Powered by Deep Web Technologies
Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Navajo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Wind Energy Place Atlanta, Georgia Zip 30318 Sector Wind energy Product Atalanta-based but China-focused wind project developer. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation  

SciTech Connect

The project, A Feasibility Study to Evaluate Wind Energy Potential on the Navajo Nation, is funded under a solicitation issued by the U.S. Department of Energy Tribal Energy Program. Funding provided by the grant allowed the Navajo Nation to measure wind potential at two sites, one located within the boundaries of the Navajo Nation and the other off-reservation during the project period (September 5, 2005 - September 30, 2009). The recipient for the grant award is the Navajo Tribal Utility Authority (NTUA). The grant allowed the Navajo Nation and NTUA manage the wind feasibility from initial site selection through the decision-making process to commit to a site for wind generation development. The grant activities help to develop human capacity at NTUA and help NTUA to engage in renewable energy generation activities, including not only wind but also solar and biomass. The final report also includes information about development activities regarding the sited included in the grant-funded feasibility study.

Terry Battiest

2012-11-30T23:59:59.000Z

3

Boondocks Truck Stop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Boondocks Truck Stop Wind Farm Boondocks Truck Stop Wind Farm Jump to: navigation, search Name Boondocks Truck Stop Wind Farm Facility Boondocks Truck Stop Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703°, -93.5624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4703,"lon":-93.5624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Navajo Electrification Demonstraiton Project  

SciTech Connect

This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

Larry Ahasteen, Project Manager

2006-07-17T23:59:59.000Z

5

NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

Terry W. Battiest

2008-06-11T23:59:59.000Z

6

Navajo-Hopi Land Commission Renewable Energy Development Project (NREP)  

DOE Green Energy (OSTI)

The Navajo Hopi Land Commission Office (NHLCO), a Navajo Nation executive branch agency has conducted activities to determine capacity-building, institution-building, outreach and management activities to initiate the development of large-scale renewable energy - 100 megawatt (MW) or larger - generating projects on land in Northwestern New Mexico in the first year of a multi-year program. The Navajo Hopi Land Commission Renewable Energy Development Project (NREP) is a one year program that will develop and market a strategic business plan; form multi-agency and public-private project partnerships; compile site-specific solar, wind and infrastructure data; and develop and use project communication and marketing tools to support outreach efforts targeting the public, vendors, investors and government audiences.

Thomas Benally, Deputy Director,

2012-05-15T23:59:59.000Z

7

Truckstop -- and Truck!-- Electrification  

SciTech Connect

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

8

Truckstop -- and Truck!-- Electrification  

DOE Green Energy (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

9

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

10

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

11

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

12

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

13

Lab partners with Navajo Nation on uranium mine project  

NLE Websites -- All DOE Office Websites (Extended Search)

> Around the Lab > atl043013navajo 04302013 Lab partners with Navajo Nation on uranium mine project Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov...

14

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Navajo Tribal Utility Authority Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849. Utility Rate Schedules Grid-background.png

15

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Utility Authority Utility Authority (Redirected from Navajo Tribal Utility Association) Jump to: navigation, search Name Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849.

16

EIS-0231: Navajo Transmission Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31: Navajo Transmission Project 31: Navajo Transmission Project EIS-0231: Navajo Transmission Project SUMMARY This EIS evaluates the environmental impacts of a proposal to by Dine Power Authority, a Navajo Nation enterprise, to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned to deliver electric power from the Four Comers area in northwestern New Mexico across northern Arizona to a terminus in southeastern Nevada. The proposed project, the Navajo Transmission Project, is currentiy planned to be in service in the year 2001 and operate for about 50 years. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 1, 1996 EIS-0231: Draft Environmental Impact Statement Draft Environmental Impact Statement Navajo Transmission Project

17

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Spring 2004  

Wind Powering America (EERE)

Turbines Power Remote Navajo Homesteads Turbines Power Remote Navajo Homesteads Some families on the Navajo Reservation are seeing things in a new light-a light powered by electricity from the wind. Larry Ahasteen, renewable energy specialist for the Navajo Tribal Utility Authority (NTUA), and regional crews combine photovoltaic (PV) systems and small wind turbines to create hybrid systems that produce electricity for remote Navajo households. "We use Mother Nature to generate power," Ahasteen said. "We want to use both the wind and the sun. The sun doesn't shine all the time." It's estimated that 18,000 remote households on the Navajo Reservation do without electricity. The reservation spans 26,000 miles across three states, and the cost to extend the electrical grid averages about $27,000 per mile. Some families

18

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

19

Empty WIPP truck overturns  

NLE Websites -- All DOE Office Websites (Extended Search)

Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at...

20

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Vehicle Testing Activity: Truck Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Reader. Norcal Waste Systems, Inc. Liquefied Natural Gas Trucks Norcal Prototype LNG Truck Fleet: Final Data Report, February 2005 (PDF 806 KB) Norcal Prototype LNG Truck...

22

Navajo Tribal Utility Association Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Navajo Tribal Utility Association Smart Grid Project Navajo Tribal Utility Association Smart Grid Project Jump to: navigation, search Project Lead Navajo Tribal Utility Association Country United States Headquarters Location Ft. Defiance, Arizona Additional Benefit Places New Mexico, Utah Recovery Act Funding $4991750 Total Project Value $10611849 Coverage Area Coverage Map: Navajo Tribal Utility Association Smart Grid Project Coordinates 35.7444602°, -109.0764828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

23

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

24

LM Continues to Work with the Navajo Nation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Continues to Work with the Navajo Nation Continues to Work with the Navajo Nation LM Continues to Work with the Navajo Nation January 9, 2013 - 4:00pm Addthis What does this project do? Goal 1. Protect human health and the environment LM continues to work with the Navajo Nation to perform long-term surveillance and maintenance (LTS&M) at four Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I sites located on the Navajo Nation. Compliance activities include monitoring and maintaining engineered disposal cells, as well as remediating groundwater. The Navajo Nation encompasses more than 27,000 square miles in the southwestern United States. Uranium exploration, mining, and milling occurred in the Four Corners area; nearly 4 million tons of uranium ore were extracted from Navajo lands.

25

Vehicle Technologies Office: 21st Century Truck  

NLE Websites -- All DOE Office Websites (Extended Search)

for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and...

26

Navajo Tribal Utility Authority (Utah) | Open Energy Information  

Open Energy Info (EERE)

Authority (Utah) Authority (Utah) Jump to: navigation, search Name Navajo Tribal Utility Authority Place Utah Utility Id 13314 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0967/kWh Commercial: $0.1150/kWh The following table contains monthly sales and revenue data for Navajo Tribal Utility Authority (Utah). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

27

Navajo Tribal Utility Authority (New Mexico) | Open Energy Information  

Open Energy Info (EERE)

Mexico) Mexico) Jump to: navigation, search Name Navajo Tribal Utility Authority Place New Mexico Utility Id 13314 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1000/kWh Commercial: $0.1170/kWh Industrial: $0.0605/kWh The following table contains monthly sales and revenue data for Navajo Tribal Utility Authority (New Mexico). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

28

Navajo Transmission Project Draft Environmental Impact Statement (DEIS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . SUMRY INTRODUCTION Din6 Power Authority @PA), a Navajo Nation enterprise, proposes to construct, operate, and maintain a 500 kilovolt (kV) transmission line planned to deliver electric power from the Four Comers area in northwestern New Mexico across northern Arizona to a terminus in southeastern Nevada. The proposed project, the Navajo Transmission Project ~), is currentiy planned to be in service in the year 2001 and operate for about 50 years. The preparation of an environment impact statement @IS) is required because of Federal government involvement, which includes (1) granting rights-of-way across Federrd and tribal lands and (2) certain participation by Western Area Power Administration ~estem), and agency of the U.S. Department of Energy (DOE). In accordance the National Environmental Policy Act of 1969 ~PA), Council on Environmental Quality (CEQ) regulations

29

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

Science Conference Proceedings (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

30

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

31

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

32

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

33

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

34

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

35

Energy Department, Volvo Partnership Builds More Efficient Trucks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the United States. Volvo Truck Corporation is one of the leading heavy truck and engine manufacturers in the world. Volvo Trucks manufactures a line of Class 8 trucks, and is...

36

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

37

Truck Thermoacoustic Generator and Chiller  

DOE Green Energy (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

38

Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable  

E-Print Network (OSTI)

Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

Keinan, Alon

39

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

40

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables  

DOE Green Energy (OSTI)

In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

42

DOE SuperTruck Program Benefits Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in the project's technical scope development, information collection, and analysis. He also served as the key technical contact point for the SuperTruck development...

43

Reducing Bodybuilder Waste on SCANIA Trucks.  

E-Print Network (OSTI)

?? In a world of fierce competition that is the reality for heavy truck manufacturers, it is important to optimize every step of production to (more)

Dahlberg, Carl

2011-01-01T23:59:59.000Z

44

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

45

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

46

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

47

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. BAE Systems plc Caterpillar Inc. Cummins Inc. Daimler Trucks North America LLC Detroit Diesel Corporation Eaton Honeywell International Mack Trucks Meritor, Inc. Navistar,...

48

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

49

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

50

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

51

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

52

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

53

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

54

Developing and evaluating pit truck safety devices  

SciTech Connect

Describes an electromagnetic system whereby smaller vehicles transmit a signal to haulage truck operators, to alert them to their presence. Driver visibility is restricted in large, rear-dump haulage trucks used in open-pit mining. Analysis shows the need for an alarm in the truck, to warn of vehicles in blind spots. As open-pit haulage truck size has increased, so has the size of the blind areas. Parameters for a prototype system included high- and low-frequency electromagnetic noise rejection, system sensitivity, ease of distance calibration, box size, mounting ease, power needs, and an internal system to continuously self-test all electronic fault-detection circuits. The prototype haulage truck cabmounted receiver had 2 channels. The system has been field-tested at the Twin Buttes open-pit mine near Tucson, AZ.

Yates, W.C.

1982-07-01T23:59:59.000Z

55

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performe

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

56

Truck Stop Electrification: A Cost-Effective Solution to Reducing Truck Idling  

Science Conference Proceedings (OSTI)

Truck stop electrification (TSE) allows truckers to "plug in" their vehicles while stopped, in order to operate air conditioning, heating, and appliances without any engine idling. Truck stop electrification technologies fall into two major categories: "off-board" and "on-board" systems. Off-board systems are fixed, stand-alone units installed at the truck parking space. These systems provide heating, ventilating, and air conditioning (HVAC), and may also include AC electrical power and entertainment, co...

2004-12-27T23:59:59.000Z

57

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

58

TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

16 TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS S. S. Stevens, Principal Investigator S. M. Chin K. A. Hake H. L. Hwang J. P. Rollow L. F. Truett July 2001 Prepared for the...

59

Raley's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

2000-05-03T23:59:59.000Z

60

Water by truck in Mexico City  

E-Print Network (OSTI)

Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

Pike, Jill (Jill Susan)

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

62

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

63

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

64

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

65

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Navajo Generating Station Navajo Generating Station Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts David J. Hurlbut, Scott Haase, Gregory Brinkman, Kip Funk, Rachel Gelman, Eric Lantz, Christina Larney, David Peterson, Christopher Worley National Renewable Energy Laboratory Ed Liebsch HDR Engineering, Inc. Prepared under Task No. WFJ5.1000 Technical Report NREL/TP-6A20-53024 * Revised March 2012 Contract No. DE-AC36-08G028308 Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No. WFJ5.1000. ERRATA SHEET NREL REPORT/PROJECT NUMBER: NREL/TP-6A20-53024 DOE NUMBER: N/A TITLE: Navajo Generating Station and Air Visibility Regulations: Alternatives and

66

Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park  

Science Conference Proceedings (OSTI)

During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex ...

Charles G. Lindsey; Jun Chen; Timothy S. Dye; L. Willard Richards; Donald L. Blumenthal

1999-08-01T23:59:59.000Z

67

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

68

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

69

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

70

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

71

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

72

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

73

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

74

Fire Department Gets New Trucks, Saves Money | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old...

75

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

76

Curbside eating : mobilizing food trucks to activate public space  

E-Print Network (OSTI)

In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

Sheppard, Alison Marguerite

2013-01-01T23:59:59.000Z

77

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

78

Vehicle Technologies Office: Fact #787: July 8, 2013 Truck Stop...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption to someone by E-mail Share Vehicle Technologies Office: Fact 787: July 8, 2013 Truck Stop Electrification...

79

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

80

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop  

NLE Websites -- All DOE Office Websites (Extended Search)

8: June 21, 2010 8: June 21, 2010 Truck Stop Electrification Sites to someone by E-mail Share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Facebook Tweet about Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Twitter Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Google Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Delicious Rank Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Digg Find More places to share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on AddThis.com... Fact #628: June 21, 2010 Truck Stop Electrification Sites

82

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

83

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network (OSTI)

railandtruckfreighttransportation. TransportationResearchrail?truckfreighttransportliterature. TransportationResearch

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

2009-01-01T23:59:59.000Z

84

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

85

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

86

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables  

NLE Websites -- All DOE Office Websites (Extended Search)

Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables D.J. Hurlbut, S. Haase, C.S. Turchi, and K. Burman National Renewable Energy Laboratory Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No WFJ5.1000. Technical Report NREL/TP-6A20-54706 June 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Navajo Generating Station and

87

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

88

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

89

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

90

Truck Driver Scheduling in the European Union  

Science Conference Proceedings (OSTI)

Since April 2007 working hours of truck drivers in the European Union are controlled by regulation (EC) No. 561/2006. According to the new regulation, road transport undertakings must organise the work of drivers in a way that drivers are able to comply ... Keywords: drivers' working hours, regulation (EC) No. 561/2006, vehicle scheduling

Asvin Goel

2010-11-01T23:59:59.000Z

91

Dry Lake Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Dry Lake Wind Farm Facility Dry Lake Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Iberdrola Renewables Location Navajo County AZ Coordinates 34.635651°, -110.357351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.635651,"lon":-110.357351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

93

Long Haul Truck Idling at Public Facilities in Key States  

Science Conference Proceedings (OSTI)

Idling the main truck engine to provide for the relatively small power requirements needed during rest stops is inefficient and highly polluting. An alternative is to supply power from the grid or some form of distributed generation, and a national effort is underway to electrify truck stops. Not all idling occurs at truck stops, however. The purpose of this project was to quantify the major truck idling that takes place at public facilities other than truck stops. The study focused on public rest areas,...

2008-03-31T23:59:59.000Z

94

2014 Best and Worst MPG Trucks, Vans and SUVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

95

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

96

NREL: Wind Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of the non-torque loading system at the National Wind Technology Center. Photo of the non-torque loading system at the National Wind Technology Center. New NWTC Test Facility to Improve Wind Turbines Testing the performance of multimegawatt wind turbine drivetrains Illustration showing mountains, several wind turbines, a power plant, a crane setting up a turbine blade, and two semi-trucks carrying turbine blades. The concept is to show all the pieces and parts of a complete wind energy system and how they work together. NWTC Systems Engineering Initiative Analysis Platform New platform helps analyze and integrate entire wind energy systems Short video featuring Fort Felker, Center Director of the National Wind Technology Center, highlighting the NWTC's dual-axis resonant blade testing capabilities. Images from this video include Fort speaking, the static turbine blade in the testing facility, and flapwise and edgewise testing in action.

97

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

98

Estimation of Fuel Use by Idling Commercial Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

99

Truck Stop Electrification: Codes and Standards Ensure Safety for The Trucking Industry  

Science Conference Proceedings (OSTI)

Every day in the United States as many as 677,600 heavy-duty trucks are on the road; and, at some point during that day, they are idling. Over the course of a year, long-duration idling of truck and locomotive engines consumes more than 1 billion gallons of diesel fuel and emits 11 million tons of carbon dioxide. Drivers often idle their main engines during the U.S. Department of Transportation mandated rest time of 10 hours after driving for 11 hours, to power heating, air conditioning, lighting, and ap...

2009-05-08T23:59:59.000Z

100

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy...

102

The Role of Batteries in Auxiliary Power for Heavy Trucks  

DOE Green Energy (OSTI)

The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

D. Crouch

2001-12-12T23:59:59.000Z

103

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

104

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of advanced, next generation heavy hybrid truck and bus propulsion technologies and hybrid vehicle systems. This two phase technology development program is intended to...

105

Demonstration Project 111 ITS/CVO Technology Truck Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

1277 Demonstration Project 111 ITSCVO Technology Truck Final Project Report December 2001 Prepared by G. J. Capps, ORNL Project Manager K. P. Gambrell, Technical Associate K. L....

106

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

107

Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)  

E-Print Network (OSTI)

is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies with standard dual tires. The trailers are of various manufacturers and are 53 foot dry-box vans. Five-trailer (Truck#1) had its engine running while the vehicle was not moving. Over a period of one year

108

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

109

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

110

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network (OSTI)

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

111

Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report  

SciTech Connect

The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

Not Available

1991-04-01T23:59:59.000Z

112

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

113

Hybrid Control of a Truck and Trailer Vehicle  

Science Conference Proceedings (OSTI)

A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed of a truck and a two-axle trailer. When reversing, the truck and trailer can be modelled as an unstable nonlinear system ...

Claudio Altafini; Alberto Speranzon; Karl Henrik Johansson

2002-03-01T23:59:59.000Z

114

Studies Of The Adoption And Use Of Location And Communication Technologies By The Trucking Industry  

E-Print Network (OSTI)

of Location and Communication Technologies by the TruckingOF LOCATION AND COMMUNICATION TECHNOLOGIES BY THE TRUCKINGpositioning and communication technologies by the trucking

Scapinakis, Dimitris A.; Garrison, William Louis

1991-01-01T23:59:59.000Z

115

Energy Department, Volvo Partnership Builds More Efficient Trucks and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department, Volvo Partnership Builds More Efficient Trucks Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an America built to last laid out by President Obama in his State of the Union address earlier this week. The Department of Energy is partnering with companies like the Volvo Group to help harness American ingenuity to commercialize and deploy cutting-edge trucking technologies that will help boost the competitiveness of the U.S. auto and

116

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

117

Rancher Brings Wind Power to Arizona | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rancher Brings Wind Power to Arizona Rancher Brings Wind Power to Arizona Rancher Brings Wind Power to Arizona April 15, 2010 - 5:50pm Addthis On a blustery day in Arizona, thousands gathered at the commemoration of the state's first wind farm. A group of local residents and Interior Department officials were there to celebrate an event that had once seemed unlikely if not impossible. It all started when Bill Elkins got an idea. While on a trip to other Midwest states, he noticed their renewable energy projects and wondered why Arizona couldn't do the same, "I traveled to Oklahoma and New Mexico, and to see the different wind farms and topography, I knew we had that." Bill lives in Navajo County, home to one of the largest Indian reservations in the U.S. He owns and operates the Rocking Chair Ranch. Families like

118

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

119

Solar Energy for Charging Fork Truck Batteries  

E-Print Network (OSTI)

The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence exists that new technological advances and mass-production techniques have lowered the costs considerably. The U.S. Department of Energy has indicated that by the year 1990 the price per peak watt would be less than fifty U.S. cents. This paper keeps this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial material handling. Two evaluation methods were used; namely, the Payback Method, and the Modified Energy Inflation Rate Method. Neither of the methods proved to be economically favorable, but some interesting results were obtained.

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

120

Projection of light-truck population to year 2025  

SciTech Connect

The recent growth in the number of light trucks is a matter of considerable interest in that it may have far-reaching implications for gasoline consumption. This paper forecasts the number of light trucks in the years to 2025. The forecast is based on economic scenarios developed by SRI International. Except for the case of the most-dismal economic forecast, the number of light trucks is predicted to increase monotonically and to show the greatest rate of increase between 1973 and 1980.

1978-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LNG Imports by Truck into the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck into the U.S. Form LNG Imports by Truck into the U.S. Form Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF Version of LNG Imports by Truck into the U.S....

122

LNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF Version of LNG Exports by Truck out of the...

123

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

124

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

125

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

126

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

127

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

128

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report R. Barnitt Technical Report NRELTP-5400-48896 January 2011 NREL is a national laboratory of the...

129

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

130

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.em.doe.govemrecovery April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill LOS ALAMOS, N.M. - A Los Alamos National Laboratory (LANL)...

131

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

132

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

133

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

134

Industrial Lift Truck Battery Charger Demand Response Impact Study  

Science Conference Proceedings (OSTI)

Demand response and load shifting are two common energy management strategies used by lift truck fleet operators to mitigate on-peak energy consumption, reduce electricity costs, and react to electric system emergency curtailment requests. When customers elect to participate in demand response programs, they are contacted and asked to reduce load during power shortage situations. Alternatively, customers may implement longer-term economic load shifting strategies by reducing power to their lift truck bat...

2008-04-03T23:59:59.000Z

135

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

136

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

137

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

138

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

139

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

140

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

142

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

143

Volvo Truck Headquarters in North Carolina to Host Event With Acting Under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volvo Truck Headquarters in North Carolina to Host Event With Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro, North Carolina. Through the Department of Energy's Super Truck project, the Volvo Group, which includes Mack Trucks and Volvo Trucks, received $19 million in federal funding to improve the freight-moving efficiency of heavy-duty trucks, an example of the Obama Administration's strong commitment to reviving the U.S. auto industry through investments in more efficient

144

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

145

Analysis of Major Trends in U.S. Commercial Trucking, 1977-2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Further, since single-unit trucks operate usually at part cargo load, the extra mass of CNG tanks is acceptable. For Class 8 combination trucks, the energy storage limitations of...

146

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

147

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

148

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

149

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

150

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

151

CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)  

SciTech Connect

This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

Not Available

2010-02-01T23:59:59.000Z

152

DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

Eric Fluga

2004-09-30T23:59:59.000Z

153

Satellite Detec*on of Truck & Rail NO2  

E-Print Network (OSTI)

Satellite Detec*on of Truck & Rail NO2 Erica Bickford Tracey Holloway Environment (SAGE) University of Wisconsin Madison #12;Freight and Air Quality 2 · Transporta*on is the largest source of NOx emissions. · Freight accounts for 33

Jacob, Daniel J.

154

Improved performance of railcar/rail truck interface components  

E-Print Network (OSTI)

The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center bowls/center plates. The insert geometry addresses concerns about maintaining favorable pressure distribution on existing components, minimizing overall height increase to accommodate existing infrastructure, and retaining railcar stability. The stability of the railcar upon the design inserts has been ensured when the instantaneous center of rotation of the railcar body is above the railcar center of gravity. The damping ratio provided by the frictional moment within center bowl is 240 and eliminates the possibility of dynamic amplification. Using a 90 inch radius of curvature ensures stability and requires a 0.5 inch diameter reduction of the existing center plate for a gap of 1/16 inch. The increase in railcar height for the specific design is 0.71 inches which can be absorbed by either grinding of the center plate or new manufacturing dimensions. The design is feasible for small travel values corresponding to small vertical gaps at the side bearings. In addition to geometry alterations, the bearing surfaces are coated with a protective metallic layer. The literature suggests that optimum friction coefficients between bearing elements in the center bowl/center plate interface may reduce turning moments of the truck, wear of truck components, and detrimental dynamic effects such as hunting. Axial-torsional tests determined friction coefficient estimates and wear properties for a matrix of various metallic protective coatings and steel. Tungsten carbide-cobalt-chrome has a favorable coefficient of 0.3 under standard center bowl/center plate contact conditions.

Story, Brett Alan

2007-08-01T23:59:59.000Z

155

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

156

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

157

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

158

Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 2, 2012 1: April 2, 2012 Heavy Trucks Move Freight Efficiently to someone by E-mail Share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Facebook Tweet about Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Twitter Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Google Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Delicious Rank Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Digg Find More places to share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on AddThis.com...

159

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

160

Wind to Hydrogen in California: Case Study  

DOE Green Energy (OSTI)

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

162

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

163

Upgrades for truck transportation of SNM in the Russian Federation  

Science Conference Proceedings (OSTI)

The goal of this project is the rapid reduction of risk to truck transportation of SNM in Russia. Enhanced protection is being accomplished by cooperation between the US Department of Energy, MINATOM of Russia, the Russian Ministry of Defense, and various Russian Institutes. This program provides an integrated program of specialized trucks that are equipped with hardened overpack (SNM vault) containers, alarm and communications systems, and armored cabs. Armored escort vehicles are also provided to increase the survivability of the guards escorting convoys. Only indigenous Russian equipment, modified and/or manufactured by Designing Bureau for Motor Vehicle Transport Equipment (KBATO), is provided under this program. The US will not provide assistance in the truck transportation arena without a commitment from the Russian facility to provide heavily armed escorts for SNM movement. Each site conducts a detailed transportation needs assessment study that is used as the basis for prioritizing assistance. The Siberian Chemical Combine (Tomsk-7) was the initial site of cooperation. The designs used at Tomsk-7 are serving as the baseline for all future vehicles modified under this program. In FY98, many vehicles systems have been ordered for various institutes. Many additional systems will be ordered in FY99.

Gardner, B.H. [Sandia National Labs., Albuquerque, NM (United States); Kornilovich, E. [Construction Bureau for Motor Vehicle Transport Equipment, Mytischy (Russian Federation)

1998-08-01T23:59:59.000Z

164

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

165

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

166

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

167

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

168

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

169

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

170

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

171

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

172

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

173

Business Case for Fast Charging of Industrial Lift Truck Fleets: Life Cycle Cost Model  

Science Conference Proceedings (OSTI)

In industrial settings, up to three battery packs are required per electric industrial lift truck: one in use, another being charged, and a third being cooled. Many industry experts see this as a financial barrier in selling electric over internal combustion (IC) industrial lift trucks. EPRI sponsored this study to provide a thorough evaluation of the economics in support of a business case for fast charging lift truck fleets.

2000-09-18T23:59:59.000Z

174

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

7693 May 2010 FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report R. Barnitt National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

175

Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report  

E-Print Network (OSTI)

trucks Intermodal Rail 2.2 RELATED RESEARCH Research andrail) and the proponents of a more efficient freight system for national defense purposes. Research

Taso, H. S. Jacob; Botha, Jan L.

2003-01-01T23:59:59.000Z

176

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

177

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

178

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

179

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

180

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network (OSTI)

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August Denver, CO 80208 November 1998 UNIVERSITY Of DENVER #12;Remote Sensing of Heavy-duty Trucks in Austin be observed by probing the exhaust. In the process of measuring the ratios, the remote sensing unit results

Denver, University of

182

F2001-01-2793 Design of an Advanced Heavy Tactical Truck  

E-Print Network (OSTI)

response of both a series hybrid and an electric-driven truck at the top (vehicle) level, and the response is applied to the design of an advanced heavy tactical truck. Novel technologies (e.g., series hybrid for both series hybrid and series electric drive propulsion systems; results are presented for two sets

Michelena, Nestor

183

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design the benchmark vehicle. INTRODUCTION Hybrid powertrain is among the most visible transportation technology

Grizzle, Jessy W.

184

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network (OSTI)

System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a hybrid electric vehicle (HEV). The hybrid electric truck that employs this control system features a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction

Peng, Huei

185

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

186

VP 100: Producing Electric Truck Vehicles with a Little Something Extra |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Producing Electric Truck Vehicles with a Little Something VP 100: Producing Electric Truck Vehicles with a Little Something Extra VP 100: Producing Electric Truck Vehicles with a Little Something Extra August 6, 2010 - 10:31am Addthis VP 100: Producing Electric Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects That Are Changing America. Smith plans to hire at least 50 employees by the end of the year. Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) - is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used. In Kansas City, Mo., an 80-year old company is on

187

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

188

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO INTERNATIONAL TRUCK AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL TRUCK AND INTERNATIONAL TRUCK AND ENGINE CORPORATION (ITEC) UNDER DOE PRIME CONTRACT NO. DE-FC26- 06NT42791 FOR "NATIONAL HYBRID TRUCK MANUFACTURING PROGRAM"; CH-1412; W(A)-07-024 International Truck and Engine Corporation (ITEC) has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42891. ITEC is a subcontractor of WESTSTART- CALSTART. This advanced waiver is intended to apply to all subject inventions of International Truck and Engine's employees and those of its subcontractors, regardless of tier, except subcontractors eligible to obtain title pursuant to P. L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, ITEC will research and develop electrical subsystems

189

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

DOE Green Energy (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

190

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

191

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

192

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii (2007-2009) Hawaii (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Hawaii (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

193

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware (2007-2009) Delaware (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Delaware (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

194

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia (2007-2009) District of Columbia (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : District of Columbia (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility

195

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana (2007-2009) Indiana (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Indiana (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

196

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho (2007-2009) Idaho (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Idaho (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

197

Microsoft Word - 2011sr10-fire truck donation.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, August 8, 2011 Monday, August 8, 2011 james-r.giusti@srs.gov Rick McLeod, SRSCRO, (803) 593-9954, Ext. 1411 rick.mcleod@srscro.org DOE's Excess Property Donation Protects Lives, Property and the Environment AIKEN, SC - The recent purchase of new fire engines at Savannah River Site resulted in the availability of two excess fire trucks under the SRS Community Reuse Organization's (SRS CRO) Asset Transition Program. The primary goal of the Department of Energy's (DOE) Asset Transition Program is to utilize excess personal property derived from the Savannah River Site to enhance economic development and job opportunities within a five-county region surrounding the Site. In addition to job creation, assets may also be used to improve the "quality

198

Interim Results from Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

199

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

200

Modeling the interaction between passenger cars and trucks  

E-Print Network (OSTI)

The topic of this dissertation was the use of distributed computing to improve the modeling of the interaction between passenger cars and trucks. The two main focus areas were the development of a methodology to combine microscopic traffic simulation programs with driving simulator programs, and the application of a prototype distributed traffic simulation to study the impact of the length of an impeding vehicle on passing behavior. The methodology was motivated by the need to provide an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however problems were encountered that imposed limitations on its development and use. The passing study was motivated by the possible changes in federal truck size and weight regulations and the current inconsistency between the passing sight distance criteria for the design of two lane highways and the marking of no-passing zones. Test drivers made passing maneuvers around impeding vehicles that differed in length and speed. The main effects of the impeding vehicle length were found to be significant for the time and distance in the left lane, and the start and end gap distances. Passing equations were formulated based on the mechanics of the passing maneuver and included behavior variables for calibration. Through a sensitivity analysis, it was shown that increases in vehicle speeds, vehicle length, and gap distance increased the distance traveled in the left lane, while increases in the speed difference and speed gain decreased the distance traveled in the left lane. The passing equations were calibrated using the current AASHTO values and used to predict the impact of increased vehicle lengths on the time and distance in the left lane. The passing equations are valuable for evaluating passing sight distance criteria and observed passing behavior.

Jenkins, Jacqueline Marie

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

202

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

DOE Green Energy (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

203

Co-Designing Sustainable Communities: The Identification and Incorporation of Social Performance Metrics in Native American Sustainable Housing and Renewable Energy System Design  

E-Print Network (OSTI)

policy, the Navajo Tribal Utility Authority (NTUA) has been pursuing renewable energy power generation from wind

Shelby, Ryan

2013-01-01T23:59:59.000Z

204

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

205

Argonne CNM Highlight: Nanofluids Could Make Cool Work of Hot Truck Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofluids Could Make Cool Work of Hot Truck Engines Nanofluids Could Make Cool Work of Hot Truck Engines What the work is about Truck engines are hot places, and new emission reduction technologies such as exhaust gas recirculation (EGR) can make them even hotter. The coolants, lubricants, oils, and other heat transfer fluids used in today's conventional truck thermal systems (including radiators, engines, and HVAC equipment) have inherently poor heat transfer properties. And conventional working fluids that contain millimeter- or micrometer-sized particles do not work with newly emerging "miniaturized" technologies because they can clog in microchannels. Why Nanoparticles Are Better than Microparticles Argonne National Laboratory has developed metal nanofluids that can dramatically enhance the thermal conductivity of conventional heat transfer fluids and flow smoothly in microchannel passages. These "nanocoolants," as they're known, can enhance heat transfer more than several times better than the best competing fluid.

206

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

207

DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Small Businesses to Truck Transuranic Waste to New Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions, LLC, to provide trucking services to transport transuranic (TRU) waste, from DOE and other defense-related TRU waste generator sites to the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc. of Henderson, Colorado, will begin

208

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050

209

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Remarks for 21st Century Truck Event Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050 relative to today.

210

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

211

Assessment of the risk of transporting plutonium oxide and liquid plutonium nitrate by truck  

SciTech Connect

A methodology for assessing the risk in transporting radioactive materials and the results of the initial application of the methodology to shipment of plutonium by truck are presented. (LK)

1975-08-01T23:59:59.000Z

212

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

213

Trucking country : food politics and the transformation of rural life in Postwar America  

E-Print Network (OSTI)

Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

Hamilton, Shane, 1976-

2005-01-01T23:59:59.000Z

214

Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks  

SciTech Connect

This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks.

BOGER, R.M.

2000-02-03T23:59:59.000Z

215

Investigation of the low temperature performance of trucks operating on low cetane diesel fuel  

Science Conference Proceedings (OSTI)

An anticipated increase in diesel fuel demand prompted a study by Energy, Mines and Resources Canada, to assess the effect of synthetic and cracked fuel components on truck cold weather performance. Subsequently, a two-year contract was awarded to Esso Petroleum Canada Research to evaluate the effect of fuel composition on combustion using a 310 hp modern HD engine, and the effect on startup and driveability down to -30/sup 0/C in four Class 8 trucks.

Cartwright, S.J.; Gilbert, J.B

1988-01-01T23:59:59.000Z

216

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Slezak, Lee [U.S. Department of Energy

2010-01-01T23:59:59.000Z

217

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

218

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

219

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

220

Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report  

DOE Green Energy (OSTI)

In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

Gambrell, KP

2002-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

222

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

223

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

224

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

225

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

226

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

227

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

228

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

229

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OSHKOSH TRUCK CORPORATION FOR AN ADVANCE OSHKOSH TRUCK CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCL-3-32060-03 UNDER CONTRACT NO. DE-AC36-98G010337; W(A)-04-007; CH-1178 The Petitioner, Oshkosh Truck Corporation (OTC), has requested a waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above- identified subcontract entitled "Advanced Heavy Hybrid Propulsion Systems for Increased Fuel Efficiency and Decreased Emissions". OTC is leading a teaming arrangement including Rockwell Automation, Inc. (Rockwell), and the National Renewable Energy Laboratory (NREL) to develop heavy hybrid propulsion systems. Rockwell has petitioned separately for a waiver of patent rights for all subject inventions its employees may make under Rockwell's lower tier

230

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MACK TRUCKS, INC. UNDER MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32050, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1182; W(A)-04-012 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZCI-4-32050-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, the long term objective of this contract is to develop one medium duty compressed natural gas (CGN) prototype engine or one hi:avy duty liquified

231

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

232

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

233

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

234

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

235

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

236

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

237

GPRS Based Remote Monitoring and Controlling System for Oil Delivery Truck  

Science Conference Proceedings (OSTI)

In the oil retail market, to participate into the whole oil sale process is an urgent demand for oil retail company. As a respond to this situation, a GPRS based remote monitoring and controlling system for oil delivery truck is proposed in this paper. ... Keywords: GPRS, oil delivery, ATmega16

Yang Jia-zhi; Shen Xian-hao

2010-10-01T23:59:59.000Z

238

Decomposition of a complex fuzzy controller for the truck-and-trailer reverse parking problem  

Science Conference Proceedings (OSTI)

The use of fuzzy logic has, in the last twenty years, become standard practice in the field of control. The reason lies in the fuzzy logic's ability to relatively quickly transfer uncertain experience and knowledge about the observed object's behaviour ... Keywords: Decomposition, Fuzzy control, Fuzzy systems, Hierarchical fuzzy controller, Truck-and-trailer parking

Nikolaj Zimic; Miha Mraz

2006-03-01T23:59:59.000Z

239

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

240

Electric Lift Truck Fast Charge Demonstration at the Port of Galveston, Texas  

Science Conference Proceedings (OSTI)

A recent review of cargo handling equipment at the Port of Galveston determined that changes needed to be made in order to improve air quality through reduced emissions, while at the same time enhancing efficiencies and realizing cost reductions. This demonstration showed that electric lift trucks using fast charging are a viable way to meet these goals.

2007-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint  

DOE Green Energy (OSTI)

In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

2011-05-01T23:59:59.000Z

242

NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation  

DOE Green Energy (OSTI)

This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

Hakim, N; Hoelzer, J.; Liu, Y.

2002-08-25T23:59:59.000Z

243

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

Information Center

2010-05-11T23:59:59.000Z

244

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

245

Design/Operations review of core sampling trucks and associated equipment  

SciTech Connect

A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document.

Shrivastava, H.P.

1996-03-11T23:59:59.000Z

246

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

247

Operability test report for core sample truck {number_sign}1 flammable gas modifications  

SciTech Connect

This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA.

Akers, J.C.

1997-09-15T23:59:59.000Z

248

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

249

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

250

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

251

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

252

Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program  

SciTech Connect

Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

2012-01-03T23:59:59.000Z

253

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

254

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

255

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

256

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

257

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

258

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

259

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

260

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

262

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

263

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

264

Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

2012-11-01T23:59:59.000Z

265

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

266

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

267

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

268

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

269

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

270

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR AN ADVANCE WAIVER OF PATENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC. FOR AN ADVANCE WAIVER OF PATENT INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42421; W(A)-05-041; CH-1323 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Mack Trucks, Inc (Mack) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain". The waiver will apply to inventions made by Mack employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible

271

Assessment of the risk of transporting spent nuclear fuel by truck  

SciTech Connect

The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10/sup -5/ fatalities. An individual in the population at risk would have one chance in 6 x 10/sup 11/ of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year. (DLC)

Elder, H.K.

1978-11-01T23:59:59.000Z

272

Remote Sensing of In-Use Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Remote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I this study suggest that on-road remote sensing can detect illegal, high sulfur fuel use from individual heavy,HDDvehiclesemissionshavereceivedgrowing attentioninavarietyofstudiessuchaschassisdynamometers (5, 6), in a tunnel (7), and remote sensing (8-10) as well as one critical review (4

Denver, University of

273

Assessment of the risk of transporting propane by truck and train  

SciTech Connect

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

274

The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions  

SciTech Connect

This paper evaluates the performance of Poisson and negative binomial (NB) regression models in establishing the relationship between truck accidents and geometric design of road sections. Three types of models are considered. Poisson regression, zero-inflated Poisson (ZIP) regression, and NB regression. Maximum likelihood (ML) method is used to estimate the unknown parameters of these models. Two other feasible estimators for estimating the dispersion parameter in the NB regression model are also examined: a moment estimator and a regression-based estimator. These models and estimators are evaluated based on their (1) estimated regression parameters, (2) overall goodness-of-fit, (3) estimated relative frequency of truck accident involvements across road sections, (4) sensitivity to the inclusion of short mad sections, and (5) estimated total number of truck accident involvements. Data from the highway Safety Information System (HSIS) are employed to examine the performance of these models in developing such relationships. The evaluation results suggest that the NB regression model estimated using the moment and regression-based methods should be used with caution. Also, under the ML method, the estimated regression parameters from all three models are quite consistent and no particular model outperforms the other two models in terms of the estimated relative frequencies of truck accident involvements across road sections. It is recommended that the Poisson regression model be used as an initial model for developing the relationship. If the overdispersion of accident data is found to be moderate or high, both the NB and ZIP regression model could be explored. Overall, the ZIP regression model appears to be a serious candidate model when data exhibit excess zeros due, e.g., to underreporting.

Miaou, Shaw-Pin

1993-07-01T23:59:59.000Z

275

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

276

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks  

DOE Green Energy (OSTI)

Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

2012-10-01T23:59:59.000Z

277

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

278

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

279

Horizon Wind  

E-Print Network (OSTI)

The Washington Department of Fish and Wildlife (WDFW) does not have regulatory authority specific to wind power development at this time. WDFW is an agency with environmental expertise as provided for through the Washington Administrative Code (WAC) 197-11-920. Comments related to environmental impacts are provided to regulatory authorities through the State Environmental Policy Act (SEPA) Revised Code of Washington (RCW) 43.21C review process.

Cover Photo; Nina Carter; Heath Packard; Lisa Paribello; Craig Dublanko; Dana Peck; Nicole Hughes; Bill Robinson; Robert Kruse; Arlo Corwin; Joe Buchanan; Ted Clausing; Eric Cummins; Travis Nelson; Eric Pentico; Mike Ritter; Jeff Tayer; James Watson; William Weiler; David Mcclure

2009-01-01T23:59:59.000Z

280

Utility Wind Integration Group Distributed Wind/Solar Interconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed WindSolar Interconnection Workshop Utility Wind Integration Group Distributed WindSolar Interconnection Workshop May 21, 2013 8:00AM...

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Wind Energy Outlook Scenarios 1 India Wind Energy  

E-Print Network (OSTI)

1 ?Status of wind energy in India ????????????????????6 Wind energy in India????????????????????????????????????????????????????????????????????????????????????7 Wind power resource assessment?????????????????????????????????????????????????????????6 Wind power installations by state?????????????????????????????????????????????????????????8

unknown authors

2012-01-01T23:59:59.000Z

282

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells PowerEdge units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuveras PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-Bs facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

283

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

284

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

285

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

286

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

287

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

288

EERE: Wind Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind projects and offshore wind resource potential. Offshore Wind R&D DOE makes strategic research & deployment investments to launch domestic offshore wind industry....

289

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

290

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

291

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

SciTech Connect

This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

2005-08-15T23:59:59.000Z

292

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

295

NREL: Wind Research - Information and Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

small wind systems. Printable Version Wind Research Home Capabilities Projects Offshore Wind Research Large Wind Turbine Research Midsize Wind Turbine Research Small Wind Turbine...

296

Engineering task plan for upgrades to the leveling jacks on core sample trucks number 3 and 4  

Science Conference Proceedings (OSTI)

Characterizing the waste in underground storage tanks at the Hanford Site is accomplished by obtaining a representative core sample for analysis. Core sampling is one of the numerous techniques that have been developed for use given the environmental and field conditions at the Hanford Site. Core sampling is currently accomplished using either Push Mode Core Sample Truck No.1 or; Rotary Mode Core Sample Trucks No.2, 3 or 4. Past analysis (WHC 1994) has indicated that the Core Sample Truck (CST) leveling jacks are structurally inadequate when lateral loads are applied. WHC 1994 identifies many areas where failure could occur. All these failures are based on exceeding the allowable stresses listed in the American Institute of Steel Construction (AISC) code. The mode of failure is for the outrigger attachments to the truck frame to fail resulting in dropping of the CST and possible overturning (Ref. Ziada and Hundal, 1996). Out of level deployment of the truck can exceed the code allowable stresses in the structure. Calculations have been performed to establish limits for maintaining the truck level when lifting. The calculations and the associated limits are included in appendix A. The need for future operations of the CSTS is limited. Sampling is expected to be complete in FY-2001. Since there is limited time at risk for continued use of the CSTS with the leveling controls without correcting the structural problems, there are several design changes that could give incremental improvements to the operational safety of the CSTS with limited impact on available operating time. The improvements focus on making the truck easier to control during lifting and leveling. Not all of the tasks identified in this ETP need to be performed. Each task alone can improve the safety. This engineering task plan is the management plan document for implementing the necessary additional structural analysis. Any additional changes to meet requirements of standing orders shall require a Letter of Instruction from Numatec Hanford Company (NHC).

KOSTELNIK, A.J.

1999-02-24T23:59:59.000Z

297

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

298

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

299

"1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "1. Palo Verde","Nuclear","Arizona Public Service Co",3937 "2. Navajo","Coal","Salt River Project",2250 "3. Gila River Power Station","Gas","Gila River Power Station LP",2060 "4. Springerville","Coal","Tucson Electric Power Co",1618 "5. Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312 "6. Santan","Gas","Salt River Project",1227 "7. Mesquite Generating Station","Gas","Mesquite Power LLC",1073 "8. Harquahala Generating Project","Gas","New Harquahala Generating Co, LLC",1054 "9. Hoover Dam","Hydroelectric","U S Bureau of Reclamation",1040

300

Wind energy manual  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies. Textbook: References:

A. Vieira; Da Rosa; Fundamentals Renewable; Energy Processes; San Diego; Jacob Kirpes; Small Wind

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preserving the U.S. Underground and Alternative Press of the 1960s and '70s: History, Prospects, and Microform Sources  

E-Print Network (OSTI)

Oklahoma City, OK Utah Navajo Baa Hane, Blanding, UT Ute Bulletin, Fort Duchesne, UT Vision on the Wind,

Tsang, Daniel C

1993-01-01T23:59:59.000Z

302

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

303

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

304

Wind/Hydro Study  

NLE Websites -- All DOE Office Websites (Extended Search)

WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

305

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

306

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

307

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

308

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

309

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

311

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

312

Commonwealth Wind Incentive Program Micro Wind Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

313

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

314

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

315

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

316

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

Bolinger, Mark

2010-01-01T23:59:59.000Z

317

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

318

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

319

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

DOE Green Energy (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

320

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

DOE Green Energy (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines  

DOE Green Energy (OSTI)

Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

Chen, Rong

2000-08-20T23:59:59.000Z

322

Statistical description of heavy truck accidents on representative segments of interstate highway  

SciTech Connect

Any quantitative analysis of the risk of transportation accidents requires the use of many different statistical distributions. Included among these are the types of accidents which occur and the severity of these when they do occur. Several previous studies have derived this type of information for truck traffic over U. S. highways in general; these data are not necessarily applicable for the anticipated LMFBR spent fuel cask routes. This report presents data for highway segments representative of the specific LMFBR cask routes which are anticipated. These data are based upon a detailed record-by-record review of filed reports for accidents which occurred along the specified route segments.

Hartman, W.F.; Davidson, C.A.; Foley, J.T.

1977-01-01T23:59:59.000Z

323

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

324

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

325

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

327

Wind powering America: Iowa  

DOE Green Energy (OSTI)

Wind resources in the state of Iowa show great potential for wind energy development. This fact sheet provides a brief description of the state's wind resources and the financial incentives available for the development of wind energy systems. It also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

328

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * 0 STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32049-01, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1185; W(A)-04-016 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZC:-4-32049-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories.

329

Analysis of the risk of transporting uranium ore concentrates by truck  

SciTech Connect

This report evaluates the risks involved with shipping uranium ore concentrates by truck in an attempt to provide some perspective on the system safety issues. The basic probabilistic risk evaluation methodology used in this study is similar to that employed by Pacific Northwest Laboratory (PNL) in a series of risk analyses on the transportation of potentially hazardous energy materials. The risk model has been constructed as a series of separate analysis steps to allow the system risk to be readily reevaluated as additional data become available or as postulated system characteristics change. The reslts of this analysis show that the risks to the public health and safety from yellowcake releases during a transportation accident are insignificant. Accidents involving truck shipments of yellowcake are expected to occur at a rate of about ten a year. However, only one-fifth of these accidents, or about two a year, are expected to cause a release of yellowcake to the environment. None of these accidents was estimated to produce any potential fatalities. The low concentration of radioactivity distributed throughout the material resulted in no significant increase in radiation doses above normal background levels to members of the general public.

Geffen, C.A.

1981-07-01T23:59:59.000Z

330

Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

2011-01-01T23:59:59.000Z

331

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

332

NREL: Wind Research - Small Wind Site Assessment: Wind Powering...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental impacts have increased the demand for small wind energy systems for homeowners, schools, businesses, and local governments. Over the past decade, the knowledge,...

333

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

334

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

335

Wind energy, offers considerable promise: the wind itself is free,  

E-Print Network (OSTI)

Wind energy, offers considerable promise: the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise: the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

336

Wind Power Outlook 2004  

DOE Green Energy (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

337

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

338

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

339

NREL: Wind Research - Wind Applications Center Valuable Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Applications Center Valuable Resource for Wind for Schools Partners March 14, 2013 Audio with Jerry Hudgins, Nebraska Wind Applications Center Director and Joel Jacobs,...

340

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind...

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Wind Research - Small Wind Turbine Independent Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Small Wind Turbine Independent Testing One of the barriers for the small wind market has been the lack...

342

Discussion of Ultimate Wind Load Design Gust Wind Speeds ...  

Science Conference Proceedings (OSTI)

... Ind. Aerodyn., 97(34), 120131. Peterka, JA (2001). Database of peak gust wind speeds, Texas Tech/ CSU. Extreme winds and wind effects on ...

2013-08-19T23:59:59.000Z

343

Surface wind speed distributions| Implications for climate and wind power.  

E-Print Network (OSTI)

?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

Capps, Scott Blair

2010-01-01T23:59:59.000Z

344

NREL: Wind Research - WindPACT  

NLE Websites -- All DOE Office Websites (Extended Search)

WindPACT WindPACT The Wind Partnerships for Advanced Component Technology (WindPACT) studies were conducted to assist industry by testing innovative components, such as advanced blades and drivetrains, to lower the cost of energy. Specific goals included: Foster technological advancements to reduce the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are necessary to achieve objectives of cost and size for future turbines Identify and solve technological hurdles that may block industry from taking advantage of promising technology Design, fabricate, and test selected advanced components to prove their viability Support wind industry through transfer of technology from

345

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind America is home to one of the largest and fastest growing wind markets in the world. Watch the video to learn more about the latest trends in the U.S. wind power market and join us this Thursday, August 8 at 3 pm ET for a Google+ Hangout on wind energy in America. The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our energy economy and bring the next-generation of

346

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization  

DOE Green Energy (OSTI)

Speed-time and video data were tractor-trailers performing local deliveries in logged for Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the drier-to-driver variation of NO{sub x} was under 4%, although the driver-to driver variations of CO and PM were higher. Emissions levels of NO{sub x} for the Ford tractor at a test weight of 46,400 lb. u sing the CSHVR were comparable with values obtained using the WVU 5 mile route and the EPA Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (''Test D''). The PM missions were slightly higher for the CSHVR than the 5 mile route and Test D. The effect of test weight on emissions, in units of mass/distance, was assessed using the International tractor with the CSHVR at 26,000, 36,000 and 46,400 lb. test weights. Variation of all regulated exhaust emissions was small between test weights, although the CO{sub 2} level reflected the additional energy used at higher weights. The small variation in regulated emissions may be attributed to the fact that in all three cases, the route called for full power operation of the vehicle, and that PM puff associated with gear shifting would be similar. It is concluded that the CSHVR represents a useful and realistic test schedule for truck emissions characterization.

Nigel N. Clark; James J. Daley; Ralph D. Nine; Christopher M. Atkinson

1999-05-03T23:59:59.000Z

347

2009 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRAM 2 Presentation Overview * Introduction to 2009 edition of U.S. wind energy market report * Wind installation trends * Wind industry trends * Price, cost, and...

348

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.Corp. 2010. Eastern Wind Integration and Transmission Study.

Bolinger, Mark

2013-01-01T23:59:59.000Z

349

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.2010. SPP WITF Wind Integration Study. Little Rock,

Wiser, Ryan

2010-01-01T23:59:59.000Z

350

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

The wind energy integration, transmission, and policy2012, however, federal policy towards wind energy remainsin federal policy towards wind energy after 2012 places such

Wiser, Ryan

2012-01-01T23:59:59.000Z

351

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

The wind energy integration, transmission, and policyPTC. Moreover, federal policy towards wind energy remainsand policy announcements demonstrate accelerated activity in the offshore wind energy

Wiser, Ryan

2010-01-01T23:59:59.000Z

352

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

performance, and price of wind energy, policy uncertainty The wind energy integration, transmission, and policyand absent supportive policies for wind energy. That said,

Bolinger, Mark

2013-01-01T23:59:59.000Z

353

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

354

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

355

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

356

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

357

WIND DATA REPORT FALMOUTH, MA  

E-Print Network (OSTI)

WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

Massachusetts at Amherst, University of

358

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

359

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

360

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

Massachusetts at Amherst, University of

362

WIND DATA REPORT Presque Isle  

E-Print Network (OSTI)

WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

363

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

364

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

turbine prices. Installed project costs are found to exhibitpressure on total project costs and wind power prices. Windinstalled wind power project costs, wind turbine transaction

Wiser, Ryan

2012-01-01T23:59:59.000Z

365

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

downward pressure on project costs and wind power prices.installed wind power project costs, wind turbine transactionand uncertain offshore project costs, and public acceptance

Wiser, Ryan

2010-01-01T23:59:59.000Z

366

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

Wiser, Ryan

2010-01-01T23:59:59.000Z

367

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

Bolinger, Mark

2010-01-01T23:59:59.000Z

368

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

Wiser, Ryan

2012-01-01T23:59:59.000Z

369

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

11 advanced-stage offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

Bolinger, Mark

2010-01-01T23:59:59.000Z

370

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

Bolinger, Mark

2013-01-01T23:59:59.000Z

371

RI_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionRhodeIslandWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Rhode...

372

CT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionConnecticutWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

373

MA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionMassachusettsWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of...

374

VT_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionVermontWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Vermont...

375

NH_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

UnitedStatesWindHighResolutionNewHampshireWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of New...

376

IA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDataTechnologySpecificUnitedStatesWindHighResolutionIowaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Iowa at...

377

ME_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

SDataTechnologySpecificUnitedStatesWindHighResolutionMaineWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Maine...

378

ga_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

DataTechnologySpecificUnitedStatesWindHighResolutionGeorgiaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Georgia...

379

ny_50m_wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ataTechnologySpecificUnitedStatesWindHighResolutionNewYorkWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for New York at a 50...

380

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

federal and state incentives for wind energy deployment. Thefederal and state incentives for wind energy deployment.federal and state incentives for wind energy deployment in

Wiser, Ryan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

continued state and federal incentives for wind energy,continued state and federal incentives for wind energy,continued state and federal incentives for wind energy,

Bolinger, Mark

2013-01-01T23:59:59.000Z

382

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

Bolinger, Mark

2010-01-01T23:59:59.000Z

383

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

Wiser, Ryan

2010-01-01T23:59:59.000Z

384

2009 Wind Technologies Market Report  

E-Print Network (OSTI)

2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofs first utility-scale wind power project. Credit: Klaus

Wiser, Ryan

2010-01-01T23:59:59.000Z

385

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

The Effects of Integrating Wind Power on Transmission SystemInterconnection Policies and Wind Power: A Discussion ofof their database of wind power projects, and for providing

Bolinger, Mark

2010-01-01T23:59:59.000Z

386

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

Power Testing and Data in General Wind and Turbine Dynamics Wind Stresses Control, the Power Grid, and the Grids Economics Environmental Effects Energy101: Wind Turbines...

387

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

388

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

2005-08-01T23:59:59.000Z

389

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

2005-08-15T23:59:59.000Z

390

EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT  

SciTech Connect

This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

Wu, T

2007-07-09T23:59:59.000Z

391

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

392

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

393

Wind Power Career Chat  

DOE Green Energy (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

394

Wind power today  

DOE Green Energy (OSTI)

This publication highlights initiatives of the US DOE`s Wind Energy Program. 1997 yearly activities are also very briefly summarized. The first article describes a 6-megawatt wind power plant installed in Vermont. Another article summarizes technical advances in wind turbine technology, and describes next-generation utility and small wind turbines in the planning stages. A village power project in Alaska using three 50-kilowatt turbines is described. Very brief summaries of the Federal Wind Energy Program and the National Wind Technology Center are also included in the publication.

NONE

1998-04-01T23:59:59.000Z

395

Wind energy information guide  

DOE Green Energy (OSTI)

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

396

NREL: Education Programs - KidWind Project and Wind Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

KidWind Project and Wind Education in the Classroom: Wind Powering America Lessons Learned July 1, 2013 Integrating wind energy curricula into the classroom can seem like a...

397

NREL: Wind Research - Landing a Job in the Wind Industry: Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

Landing a Job in the Wind Industry: Wind Powering America Lessons Learned January 28, 2013 Wind Powering America interviewed Marilla Lamb, a 2012 graduate of Northern Arizona...

398

A Set of Comparable Carbon Footprints for Auto, Truck and Transit Travel in Metropolitan America  

NLE Websites -- All DOE Office Websites (Extended Search)

Set of Comparable Carbon Footprints for Highway Travel in Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America by Frank Southworth* and Anthon Sonnenberg** August 31, 2009 *Corresponding author: Senior R&D Staff, Oak Ridge National Laboratory and Principal Research Scientist Georgia Institute of Technology 790 Atlantic Drive SEB Building, Room 324 Atlanta, GA 30332-0355 E-mail: frank.southworth@ce.gatech.edu ** PhD Student, Georgia Institute of Technology School of Civil and Environmental Engineering Georgia Institute of Technology 1 Abstract The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation's 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist

399

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC FOR AN ADVANCE WAIVER OF DOMESTIC AND INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- FC26-05NT42417 W(A)-05-042, CH-1324 The Petitioner, Mack Trucks, Inc. (Mack), was awarded a cooperative agreement for the performance of work entitled, "Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement is to demonstrate a minimum of 15% fuel economy improvement with emissions meeting the 2010 EPA regulation. Mack Tracks will be establishing the base engine, developing engine management system for air-power-assist engine and ensuring the conduction of steady-state engine tests. Mack will also evaluate the commercial viability of variable valve

400

RadEducationPosterTrucks_11-7-13_final_print-ready  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT Maximum Dose Limit: Service Attendants DOT Maximum Dose Limit: Service Attendants U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Protecting Against Radiation Exposure All U.S. Department of Energy activities are performed in a manner that protects workers and the public from harmful exposure to radiation. In addition, packaging and transportation of all radioactive materials must be conducted in accordance with U.S. Department of Transportation (DOT) regulations.* *10 CFR Part 71 and 49 CFR 1910 DOT Maximum Dose Limits: "Closed" Exclusive-Use Vehicle At contact - Waste package inside trailer (Direct contact prohibited) 1,000 mrem/hour Driver in cab 2 mrem/hour At 2 meters (6.6 feet) 10 mrem/hour At contact - Truck 200 mrem/hour For 15 minutes of exposure

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heavy-Duty Truck Idle Reduction Technology Demonstations - 2005 Status Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2006 June 30, 2006 Heavy-Duty Truck Idle Reduction Technology Demonstrations 2005 Status Report Fred Wagner Energetics Incorporated NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

402

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

403

DEVELOPMENT OF UREA-SCR FOR HEAVY-DUTY TRUCKS DEMONSTRATION UPDATE  

DOE Green Energy (OSTI)

This study included engine cell and vehicle tests. The engine cell tests are aimed at determining NOX reduction using the US transient and OICA emissions test cycles. These cycles will be included in future US HD emissions standards. The vehicle tests will show urea-SCR system performance during real-world operation. These tests will prove that the technology can be successfully implemented and demonstrated over-the-road. The program objectives are to: (a) apply urea-SCR to a US HD diesel engine; (b) determine engine cell emissions reduction during US-transient and OICA cycles; (c) apply urea-SCR to a US HD diesel truck; and (d) determine NOX reduction and urea consumption during over-the-road operation.

Miller, William

2000-08-20T23:59:59.000Z

404

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

405

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

406

2008 Wind Energy Projects, Wind Powering America (Poster)  

SciTech Connect

The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

2009-01-01T23:59:59.000Z

407

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

408

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1  

E-Print Network (OSTI)

Virtual Wind Speed Sensor for Wind Turbines Andrew Kusiak1 ; Haiyang Zheng2 ; and Zijun Zhang3 Abstract: A data-driven approach for development of a virtual wind-speed sensor for wind turbines is presented. The virtual wind-speed sensor is built from historical wind-farm data by data-mining algorithms

Kusiak, Andrew

409

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

Bolinger, Mark

2010-01-01T23:59:59.000Z

410

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wind Power Animation This animation discusses the advantages of wind power, the workings of a wind turbine, and wind resources in the United States. It also...

411

Wind Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Blog Wind Blog RSS September 26, 2013 Wind Farm Brings Clean, Affordable Energy to Alaskan Cooperative How can we make it easier for more communities to use wind power?...

412

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

growth in U.S. wind turbine manufacturing capability and the drop in wind power plantgrowth in U.S. wind turbine manufacturing capability and the drop in wind power plant

Wiser, Ryan

2012-01-01T23:59:59.000Z

413

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

414

Severe Convective Wind Environments  

Science Conference Proceedings (OSTI)

Nontornadic thunderstorm winds from long-lived, widespread convective windstorms can have a tremendous impact on human lives and property. To examine environments that support damaging wind producing convection, sounding parameters from Rapid ...

Evan L. Kuchera; Matthew D. Parker

2006-08-01T23:59:59.000Z

415

Greensburg Wind Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

renewable energy and energy efficiency. * Kansas offers the third highest potential for wind energy in the U.S. * Thorough research conducted by NREL proved the viability of wind...

416

Wind Rose Bias Correction  

Science Conference Proceedings (OSTI)

Wind rose summaries, which provide a basis for understanding and evaluating the climatological behavior of local wind, have a directional bias if a conventional method is used in their generation. Three techniques used to remove this bias are ...

Scott Applequist

2012-07-01T23:59:59.000Z

417

NREL: Wind Research - Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards NREL has received many awards for its technical innovations in wind energy. In addition, the research conducted at the National Wind Technology Center (NWTC) at NREL has led...

418

Surface Wind Direction Variability  

Science Conference Proceedings (OSTI)

Common large shifts of wind direction in the weak-wind nocturnal boundary layer are poorly understood and are not adequately captured by numerical models and statistical parameterizations. The current study examines 15 datasets representing a ...

Larry Mahrt

2011-01-01T23:59:59.000Z

419

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a crane lifting the blades onto a wind turbine that reads 'U.S. Department of Energy, NREL.' You can learn more about horizontal axis turbines from the EERE Wind Program's...

420

Wind Energy Technologies  

Science Conference Proceedings (OSTI)

... Avg Wind Speed 7.5 m/s 8.74 m/s GE 2.x turbine family ... 1 to 48 Hour Wind Forecasting ... Danish Transmission Grid w/ Interconnects & Offshore Sites ...

2012-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wind Energy Resources  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of producing electricity....

422

Wind Energy Benefits  

DOE Green Energy (OSTI)

Wind energy provides many benefits, including economic and environmental. This two-sided fact sheet succinctly outlines the top ten wind energy benefits and is especially well suited for general audiences.

Not Available

2005-04-01T23:59:59.000Z

423

Wind Turbine Maintenance Guide  

Science Conference Proceedings (OSTI)

This guideline provides component-level information regarding the maintenance of major components associated with a wind turbine. It combines recommendations offered by major equipment manufacturers with lessons learned from owner/operators of wind turbine facilities.

2012-06-29T23:59:59.000Z

424

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

425

Wind Powering America: Wind Energy Videos  

DOE Data Explorer (OSTI)

Wind Powering America is a nationwide initiative designed to increase the use of wind energy across the United States by working with regional stakeholders. A list of videos developed by and for the program includes interviews, short news clips, and documentary-like programs.

426

Wind powering America: Vermont  

DOE Green Energy (OSTI)

Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

427

Wind powering America: Colorado  

DOE Green Energy (OSTI)

This fact sheet contains information about green power programs in Colorado and a description of the Ponnequin Wind Farm.

O'Dell, K.

2000-04-03T23:59:59.000Z

428

Wind powering America: Kansas  

DOE Green Energy (OSTI)

Wind resources in the state of Kansas show great potential for wind energy development according to the wind resource assessment conducted by the Kansas Electric Utilities Research Program, UWIG, and DOE. This fact sheet provides a brief description of the resource assessment and description of the state's new educational wind kiosk as well as its green power program and financial incentives available for the development of renewable energy technologies. A list of contacts for more information is also included.

NREL

2000-04-11T23:59:59.000Z

429

Carroll County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance sets forth regulations for the zoning, erection, and operation of small wind energy systems in Carroll County, Maryland.

430

Kent County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

431

America's Booming Wind Industry  

Energy.gov (U.S. Department of Energy (DOE))

Sharing key findings from two new Energy Department reports that highlight the record growth of America's wind industry.

432

Stations in Special Wind Regions  

Science Conference Proceedings (OSTI)

Stations in Special Wind Regions. ... station_matrix_912850.xlsx (Excel file). [ SED Home | Extreme Winds Home | Previous | Next ] ...

2013-03-11T23:59:59.000Z

433

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

Acquisition CPV Wind Duke Energy Acquisition Tierra Energy,Allco Wind Energy Duke Energy Acquisition Catamount Veolia

Bolinger, Mark

2010-01-01T23:59:59.000Z

434

Wind Engineering Information at NIST  

Science Conference Proceedings (OSTI)

NIST Home > Wind Engineering Information at NIST. Wind Engineering Information at NIST. (the links below are a compilation ...

2010-09-23T23:59:59.000Z

435

New England Wind Forum: New England Wind Projects  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Projects This page shows the location of installed and planned New England wind projects. Find windfarms, community-scale wind projects, customer-sited wind projects, small wind projects, and offshore wind projects. Read more information about how to use the Google Map and how to add your wind project to the map. Text version New England Wind Energy Projects Connecticut, East Canaan Wind Connecticut, Klug Farm Connecticut, Phoenix Press Connecticut, Wind Colebrook (South and North)

436

Wind Power in Paradise  

Science Conference Proceedings (OSTI)

The paper discusses how an international team of engineers brought wind power to the Galapagos Islands. The san cristobal system is a wind-diesel hybrid. The electricity generated by the wind turbines and by three diesel generators converges at the substation ...

E. Guizzo

2008-03-01T23:59:59.000Z

437

Wind power outlook 2006  

DOE Green Energy (OSTI)

This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

anon.

2006-04-15T23:59:59.000Z

438

Wind Economic Development (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

439

2008 Wind Technologies Market Report  

E-Print Network (OSTI)

1 2008 Wind Technologies Market Report Ryan Wiser and Mark Bolinger Lawrence Berkeley National.S. wind energy market report · Wind installation trends · Wind industry trends · Price, cost, and performance trends ­ Power sales prices ­ Installed wind project costs ­ Wind turbine transaction prices

440

Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind  

E-Print Network (OSTI)

Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

Nebraska-Lincoln, University of

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Derivatives: Modeling and Pricing  

Science Conference Proceedings (OSTI)

Wind is considered to be a free, renewable and environmentally friendly source of energy. However, wind farms are exposed to excessive weather risk since the power production depends on the wind speed, the wind direction and the wind duration. This risk ... Keywords: Forecasting, Pricing, Wavelet networks, Weather derivatives, Wind derivatives

A. Alexandridis; A. Zapranis

2013-03-01T23:59:59.000Z

442

A Horizontal Wind and Wind Confidence Algorithm for Doppler Wind Profilers  

Science Conference Proceedings (OSTI)

Boundary layer wind profilers are increasingly being used in applications that require high-quality, rapidly updated winds. An example of this type of application is an airport wind hazard warning system. Wind shear can be a hazard to flight ...

Robert K. Goodrich; Corrinne S. Morse; Larry B. Cornman; Stephen A. Cohn

2002-03-01T23:59:59.000Z

443

NREL: Wind Research - KidWind Project and Wind Education in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

KidWind Project and Wind Education in the Classroom: Wind Powering America Lessons Learned July 1, 2013 Integrating wind energy curricula into the classroom can seem like a...

444

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer.

...

445

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer.

...

446

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

447

Wind energy applications guide  

DOE Green Energy (OSTI)

The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

anon.

2001-01-01T23:59:59.000Z

448

Wind energy information directory  

DOE Green Energy (OSTI)

Wind Energy Information has been prepared to provide researchers, designers, manufacturers, distributors, dealers, and users of wind energy conversion systems with easy access to technical information. This directory lists organizations and publications which have the main objective of promoting the use of wind energy conversion systems, some organizations that can respond to requests for information on wind energy or make referrals to other sources of information, and some publications that occasionally include information on wind energy. The bibliography contains references to information for both the neophyte and the expert.

None

1979-10-01T23:59:59.000Z

449

Prairie Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Prairie Winds Wind Farm Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Basin Electric Power Coop/Central Power Electric Coop Developer Basin Electric Power Coop/Central Power Electric Coop Energy Purchaser Basin Electric Power Coop/Central Power Electric Coop Location Near Minot ND Coordinates 48.022927°, -101.291435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.022927,"lon":-101.291435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

NREL: Wind Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

451

Energy in the Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provi and BP Energy in the Wind - Exploring Basic Electrical Concepts by Modeling Wind Turbines Curriculum: Wind Power (simple machines, aerodynamics, weather/climatology, leverage, mechanics, atmospheric pressure, and energy resources/transformations) Grade Level: High School Small groups: 2 students Time: Introductory packet will take 2-3 periods. Scientific investigation will take 2-3 periods. (45-50 minute periods) Summary: Students explore basic electrical concepts. Students are introduced to electrical concepts by using a hand held generator utilizing a multimeter, modeling, and designing a wind turbine in a wind tunnel (modifications are given if a wind tunnel is not available). Students investigate how wind nergy is used as a renewable energy resource. e

452

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

453

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

454

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

455

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

456

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

457

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network (OSTI)

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

458

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network (OSTI)

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

459

Liquid natural gas as a transportation fuel in the heavy trucking industry. Third quarterly progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Investigations are underway concerning the use of liquid natural gas as a fuel for trucks. Progress is reported in the following areas: direct diesel replacement and short and long term storage.

Sutton, W.H.

1995-04-01T23:59:59.000Z

460

DOE Science Showcase - Wind Power  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Wind Power DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind Power Potential, Energy Citations Database Dynamic Models for Wind Turbines and Wind Power Plants, DOE Information Bridge 2012 ARPA-E Energy Innovation Summit: Profiling General Compression: A River of Wind, ScienceCinema, multimedia Solar and Wind Energy Resource Assessment (SWERA) Data from the

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Statement of Considerations REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-02-018; [ORO-770] Volvo Trucks North America, Inc. (VTNA) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under UT-Battelle, LLC Subcontract No. 4000010928 under Department of Energy (DOE) Contract DE-ACO5- 00OR22725. The scope of work of this project is to develop an operational Accelerated Endurance Test (AEC) for Class 8 Volvo Hood System fabricated partly or wholly from carbon fiber Sheet Molding Compound (SMC). It is expected that this system will result in

462

Commonwealth Wind Incentive Program - Micro Wind Initiative...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

463

New England Wind Forum: Buying Wind Power  

Wind Powering America (EERE)

Buying Wind Power Buying Wind Power On this page find information about: Green Marketing Renewable Energy Certificates Green Pricing Green Marketing Green power marketing refers to selling green power in the competitive marketplace, in which multiple suppliers and service offerings exist. In states that have established retail competition, customers may be able to purchase green power from a competitive supplier. Connecticut Connecticut Clean Energy Options Beginning in April 2005, Connecticut's two investor-owned utilities, Connecticut Light and Power and United Illuminating, began to offer a simple, affordable program to their customers for purchasing clean energy such as wind power. In late 2006, stakeholders started to explore a new offering that would convey the price stability of wind energy (and other renewable energy resources) to Connecticut consumers. This new offering is still under development.

464

Commonwealth Wind Commercial Wind Program (Massachusetts) | Open...  

Open Energy Info (EERE)

Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All Special...

465

San Diego County - Wind Regulations (California) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Regulations (California) San Diego County - Wind Regulations (California) < Back Eligibility Commercial Industrial Residential Savings Category Wind Buying & Making...

466

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

467

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

468

Energy Basics: Wind Power Animation (Text Version)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

469

Blyth Offshore Wind Ltd | Open Energy Information  

Open Energy Info (EERE)

Blyth Offshore Wind Ltd Jump to: navigation, search Name Blyth Offshore Wind Ltd Place United Kingdom Sector Renewable Energy, Wind energy Product Blyth Offshore Wind Limited,...

470

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

471

Han Wind Energy Corporation | Open Energy Information  

Open Energy Info (EERE)

Han Wind Energy Corporation Jump to: navigation, search Name Han Wind Energy Corporation Place Beijing, Beijing Municipality, China Zip 100027 Sector Wind energy Product Han Wind...

472

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name Heilongjiang Lishu Wind Power Place Heilongjiang Province, China Sector Wind energy Product China-based wind project developer...

473

Crownbutte Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Crownbutte Wind Power LLC Jump to: navigation, search Name Crownbutte Wind Power LLC Place Mandan, North Dakota Zip 58554 Sector Wind energy Product North Dakota wind power company...

474

Daqing Longjiang Wind Power | Open Energy Information  

Open Energy Info (EERE)

Longjiang Wind Power Jump to: navigation, search Name Daqing Longjiang Wind Power Place Daqing, Heilongjiang Province, China Zip 163316 Sector Wind energy Product Local wind...

475

Gansu Xinhui Wind Power | Open Energy Information  

Open Energy Info (EERE)

Xinhui Wind Power Jump to: navigation, search Name Gansu Xinhui Wind Power Place China Sector Wind energy Product China-based joint venture engaged in developing wind projects....

476

German Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Association Place Osnabrck, Germany Zip 49074 Sector Wind energy Product Assocation for the promotion of wind energy in Germany. References German Wind Energy...

477

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

DOE Green Energy (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z

478

Independent design review report for truck {number_sign}1 modifications for flammable gas tanks  

Science Conference Proceedings (OSTI)

The East and West Tank Farm Standing Order 97-01 requires that the PMST be modified to include purging of the enclosed space underneath the shielded receiver weather cover per National Fire Protection Association (NFPA) 496, Purged and Pressurized Enclosures for Electrical Equipment. The Standing Order also requires that the PMST be modified by replacing the existing electrical remote latch (RLU) unit with a mechanical remote latch unit. As the mechanical remote latch unit was exactly like the RLU installed on the Rotary Mode Core Sampler Trucks (RMCST) and the design for the RMCST went through formal design review, replacing the RLU was done utilizing informal design verification and was completed per work package ES-97-0028. As the weather cover purge was similar to the design for the RMCSTS, this design was reviewed using the independent review method with multiple independent reviewers. A function design criteria (WHC-SD-WM-FDC-048, Functional Design Criteria for Core Sampling in Flammable Gas Watch List Tanks) provided the criteria for the modifications. The review consisted of distributing the design review package to the reviewers and collecting and dispositioning the RCR comments. The review package included the ECNs for review, the Design Compliance Matrix, copies of all drawings affected, and copies of outstanding ECNs against these drawings. A final meeting was held to ensure that all reviewers were aware of the changes to ECNs from incorporation of RCR comments.

Wilson, G.W.

1997-05-09T23:59:59.000Z

479

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

480

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Below are some select news stories from the National Wind Technology Below are some select news stories from the National Wind Technology Center. Subscribe to the RSS feed RSS . Learn about RSS. January 3, 2014 New Modularization Framework Transforms FAST Wind Turbine Modeling Tool The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently released an expanded version of its FAST wind turbine computer-aided engineering tool under a new modularization framework. January 2, 2014 The Denver Post Highlights the NWTC's New 5-MW Dynamometer On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Archives 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 Printable Version Wind Research Home Capabilities Projects Facilities

Note: This page contains sample records for the topic "truck navajo wind" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy 1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

482

Wind Turbines and Health  

E-Print Network (OSTI)

Wind power has been gaining prominence as a viable sustainable alternative to other forms of energy production. Studies have found that there is increasing population demand for green energy1,2. In Australia, this has been encouraged by the introduction of the Renewable Energy (Electricity) Act in 2000 and the Renewable Energy Target Scheme in 2009. As with any new technology, wind turbines are not without controversy. Those who oppose the development of wind farms contend that wind turbines can adversely impact the health of individuals living in close proximity. Do wind turbines impact on health? Concerns regarding the adverse health impacts of wind turbines focus on infrasound noise, electromagnetic interference, shadow flicker and blade glint produced

unknown authors

2010-01-01T23:59:59.000Z

483

Session: Offshore wind  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

484

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

485

Wind Power | Open Energy Information  

Open Energy Info (EERE)

Wind Power Wind Power Jump to: navigation, search Wind Power WIndfarm.Sunset.jpg Wind power is a form of solar energy.[1] Wind is caused by the uneven heating of the atmosphere by the sun, variations in the earth's surface, and rotation of the earth. Mountains, bodies of water, and vegetation all influence wind flow patterns[2], [3]. Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the energy in wind to electricity by rotating propeller-like blades around a rotor. The rotor turns the drive shaft, which turns an electric generator.[2] Three key factors affect the amount of energy a turbine can harness from the wind: wind speed, air density, and swept area.[4] Mechanical power can also be utilized directly for specific tasks such as

486

Availability of wind power  

DOE Green Energy (OSTI)

Meteorological studies of available wind power were begun at Sandia in 1973 to support the development of a vertical-axis wind turbine (VAWT, ''egg-beater''). This presentation reviews work to date. Copies of seven source reports were provided to ELETROBRAS; Scientia, Ltda., has included them in an extensive bibliography that was distributed at the seminar. This report summarizes those climatological studies that are needed to assist and promote wind energy exploitation in Brazil.

Reed, J.W.

1978-01-01T23:59:59.000Z

487

Wind Engineering & Natural Disaster Mitigation  

E-Print Network (OSTI)

Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

Sinnamon, Gordon J.

488

NREL: Wind Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

@NWTC Newsletter @NWTC is a quarterly newsletter that contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events...

489

Forecasting Wind Markets  

U.S. Energy Information Administration (EIA)

Emerging Technologies, Data, and NEM Modeling Issues in Wind Resource Supply Data and Modeling Chris Namovicz ASA Committee on Energy Statistics

490

Offshore Wind 101  

Wind Powering America (EERE)

visual impact and potential user conflict. Sorry. According to the Department of Energy's national renewable energy lab, the nation's potential offshore wind energy resource is...