significant. The magnitude of operating cost savings and improved control is greatest in humid climates where both ambient enthalpy levels and space latent loads are highest.

Blanpied, M. C.; Coellner, J. A.; Macintosh, D. S.

1987-01-01T23:59:59.000Z

159

Types of Lighting in Commercial Buildings - Table L2  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ............................. 61,707 58,693 49,779 6,496 37,150 3,058 5,343 1,913 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 6,750 5,836 4,878 757 3,838 231 109 162 5,001 to 10,000 .......................... 7,940 7,166 5,369 1,044 4,073 288 160 109 10,001 to 25,000 ....................... 10,534 9,773 7,783 1,312 5,712 358 633 232 25,001 to 50,000 ....................... 8,709 8,452 6,978 953 5,090 380 771 281

160

Types of Lighting in Commercial Buildings - Table L1  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*........................ 54,068 51,570 45,773 6,746 34,910 1,161 3,725 779 Building Floorspace (Square Feet) 1,001 to 5,000....................... 6,272 5,718 4,824 986 3,767 50 22 54 5,001 to 10,000.................... 7,299 6,667 5,728 1,240 4,341 61 169 45 10,001 to 25,000.................. 10,829 10,350 8,544 1,495 6,442 154 553 Q 25,001 to 50,000.................. 7,170 7,022 6,401 789 5,103 151 485 86

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Types of Lighting in Commercial Buildings - Table L3  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003 Floorspace (million square feet) Total (Lit or Unlit) in All Buildings Total (Lit or Unlit) in Buildings With Any Lighting Lighted Area Only Area Lit by Each Type of Light Incan- descent Standard Fluor-escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings*............................. 64,783 62,060 51,342 5,556 37,918 4,004 4,950 2,403 Building Floorspace (Square Feet) 1,001 to 5,000............................. 6,789 6,038 4,826 678 3,932 206 76 124 5,001 to 10,000........................... 6,585 6,090 4,974 739 3,829 192 238 248 10,001 to 25,000........................ 11,535 11,229 8,618 1,197 6,525 454 506 289 25,001 to 50,000........................ 8,668 8,297 6,544 763 4,971 527 454 240

162

EIS-0288: Production of Tritium in a Commercial Light Water Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

288: Production of Tritium in a Commercial Light Water Reactor 288: Production of Tritium in a Commercial Light Water Reactor EIS-0288: Production of Tritium in a Commercial Light Water Reactor SUMMARY This Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS) evaluates the environmental impacts associated with producing tritium at one or more of the following five CLWRs: (1) Watts Bar Nuclear Plant Unit 1 (Spring City, Tennessee); (2) Sequoyah Nuclear Plant Unit 1 (Soddy Daisy, Tennessee); (3) Sequoyah Nuclear Plant Unit 2 (Soddy Daisy, Tennessee); (4) Bellefonte Nuclear Plant Unit 1 (Hollywood, Alabama); and (5) Bellefonte Nuclear Plant Unit 2 (Hollywood, Alabama). Specifically, this EIS analyzes the potential environmental impacts associated with fabricating tritium-producing

163

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-S1: Production of Tritium in a Commercial Light Water 8-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement Summary This Supplemental EIS updates the environmental analyses in DOE's 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods. Public Comment Opportunities No public comment opportunities at this time. Documents Available for Download September 28, 2011 EIS-0288-S1: Notice of Intent to Prepare a Supplemental Environmental

164

Randolph EMC- Commercial and Industrial Efficient Lighting Rebate Program (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

Commercial and industrial members who upgrade to energy-efficient light bulbs which meet Randolph EMC's standards are eligible for a prescriptive incentive payment. The cooperative will provide a...

165

Kansas City Power and Light - Commercial/Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4,907-$35,142 by business 4,907-$35,142 by business class size and differs among Missouri and Kansas residents. Program Info State Kansas Program Type Utility Rebate Program Rebate Amount Energy Audit ( Energy Audit (> 25,000 sq ft): 50% of cost, up to $500 High Performance T8 Fixtures: $20 - $30/fixture Standard T8 Lamps/Ballasts: $2 - $10/unit Lighting Power Density: $1/watt per square foot High Intensity Fluorescent: $50/fixture Pulse Star Metal Halide: $50/fixture Lighting Controls: $20 - $50 per sensor Single Phase Package/Split System AC: $92/ton Three Phase Unitary/Split System AC: $92/ton Unitary/Split System AC: $73 - $79/ton Motors: $50 - $130/motor Custom (Retrofit): The lesser of a buydown to a two year payback, or 50% of the incremental cost Custom (New Construction): The lesser of a buydown to a two year payback,

166

Kansas City Power and Light - Commercial/Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7,299-$52,276 by business 7,299-$52,276 by business class, size, new construction, retrofit, and location. Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Energy Audit ( Energy Audit (> 25,000 sq ft): 50% of cost, up to $500 High Performance T8 Fixtures: $20 - $30/fixture Standard T8 Lamps/Ballasts: $2 - $10/unit Lighting Power Density: $1/watt per square foot High Intensity Fluorescent: $50/fixture Pulse Star Metal Halide: $50/fixture Lighting Controls: $20 - $50 per sensor Single Phase Package/Split System AC: $92/ton Three Phase Unitary/Split System AC: $92/ton Unitary/Split System AC: $73 - $79/ton Motors: $50 - $130/motor Custom (Retrofit): The lesser of a buydown to a two year payback, or 50% of the incremental cost Custom (New Construction): The lesser of a buydown to a two year payback,

167

Raley's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

2000-05-03T23:59:59.000Z

168

Many exterior entry and walkway lights in residential and commercial  

E-Print Network (OSTI)

. E N V I R O N M E N T A L L Y S O U N D A N D E N E R G Y E F F I C I E N T #12;Hotel/motel staff, contractors, and utility staff can use the information on this system. Key next steps include: · Building Owners/Managers and Lighting Specifiers--Specify the LED Hybrid Outdoor Fixture. · Utility Staff

169

US manufacturers of commercially available stand-alone photovoltaic lighting systems  

DOE Green Energy (OSTI)

This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

McNutt, P.

1994-05-01T23:59:59.000Z

170

Empty WIPP truck overturns  

NLE Websites -- All DOE Office Websites (Extended Search)

Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at...

171

Edison Revisited: Should we use DC Circuits for Lighting in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Edison Revisited: Should we use DC Circuits for Lighting in Commercial Edison Revisited: Should we use DC Circuits for Lighting in Commercial Buildings? Speaker(s): Brinda Thomas Date: March 7, 2012 - 12:30pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay This seminar summarizes work from a forthcoming Energy Policy paper and thoughts on future work to understand the economics of DC building circuits. We examined the economic feasibility of a general application of DC building circuits to operate commercial lighting systems. We compare light-emitting diodes (LEDs) and fluorescents that are powered by either a central DC power supply or traditional AC grid electricity, with and without solar photovoltaics (PV) and battery back-up. We find that there are limited life-cycle ownership cost and capital cost benefits of DC

172

Audit predictions of commercial lighting and plug loads  

SciTech Connect

Energy audits may be conducted at low or no cost to point our cost-effective conservation measures that could be adopted by the building owners. Alternatively, evaluating of the level of conservation measures that should be installed at utility expense. The energy and peak load savings resulting from audit programs are influenced by both the rate of adoption and the installed effectiveness of conservation measures recommended by audits. The accuracy of savings predicted by the audits has long been in question, and affects both the rate of adoption (via ''word-of-mouth'' and media communication of customer satisfaction) as well as the actual benefits to the utility for installed measures. Hence, assessing the accuracy of the audits is an essential element in the implementation and evaluation of effective audit programs designed to utilize the conservation resource. This paper presents an end-use view of audit accuracy for lighting and plug loads. Other analysis of the data from the overall building point of view has been conducted elsewhere. 3 refs., 8 figs., 3 tabs.

Pratt, R.G.

1989-05-01T23:59:59.000Z

173

Lighting/HVAC interactions and their effects on annual and peak HVAC requirements in commercial buildings  

SciTech Connect

Lighting measures is one effective strategy for reducing energy use in commercial buildings. Reductions in lighting energy have secondary effects on cooling/heating energy consumption and peak HVAC requirements; in general, they increase the heating and decrease cooling requirements of a building. Net change in a building`s annual and peak energy requirements, however, is difficult to quantify and depends on building characteristics, operating conditions, climate. This paper characterizes impacts of lighting/HVAC interactions on annual and peak heating/cooling requirements of prototypical US commercial buildings through computer simulations using DOE-2.1E building energy analysis program. Ten building types of two vintages and nine climates are chosen to represent the US commercial building stock. For each combination, a prototypical building is simulated with two lighting power densities, and resultant changes in heating and cooling loads are recorded. Simple concepts of Lighting Coincidence Factors are used to describe the observed interactions between lighting and HVAC requirements. (Coincidence Factor (CF) is ratio of changes in HVAC loads to those in lighting loads, where load is either annual or peak load). The paper presents tables of lighting CF for major building types and climates. These parameters can be used for regional or national cost/benefit analyses of lighting- related policies and utility DSM programs. Using Annual CFs and typical efficiencies for heating and cooling systems, net changes in space conditioning energy use from a lighting measure can be calculated. Similarly, Demand CFs can be used to estimate the changes in HVAC sizing, which can then be converted to changes in capital outlay using standard-design curves; or they can be used to estimate coincident peak reductions for the analysis of the utility`s avoided costs. Results from use of these tables are meaningful only when they involve a significantly large number of buildings.

Sezgen, A.O.; Huang, Y.J.

1994-08-01T23:59:59.000Z

174

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings Title A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings Publication Type Report Year of Publication 2011 Authors Williams, Alison A., Barbara A. Atkinson, Karina Garbesi, Francis M. Rubinstein, and Erik Page Series Title LBNL-5095E Pagination 25 Date Published September Keywords controls, daylighting, occupancy sensors, tuning Abstract Researchers have been quantifying energy savings from lighting controls in commercial buildings for more than 30 years. This study provides a meta-analysis of estimates of energy savings identified in the literature-240 savings estimates from 88 papers and case studies, categorized into daylighting strategies, occupancy strategies, personal tuning, and institutional tuning. Beginning with an overall average of savings estimates by control strategy, this paper adds successive analytical filters to identify potential biases introduced to the estimates by different analytical approaches. Based on the meta-analysis, the best estimates of average energy savings potential are 24% for occupancy, 28% for daylighting, 31% for personal tuning, 36% for institutional tuning, and 38% for multiple approaches. The results suggest that simulations significantly overestimate (by at least 10%) the average savings obtainable from daylighting in actual buildings.

175

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

176

Interactions between lighting and space conditioning energy use in U.S. commercial buildings  

SciTech Connect

Reductions in lighting energy have secondary effects on cooling and heating energy consumption. In general, lighting energy reductions increase heating and decrease cooling requirements of a building. The net change in a building`s annual energy requirements, however, is difficult to quantify and depends on the building characteristics, operating conditions, and climate. This paper characterizes the effects of lighting/HVAC interactions on the annual heating/cooling requirements of prototypical US commercial buildings through computer simulations using the DOE-2.1E building energy analysis program. Twelve building types of two vintages and five climates are chosen to represent the US commercial building stock. For each combination of building type, vintage, and climate, a prototypical building is simulated with varying lighting power densities, and the resultant changes in heating and cooling loads are recorded. These loads are used together with market information on the saturation of the different HVAC equipment in the commercial buildings to determine the changes i energy use and expenditures for heating and cooling. Results are presented by building type for the US as a whole. Therefore, the data presented in this paper can be utilized to assess the secondary effects of lighting-related federal policies with widespread impacts, like minimum efficiency standards. Generally, in warm climates the interactions will induce monetary savings and in cold climates the interactions will induce monetary penalties. For the commercial building stock in the US, a reduction in lighting energy that is well distributed geographically will induce neither significant savings nor significant penalties from associated changes in HVAC primary energy and energy expenditures.

Sezgen, O.; Koomey, J.G.

1998-04-01T23:59:59.000Z

177

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

178

Advanced Vehicle Testing Activity: Truck Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Reader. Norcal Waste Systems, Inc. Liquefied Natural Gas Trucks Norcal Prototype LNG Truck Fleet: Final Data Report, February 2005 (PDF 806 KB) Norcal Prototype LNG Truck...

179

Obstacles and opportunities in the commercialization of the solid-state-electronic fluorescent-lighting ballast  

SciTech Connect

The Solid State Ballast (SSB) Program, aimed at improving the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts has been developed and the technology has been transferred to the private sector. This report examines the opportunities for rapid dissemination of this technology into the marketplace. It includes a description of product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high-leverage opportunities to accelerate the commercialization process. (MCW)

Johnson, D.R.; Marcus, A.A.; Campbell, R.S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

1981-10-01T23:59:59.000Z

180

Side-by-Side Testing of Commercial Office Lighting Systems: Two-lamp Fluorescent Fixtures  

E-Print Network (OSTI)

Lighting systems in commercial office buildings are primary determinants of building energy use. In warmer climates, lighting energy use has important implications for building cooling loads as well as those directly associated with illumination tasks. To research the comparative performance of conventional and advanced office lighting systems, Florida Solar Energy Center (FSEC) set up the Lighting Flexible Test Facility (LFTF) which allows side-by-side comparison of lighting options in two otherwise identical 2.7 m x 3.7 m (9' x 12') south facing offices. The ceiling of the LFTF contains 0.61 m x 1.2 m (2' x 4') recessed fluorescent fixtures designed to be easily changed. Differing lighting systems were comparatively tested against each other over weeklong periods. Data on power consumption (watts), power quality (power factor), work-plane interior lighting levels (lux), bulb-wall, fixture and plenum temperatures were recorded every 15 minutes on a multi-channel data logger. This data allows realistic analysis of comparative lighting system performance including interactions with daylighting.

Parker, D. S.; Schrum, L.; Sonne, J. K.; Stedman, T. C.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The design and evaluation of integrated envelope and lighting control strategies for commercial buildings  

SciTech Connect

This study investigates control strategies for coordinating the variable solar-optical properties of a dynamic building envelope system with a daylight controlled electric lighting system to reduce electricity consumption and increase comfort in the perimeter zone of commercial buildings. Control strategy design can be based on either simple, instantaneous measured data, or on complex, predictive algorithms that estimate the energy consumption for a selected operating state of the dynamic envelope and lighting system. The potential benefits of optimizing the operation of a dynamic envelope and lighting system are (1) significant reductions in electrical energy end-uses - lighting, and cooling due to solar and lighting heat gains - over that achieved by conventional static envelope and lighting systems, (2) significant reductions in peak demand, and (3) increased occupant visual and thermal comfort. The DOE-2 building energy simulation program was used to model two dynamic envelope and lighting systems, an automated venetian blind and an electrochromic glazing system, and their control strategies under a range of building conditions. The energy performance of simple control strategies are compared to the optimum performance of a theoretical envelope and lighting system to determine the maximum potential benefit of using more complex, predictive control algorithms. Results indicate that (1) predictive control algorithms may significantly increase the energy-efficiency of systems with non-optimal solar-optical properties such as the automated venetian blind, and (2) simpler, non-predictive control strategies may suffice for more advanced envelope systems 1 incorporating spectrally selective, narrow-band electrochromic coatings.

Lee, E.S.; Selkowitz, S.E.

1994-06-01T23:59:59.000Z

182

Energy Department, Volvo Partnership Builds More Efficient Trucks and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department, Volvo Partnership Builds More Efficient Trucks Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an America built to last laid out by President Obama in his State of the Union address earlier this week. The Department of Energy is partnering with companies like the Volvo Group to help harness American ingenuity to commercialize and deploy cutting-edge trucking technologies that will help boost the competitiveness of the U.S. auto and

183

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

184

Truckstop -- and Truck!-- Electrification  

SciTech Connect

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

185

Truckstop -- and Truck!-- Electrification  

DOE Green Energy (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

186

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

187

Analysis of Potential Free-Rider Eligibility for a Proposed Commercial Building Lighting Tax Deduction  

SciTech Connect

The report provides estimates of the potential volume of ''free riders'', in terms of both eligible square footage and associated available tax deductions, in a proposed commercial building lighting tax amendment to the 2003 Energy Bill. Determination of the actual tax rate for businesses and how the amendment may impact tax revenue collected by the treasury is beyond the scope of this effort. Others, such as the Treasury itself, are best equipped to make their own estimates of the eventual impact based on the total deductions available to taxable entities.

Winiarski, David W.; Richman, Eric E.; Biyani, Rahul K.

2004-09-30T23:59:59.000Z

188

Truck Stop Electrification: Codes and Standards Ensure Safety for The Trucking Industry  

Science Conference Proceedings (OSTI)

Every day in the United States as many as 677,600 heavy-duty trucks are on the road; and, at some point during that day, they are idling. Over the course of a year, long-duration idling of truck and locomotive engines consumes more than 1 billion gallons of diesel fuel and emits 11 million tons of carbon dioxide. Drivers often idle their main engines during the U.S. Department of Transportation mandated rest time of 10 hours after driving for 11 hours, to power heating, air conditioning, lighting, and ap...

2009-05-08T23:59:59.000Z

189

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

190

COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS  

SciTech Connect

Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

2004-10-31T23:59:59.000Z

191

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30T23:59:59.000Z

192

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

193

Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon  

SciTech Connect

This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the Version 1 luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is lost in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

2008-11-11T23:59:59.000Z

194

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

195

The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

4E 4E The Advantages of Highly Controlled Lighting for Offices and Commercial Buildings F. Rubinstein & D. Bolotov Lawrence Berkeley National Laboratory M. Levi & K. Powell U.S. General Services Administration P. Schwartz Peter Schwartz, & Associates, LLC August 2008 Presented at the 2008 ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, CA, August 17-22, 2008, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes

196

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

197

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

198

Vehicle Technologies Office: 21st Century Truck  

NLE Websites -- All DOE Office Websites (Extended Search)

for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and...

199

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

E-Print Network (OSTI)

of Highly Controlled Lighting for Offices and Commercialefficient, customized lighting for open-office cubicles.s ambient and task lighting components, 2) occupancy

Rubinstein, Francis

2010-01-01T23:59:59.000Z

200

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

Performance of Occupancy-Based Lighting Control Systems: AReview. Lighting Residential Technology 42:415-431. Itron,Information Template Indoor Lighting Controls. Pacific Gas

Williams, Alison

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

202

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

203

Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is responsible for providing the nation with nuclear weapons and ensuring that these weapons remain safe and reliable. Tritium, a radioactive isotope of hydrogen, is an essential component of every weapon in the current and projected U.S. nuclear weapons stockpile. Unlike other materials utilized in nuclear weapons, tritium decays at a rate of 5.5 percent per year. Accordingly, as long as the nation relies on a nuclear deterrent, the tritium in each nuclear weapon must be replenished periodically. Currently the U.S. nuclear weapons complex does not have the capability to produce the amounts of tritium that will be required to continue supporting the nation's stockpile. The ''Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling'' (Final Programmatic EIS), DOE/EIS-0161, issued in October 1995, evaluated the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at five DOE sites for four different production technologies. This Programmatic EIS also evaluated the impacts of using a commercial light water reactor (CLWR) without specifying a reactor location. In the Record of Decision for the Final Programmatic EIS (60 FR 63878), issued December 12, 1995, DOE decided to pursue a dual-track approach on the two most promising tritium supply alternatives: (1) to initiate purchase of an existing commercial reactor (operating or partially complete) or reactor irradiation services; and (2) to design, build, and test critical components of an accelerator system for tritium production. At that time, DOE announced that the final decision would be made by the Secretary of Energy at the end of 1998.

N /A

1999-03-12T23:59:59.000Z

204

VP 100: Producing Electric Truck Vehicles with a Little Something Extra |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Producing Electric Truck Vehicles with a Little Something VP 100: Producing Electric Truck Vehicles with a Little Something Extra VP 100: Producing Electric Truck Vehicles with a Little Something Extra August 6, 2010 - 10:31am Addthis VP 100: Producing Electric Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects That Are Changing America. Smith plans to hire at least 50 employees by the end of the year. Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) - is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used. In Kansas City, Mo., an 80-year old company is on

205

Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0  

SciTech Connect

End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

1994-05-01T23:59:59.000Z

206

EIS-0288-S1: Production of Tritium in a Commercial Light Water Reactor (CLWR) Tritium Readiness Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This Supplemental EIS updates the environmental analyses in DOEs 1999 EIS for the Production of Tritium in a Commercial Light Water Reactor (CLWR EIS). The CLWR EIS addressed the production of tritium in Tennessee Valley Authority reactors in Tennessee using tritium-producing burnable absorber rods.

207

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

208

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

type, such as wasted light hours and energy costs. However,percent of wasted light hours. Figure 3. Energy Savings for

Williams, Alison

2013-01-01T23:59:59.000Z

209

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

210

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

211

Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine  

DOE Green Energy (OSTI)

This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixture enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.

Gardiner, D.; Mallory, R.; Todesco, M. [Nexum Research Corp., Kingston, Ontario (Canada). Thermotech Engineering Div.

1997-09-01T23:59:59.000Z

212

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

Technologies Program: hotel guest room energy controls. Sanhotel and institutional bathroom lighting. [CEC] California Energy

Williams, Alison

2012-01-01T23:59:59.000Z

213

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

214

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

215

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

respect to exiting daylighting systems. Limiting peak demandrespect to existing daylighting systems, by specificallyin the tariff. A commercial daylighting system is assumed to

Agogino, Alice M.

2005-01-01T23:59:59.000Z

216

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

217

Commercialization of gallium nitride nanorod arrays on silicon for solid-state lighting  

E-Print Network (OSTI)

One important component in energy usage is lighting, which is currently dominated by incandescent and fluorescent lamps. However, due to potentially higher efficiencies and thus higher energy savings, solid-state lighting ...

Wee, Qixun

2008-01-01T23:59:59.000Z

218

INTERACTIONS BETWEEN LIGHTING AND SPACE CONDITIONING ENERGY USE IN U.S. COMMERCIAL  

E-Print Network (OSTI)

.S. COMMERCIAL BUILDINGS Osman Sezgen and Jonathan G. Koomey Energy Analysis Department Environmental Energy computer simulations using the DOE-2.1E building energy analysis program. Twelve building types of two together with market information on the saturation of the different HVAC equipment in the commercial

219

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

220

Vehicle Technologies Office: Fact #50: December 22, 1997 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: December 22, 1997 Light Trucks Enjoy a Substantial Regulatory Advantage Over Cars: A Comparison of Regulations for Cars and Light Trucks to someone by E-mail Share Vehicle...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Fact #714: February 13, 2012 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

4: February 13, 2012 Light Truck Sales on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 714: February 13, 2012 Light Truck Sales on the Rise on Facebook...

222

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

223

Energy Department, Volvo Partnership Builds More Efficient Trucks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the United States. Volvo Truck Corporation is one of the leading heavy truck and engine manufacturers in the world. Volvo Trucks manufactures a line of Class 8 trucks, and is...

224

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

225

The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings  

SciTech Connect

The paper presents results from pilot studies of new 'workstation-specific' luminaires that are designed to provide highly, efficient, customized lighting for open-office cubicles. Workstation specific luminaires have the following characteristics: (1) they provide separate, dimming control of the cubicle's 'ambient' and 'task' lighting components, (2) occupancy sensors and control photosensors are integrated into the fixture's design and operation, (3) luminaires can be networked using physical cabling, microcontrollers and a PC running control software. The energy savings, demand response capabilities and quality of light from the two WS luminaires were evaluated and compared to the performance of a static, low-ambient lighting system that is uncontrolled. Initial results from weeks of operation provide strong indication that WS luminaires can largely eliminate the unnecessary lighting of unoccupied cubicles while providing IESNA-required light levels when the cubicles are occupied. Because each cubicle's lighting is under occupant sensor control, the WS luminaires can capitalize on the fact cubicles are often unoccupied during normal working hours and reduce their energy use accordingly.

Rubinstein, Francis; Bolotov, Dmitriy; Levi, Mark; Powell, Kevin; Schwartz, Peter

2008-08-17T23:59:59.000Z

226

Truck Thermoacoustic Generator and Chiller  

DOE Green Energy (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

227

Lighting in Commercial Buildings (1986 Data)> -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Executive Summary > Publication and Tables Executive Summary > Publication and Tables Publication and Tables Figure ES1. Ranges of Potential Savings, Maintaining Current Lighting Levels Figure on Ranges of Potential Savings, Maintaining Current Lighting Levels Note: Each shaded band indicates the range of savings estimates obtained, under varying assumptions for the effectiveness of the conservation features considered for each case. The potential savings are shown for each case as a percent of the base case lighting energy estimate (321 billion kilowatthours). Additional savings are possible if lighting levels are reduced. Sources: Adapted from Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A, "Building Questionnaire" of the 1986 Nonresidential Buildings Energy Consumption Survey; and sources described in Appendices B and C.

228

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy's Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE's Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

229

Analysis of federal policy options for improving US lighting energy efficiency: Commercial and residential buildings  

SciTech Connect

The US Department of Energy (DOE) has recognized the opportunity to achieve energy, economic, and environmental benefits by promoting energy-efficient lighting through federal policies, including lighting standards, financial incentives, and information programs. To assist in this process, the Office of Conservation and Renewable Energy`s Office of Codes and Standards invited Lawrence Berkeley Laboratory to assess prospective national impacts for a variety of policy options. Some progress has already been made in developing lighting policies at both the federal and state levels. The US DOE`s Office of Building Technologies has evaluated lighting efficiency incentives as part of its analysis for the National Energy Strategy. Fluorescent and incandescent lamp standards are included in the national Energy Policy Act of 1992 (P.L. 102-486, October 24, 1992). A few states have analyzed or implemented lamp and luminaire standards. Many policy-related issues merit further investigation. For example, there is considerable debate over issues such as mandatory or voluntary standards versus component labeling and other education-oriented strategies. Several different technologies are involved that interact with each other-lamps (incandescent, compact fluorescent, and HID), ballasts (for fluorescent and HID lamps), and fixtures with reflectors and lenses. Control systems and operation patterns must also be considered (timers, automated dimming, or occupancy sensors). Lighting applications are diverse, ranging from offices, restaurants, hallways, hospital operating rooms, to exterior lights. Lighting energy use influences heating and cooling requirements in buildings. Successful lighting system design must also address interactions between architectural design elements and daylighting availability. Proper system installation and ongoing operation and maintenance are crucial. The economic aspects of the preceding points must also be considered for policy making.

Atkinson, B.A.; McMahon, J.E.; Mills, E.; Chan, P.; Chan, T.W.; Eto, J.H.; Jennings, J.D.; Koomey, J.G.; Lo, K.W.; Lecar, M.; Price, L.; Rubinstein, F.; Sezgen, O.; Wenzel, T.

1992-12-01T23:59:59.000Z

230

Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements  

SciTech Connect

The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

Richman, Eric E.; Belzer, David B.; Winiarski, David W.

2005-09-15T23:59:59.000Z

231

A comprehensive approach to integrated envelope and lighting systems for new commercial buildings  

SciTech Connect

The authors define a comprehensive approach to integrated envelope and lighting systems design as one that balances energy efficiency with an equal regard to the resultant environmental quality. By integrating envelope components (glazing, shading, and daylighting), lighting components (fixtures and controls) and building HVAC/energy management control systems, they create building systems that have the potential to achieve significant decreases in electricity consumption and peak demand while satisfying occupant physiological and psychological concerns. This paper presents results on the development, implementation, and demonstration of two specific integrated envelope and lighting systems: (1) a system emphasizing dynamic envelope components and responsive electric lighting systems, that offer the potential to achieve energy efficiency goals and a near optimum comfort environment throughout the year by adapting to meteorological conditions and occupant preferences in real time, and (2) perimeter daylighting systems that increase the depth of daylight penetration from sidelight windows and improves visual comfort with the use of a small inlet aperture. The energy performance of the systems was estimated using the DOE-2 building energy simulation program. Field tests with reduced scale models were conducted to determine daylighting and thermal performance in real time under actual weather conditions. Demonstrations of these integrated systems are being planned or are in progress in collaboration with utility programs to resolve real-world implementation issues under complex site, building, and cost constraints. Results indicate that integrated systems offer solutions that not only achieve significant peak demand reductions but also realize consistent energy savings with added occupant comfort and satisfaction.

Lee, E.S.; Selkowitz, S.E.; Rubinstein, F.M.; Klems, J.H.; Beltran, L.O.; DiBartolomeo, D.L. [Lawrence Berkeley Lab., CA (United States). Building Technologies Program

1994-05-01T23:59:59.000Z

232

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

233

Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 5, 8: September 5, 2005 Proposed Light Truck CAFE Standards to someone by E-mail Share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Facebook Tweet about Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Twitter Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Google Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Delicious Rank Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Digg Find More places to share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on AddThis.com...

234

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

235

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

236

DOE SuperTruck Program Benefits Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in the project's technical scope development, information collection, and analysis. He also served as the key technical contact point for the SuperTruck development...

237

Reducing Bodybuilder Waste on SCANIA Trucks.  

E-Print Network (OSTI)

?? In a world of fierce competition that is the reality for heavy truck manufacturers, it is important to optimize every step of production to (more)

Dahlberg, Carl

2011-01-01T23:59:59.000Z

238

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

Konopacki, S.; Akbari, H.; Gartland, L. [and others

1997-05-01T23:59:59.000Z

239

EIS-0288; Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

iii iii COVER SHEET Responsible Agency: United States Department of Energy Cooperating Agency: Tennessee Valley Authority Title: Final Environmental Impact Statement for the Production of Tritium in a Commercial Light Water Reactor Contact: For additional information on this Final Environmental Impact Statement, write or call: Jay Rose Office of Defense Programs U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Attention: CLWR EIS Telephone: (202) 586-5484 For copies of the CLWR Final EIS call: 1-800-332-0801 | For general information on the DOE National Environmental Policy Act (NEPA) process, write or call: Carol M. Borgstrom, Director Office of NEPA Policy and Assistance (EH-42) U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585

240

Metal-fueled HWR (heavy water reactors) severe accident issues: Differences and similarities to commercial LWRs (light water reactors)  

DOE Green Energy (OSTI)

Differences and similarities in severe accident progression and phenomena between commercial Light Water Reactors (LWR) and metal-fueled isotopic production Heavy Water Reactors (HWR) are described. It is very important to distinguish between accident progression in the two systems because each reactor type behaves in a unique manner to a fuel melting accident. Some of the lessons learned as a result of the extensive commercial severe accident research are not applicable to metal-fueled heavy water reactors. A direct application of severe accident phenomena developed from oxide-fueled LWRs to metal-fueled HWRs may lead to large errors or substantial uncertainties. In general, the application of severe accident LWR concepts to HWRs should be done with the intent to define the relevant issues, define differences, and determine areas of overlap. This paper describes the relevant differences between LWR and metal-fueled HWR severe accident phenomena. Also included in the paper is a description of the phenomena that govern the source term in HWRs, the areas where research is needed to resolve major uncertainties, and areas in which LWR technology can be directly applied with few modifications.

Ellison, P.G.; Hyder, M.L.; Monson, P.R. (Westinghouse Savannah River Co., Aiken, SC (USA)); Coryell, E.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

242

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

243

Chapter 3, Commercial and Industrial Lighting Controls Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Commercial and 3: Commercial and Industrial Lighting Controls Evaluation Protocol Stephen Carlson, DNV KEMA Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 3 - 1 Chapter 3 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 3.1 Algorithms ....................................................................................................................... 5

244

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. BAE Systems plc Caterpillar Inc. Cummins Inc. Daimler Trucks North America LLC Detroit Diesel Corporation Eaton Honeywell International Mack Trucks Meritor, Inc. Navistar,...

245

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

246

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

247

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

248

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

249

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

250

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

251

Developing and evaluating pit truck safety devices  

SciTech Connect

Describes an electromagnetic system whereby smaller vehicles transmit a signal to haulage truck operators, to alert them to their presence. Driver visibility is restricted in large, rear-dump haulage trucks used in open-pit mining. Analysis shows the need for an alarm in the truck, to warn of vehicles in blind spots. As open-pit haulage truck size has increased, so has the size of the blind areas. Parameters for a prototype system included high- and low-frequency electromagnetic noise rejection, system sensitivity, ease of distance calibration, box size, mounting ease, power needs, and an internal system to continuously self-test all electronic fault-detection circuits. The prototype haulage truck cabmounted receiver had 2 channels. The system has been field-tested at the Twin Buttes open-pit mine near Tucson, AZ.

Yates, W.C.

1982-07-01T23:59:59.000Z

252

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

253

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

254

The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project  

SciTech Connect

The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

255

Truck Stop Electrification: A Cost-Effective Solution to Reducing Truck Idling  

Science Conference Proceedings (OSTI)

Truck stop electrification (TSE) allows truckers to "plug in" their vehicles while stopped, in order to operate air conditioning, heating, and appliances without any engine idling. Truck stop electrification technologies fall into two major categories: "off-board" and "on-board" systems. Off-board systems are fixed, stand-alone units installed at the truck parking space. These systems provide heating, ventilating, and air conditioning (HVAC), and may also include AC electrical power and entertainment, co...

2004-12-27T23:59:59.000Z

256

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

257

TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

16 TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS S. S. Stevens, Principal Investigator S. M. Chin K. A. Hake H. L. Hwang J. P. Rollow L. F. Truett July 2001 Prepared for the...

258

Water by truck in Mexico City  

E-Print Network (OSTI)

Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

Pike, Jill (Jill Susan)

2005-01-01T23:59:59.000Z

259

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

260

Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 31, 7: January 31, 2005 Growth in Light Truck Registrations to someone by E-mail Share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Facebook Tweet about Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Twitter Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Google Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Delicious Rank Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Digg Find More places to share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on AddThis.com...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report  

DOE Green Energy (OSTI)

In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

Gambrell, KP

2002-01-11T23:59:59.000Z

262

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses.Types of lighting include:

263

Otter Tail Power Company - Commercial & Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Refrigeration...

264

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

265

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

266

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

267

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

268

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

269

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

270

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

271

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Savings Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting...

272

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

273

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

274

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

275

Fire Department Gets New Trucks, Saves Money | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old...

276

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

277

Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop  

NLE Websites -- All DOE Office Websites (Extended Search)

8: June 21, 2010 8: June 21, 2010 Truck Stop Electrification Sites to someone by E-mail Share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Facebook Tweet about Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Twitter Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Google Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Delicious Rank Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Digg Find More places to share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on AddThis.com... Fact #628: June 21, 2010 Truck Stop Electrification Sites

278

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

279

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

280

Curbside eating : mobilizing food trucks to activate public space  

E-Print Network (OSTI)

In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

Sheppard, Alison Marguerite

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

282

Vehicle Technologies Office: Fact #787: July 8, 2013 Truck Stop...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption to someone by E-mail Share Vehicle Technologies Office: Fact 787: July 8, 2013 Truck Stop Electrification...

283

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

284

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network (OSTI)

railandtruckfreighttransportation. TransportationResearchrail?truckfreighttransportliterature. TransportationResearch

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

2009-01-01T23:59:59.000Z

285

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

286

Truck Driver Scheduling in the European Union  

Science Conference Proceedings (OSTI)

Since April 2007 working hours of truck drivers in the European Union are controlled by regulation (EC) No. 561/2006. According to the new regulation, road transport undertakings must organise the work of drivers in a way that drivers are able to comply ... Keywords: drivers' working hours, regulation (EC) No. 561/2006, vehicle scheduling

Asvin Goel

2010-11-01T23:59:59.000Z

287

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

288

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

289

Commercial Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Performance Commercial Performance Objectives: To review the market potential for improvements in commercial building glazings, quantify the energy savings potentials, explore potential design solutions, and develop guidelines and tools for building designers so that systems are specified and used in an optimal manner. A special emphasis is placed on the daylighting performance of glazings in commercial buildings since lighting is the single largest energy end use and daylighting can improve both visual performance and the quality of the indoor space as well as saving energy. Technical Approach: This project has two major complementary elements. The first is the exploration and assessment of glazing performance in commercial buildings leading to development of design strategies that reduce unnecessary energy use. The final step is creating design guides and tools that make this design knowledge accessible to practitioners, typically carried out in partnership with others. Although the emphasis is energy impacts, e.g. annual energy use, the performance issues addressed in the guides and tools include all that impact the final glazing selection process, e.g. appearance, glare. The second element is an exploration of daylighting strategies for commercial buildings since lighting energy use is the major energy end use in most buildings. This work develops and evaluates new daylighting devices and designs, assesses performance in commercial buildings, and demonstrates system performance using test cells, test rooms and case study buildings. All energy-related aspects of the design solutions, as well as other critical performance issues, are addressed in this work. Results of this work are integrated into the guides and tools described above. Much of this work has been co-supported by utilities and has been carried on in conjunction with participants in an International Energy Agency Daylighting Task.

290

Long Haul Truck Idling at Public Facilities in Key States  

Science Conference Proceedings (OSTI)

Idling the main truck engine to provide for the relatively small power requirements needed during rest stops is inefficient and highly polluting. An alternative is to supply power from the grid or some form of distributed generation, and a national effort is underway to electrify truck stops. Not all idling occurs at truck stops, however. The purpose of this project was to quantify the major truck idling that takes place at public facilities other than truck stops. The study focused on public rest areas,...

2008-03-31T23:59:59.000Z

291

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

292

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

293

Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas  

SciTech Connect

Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

1997-05-01T23:59:59.000Z

294

2014 Best and Worst MPG Trucks, Vans and SUVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

295

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

296

Radionuclide characterization at US commercial light-water reactors for decommissioning assessment: Distributions, inventories, and waste disposal considerations  

SciTech Connect

A continuing research program, conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, characterizing radionuclide concentrations associated with US light-water reactors has been conducted for more than a decade. The research initially focused upon sampling and analytical measurements for the purpose of establishing radionuclide distributions and inventories for decommissioning assessment, since very little empirical data existed. The initial phase of the research program examined radionuclide concentrations and distributions external to the reactor vessel at seven US light water reactors. Later stages of the research program have examined the radionuclide distributions in the highly radioactive reactor internals and fuel assembly. Most recently, the research program is determining radionuclide concentrations in these highly radioactive components and comparing empirical results with those derived from the several nonempirical methodologies employed to estimate radionuclide inventories for disposal classification. The results of the research program to date are summarized, and their implications and significance for the decommissioning process are noted.

Abel, K.H.; Robertson, D.E.; Thomas, C.W.

1992-09-01T23:59:59.000Z

297

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

298

Boondocks Truck Stop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Boondocks Truck Stop Wind Farm Boondocks Truck Stop Wind Farm Jump to: navigation, search Name Boondocks Truck Stop Wind Farm Facility Boondocks Truck Stop Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703°, -93.5624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4703,"lon":-93.5624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Electric Boosting System for Light Truck/SUV Application  

DOE Green Energy (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

300

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Role of Batteries in Auxiliary Power for Heavy Trucks  

DOE Green Energy (OSTI)

The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

D. Crouch

2001-12-12T23:59:59.000Z

302

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

303

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of advanced, next generation heavy hybrid truck and bus propulsion technologies and hybrid vehicle systems. This two phase technology development program is intended to...

304

Demonstration Project 111 ITS/CVO Technology Truck Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

1277 Demonstration Project 111 ITSCVO Technology Truck Final Project Report December 2001 Prepared by G. J. Capps, ORNL Project Manager K. P. Gambrell, Technical Associate K. L....

305

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

Figure 9: Lighting Energy Usage for Commercial Buildinghas analyzed lighting energy usage across different buildings La Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

306

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

307

Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)  

E-Print Network (OSTI)

is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies with standard dual tires. The trailers are of various manufacturers and are 53 foot dry-box vans. Five-trailer (Truck#1) had its engine running while the vehicle was not moving. Over a period of one year

308

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

309

Muscatine Power and Water - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Amount Commercial Lighting: Varies widely CFL Bulbs: 50% off purchase price LED Exit Signs: 5 Strip Lighting: 2ft LED Refrierated Case Lighting: 25door Light...

310

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

311

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network (OSTI)

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

312

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

313

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

314

Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report  

SciTech Connect

The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

Not Available

1991-04-01T23:59:59.000Z

315

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

316

Hybrid Control of a Truck and Trailer Vehicle  

Science Conference Proceedings (OSTI)

A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed of a truck and a two-axle trailer. When reversing, the truck and trailer can be modelled as an unstable nonlinear system ...

Claudio Altafini; Alberto Speranzon; Karl Henrik Johansson

2002-03-01T23:59:59.000Z

317

Studies Of The Adoption And Use Of Location And Communication Technologies By The Trucking Industry  

E-Print Network (OSTI)

of Location and Communication Technologies by the TruckingOF LOCATION AND COMMUNICATION TECHNOLOGIES BY THE TRUCKINGpositioning and communication technologies by the trucking

Scapinakis, Dimitris A.; Garrison, William Louis

1991-01-01T23:59:59.000Z

318

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

319

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

320

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Duke Energy - Small Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Combined maximum of 50,000facilityyear...

322

Baltimore Gas and Electric Company (Electric) - Commercial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 1,000,000corporate tax IDyear Commercial...

323

Holy Cross Energy - WE CARE Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Colorado) Eligibility Commercial Savings For Appliances & Electronics Commercial Lighting Lighting Other Maximum Rebate 5,000 per electric account Program Information...

324

Solar Energy for Charging Fork Truck Batteries  

E-Print Network (OSTI)

The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence exists that new technological advances and mass-production techniques have lowered the costs considerably. The U.S. Department of Energy has indicated that by the year 1990 the price per peak watt would be less than fifty U.S. cents. This paper keeps this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial material handling. Two evaluation methods were used; namely, the Payback Method, and the Modified Energy Inflation Rate Method. Neither of the methods proved to be economically favorable, but some interesting results were obtained.

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

325

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

326

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

327

IID Energy - Commercial Rebate Program (Commercial Check Me) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IID Energy - Commercial Rebate Program (Commercial Check Me) IID Energy - Commercial Rebate Program (Commercial Check Me) IID Energy - Commercial Rebate Program (Commercial Check Me) < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Construction Commercial Weatherization Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate General: $100,000 per customer per year; may not exceed 50% of the total installed cost of measures New Construction (Whole Building Approach - Owner): $150,000 per year New Construction (Whole Building Approach - Design Team): $30,000 per year New Construction (Systems Approach): $50,000 per year Program Info State California Program Type Utility Rebate Program Rebate Amount Programmable Thermostats: $50/unit

328

OG&E - Commercial Energy Efficiency Rebate Programs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Information Oklahoma Program Type Utility Rebate Program Rebate...

329

Commercial and Industrial Prescriptive Rebates | Open Energy...  

Open Energy Info (EERE)

Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Refrigerators, Roofs, LED Exit Signs, Commercial Refrigeration Equipment, Food Service Equipment, Room Air...

330

Coldwater Board of Public Utilities - Commercial & Industrial...  

Open Energy Info (EERE)

CustomOthers pending approval, Lighting, Lighting ControlsSensors, Motor VFDs, Motors, LED Exit Signs, Vending Machine Controls, Commercial Refrigeration Equipment, Food Service...

331

Dakota Electric Association - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate 100,000 Building Measures: 50%...

332

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

333

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

334

LNG Imports by Truck into the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck into the U.S. Form LNG Imports by Truck into the U.S. Form Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF Version of LNG Imports by Truck into the U.S....

335

LNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF Version of LNG Exports by Truck out of the...

336

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

337

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

338

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

339

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

340

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report R. Barnitt Technical Report NRELTP-5400-48896 January 2011 NREL is a national laboratory of the...

342

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

343

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.em.doe.govemrecovery April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill LOS ALAMOS, N.M. - A Los Alamos National Laboratory (LANL)...

344

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

345

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

346

Commercial Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Performance Objectives: To review the market potential for improvements in commercial building glazings, quantify the energy savings potentials, explore potential design...

347

Industrial Lift Truck Battery Charger Demand Response Impact Study  

Science Conference Proceedings (OSTI)

Demand response and load shifting are two common energy management strategies used by lift truck fleet operators to mitigate on-peak energy consumption, reduce electricity costs, and react to electric system emergency curtailment requests. When customers elect to participate in demand response programs, they are contacted and asked to reduce load during power shortage situations. Alternatively, customers may implement longer-term economic load shifting strategies by reducing power to their lift truck bat...

2008-04-03T23:59:59.000Z

348

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

349

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

350

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate...  

Open Energy Info (EERE)

DuctAir sealing, Lighting, Lighting ControlsSensors, Motor VFDs, Motors, Roofs, LED Exit Signs, Commercial Refrigeration Equipment, Geothermal Heat Pumps, LED Lighting,...

351

Energy Optimization (Electric) - Commercial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program Energy Optimization (Electric) - Commercial Efficiency Program < Back Eligibility Commercial Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate General: See program web site Custom: 50% of project cost Program Info Expiration Date 12/31/2013 State Michigan Program Type Utility Rebate Program Rebate Amount Custom: $0.06/kWh/yr saved CFL Bulbs: $1 - $5 CFL Fixtures: $22/fixture High Performance T8 Lighting Retrofit: $4-$20/fixture retrofit

352

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

353

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

354

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

355

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

356

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

357

Commercial | Open Energy Information  

Open Energy Info (EERE)

Commercial Commercial Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends The AEO2011 Reference case shows minimal change in commercial energy use per capita between 2009 and 2035 (Figure 62). While growth in commercial floorspace (1.2 percent per year) is faster than growth in population (0.9 percent per year), energy use per capita remains relatively steady due to efficiency improvements in equipment and building shells. Efficiency standards and the addition of more efficient technologies account for a large share of the improvement in the efficiency of end-use services, notably in space cooling, refrigeration, and lighting.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6

358

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

359

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

360

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Volvo Truck Headquarters in North Carolina to Host Event With Acting Under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volvo Truck Headquarters in North Carolina to Host Event With Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro, North Carolina. Through the Department of Energy's Super Truck project, the Volvo Group, which includes Mack Trucks and Volvo Trucks, received $19 million in federal funding to improve the freight-moving efficiency of heavy-duty trucks, an example of the Obama Administration's strong commitment to reviving the U.S. auto industry through investments in more efficient

362

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

363

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

364

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

365

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

366

Burlington Electric Department - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burlington Electric Department - Commercial Energy Efficiency Burlington Electric Department - Commercial Energy Efficiency Rebate Program Burlington Electric Department - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Manufacturing Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Commercial Lighting Lighting Maximum Rebate Rebates exceeding $5,000 require pre-approval by BED prior to purchase Buildings exceeding 10,000 square feet must consult BED regarding rebates prior to purchase Program Info State Vermont Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website HVAC Air Conditioners/Heat Pumps: $50 - $100/ton Integrated Dual Enthalpy Economizer Controls: $250/controlled unit Ventilation Fans: $35 - $60

367

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

368

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

369

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

370

Columbia Water & Light- HVAC and Lighting Efficiency Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Columbia Water & Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain...

371

City of Palo Alto Utilities - Commercial and Non-Profit Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Other Ventilation Heat Pumps Commercial Lighting...

372

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC FOR AN ADVANCE WAIVER OF DOMESTIC AND INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- FC26-05NT42417 W(A)-05-042, CH-1324 The Petitioner, Mack Trucks, Inc. (Mack), was awarded a cooperative agreement for the performance of work entitled, "Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement is to demonstrate a minimum of 15% fuel economy improvement with emissions meeting the 2010 EPA regulation. Mack Tracks will be establishing the base engine, developing engine management system for air-power-assist engine and ensuring the conduction of steady-state engine tests. Mack will also evaluate the commercial viability of variable valve

373

Heavy-Duty Truck Idle Reduction Technology Demonstations - 2005 Status Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2006 June 30, 2006 Heavy-Duty Truck Idle Reduction Technology Demonstrations 2005 Status Report Fred Wagner Energetics Incorporated NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

374

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

375

CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)  

SciTech Connect

This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

Not Available

2010-02-01T23:59:59.000Z

376

Massachusetts Municipal Commercial Industrial Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

377

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2003 Data] Figure 9: Lighting Energy Usage for Commercialhas analyzed lighting energy usage across different buildings La Figure 9: Lighting Energy Usage for Commercial Building

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

378

Satellite Detec*on of Truck & Rail NO2  

E-Print Network (OSTI)

Satellite Detec*on of Truck & Rail NO2 Erica Bickford Tracey Holloway Environment (SAGE) University of Wisconsin Madison #12;Freight and Air Quality 2 · Transporta*on is the largest source of NOx emissions. · Freight accounts for 33

Jacob, Daniel J.

379

City of Palo Alto Utilities - Commercial and Non-Profit Efficiency...  

Open Energy Info (EERE)

Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Refrigerators, Siding, Steam-system upgrades, Water Heaters, Windows, Commercial Cooking Equipment, Commercial...

380

Improved performance of railcar/rail truck interface components  

E-Print Network (OSTI)

The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center bowls/center plates. The insert geometry addresses concerns about maintaining favorable pressure distribution on existing components, minimizing overall height increase to accommodate existing infrastructure, and retaining railcar stability. The stability of the railcar upon the design inserts has been ensured when the instantaneous center of rotation of the railcar body is above the railcar center of gravity. The damping ratio provided by the frictional moment within center bowl is 240 and eliminates the possibility of dynamic amplification. Using a 90 inch radius of curvature ensures stability and requires a 0.5 inch diameter reduction of the existing center plate for a gap of 1/16 inch. The increase in railcar height for the specific design is 0.71 inches which can be absorbed by either grinding of the center plate or new manufacturing dimensions. The design is feasible for small travel values corresponding to small vertical gaps at the side bearings. In addition to geometry alterations, the bearing surfaces are coated with a protective metallic layer. The literature suggests that optimum friction coefficients between bearing elements in the center bowl/center plate interface may reduce turning moments of the truck, wear of truck components, and detrimental dynamic effects such as hunting. Axial-torsional tests determined friction coefficient estimates and wear properties for a matrix of various metallic protective coatings and steel. Tungsten carbide-cobalt-chrome has a favorable coefficient of 0.3 under standard center bowl/center plate contact conditions.

Story, Brett Alan

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

382

Entergy New Orleans - Small Commercial and Industrial Solutions Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Small Commercial and Industrial Solutions Entergy New Orleans - Small Commercial and Industrial Solutions Program Entergy New Orleans - Small Commercial and Industrial Solutions Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate $50,000 or full cost of upgrade Program Info Funding Source New Orleans City Council State Louisiana Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Small Commercial Solutions Efficiency Improvements: $0.125 per kWh saved Large Commercial and Industrial Solutions Lighting Improvements: $0.10 per

383

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

384

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

385

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

386

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

387

Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 2, 2012 1: April 2, 2012 Heavy Trucks Move Freight Efficiently to someone by E-mail Share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Facebook Tweet about Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Twitter Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Google Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Delicious Rank Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Digg Find More places to share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on AddThis.com...

388

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

389

Columbia Water and Light - HVAC and Lighting Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates Columbia Water and Light - HVAC and Lighting Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: 50% of invoiced cost up to $22,500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount HVAC Replacements: $570 - $3,770 Lighting: $300/kW reduction or half of project cost Provider Columbia Water and Light Columbia Water and Light (CWL) offers rebates to its commercial and industrial customers for the purchase of high efficiency HVAC installations and efficient lighting. Incentives for certain measures are based upon the

390

Baltimore Gas & Electric Company (Electric) - Commercial Energy...  

Open Energy Info (EERE)

Vending Machine Controls, Commercial Refrigeration Equipment, Food Service Equipment, LED Lighting, Reach-In Door Closer, ECM Evaporator Fan MotorController, Refrigerated...

391

Kenergy- Commercial and Industrial Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

392

Specifying Fenestration Products for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

brochure which explains how this relatively new and low-cost technology can reduce cooling loads in commercial buildings without any loss in visible light or change in...

393

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

394

Barron Electric Cooperative - Commercial, Industrial, and Agricultural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting: 15fixture LED Exit Sign: 5sign Occupancy Sensors: 5switch Commercial Air Conditioning Units: 40ton Plate CoolersPre-Coolers: 500unit Dairy Refrigeration...

395

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

396

Commercialization and Licensing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Exclusive Patent License for ORNL Graphite Foam Technology January 28, 2010 - Light-emitting diode (LED) lamps are increasingly in demand in industrial and commercial...

397

Redding Electric - Residential and Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential and Commercial Energy Efficiency Residential and Commercial Energy Efficiency Rebate Program Redding Electric - Residential and Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate Windows: $250 - Residential; $750 (Commercial) Insulation: up to $500 - Residential; pre-approval required - Commercial Water Heater Blanket: $20 per unit Radiant/Thermal Barrier Material: $500 - Residential; pre-approval required - Commercial Duct Repair/Replacement: $500

398

Vectren Energy Delivery of Indiana (Electric) - Commercial New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate CustomHVAC Systems: 100,000 or 50% of the total project cost Incentive cannot buy down project...

399

Delmarva Power - Commercial and Industrial Energy Savings Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom: 50% of project cost All Incentives: 250,000account...

400

Fort Collins Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Maximum Rebate Building Tune Up: 50,000 Program...

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Roseville Electric - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Program Commercial Energy Efficiency Rebate Program Roseville Electric - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Program Info Expiration Date 6/30/2013 State California Program Type Utility Rebate Program Rebate Amount Unitary AC/Heat Pump: $120/ton or $500/ton Package Terminal AC/Heat Pumps: $125/unit Variable Frequency Drive: $120/hp Variable Speed Motor: $75/hp Window Film: $4/sq ft Shade Tree: $30/tree Desktop Computer Network Controller: $10/computer Cold Cathode Lamps: $4/lamp Ceramic Metal Halide: $20/lamp

402

Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

2011-01-01T23:59:59.000Z

403

Connexus Energy - Commercial Energy Efficiency Rebate Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connexus Energy - Commercial Energy Efficiency Rebate Programs Connexus Energy - Commercial Energy Efficiency Rebate Programs Connexus Energy - Commercial Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate The maximum rebate amount shall be the lesser of 50% of the project cost or $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Custom: Varies Lighting: Varies LED Exit Signs: $10 LED Traffic Signals: $12.75 - $55/unit Lighting Controls: $7 - $40

404

Benton PUD - Commercial and Agricultural Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Agricultural Energy Efficiency Rebate Commercial and Agricultural Energy Efficiency Rebate Programs Benton PUD - Commercial and Agricultural Energy Efficiency Rebate Programs < Back Eligibility Agricultural Commercial Savings Category Other Manufacturing Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Custom Projects: Varies widely, no predetermined amount Agriculture: Varies widely, no predetermined amount Commercial Lighting: Not specified Provider Benton PUD Benton PUD offers a variety of incentives to non-residential customers for energy efficiency improvements. Projects are available for commercial customers interested in energy efficient lighting and custom projects that improve efficiency or process related systems such as compressed air,

405

Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs Puget Sound Energy - Commercial Energy Efficient Equipment Rebate Programs < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount '''Lighting''' Small Business Lighting: $3 - $190 CFLs: $3 - $12 LEDs: $10 - $25 Ceramic Metal Halide Lamps: $25 LED Exit Signs: $50 LED Traffic Signals: $5 - $20 Lighting Controls: $40 - $80 T8 Lamp Upgrade: $1 per lamp '''HVAC''' HVAC Installations (New Construction): $30/ton HVAC Replacements: $100 - $550

406

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

407

Idaho Falls Power - Commercial Energy Conservation Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program Idaho Falls Power - Commercial Energy Conservation Loan Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate General: $50,000 Program Info State Idaho Program Type Utility Loan Program Rebate Amount General: up to $50,000 Provider Idaho Falls Power Idaho Falls Power is offering a zero interest loan program to qualifying commercial customers to install efficient lighting and other energy

408

Upgrades for truck transportation of SNM in the Russian Federation  

Science Conference Proceedings (OSTI)

The goal of this project is the rapid reduction of risk to truck transportation of SNM in Russia. Enhanced protection is being accomplished by cooperation between the US Department of Energy, MINATOM of Russia, the Russian Ministry of Defense, and various Russian Institutes. This program provides an integrated program of specialized trucks that are equipped with hardened overpack (SNM vault) containers, alarm and communications systems, and armored cabs. Armored escort vehicles are also provided to increase the survivability of the guards escorting convoys. Only indigenous Russian equipment, modified and/or manufactured by Designing Bureau for Motor Vehicle Transport Equipment (KBATO), is provided under this program. The US will not provide assistance in the truck transportation arena without a commitment from the Russian facility to provide heavily armed escorts for SNM movement. Each site conducts a detailed transportation needs assessment study that is used as the basis for prioritizing assistance. The Siberian Chemical Combine (Tomsk-7) was the initial site of cooperation. The designs used at Tomsk-7 are serving as the baseline for all future vehicles modified under this program. In FY98, many vehicles systems have been ordered for various institutes. Many additional systems will be ordered in FY99.

Gardner, B.H. [Sandia National Labs., Albuquerque, NM (United States); Kornilovich, E. [Construction Bureau for Motor Vehicle Transport Equipment, Mytischy (Russian Federation)

1998-08-01T23:59:59.000Z

409

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performe

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

410

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

411

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Open Energy Info (EERE)

Programmable Thermostats, Commercial Refrigeration Equipment, Geothermal Heat Pumps, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

412

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

413

THE COMPETITIVENESS OF COMMERCIAL ELECTRIC VEHICLES IN THE LTL DELIVERY INDUSTRY: ????????????  

E-Print Network (OSTI)

We have developed a detailed model of the logistics performance, energy use, and costs of electric vehicles and comparable diesel internal-combustion engine vehicles. This effort is a novel study of commercial electric vehicles because the implications of routing constraints, route parameters, and electric truck characteristics are analyzed integrating three models: (a) a vehicle ownership cost minimization model, (b) a model to calculate the power consumption and maximum potential range of an electric or conventional truck as a function of average velocity and weight, and (c) a continuous approximation model to estimate fleet size, distance traveled, and ensure that practical routing constraints are satisfied. The model is applied to the study the competitiveness of three vehicles of similar weight and size in the USA market: a widely available conventional diesel truck and two electric trucks. Scenarios and breakeven points are calculated and analyzed for a large number of parameter combinations. The results provide new insights regarding the truck characteristics and logistical constraints that determine whether a conventional or electrical truck is more cost effective.

Brian A. Davis; Miguel A. Figliozzi

2012-01-01T23:59:59.000Z

414

Lighting Control Systems  

Science Conference Proceedings (OSTI)

The demand for lighting control systems in residential, commercial, and industrial facilities is on the rise with the demand for increased energy savings. With lighting accounting for almost 23% of grid load, there is significant opportunity to reduce lighting load while improving the quality of light for customers. Lighting control systems are becoming more intelligent as the need for them to interface with building control systems and demand response systems also increases. Lighting control systems use...

2009-12-17T23:59:59.000Z

415

Springfield Utility Board - Energy Smart Lighting Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Replacement: $1,500 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Incentives are based upon three programs offered by SUB: New Construction Lighting: $10 - $50/light fixture Commercial Lighting Replacement: $3 - $100 Commercial Lighting Implementation: not specified Energy Smart Design Office: $0.50 per square foot Provider Springfield Utility Board The Springfield Utility Board (SUB) works with their commercial customers

416

El Paso Electric Company - Small Business and Commercial Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business and Commercial Program Small Business and Commercial Program El Paso Electric Company - Small Business and Commercial Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Solar Buying & Making Electricity Program Info State Texas Program Type Utility Rebate Program Rebate Amount Large Commercial Solutions: $240/peak kW demand reduction Small Commercial Solutions: $400/kW demand reduction Provider El Paso Electric Company El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

417

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

418

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

419

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

420

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

422

Business Case for Fast Charging of Industrial Lift Truck Fleets: Life Cycle Cost Model  

Science Conference Proceedings (OSTI)

In industrial settings, up to three battery packs are required per electric industrial lift truck: one in use, another being charged, and a third being cooled. Many industry experts see this as a financial barrier in selling electric over internal combustion (IC) industrial lift trucks. EPRI sponsored this study to provide a thorough evaluation of the economics in support of a business case for fast charging lift truck fleets.

2000-09-18T23:59:59.000Z

423

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

in commercial buildings often waste energy and unnecessarilyin commercial buildings often waste energy and unnecessarilyof HVAC. 6.1.2. Lighting wastes energy and unnecessarily

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

424

Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1977 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Vendor: ClearEdge Power, Hillsboro, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the durability of proton exchange membrane * (PEM) fuel cell systems in residential and light commercial combined heat and power (CHP) applications in California. Optimize system performance though testing of multiple * high-temperature units through collection of field data.

425

Addendum: Tenth International Symposium on Alcohol Fuels, The road to commercialization  

DOE Green Energy (OSTI)

The Tenth International Symposium on ALCOHOL FUELS ``THE ROAD TO COMMERCIALIZATION`` was held at the Broadmoor Hotel, Colorado Springs, Colorado, USA November 7--10, 1993. Twenty-seven papers on the production of alcohol fuels, specifications, their use in automobiles, buses and trucks, emission control, and government policies were presented. Individual papers have been processed separately for entry into the data base.

Not Available

1994-05-01T23:59:59.000Z

426

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

7693 May 2010 FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report R. Barnitt National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

427

Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report  

E-Print Network (OSTI)

trucks Intermodal Rail 2.2 RELATED RESEARCH Research andrail) and the proponents of a more efficient freight system for national defense purposes. Research

Taso, H. S. Jacob; Botha, Jan L.

2003-01-01T23:59:59.000Z

428

"Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."  

DOE Green Energy (OSTI)

The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

Dever, Thomas J.

2011-11-29T23:59:59.000Z

429

Progress Energy Carolinas - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Program Energy Efficiency Program Progress Energy Carolinas - Commercial Energy Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State South Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually CFL Lamps (Retrofit Only): $1.50

430

Unitil - Commercial and Industrial Energy Efficiency Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Construction Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Maximum Rebate New Construction: 75% of incremental cost Retro-fit: 35% of installed cost Custom: 1 year payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Small Business and Multifamily: free technical assessment and % of installed cost for recommended measures Custom: 35% of cost Fluorescent Fixtures: $25 Lighting Sensors: $25-$50 LED Traffic Light: $60-$80 Motor Retrofits: $75-$3295

431

City of Lompoc Utilities - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Commercial Energy Efficiency Rebate Program City of Lompoc Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Appliances & Electronics Other Commercial Lighting Lighting Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting: Up to 30% of cost Clothes Washer: $120 Dishwasher: $50 Refrigerator Replacement Rebate: $144 Refrigerator Buy-Back Program: $35 LED Exit Signs: $15 Custom Rebate: $0.15 per watt saved Provider Utility Conservation City of Lompoc Utilities offers rebates to commercial customers for the purchase and installation of energy efficiency lighting, clothes washers, dishwashers, replaced refrigerators, new refrigerators, LED exit signs and

432

Appliances and Commercial Equipment Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Intensity Discharge Lamps High-Intensity Discharge Lamps Sign up for e-mail updates on regulations for this and other products There are currently no energy conservation standards for high-intensity discharge (HID) lamps. HID lamps are electric discharge lamps and include high-pressure sodium, mercury vapor, and metal halide lamps. HID lamps require an HID ballast to start and regulate electric current flow through the lamp. HID lamps are used in street and roadway lighting, area lighting such as for parking lots and plazas, industrial and commercial building interior lighting, security lighting for commercial, industrial, and residential spaces, and landscape lighting. The Standards and Test Procedures for this product are related to Rulemaking for High Intensity Discharge Lamps Energy Conservation Standard and Rulemaking for High Intensity Discharge Lamps Test Procedures.

433

NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy (Electric) - Commercial Energy Efficiency NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Lighting: Rebates will not be provided for lamps or fixtures placed in stock in excess of 5% of installed equipment Program Info Funding Source Electric default supply rates for its default supply customers. State Montana Program Type

434

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Custom Measures: 75% of the incremental cost of the measure Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies by fixture type, wattage and application Central A/C: $100/ton Air-Source Heat Pumps: $150/ton Geothermal Heat Pumps: $200/ton Commercial Refrigeration: See Program Website

435

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

436

Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Grant Program Rebate Amount Up to 70% of installed cost of qualifying retrofit projects or up to 50% of qualifying lighting upgrades. Provider Puget Sound Energy PSE can provide a custom retrofit grant for any energy-efficiency project

437

City of San Francisco - Commercial Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Francisco - Commercial Efficiency Rebates San Francisco - Commercial Efficiency Rebates City of San Francisco - Commercial Efficiency Rebates < Back Eligibility Commercial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State California Program Type Local Rebate Program Businesses in San Francisco's PG&E territory can receive equipment rebates, a detailed energy analysis, and the discounted installation of a variety of energy efficiency technologies through San Francisco's Energy Watch Program. A range of incentives are available for lighting, HVAC, food service equipment and network power management systems. See web site above

438

Mason County PUD 3 - Commercial and Industrial Energy Rebates | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Rebates Commercial and Industrial Energy Rebates Mason County PUD 3 - Commercial and Industrial Energy Rebates < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting Rebates: Up to 70% of project cost Prescriptive Rebates: Varies widely, contact Mason County PUD 3 Custom Rebates: Varies widely, contact Mason County PUD 3 Provider Mason County PUD 3 Mason County PUD 3 offers rebates to its non-residential customers for

439

Norwich Public Utilities - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities - Commercial Energy Efficiency Rebate Norwich Public Utilities - Commercial Energy Efficiency Rebate Program Norwich Public Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Variable Frequency Drives: Contact NPU Lighting: Contact NPU HVAC: Contact NPU Natural Gas Conversions: Contact NPU Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides rebates to its commercial, industrial, institutional, and agricultural customers for high-efficiency

440

Loveland Water and Power - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Loveland Water and Power - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum SEER, IEER, or EER Economizer: $250 Motion Sensor Controls: $75 Building Envelope Window Replacement: $1.50/sq. ft.

Note: This page contains sample records for the topic "trucks commercial light" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Commercial Energy Efficiency Rebate Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Heat Pump Incentives: $50,000 per meter, per project or 50% of cost Lighting Incentives: $50,000 per meter, per project or 50% of cost Efficient Exit Sign Program: $10,000 per project Program Info

442

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

443

SMUD - Commercial Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Program SMUD - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Savings By Design: $150,000 Data Center Cooling: $100,000 Server Virtualization: $150,000 Lighting Controls: $300,000 Interior Lighting (custom): $150,000 Exterior Lighting (custom): $50,000 Heating and Cooling (custom): $150,000 Motors and Controls (custom): $150,000 Program Info State California Program Type Utility Rebate Program Rebate Amount PC/Data Management PC Network Software: $10/software license

444

A SCOPING STUDY: Development of Probabilistic Risk Assessment Models for Reactivity Insertion Accidents During Shutdown In U.S. Commercial Light Water Reactors  

SciTech Connect

This report documents the scoping study of developing generic simplified fuel damage risk models for quantitative analysis from inadvertent reactivity insertion events during shutdown (SD) in light water pressurized and boiling water reactors. In the past, nuclear fuel reactivity accidents have been analyzed both mainly deterministically and probabilistically for at-power and SD operations of nuclear power plants (NPPs). Since then, many NPPs had power up-rates and longer refueling intervals, which resulted in fuel configurations that may potentially respond differently (in an undesirable way) to reactivity accidents. Also, as shown in a recent event, several inadvertent operator actions caused potential nuclear fuel reactivity insertion accident during SD operations. The set inadvertent operator actions are likely to be plant- and operation-state specific and could lead to accident sequences. This study is an outcome of the concern which arose after the inadvertent withdrawal of control rods at Dresden Unit 3 in 2008 due to operator actions in the plant inadvertently three control rods were withdrawn from the reactor without knowledge of the main control room operator. The purpose of this Standardized Plant Analysis Risk (SPAR) Model development project is to develop simplified SPAR Models that can be used by staff analysts to perform risk analyses of operating events and/or conditions occurring during SD operation. These types of accident scenarios are dominated by the operator actions, (e.g., misalignment of valves, failure to follow procedures and errors of commissions). Human error probabilities specific to this model were assessed using the methodology developed for SPAR model human error evaluations. The event trees, fault trees, basic event data and data sources for the model are provided in the report. The end state is defined as the reactor becomes critical. The scoping study includes a brief literature search/review of historical events, developments of a small set of comprehensive event trees and fault trees and recommendation for future work.

S. Khericha

2011-06-01T23:59:59.000Z

445

Dominion Virginia Power - Commercial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Virginia Power - Commercial Energy Efficiency Programs Dominion Virginia Power - Commercial Energy Efficiency Programs Dominion Virginia Power - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info Expiration Date March 31, 2013 State Virginia Program Type Utility Rebate Program Rebate Amount Commercial Energy Audit/Incentives: Up to $4,000 Duct Testing/Sealing: $90/ton (20 tons or less) Duct Testing/Sealing: $75/ton (21 tons or more) Dominion Virginia Power provides a number of rebates to customers for the installation of energy efficient equipment and measures.

446

Local Option - Commercial PACE Financing (Utah) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Commercial PACE Financing (Utah) Local Option - Commercial PACE Financing (Utah) Local Option - Commercial PACE Financing (Utah) < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Solar Buying & Making Electricity Energy Sources Water Water Heating Wind Program Info State Utah Program Type PACE Financing Provider Office of Energy Development Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows

447

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

448

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

449

Delta-Montrose Electric Association - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Commercial Energy Efficiency Rebate Program Delta-Montrose Electric Association - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting Replacement Program: $20,000 LED Refrigerator Case Lighting: $3,000 Street/Area Lighting (LED and Induction): $20,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Central Air Source Heat Pump: $125 - $150/ton; plus $150 Energy Star bonus Terminal Units: $85/unit; plus $150 Energy Star bonus Lighting Replacement Program: $250/kW saved LED Refrigerator Case Lighting: $60/door Street/Area Lighting (LED and Induction): 25% of head costs, up to

450

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network (OSTI)

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August Denver, CO 80208 November 1998 UNIVERSITY Of DENVER #12;Remote Sensing of Heavy-duty Trucks in Austin be observed by probing the exhaust. In the process of measuring the ratios, the remote sensing unit results

Denver, University of

451

F2001-01-2793 Design of an Advanced Heavy Tactical Truck  

E-Print Network (OSTI)

response of both a series hybrid and an electric-driven truck at the top (vehicle) level, and the response is applied to the design of an advanced heavy tactical truck. Novel technologies (e.g., series hybrid for both series hybrid and series electric drive propulsion systems; results are presented for two sets

Michelena, Nestor

452

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design the benchmark vehicle. INTRODUCTION Hybrid powertrain is among the most visible transportation technology

Grizzle, Jessy W.

453

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network (OSTI)

System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a hybrid electric vehicle (HEV). The hybrid electric truck that employs this control system features a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction

Peng, Huei

454

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO INTERNATIONAL TRUCK AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL TRUCK AND INTERNATIONAL TRUCK AND ENGINE CORPORATION (ITEC) UNDER DOE PRIME CONTRACT NO. DE-FC26- 06NT42791 FOR "NATIONAL HYBRID TRUCK MANUFACTURING PROGRAM"; CH-1412; W(A)-07-024 International Truck and Engine Corporation (ITEC) has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42891. ITEC is a subcontractor of WESTSTART- CALSTART. This advanced waiver is intended to apply to all subject inventions of International Truck and Engine's employees and those of its subcontractors, regardless of tier, except subcontractors eligible to obtain title pursuant to P. L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, ITEC will research and develop electrical subsystems

455

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

456

Small Commercial Refrigeration Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Commercial Refrigeration Incentive Small Commercial Refrigeration Incentive Small Commercial Refrigeration Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives over $5,000 must be pre-approved Program Info Funding Source Efficiency Vermont Public Benefit Fund Expiration Date 06/30/2013 State Vermont Program Type State Rebate Program Rebate Amount Outside Air Economizers: $1,250 Evaporator Fan Motors: $20 - $100 Evaporator Fan Motor Controls: $550 Door/Frame Heater Controls: $50 per door Case Light Occupancy Controls: $40 LED Refrigerator and Freezer Case Light Fixtures: $6 - $15 per foot Energy Star Ice Machines: $50 - $75 Efficient Compressors: $200 Display Case Strip-Curtain and Continuous Covers: $6 per foot

457

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Guide to Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a commercial work truck. Powering commercial lawn service equipment with alternative fuels is an effective way to reduce petroleum use. Alternative fuels can also reduce pollutant emissions compared with conventional fuels. Nu- merous biodiesel, compressed natural gas, electric, and propane

458

Hutchinson Utilities Commission - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hutchinson Utilities Commission - Commercial Energy Efficiency Hutchinson Utilities Commission - Commercial Energy Efficiency Program Hutchinson Utilities Commission - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate $2,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: $300 per kW saved LED Exit Signs: $12 Occupancy Sensors: $20 - $40 Air Conditioning Systems: $20 - $40 per ton Air-Source Heat Pumps: $65 - $150 per ton Geothermal Heat Pumps: $150 per ton Chillers: $3,000 - $4,000, depending on size Chilled Water Resets: $350 - $900, depending on type and size

459

Western Massachusetts Electric - Commercial Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Massachusetts Electric - Commercial Energy Efficiency Western Massachusetts Electric - Commercial Energy Efficiency Rebates Western Massachusetts Electric - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Pre-approval required for rebates greater than $5,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Small Business Program: up to 70% of cost, zero percent financing on remainder Custom: based on energy savings Retrofit Pay-for-Performance Incentive: $0.75/kWh or therm saved Lighting: Varies, see program web site Vending Machine Controls: $45 - $115 Variable Speed Drive (Retrofit): $2,550 - $10,500

460