Powered by Deep Web Technologies
Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

2

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

3

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

4

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

5

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

6

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

7

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

8

Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

2: September 12, 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Google Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Delicious Rank Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Digg

9

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

10

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

11

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

12

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

13

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

14

Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety  

SciTech Connect

The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2007-06-11T23:59:59.000Z

15

Download Fuel Economy Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Download Fuel Economy Data Download Fuel Economy Data Fuel economy data are the result of vehicle testing done at the Environmental Protection Agency's National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, and by vehicle manufacturers with oversight by EPA. 2013 Ford C-MAX Hybrid Data Revised (August 15, 2013) 2011-2013 Hyundai and Kia data revised (November 2, 2012) Downloadable Fuel Economy Data Find and Compare Cars data - MPG data for all 1984-2014 vehicles (Updated: Friday December 20 2013) For Developers: Fueleconomy.gov Web Services CSV: /feg/epadata/vehicles.csv.zip (Documentation) XML: /feg/epadata/vehicles.xml.zip (Documentation) Fuel Economy Datafile* Fuel Economy Guide Adobe Acrobat Icon Green Vehicle Guide Datafile Green Vehicle Guide Adobe Acrobat Icon

16

EPA Fuel Economy Ratings  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Window Sticker Current Window Sticker The U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) recently redesigned and enhanced the window sticker that appears on new vehicles. The new Fuel Economy and Environment Label will be mandatory on all new vehicles beginning with the 2013 model year. For the 2012 model year, manufacturers can use the new window sticker or the older window sticker shown below. Roll over the highlighted elements on the label below to learn more about EPA's current fuel economy label. EPA's Current Fuel Economy Label EPA's New Fuel Economy Label Estimated Annual Fuel Cost: $2,039 based on 15,000 mile at $2.80 per gallon Your fuel cost may differ depending on annual miles and fuel prices. Combined Fuel Economy for this Vehicle: 21 MPG, Range for all SUVs: 10-31

17

Car buyers and fuel economy?  

E-Print Network (OSTI)

corporate average fuel economy standards. Economic InquiryAll rights reserved. Keywords: Fuel economy; Fuel ef?ciency;improvement in the fuel economy of an SUV they have designed

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

18

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

19

Best and Worst Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Best and Worst MPG 2013 Most and Least Efficient Vehicles Cars Cars (excluding EVs) Trucks Trucks (excluding EVs) 2013 Most Fuel Efficient Cars by...

20

Fuel Economy Mobile  

NLE Websites -- All DOE Office Websites (Extended Search)

and used cars New Window Sticker Learn more about the new fuel economy label Calculate My MPG Enter your MPG data at the pump Gas Mileage Tips Tips to save you fuel and money Full...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Predicting Individual Fuel Economy  

SciTech Connect

To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2011-01-01T23:59:59.000Z

22

Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

75, the fuel economy of passenger cars and light trucks has been 75, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards and their impact on highway safety. A seminal study of the link between CAFE and traffic fatalities was published by R. W. Crandall and J. D. Graham in 1989. They linked higher fuel economy levels to decreases in vehicle weight and correlated the decline in new car weight with about a 20% increase in occupant fatalities. The time series available to them, 1947-1981, includes only the first 4 years of fuel economy regulation, but any statistical relationship estimated over such

23

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

24

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

25

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

26

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

27

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

28

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

29

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Pure Power increased energy efficiency while expanding plant

30

Print the Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

31

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

32

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

33

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

34

Used Car Fuel Economy Label  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual fuel economy will vary for many reasons, including driving conditions and how the car was driven and maintained. Aftermarket modifications to the vehicle can affect fuel...

35

Fuel Economy.gov - Mobile | Open Energy Information  

Open Energy Info (EERE)

Economy.gov - Mobile Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: fueleconomy.gov/ Web Application Link: fueleconomy.gov/m/ Cost: Free References: www.fueleconomy.gov[1] Logo: Fuel Economy.gov - Mobile Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Overview Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Highlights Find a Car MPG ratings for new and used cars.

36

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

37

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Throughof the Corporate Average Fuel Economy Standards. EconomicImplications for Fuel Economy Policy. Presentation to SAE

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

38

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

39

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

40

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimation of Fuel Use by Idling Commercial Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

42

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

43

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

44

Moving Forward With Fuel Economy Standards  

E-Print Network (OSTI)

Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

Schipper, Lee

2009-01-01T23:59:59.000Z

45

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

46

Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report  

SciTech Connect

The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

Not Available

1991-04-01T23:59:59.000Z

47

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

48

Model Year 1999 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL FUEL ECONOMY GUIDE MODEL YEAR 1999 DOE/EE-0178 Fuel Economy Estimates October 1998 1 CONTENTS PAGE Purpose of the Guide ..................................................... 1 Interior Volume ................................................................ 1 How the Fuel Economy Estimates are Obtained ........... 1 Factors Affecting MPG .................................................... 2 Fuel Economy and Climate Change ............................... 2 Gas Guzzler Tax ............................................................. 2 Vehicle Classes Used in This Guide. .............................. 2 Annuel Fuel Costs .......................................................... 3 How to Use the Guide .................................................... 4 Where to Re-order Guides

49

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

rating for fuelType1 scoreAlt - EPA 1-10 smog rating for fuelType2 smartwayScore - SmartWay Code standard - Vehicle Emission Standard Code stdText - Vehicle Emission Standard...

50

Feature - Fuel Economy for Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles heavy duty trucks Argonne researcher Aymeric Rousseau was part of a National Academy of Science (NAS) committee established to make recommendations on improving and regulating fuel consumption for medium- and heavy-duty vehicles. On March 31, the committee issued a report that evaluates various technologies and methods that could improve the fuel economy of these vehicles. As a system analysis engineer at Argonne's Center for Transportation Research, Rousseau contributed his expertise on vehicle modeling and simulation to the committee, which was comprised of 19 members from industry, research organizations and academia. Rousseau, who leads the development of Argonne's PSAT and Autonomie software tools, helped the committee determine how modeling and simulation tools can be used to:

51

Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Test Fuel Economy Test Procedures and Labeling to someone by E-mail Share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Facebook Tweet about Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Twitter Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Google Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Delicious Rank Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Digg Find More places to share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Economy Test Procedures and Labeling

52

Why is fuel Economy Important?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

53

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

54

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

55

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

56

Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Vehicle Fuel State Vehicle Fuel Economy Requirements to someone by E-mail Share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Facebook Tweet about Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Twitter Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Google Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Delicious Rank Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Digg Find More places to share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Vehicle Fuel Economy Requirements State contracts for the purchase or lease of new passenger automobiles must

57

Getting to Know the New Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting to Know the New Fuel Economy Getting to Know the New Fuel Economy and Environment Labels / 1 * Understanding the Guide Listings / 2 * Why Some Vehicles Are Not Listed / 2 * Vehicle Classes Used in This Guide / 3 * Tax Incentives and Disincentives / 3 * Why Consider Fuel Economy / 3 * Fueling Options / 4 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 4 * Model Year 2013 Fuel Economy Leaders / 5 * 2013 Model Year Vehicles / 6 * Diesel Vehicles / 26 * Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Hybrid Electric Vehicles / 28 * Compressed Natural Gas Vehicles / 31 * Fuel Cell Vehicles / 31 * Ethanol Flexible Fuel Vehicles / 32 * Index / 37 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most

58

Fuel Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

59

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

60

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

62

1998 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

purpose vehicles (2-wheel drive and 4-wheel drive). By using this Guide consumers can estimate the average yearly fuel cost for any vehicle. The mileage figures included in...

63

Fuel Economy Widgets  

NLE Websites -- All DOE Office Websites (Extended Search)

widget and many other great free widgets at Widgetbox Not seeing a widget? (More info) Gas Mileage Tips Widget This widget displays a new fuel-saving tip each week and provides...

64

The Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

TRB 05-1336 TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination November 16, 2004 Word Count: 5,966 (including 3 tables and 1 figure) Sanjana Ahmad Research Assistant The University of Tennessee, Knoxville 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1311 Fax: (865) 946-1314 Email: sahmad2@utk.edu David L. Greene Corporate Research Fellow Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1310 Fax: (865) 946-1314 Email: dlgreene@ornl.gov Ahmad and Greene 1 ABSTRACT Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the Corporate Average Fuel Economy (CAFE) standards, established during the energy crises of the 1970s. Calls to

65

Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Fuel Economy Vehicle Fuel Economy and Greenhouse Gas Emissions Standards to someone by E-mail Share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Facebook Tweet about Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Twitter Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Google Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Delicious Rank Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Digg Find More places to share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on AddThis.com...

66

What is FuelEconomy.gov  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FuelEconomy.gov? FuelEconomy.gov? FuelEconomy.gov is an Internet resource that helps consumers make informed fuel economy choices when purchasing a vehicle and achieve the best fuel economy possible from the cars they own. FuelEconomy.gov is maintained by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy with data provided by the U.S. Environmental Protection Agency (EPA). The site helps fulfill DOE and EPA's responsibility under the Energy Policy Act of 1992 to provide accurate miles per gallon (MPG) information to consumers. What has FuelEconomy.gov accomplished? In 2011 alone, FuelEconomy.gov is estimated to have helped to

67

Fuel Economy in the News  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Economy in the News Fuel Economy in the News Disclaimer: The opinions expressed in the following articles belong to the original authors and do not necessarily reflect the opinions or policies of the U.S. Department of Energy or the Environmental Protection Agency. May 31, 2013 Drive On: Ford rocks hybrid sales - USA Today 2014 Chevrolet Cruze Diesel: Could this be the anti-TDI? - Car and Driver Tips for Buying and Servicing a Used Hybrid Car - The New York Times May 30, 2013 Mercedes' GLK250 joins fuel efficiency with luxury - The Detroit News Honda Fit EV lease drops to $259 with no down payment, unlimited miles - Autoblog Tesla tripling supercharger network for LA to NY trip - CNN May 29, 2013 Musk sticking to plan for 'affordable' Tesla model - Autoblog 2015 Toyota Prius Spy Shots: Next-Gen Hybrid Breaks Cover - Green

68

2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2004 FUEL ECONOMY GUIDE BEST IN CLASS 2004 FUEL ECONOMY GUIDE BEST IN CLASS A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS...

69

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

70

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy...

71

Fuel Economy and Environment Labels  

NLE Websites -- All DOE Office Websites (Extended Search)

note that these labels are examples and do not represent real automobiles. The sample labels are intended to note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 1 A New Fuel Economy Label for a New Generation of Cars Gasoline Label Please note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 2 Flexible Fuel Vehicle: Gasoline-Ethanol (E85) Without Driving Range

72

Effect of Intake Air Filter Condition on Vehicle Fuel Economy  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2009-02-01T23:59:59.000Z

73

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

74

Motor vehicle fuel economy, the forgotten HC control stragegy?  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

75

2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Fuel Economy Guide and FuelEconomy.gov 09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30 seconds, as Elizabeth pointed out last week. Driving conservatively and buying a fuel efficient car can make even more of an impact. The 2009 Fuel Economy Guide, released on October 15, can help you choose the most fuel efficient car for your needs, both new and used. Whether

76

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

77

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

78

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

79

Fuel Economy of the 2013 Mazda 5  

NLE Websites -- All DOE Office Websites (Extended Search)

(S5) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 22...

80

Fuel Economy of the 2013 Mazda 5  

NLE Websites -- All DOE Office Websites (Extended Search)

6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 2...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chapter 11. Fuel Economy: The Case for Market Failure  

Science Conference Proceedings (OSTI)

The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

Greene, David L [ORNL; German, John [Environmental and Energy Analysis; Delucchi, Mark A [University of California, Davis

2009-01-01T23:59:59.000Z

82

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

83

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

84

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

85

Interim Results from Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

86

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

87

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

Fuel Economy Guide Jump to: navigation, search Name Fuel Economy Guide AgencyCompany Organization United States Environmental Protection Agency Focus Area Energy Efficiency,...

88

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

89

Fuel Economy Valentines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

90

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

91

Vehicle Technologies Office: Fact #684: July 18, 2011 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 Fuel Economy versus Fuel Savings to someone by E-mail Share Vehicle Technologies Office: Fact 684: July 18, 2011 Fuel Economy versus Fuel Savings on Facebook Tweet about...

92

Fuel Economy of the 2013 Bugatti Veyron  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 16 cyl, 8.0 L Automatic (AM-S7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 10 Combined 8 City 15 Highway...

93

Fuel Economy of the 2013 Bentley Mulsanne  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.8 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 13 Combined 11 City 18 Highway...

94

Fuel Economy of the 2013 Maserati Quattroporte  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 4.7 L Automatic 6-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

95

Fuel Economy of the 2013 Toyota Prius  

NLE Websites -- All DOE Office Websites (Extended Search)

1.8 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 50 Combined 51 City 48 Highway...

96

Fuel Economy of the 2013 Ferrari California  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 8 cyl, 4.3 L Auto(AM7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 15 Combined 13 City 19 Highway...

97

Fuel Economy of the 2013 Nissan Leaf  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 115 Combined 129 City 102 Highway...

98

Fuel Economy of the 2013 Chevrolet Spark  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 1.2 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 34 Combined 32 City 38 Highway...

99

Fuel Economy of the 2013 Chevrolet Camaro  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.2 L Automatic (S6) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

100

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So its unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So its unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

102

Fuel Prices and New Vehicle Fuel Economy in Europe  

E-Print Network (OSTI)

This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 20022007 and uses detailed vehicle registration and specification data to ...

Klier, Thomas

103

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

104

Investigation of the low temperature performance of trucks operating on low cetane diesel fuel  

Science Conference Proceedings (OSTI)

An anticipated increase in diesel fuel demand prompted a study by Energy, Mines and Resources Canada, to assess the effect of synthetic and cracked fuel components on truck cold weather performance. Subsequently, a two-year contract was awarded to Esso Petroleum Canada Research to evaluate the effect of fuel composition on combustion using a 310 hp modern HD engine, and the effect on startup and driveability down to -30/sup 0/C in four Class 8 trucks.

Cartwright, S.J.; Gilbert, J.B

1988-01-01T23:59:59.000Z

105

Vehicle Technologies Office: Fact #772: March 25, 2013 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2013 Fuel Economy by Speed: Slow Down to Save Fuel to someone by E-mail Share Vehicle Technologies Office: Fact 772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save...

106

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

DOE Green Energy (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

107

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

108

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

109

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

110

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

111

Revised projections of fuel economy and technology for highway vehicles. Task 22. Final report  

SciTech Connect

Both the methodology used to forecast fuel economy and the technological and tooling plan data central to the derivation of the forecast for all those vehicle classes are updated here. Forecasts were prepared for a scenario where oil prices stay flat through 1985 (in current real dollars) and increase at the rate of one percent per year in the 1985 to 1995 period. Estimates of the mix of vehicles sold and projections for diesel penetration are documented. Revised forecasts for cars and light duty truck analysis are detailed. Heavy-duty truck fuel economy forecast revisions are described. The DOE automotive R and D programs are examined in the context of the newly revised projections. (MHR)

1983-06-15T23:59:59.000Z

112

Data Collection for Class-8 Long-Haul Operations and Fuel Economy Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Haul Long-Haul Operations and Fuel Economy Analysis A s part of a long-term study sponsored by the U.S. Department of Energy (DOE) Office of Vehicle Technologies (OVT), the Oak Ridge National Laboratory (ORNL) in conjunction with a number of industry partners (Michelin Americas Research Company - Michelin), have collected data and information related to Class-8 heavy truck long-haul operations in real-world

113

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network (OSTI)

delays plans to boost fuel economy of its SUVs. Wall St.without impacting fuel economy. Honda Motor Company, OctoberGreene, D.L. 2006. Fuel economy policy and highway safety.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

114

USING THE FUEL ECONOMY GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

allows you to insert your local gasoline prices and typical driving conditions (% city & highway) to achieve the most accurate fuel cost information for your vehicle. Strengthen...

115

MotorWeek: Fuel Economy Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigational links Navigational links Site Map | Videos | Links | More Info | Search | Contacts | HOME www.fueleconomy.gov Photograph of Cars Find and Compare Cars | Gas Mileage Tips | Gasoline Prices | Your MPG Will Vary | Why is Fuel Economy Important? | Your MPG | Hybrids, Diesels, Alt Fuels, Etc. | Tax Incentives | Extreme MPG U.S. Department of Energy | Print the Fuel Economy Guide | U.S. Environmental Protection Agency Gas Mileage Tips Driving more efficiently Keeping your car in shape Planning and combining trips Choosing a more efficient vehicle More Info MotorWeek: Text Version Video: MotorWeek test showing impact of driving style on MPG. Fuel Economy Focus John Davis The window sticker on a new car contains lots of information besides just the price. For instance, down at the bottom are the all important government fuel economy estimates. But just like the price on the sticker may have little in common with what you actually pay for the car, the mileage estimates may also be far different from real world results. So, why does gas mileage vary so much? Well, the answers are as varied as your mileage.

116

Car buyers and fuel economy?  

E-Print Network (OSTI)

Fuel ef?ciency; Automobiles; Car buyers 1. Introduction 1.1.M. , We probably drive each car about 7000 or 6000 milesgallons per year [for one car]; B. thinks this might be too

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

117

Vehicle Technologies Office: Fact #170: June 18, 2001 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2001 Fuel Economy Saves to someone by E-mail Share Vehicle Technologies Office: Fact 170: June 18, 2001 Fuel Economy Saves on Facebook Tweet about Vehicle Technologies...

118

Vehicle Technologies Office: Fact #680: June 20, 2011 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2011 Fuel Economy is "Most Important" When Buying a Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 680: June 20, 2011 Fuel Economy is "Most Important"...

119

Vehicle Technologies Office: Fact #773: April 1, 2013 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2013 Fuel Economy Penalty at Higher Speeds to someone by E-mail Share Vehicle Technologies Office: Fact 773: April 1, 2013 Fuel Economy Penalty at Higher Speeds on Facebook...

120

Vehicle Technologies Office: Fact #626: June 7, 2010 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 Fuel Economy for Light and Heavy Vehicles to someone by E-mail Share Vehicle Technologies Office: Fact 626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles on...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Fact #730: June 4, 2012 Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 to someone by E-mail Share Vehicle Technologies Office: Fact 730: June 4, 2012 Fuel Economy of New Light...

122

2011 Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. You can view the guide either on the Fuel Economy Web site...

123

Natural Gas Pathways and Fuel Economy Guide Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

I presentation slides: Natural Gas pathways and Fuel economy Guide Comparison Bob Wimmer, Toyota Natural Gas Pathways Toyota estimation Vehicle Total Fuel efficiency Range...

124

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

125

New Fuel Economy and Environment Label  

NLE Websites -- All DOE Office Websites (Extended Search)

New Window Sticker Beyond Tailpipe Emissions About the Label Gasoline Vehicles Plug-in Hybrid Vehicles Electric Vehicles QR Codes | Share Learn About the New Label Greenhouse gas emissions from vehicles are an important contributor to climate change. Visit EPA's climate change page for more details. View a video about the new labels. Click on a tab to view the new labels for various vehicle/fuel types. Move the cursor over parts of the label to learn more. Gasoline Vehicle Plug-In Hybrid Electric Vehicle (PHEV) Electric Vehicle Shows the type of fuel or fuels the vehicle can use. You will most commonly see "Gasoline Vehicle," "Flexible Fuel Vehicle: Gasoline-Ethanol," or "Diesel Vehicle." Learn more Find the MPG fuel economy estimates here. The Combined City/Highway

126

Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

127

Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

128

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

129

Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

130

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

131

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

132

Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

133

Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

134

Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

135

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

136

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

137

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

138

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

Information Center

2010-05-11T23:59:59.000Z

139

Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 14, 8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content to someone by E-mail Share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Facebook Tweet about Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Twitter Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Google Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Delicious Rank Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Digg Find More places to share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on

140

Fuel Economy Fact and Fiction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from the myth. Check out FuelEconomy.gov for even more tips. Just the facts... The best device for improving your fuel economy is a tire gauge. There are all sorts of products out there that claim they can help improve your fuel economy, from inserts for your exhaust pipe to magnets clamped on

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT - Testimony to the U.S. House of Representatives Science Committee, February 9, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT? 2:00 pm, Wednesday, February 9, 2005 Rayburn House Office Building, Room 2318 by Dr. David L. Greene Corporate Fellow Engineering Science and Technology Division Oak Ridge National Laboratory 1. WHAT ARE THE POLICY OPTIONS FOR ENCOURAGING THE ADOPTION OF FUEL EFFICIENT TECHNOLOGIES AND THEIR ADVANTAGES AND DISADVANTAGES? There are many ways to structure policies to achieve significant increases in fuel economy effectively and efficiently. I will focus on five below. It is possible to create policies that are reasonably effective, efficient, and fair. Our own experience with our CAFE standards and difficulties we have had updating the CAFE law indicates that we should also prefer policies that

142

TransForum v6n1 - Two Hydrogen Economies Needed to Address World...  

NLE Websites -- All DOE Office Websites (Extended Search)

in transportation for its clean, efficient propulsion of cars and light trucks using fuel cells whose only exhaust is ordinary water. A hydrogen economy that meets all our...

143

Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

144

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Slezak, Lee [U.S. Department of Energy

2010-01-01T23:59:59.000Z

145

Fuel Economy on the Fly | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars

146

Fuel Economy on the Fly | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars tool that allows you to search anytime, anywhere. The mobile tool works just like the one on the FuelEconomy.gov website. You

147

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

148

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

149

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

150

Fuel economy standards have affected vehicle efficiency - Today in ...  

U.S. Energy Information Administration (EIA)

This new footprint standard required that all vehicle manufacturers improve their fuel economy at a similar rate, regardless of the types and sizes of vehicles sold.

151

Trends and new developments in automotive fuel economy  

Science Conference Proceedings (OSTI)

The significant improvements in passenger car fuel economy that have been achieved up to the present time are identified, and the changes that have produced these improvements are examined in detail. Included are several comparisons of domestic versus foreign vehicles. The potential for further increases in fuel economy is then reviewed by examining the technological, marketing/economic, and other significant factors that will affect future fuel economy levels. Special attention is given to the effect that changing market mix has on corporate average fuel economy and to the future benefits that may be realized through the use of continuously variable transmissions, adiabatic diesel engines, and improved lubricants.

Simpson, B.H.

1985-01-01T23:59:59.000Z

152

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

153

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

and standardized. Hydrogen fuel filling stations generallyat local hydrogen fill stations it was decided that filling

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

154

2014 Best and Worst MPG Trucks, Vans and SUVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

155

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

156

Assessment of the risk of transporting spent nuclear fuel by truck  

SciTech Connect

The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10/sup -5/ fatalities. An individual in the population at risk would have one chance in 6 x 10/sup 11/ of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year. (DLC)

Elder, H.K.

1978-11-01T23:59:59.000Z

157

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

E-Print Network (OSTI)

for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

Wenzel, Thomas P.

2010-01-01T23:59:59.000Z

158

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

159

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » EPA-Fuel Economy Guide (Redirected from EPA Fuel Economy Guide) Jump to: navigation, search Tool Summary Name: Fuel Economy Guide Agency/Company /Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guide/manual User Interface: Website Website: www.fueleconomy.gov/ Research light duty vehicles by fuel economy and greenhouse gas emissions. Retrieved from "http://en.openei.org/w/index.php?title=EPA-Fuel_Economy_Guide&oldid=375897" Categories: Tools Community Energy Tools

160

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

a proof of concept SOFC APU. [9] This demonstration wasof which was to demonstrate SOFC technology was chosen forthe ability of the SOFC to utilize liquid hydrocarbon fuels,

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

What Steps Do You Take to Improve Your Fuel Economy? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improve Your Fuel Economy? What Steps Do You Take to Improve Your Fuel Economy? April 7, 2011 - 7:30am Addthis On Monday, Shannon told you some facts about fuel economy and how you...

162

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network (OSTI)

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

163

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. The effect of fuel economy on automobile safety: aM. , 2002. Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

164

Energy Department and Environmental Protection Agency Release Fuel Economy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department and Environmental Protection Agency Release Fuel Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles September 12, 2013 - 9:00am Addthis News Media Contact DOE: (202) 586-4940 EPA: (202) 564-4355 WASHINGTON - As part of the Obama Administration's ongoing efforts to increase fuel efficiency, reduce carbon pollution and address climate change, the U.S. Energy Department and the Environmental Protection Agency (EPA) today released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984. Consumers may create the new label electronically as part of a new tool on FuelEconomy.gov. This electronic graphic can be downloaded and included in

165

Vehicle Technologies Office: Fact #243: November 18, 2002 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2002 Fuel Economy Leaders for 2003 Model Year Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact 243: November 18, 2002 Fuel Economy Leaders for 2003...

166

Assessment of California reformulated gasoline impact on vehicle fuel economy  

DOE Green Energy (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

167

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells PowerEdge units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuveras PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-Bs facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

168

Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas  

DOE Green Energy (OSTI)

This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

Norton, P.; Kelly, K.

1996-07-01T23:59:59.000Z

169

Fuel Economy of the 2013 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 105 Combined 110 City 99 Highway...

170

Fuel Economy of the 2013 Toyota Tacoma 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.7 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 23 Combined 21 City 25 Highway...

171

Fuel Economy of the 2013 Ford Transit Connect Wagon FWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 4 cyl, 2.0 L Automatic 4-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 24 Combined 22 City 27 Highway...

172

Fuel Economy of the 2013 Toyota Prius v  

NLE Websites -- All DOE Office Websites (Extended Search)

1.8 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 42 Combined 44 City 40 Highway...

173

Fuel Economy of the 2013 Rolls-Royce Phantom  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

174

Fuel Economy of the 2013 Ford E350 Wagon  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 11 Combined 10 City 13 Highway...

175

Fuel Economy of the 2013 Volkswagen Jetta SportWagen  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.0 L Manual 6-spd Diesel Compare Side-by-Side Diesel EPA Fuel Economy Miles per Gallon Personalize Diesel 34 Combined 30 City 42 Highway Unofficial...

176

Fuel Economy of the 2013 Mercedes-Benz CL600  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 5.5 L Automatic 5-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

177

Fuel Economy of the 2013 Toyota Prius c  

NLE Websites -- All DOE Office Websites (Extended Search)

1.5 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 50 Combined 53 City 46 Highway...

178

Fuel Economy of the 2013 Cadillac CTS Wagon  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 6.2 L Automatic (S6) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

179

Fuel Economy of the 2013 Toyota Sienna AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.5 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 19 Combined 16 City 23 Highway...

180

Fuel Economy of the 2013 smart fortwo electric drive convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Economy of the 2013 Rolls-Royce Phantom Coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

182

Fuel Economy of the 2013 Rolls-Royce Phantom EWB  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

183

Fuel Economy of the 2013 Toyota FJ Cruiser 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 16 Combined 15 City 18 Highway...

184

Fuel Economy of the 2013 Infiniti FX50 AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 5.0 L Automatic (S7) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 16 Combined 14 City 20 Highway...

185

Fuel Economy of the 2013 smart fortwo electric drive coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

186

Fuel Economy of the 2013 Ram 1500 HFE 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.6 L Automatic 8-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 21 Combined 18 City 25 Highway...

187

Fuel Economy of the 2013 Toyota Tacoma 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 17 Combined 16 City 19 Highway...

188

Fuel Economy of the 2013 Audi A3  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page 4 cyl, 2.0 L Auto(AM-S6) Diesel Compare Side-by-Side Diesel EPA Fuel Economy Miles per Gallon Personalize Diesel 34 Combined 30 City 42 Highway Unofficial...

189

Fuel Economy of the 2013 Honda CR-Z  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 4 cyl, 1.5 L Auto(AV-S7) Regular Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 37 Combined 36 City 39 Highway...

190

Fuel Economy of the 2013 Lexus RX 450h  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.5 L Auto(AV-S6) Premium Gasoline Compare Side-by-Side Hybrid EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 30 Combined 32 City 28 Highway...

191

Fuel Economy of the 2013 Lincoln MKT Livery AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 6 cyl, 3.7 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 19 Combined 17 City 24 Highway...

192

Fuel Economy of the 2013 Mitsubishi i-MiEV  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 112 Combined 126 City 99 Highway...

193

Fuel Economy of the 2013 Ford E350 Van  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 10 cyl, 6.8 L Automatic 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 14 Highway...

194

Fuel Economy of the 2013 Scion iQ  

NLE Websites -- All DOE Office Websites (Extended Search)

4 cyl, 1.3 L Automatic (variable gear ratios) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 37 Combined 36 City 37 Highway...

195

Fuel Economy of the 2013 Chevrolet Suburban 2500 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 16 Highway...

196

Fuel Economy of the 2013 GMC Savana 1500 AWD (Passenger)  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17 Highway E85 10...

197

Fuel Economy of the 2013 Chevrolet Express 1500 AWD Passenger  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17 Highway E85 10...

198

Fuel Economy of the 2013 Chevrolet Suburban 2500 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 15 Highway...

199

Fuel Economy of the 2014 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Focus Electric Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per...

200

On Road Fuel Economy Performance of Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Fuel Economy Performance of Hybrid Electric Vehicles Lee Slezak Office of FreedomCAR and Vehicle Technologies U.S. Department of Energy Jim Francfort Advanced Vehicle Testing...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Economy of the 2014 Toyota Tacoma 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD Search for Other Vehicles View the Mobile Version of This Page 4 cyl, 2.7 L Manual 5-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize...

202

Fuel Economy of the 2014 Toyota Sienna AWD  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Sienna AWD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 3.5 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon...

203

Fuel Economy of the 2014 Toyota Tacoma 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize...

204

Fuel Economy of the 2014 Toyota FJ Cruiser 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota FJ Cruiser 4WD Search for Other Vehicles View the Mobile Version of This Page 6 cyl, 4.0 L Manual 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per...

205

Fuel Economy of the 2013 Bentley Continental GTC  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 11 City 19...

206

Fuel Economy of the 2013 Bentley Continental Supersports Convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 12 City 19...

207

Fuel Economy of the 2013 Ford E150 Wagon FFV  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 4.6 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 16...

208

Fuel Economy of the 2013 Bentley Continental GT  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 12 cyl, 6.0 L Automatic (S6) Premium Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Premium Gas 14 Combined 12 City 19...

209

Fuel Economy of the 2014 Fiat 500e  

NLE Websites -- All DOE Office Websites (Extended Search)

Fiat 500e Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

210

Fuel Economy of the 2014 Chevrolet Spark EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

211

Fuel Economy of the 2014 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per Gallon...

212

2011 Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

will provide additional fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. You can view the guide either on the...

213

Fuel Economy of the 2013 Scion iQ EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Scion iQ EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon...

214

Fuel Economy of the 2013 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize...

215

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

216

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

217

Analysis of the fuel economy benefit of drivetrain hybridization  

DOE Green Energy (OSTI)

Parallel- and series-configured hybrid vehicles likely feasible in next decade arc defined and evaluated using NREL's flexible ADvanced VehIcle SimulatOR ADVISOR. Fuel economics of these two diesel-powered hybrid vehicles are compared to a comparable-technology diesel- powered internal-combustion-engine vehicle. Sensitivities of these fuel economies to various vehicle and component parameters are determined and differences among them are explained. The fuel economy of the parallel hybrid defined here is 24% better than the internal- combustion-engine vehicle and 4% better than the series hybrid.

Cuddy, M.R.; Wipke, K.B.

1997-01-01T23:59:59.000Z

218

Fuel Economy Driver Interfaces: Driving Simulator Study of Component Concepts  

E-Print Network (OSTI)

A fuel economy driver interface (FEDI) gives a driver an indication of fuel usage or efficiency. Many passenger vehicles in recent model years have FEDIs and they have been included in some vehicle models for decades. FEDIs present fuel economy information in a variety of forms. Some show fuel economy in miles per gallon (mpg) while others provide a relative measure of economy or provide an alert if fuel economy is especially poor. The appearances of FEDIs vary drastically between vehicle makes and models. FEDIs can provide numerical output, analog or digital gauges, bar charts, illuminator lamps, and a variety of other display features. With the recent emergence of high-resolution LCD screens in cars, detailed and complex color displays are possible, and these make feasible a variety of new FEDI concepts. FEDIs may even include vehicle-adaptive features that influence some aspect of vehicle performance in response to inefficient driver behaviors. While FEDIs have the potential to encourage efficient and safe driving, it is possible that the displays themselves might cause distraction at the expense

unknown authors

2010-01-01T23:59:59.000Z

219

Demonstration of the fuel economy potential associated with M85-fueled vehicles  

DOE Green Energy (OSTI)

A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)

1993-12-01T23:59:59.000Z

220

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

222

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

223

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

224

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

225

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

E-Print Network (OSTI)

on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA

Wenzel, Thomas P

2010-01-01T23:59:59.000Z

226

Prospects on fuel economy improvements for hydrogen powered vehicles.  

DOE Green Energy (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

227

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

228

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

229

Fuel Economy Driver Interfaces: Usability Study of Display Component Concepts  

E-Print Network (OSTI)

A fuel economy driver interface (FEDI) gives drivers an indication of fuel usage or efficiency. Many passenger vehicles in recent model years have FEDIs, and they have been included in some vehicle models for decades. FEDIs present fuel economy information in a variety of forms. Some show fuel economy in miles per gallon (mpg) while others provide a relative measure of economy or provide an alert if fuel economy is especially poor. The appearances of FEDIs vary drastically between vehicle makes and models. FEDIs can provide numerical output, analog or digital gauges, bar charts, illuminator lamps, and a variety of other display features. With the recent emergence of high-resolution LCD screens in cars, detailed and complex color displays are possible, and these make feasible a variety of new FEDI concepts. FEDIs may even include vehicle-adaptive features that influence some aspect of vehicle performance in response to inefficient driver behaviors. While FEDIs have the potential to encourage efficient and safe driving, it is possible that the displays themselves cause distraction at the expense of attending to the roadway. Overall goals of this research program are to understand how characteristics of FEDIs influence driver behavior, and to identify best practices for FEDI design to meet drivers needs and minimize distraction and undesirable behavior. Previous work on this project has included documenting the range of existing FEDI designs and conducting focus groups with vehicle owners to discuss fuel efficient driving behaviors and FEDI designs (Jenness, Singer, Walrath, & Lubar, 2009). The purpose of the usability study presented here was to narrow down the range of possible FEDI designs so that the most usable concepts could be tested in a subsequent driving simulator study.

Cs Intensity-changing Light

2010-01-01T23:59:59.000Z

230

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

231

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

232

Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 26, 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes to someone by E-mail Share Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Facebook Tweet about Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Twitter Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Google Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Delicious Rank Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Digg

233

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis...

234

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

235

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

236

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

237

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

238

CleanFleet. Final report: Volume 4, fuel economy  

DOE Green Energy (OSTI)

Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

NONE

1995-12-01T23:59:59.000Z

239

New Methodology for Estimating Fuel Economy by Vehicle Class  

SciTech Connect

Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

Chin, Shih-Miao [ORNL; Dabbs, Kathryn [University of Tennessee, Knoxville (UTK); Hwang, Ho-Ling [ORNL

2011-01-01T23:59:59.000Z

240

Microsoft Word - NearTermOptionsforFuelEconomy Greene _2_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel economy have two drawbacks. First, some car buyers would have bought a hybrid vehicle anyway, especially at today's high fuel prices. Second, the incentives will be a...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The 2014 Fuel Economy Guide Can Help You Choose Your Next The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy Other ways to save money at the pump You can save money and use less fuel even without the purchase of a new car. Check out these easy tips to boost your gas mileage and save money. Are you in the market for a new car to start off the New Year? Choosing the

242

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

243

Examining new fuel economy standards for the United States.  

Science Conference Proceedings (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

244

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

245

Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs.  

NLE Websites -- All DOE Office Websites (Extended Search)

0: July 5, 2010 0: July 5, 2010 Fuel Economy vs. Weight and Performance to someone by E-mail Share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Facebook Tweet about Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Twitter Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Google Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Delicious Rank Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Digg Find More places to share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on AddThis.com...

246

Liquid natural gas as a transportation fuel in the heavy trucking industry. Third quarterly progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Investigations are underway concerning the use of liquid natural gas as a fuel for trucks. Progress is reported in the following areas: direct diesel replacement and short and long term storage.

Sutton, W.H.

1995-04-01T23:59:59.000Z

247

DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release 2012 Annual Fuel Economy Guide EPA Release 2012 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many new advanced technology vehicles debut on this year's annual list of top fuel economy performers. Fuel economy leaders within each vehicle category - from two-seaters to large SUVs - include widely available products such as conventional gasoline models and clean

248

"Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."  

DOE Green Energy (OSTI)

The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

Dever, Thomas J.

2011-11-29T23:59:59.000Z

249

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

250

Economy  

E-Print Network (OSTI)

Dynasty. (Davies 1943: pl. XXIX). Economy, Haring, UEE 2009J OHN B AINES Short Citation: Haring, 2009, Economy. UEE.Citation: Haring, Ben, 2009, Economy. In Elizabeth Frood and

Haring, Ben

2009-01-01T23:59:59.000Z

251

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Does Your Fuel Economy Compare to the Test Ratings on How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors affect your mileage, and you may see different numbers than those list on Fueleconomy.gov. Whether you are using Your MPG or just keeping track on your own: How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, you have the chance to share your thoughts on a question

252

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon)  

U.S. Energy Information Administration (EIA)

Figure 1.8 Motor Vehicle Fuel Economy, 1973-2011 (Miles per Gallon) U.S. Energy Information Administration / Monthly Energy Review August 2013 17

253

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system.  

E-Print Network (OSTI)

??This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The (more)

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

254

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

255

Impacts of Renewable Fuel and Electricity Standards on State Economies (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, discusses the impacts of renewable fuel and electricity standards on state economies.

Brown, E.; Cory, K.; Brown, J.; Bird, L.; Sweezey, B.

2006-10-03T23:59:59.000Z

256

Modeling and control of a hybrid electric drivetrain for optimum fuel economy, performance and driveability.  

E-Print Network (OSTI)

??Automotive manufacturers have been striving for decades to produce vehicles which satisfy customers requirements at minimum cost. Many of their concerns are on fuel economy, (more)

Wei, Xi

2004-01-01T23:59:59.000Z

257

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

258

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2007-01-01T23:59:59.000Z

259

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

260

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network (OSTI)

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane emissions in the United States, accounting for approximately 23 percent of these emissions in 2007. At the same time, methane emissions from landfills represent a lost opportunity to capture and use a significant energy resource. Many landfill-gas-to-energy (LFGTE) projects are underway in an attempt to curb emissions and make better use of this energy. The methane that is extracted from these landfills can be converted into a transportation fuel, sold as a pipeline-quality natural gas, operate turbines for electricity, or be flared. The unique relationship that occurs between refuse trucks' constant visits to the landfill and the ability of the landfill itself to produce a transportation fuel creates an ability to accomplish emissions reduction in two sectors with the implementation of using landfill gas to fuel refuse trucks. Landfill owners and operators are very reluctant to invest in large capital LFGTE projects without knowing their long-term feasibility. The costs and benefits associated with each LFGTE project have been presented in such a way that owners/operators can make informed decisions based on economics while also implementing clean energy technology. Owners/operators benefit from larger economic returns, and the citizens of the surrounding cities benefit from better air quality. This research focused on six scenarios: converting landfill gas (LFG) to liquefied natural gas (LNG) for use as a transportation fuel, converting LFG to compressed natural gas (CNG) for use as a transportation fuel, converting LFG to pipeline-quality natural gas, converting LFG to electricity, flaring LFG, and doing nothing. For the test case of a 280-acre landfill, the option of converting LFG to CNG for use as a transportation fuel provided the best benefit-cost ratio at 5.63. Other significant benefit-cost findings involved the LFG-to-LNG option, providing a 5.51 benefit-cost ratio. Currently, the most commonly used LFGTE option of converting LFG to electricity provides only a 1.35 benefit-cost ratio while flaring which is the most common mitigation strategy provides a 1.21, further providing evidence that converting LFG to LNG/CNG for use as a transportation fuel provides greater economic benefits than the most common LFGTE option or mitigation strategy.

Sprague, Stephen M.

2009-12-01T23:59:59.000Z

262

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

263

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

264

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy of Oak Ridge National Laboratory. Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be

265

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

266

Emission & Power Solutions (EPS) Improving Fuel Economy and Reducing Exhaust Emissions  

E-Print Network (OSTI)

developed a proprietary multi-phase process for restructuring fuel hydro- carbons that results in a cleaner warranties. Potentiometric Sensor Since the 1980s, oxygen sensors have been placed in all cars and trucks, designed to fit directly into a car's engine control unit (ECU), can replace all existing sensors in both

Jawitz, James W.

267

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Fuel cells for transportation. 1999 Annual Progress Report.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

268

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Fuel cells for transportation. 1999 Annual Progress Report.J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

269

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

270

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release Annual Fuel Economy Guide with 2013 Models EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of clean, fuel-efficient American vehicles, and part of that effort is

271

Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative: 50by50 Prospects and Progress Global Fuel Economy Initiative: 50by50 Prospects and Progress Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative: 50by50 Prospects and Progress Focus Area: Clean Transportation Topics: Potentials & Scenarios Website: www.globalfueleconomy.org/Documents/Publications/prospects_and_progres Equivalent URI: cleanenergysolutions.org/content/global-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

272

Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles  

DOE Green Energy (OSTI)

This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

1997-12-18T23:59:59.000Z

273

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

274

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

275

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

276

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

277

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of

278

Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware  

DOE Green Energy (OSTI)

Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

Li, Sharon

2000-08-20T23:59:59.000Z

279

Modeling the effect of engine assembly mass on engine friction and vehicle fuel economy  

DOE Green Energy (OSTI)

In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.

An, Feng [University of California, Riverside, CA (United States); Stodolsky, F. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

280

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

SciTech Connect

I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

Wenzel, Thomas P

2009-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Economy of the 2013 Ford F150 Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 12...

282

Fuel Economy of the 2013 Rolls-Royce Phantom Drophead Coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.7 L Automatic (S8) Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 11 City 19 Highway...

283

Fuel Economy of the 2013 Mercedes-Benz CL65 AMG  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 12 cyl, 6.0 L Automatic 5-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 14 Combined 12 City 18 Highway...

284

Fuel Economy of the 2013 Mercedes-Benz E63 AMG (wagon)  

NLE Websites -- All DOE Office Websites (Extended Search)

of This Page 8 cyl, 5.5 L Automatic 7-spd Premium Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Premium Gasoline 18 Combined 15 City 23 Highway...

285

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

286

Fuel Economy of the 2013 Ford F150 Raptor Pickup 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

View the Mobile Version of This Page 8 cyl, 6.2 L Automatic (S6) Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 13 Combined 11...

287

Fuel Economy of the 2013 Tesla Model S (60 kW-hr battery pack...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 95 Combined 94 City 97 Highway...

288

Fuel Economy of the 2013 GMC Yukon XL 2500 2WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 16 Highway...

289

Fuel Economy of the 2013 GMC Yukon XL 2500 4WD  

NLE Websites -- All DOE Office Websites (Extended Search)

This Page 8 cyl, 6.0 L Automatic 6-spd Regular Gasoline Compare Side-by-Side EPA Fuel Economy Miles per Gallon Personalize Regular Gasoline 12 Combined 10 City 15 Highway...

290

Quantifying the Effects of Idle-Stop Systems on Fuel Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-12-27320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486...

291

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system  

E-Print Network (OSTI)

This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The following parameters were identified as key ...

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

292

Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975  

E-Print Network (OSTI)

Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

MacKenzie, Donald Warren

2013-01-01T23:59:59.000Z

293

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Other qualified vehicles are non-hybrid natural gas and electric vehicles, for which the NHTSA fuel economy values are 6.667 times the EPA motor gasoline-based values.

294

Fuel Economy of the 2013 GMC Savana 1500 2WD (Passenger)  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17...

295

Fuel Economy of the 2013 Chevrolet Express 1500 2WD Passenger  

NLE Websites -- All DOE Office Websites (Extended Search)

Version of This Page Compare Side-by-Side 8 cyl, 5.3 L Automatic 4-spd Regular Gas or E85 FFV EPA Fuel Economy Miles per Gallon Personalize Regular Gas 14 Combined 13 City 17...

296

Fuel Economy of the 2014 Ford Fusion Energi Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Page Compare Side-by-Side 4 cyl, 2.0 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 43 Combined 44 City...

297

Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994  

DOE Green Energy (OSTI)

Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

Sutton, W.H.

1994-12-01T23:59:59.000Z

298

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

299

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network (OSTI)

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

300

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

302

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network (OSTI)

SOFC Technology R& D Needs Steven Shaffer Chief Engineer ­ Fuel Cell Development DOE Pre) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU SOFC X #12;9 DOE Pre-Solicitation Workshop, Golden CO Field Office SOFC Stack Development Key Stack

303

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

304

Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment ...  

NLE Websites -- All DOE Office Websites (Extended Search)

over 90,000 hours of fuel cell operation by June * 30, 2012. Purchasing 29,240 kilograms of hydrogen by June 30, * 2012. Monitoring operating costs and reliability of * 40...

305

BioFacts: Fueling a stronger economy, Biodiesel. Revision 2  

DOE Green Energy (OSTI)

Biodiesel is a substitute for or an additive to diesel fuel that is derived from the oils and fats of plants. It is an alternative fuel that can be used in diesel engines and provides power similar to conventional diesel fuel. It is a biodegradable transportation fuel that contributes little, if any, net carbon dioxide or sulfur to the atmosphere, and is low in particulate emission. It is a renewable, domestically produced liquid fuel that can help reduce US dependence on foreign oil imports. This overview presents the resource potential, history, processing techniques, US DOE programs cost and utilization potential of biodiesel fuels.

NONE

1995-01-01T23:59:59.000Z

306

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

307

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

308

Learn More About the Fuel Economy Label for Gasoline Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

different text and icons in the labels for other vehicles: Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)...

309

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

310

Truckstop -- and Truck!-- Electrification  

SciTech Connect

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

311

Truckstop -- and Truck!-- Electrification  

DOE Green Energy (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

312

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

313

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

DOE Green Energy (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

314

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

DOE Green Energy (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

315

Fuel Economy of the 2014 Toyota RAV4 EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota RAV4 EV Search for Other Vehicles View the Mobile Version of This Page Automatic (variable gear ratios) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel...

316

New EPA Fuel Economy and Environment Label - Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range is an estimate of the distance the vehicle can travel on...

317

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

318

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network (OSTI)

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic coordinated design of future climate and energy policy. In this work we use a computable general equilibrium No. 217 May 2012 #12;The MIT Joint Program on the Science and Policy of Global Change

319

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

320

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda más acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verá otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

322

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 (2005) 757-775 Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy $ David L. Greene a, *, Philip D. Patterson b , Margaret Singh c , Jia Li d a Oak Ridge National Laboratory, National Transportation Research Center, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA b Office of Planning, Budget Formulation and Analysis, US Department of Energy, Forestall Building (EE-3B), 1000 Independence Avenue, S.W., Washington, DC 20585, USA c Argonne National Laboratory, 955 L'Enfant Plaza, S.W., Suite 6000, Washington, DC 20024, USA d National Transportation Research Center, The University of Tennessee, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA Abstract US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a ''pivot point''

323

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

324

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

325

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

326

Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)  

DOE Green Energy (OSTI)

Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

Gonder, J.

2011-11-01T23:59:59.000Z

327

Vehicle Technologies Office: Fact #787: July 8, 2013 Truck Stop...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption to someone by E-mail Share Vehicle Technologies Office: Fact 787: July 8, 2013 Truck Stop Electrification...

328

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network (OSTI)

consumers. As vehicle manufacturers strive to improve theinfluenced by the vehicles that manufacturers design andfuel economy, manufacturers can develop stronger vehicle

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

329

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

330

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting raw fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such raw PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

2009-09-01T23:59:59.000Z

331

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

332

Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy  

Science Conference Proceedings (OSTI)

Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

Greene, David L [ORNL; Evans, David H [Sewanee, The University of the South; Hiestand, John [Indiana University

2013-01-01T23:59:59.000Z

333

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Economy, Selected Survey Years (Miles Per Gallon)" Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census Region and Division" " Northeast",15.6,"NA",19.6,20.9,20.7,20.85531 " New England",16.5,"NA",19.7,21.1,20.4,20.97907 " Middle Atlantic ",15.3,"NA",19.6,20.8,20.8,20.79659 " Midwest ",14.8,"NA",18.2,19,20.1,20.18362 " East North Central",14.9,"NA",18.4,19.4,20.1,20.26056 " West North Central ",14.5,"NA",17.8,17.9,20,20.01659 " South",15,"NA",18,19.2,19.6,20.17499 " South Atlantic",15.6,"NA",19,20.2,20.2,20.5718

334

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

DOE Green Energy (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

335

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

336

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

337

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

338

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

339

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower  

Science Conference Proceedings (OSTI)

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

West, Brian H [ORNL; Lopez Vega, Alberto [ORNL; Theiss, Timothy J [ORNL; Graves, Ronald L [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2007-01-01T23:59:59.000Z

340

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1994 U.S. Department of Energy Strategic Plan: Fueling a Competitive Economy  

SciTech Connect

The Department of Energy has a rich heritage of meeting important national goals in the areas of energy, national security, science, and technology. The end of the Cold War, and the election of President Clinton, have given us a new national agenda. Through a comprehensive strategic planning process, we have determined that the Department must now unleash its extraordinary scientific and technical talent and resources on new and more sharply focused goals: fueling a competitive economy, improving the environment through waste management and pollution prevention, and reducing the nuclear danger.

None,

1994-04-01T23:59:59.000Z

342

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performe

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

343

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

344

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of vehicle. Looking for the most fuel-efficient 2014 family sedan hybrid? The 2014 Toyota Prius tops the online guide at 50 combined cityhighway MPG. Need something larger,...

345

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

346

Argonne TTRDC - TransForum v10n1 - Fuel Consumption vs. Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Great Debate: Fuel Consumption versus Fuel Economy Graphs for Fuel Consumption vs. Fuel Economy What is the difference between fuel consumption and fuel economy? In Europe,...

347

Emissions characterization and particle size distribution from a DPF-equipped diesel truck fueled with biodiesel blends.  

E-Print Network (OSTI)

??Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (more)

Olatunji, Idowu O.

2010-01-01T23:59:59.000Z

348

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

349

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

350

Effect of Intake Air Filter Condition on Vehicle Fuel Economy--ORNL/TM-2009/021  

NLE Websites -- All DOE Office Websites (Extended Search)

021 021 Effect of Intake Air Filter Condition on Vehicle Fuel Economy February 2009 Prepared by Kevin Norman Shean Huff Brian West DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

351

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

352

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

DOE Green Energy (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

353

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR AN ADVANCE WAIVER OF PATENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC. FOR AN ADVANCE WAIVER OF PATENT INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42421; W(A)-05-041; CH-1323 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Mack Trucks, Inc (Mack) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain". The waiver will apply to inventions made by Mack employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible

354

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

DOE Green Energy (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

355

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

356

Raley's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

2000-05-03T23:59:59.000Z

357

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

DOE Green Energy (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

358

The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV  

SciTech Connect

On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

Richard Barney Carlson

2009-10-01T23:59:59.000Z

359

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

360

Empty WIPP truck overturns  

NLE Websites -- All DOE Office Websites (Extended Search)

Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at...

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Learning - Advanced Vehicles and Fuels Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

362

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

363

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

364

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

365

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States  

E-Print Network (OSTI)

The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

Karplus, V.J.

366

Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035  

E-Print Network (OSTI)

This thesis examines the vehicle design and sales mix changes necessary to double the average fuel economy of new U.S. cars and light-trucks by model year 2035. To achieve this factor of two target, three technology options ...

Cheah, Lynette W

2008-01-01T23:59:59.000Z

367

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

368

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energys Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

369

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

370

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

371

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

372

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

373

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

374

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

375

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

376

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

377

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Freightliner - M2 106 Hybrid Applications: Tractor, Vocational truck Fuel Type: Hybrid - Diesel Electric...

378

Advanced Vehicle Testing Activity: Truck Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Reader. Norcal Waste Systems, Inc. Liquefied Natural Gas Trucks Norcal Prototype LNG Truck Fleet: Final Data Report, February 2005 (PDF 806 KB) Norcal Prototype LNG Truck...

379

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

380

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

382

New-vehicle fuel economy continues to increase - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Most manufacturers, even those that do not receive credits for qualified alternative fuel vehicles, ...

383

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

T370 hybrid truck Application: Vocational truck Fuel Type: Hybrid - Diesel Electric Maximum Seating: 2 Hybrid System(s): Eaton - Diesel Electric Hybrid Additional Description:...

384

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliott William

2009-01-01T23:59:59.000Z

385

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

Economy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid TaxEconomy and Vehicle Incentives: An Analysis of Hybrid Tax

Martin, Elliot William

2009-01-01T23:59:59.000Z

386

Where can I find more information on improving the fuel economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

The sites below provide information on maximizing the fuel efficiency of your car. "Gas-Saving" Products: Fact or Fuelishness? (U.S. Federal Trade Commission) The...

387

New Fuel Economy and Environment Label - How does a QR code work...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Hybrids Diesels Alternative Fuel Vehicles Frequently Asked Questions Gasoline Prices Local Prices State and Metro Area Prices National & Regional Prices Questions About...

388

Truck Stop Electrification: Codes and Standards Ensure Safety for The Trucking Industry  

Science Conference Proceedings (OSTI)

Every day in the United States as many as 677,600 heavy-duty trucks are on the road; and, at some point during that day, they are idling. Over the course of a year, long-duration idling of truck and locomotive engines consumes more than 1 billion gallons of diesel fuel and emits 11 million tons of carbon dioxide. Drivers often idle their main engines during the U.S. Department of Transportation mandated rest time of 10 hours after driving for 11 hours, to power heating, air conditioning, lighting, and ap...

2009-05-08T23:59:59.000Z

389

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Science Conference Proceedings (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

390

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

391

Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint  

DOE Green Energy (OSTI)

Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

2009-08-01T23:59:59.000Z

392

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network (OSTI)

directly to yield hydro- gen. Solid fuels such as coal and biomass can be gasified, followed by reforming to store in a cost-effective way smaller amounts in cars and portable devices. Possible answers

393

Trends and drivers of the performance : fuel economy tradeoff in new automobiles  

E-Print Network (OSTI)

Cars sold in the United States have steadily become more fuel-efficient since the 1970s, and assessments of emerging technologies demonstrate a significant potential for continued evolutionary improvements. However, historic ...

MacKenzie, Donald Warren

2009-01-01T23:59:59.000Z

394

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network (OSTI)

International Journal of Hydrogen Energy, 30(7): 701-718.of a fossil fuel-based hydrogen infrastructure with carbonPartnering for the Global Hydrogen Future, NHA Conference,

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

395

New EPA Fuel Economy and Environment Label - Plug-in Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

you compare to gasoline vehicles Kilowatt-hours per 100 miles to help you estimate fuel costs Driving Range Driving range estimates are provided for all-electric operation and...

396

Fuel Economy Videos and Information from DOE/EPA fueleconomy.gov  

DOE Data Explorer (OSTI)

This website combines information from both DOE and EPA to provide up-to-the-minute information on gas mileage, fuel costs, greenhouse gas emissions, air pollution ratings, and safety information. The site includes several video clips.

397

Fuel and emission impacts of heavy hybrid vehicles.  

DOE Green Energy (OSTI)

Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

An, F.; Eberhardt, J. J.; Stodolsky, F.

1999-03-02T23:59:59.000Z

398

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels  

E-Print Network (OSTI)

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels modern industries and societies worldwide, oil in the Middle East has become a key strategic commodity influencing international affairs

399

Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications  

Science Conference Proceedings (OSTI)

Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

Daniel T. Hennessy

2010-06-15T23:59:59.000Z

400

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC FOR AN ADVANCE WAIVER OF DOMESTIC AND INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- FC26-05NT42417 W(A)-05-042, CH-1324 The Petitioner, Mack Trucks, Inc. (Mack), was awarded a cooperative agreement for the performance of work entitled, "Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement is to demonstrate a minimum of 15% fuel economy improvement with emissions meeting the 2010 EPA regulation. Mack Tracks will be establishing the base engine, developing engine management system for air-power-assist engine and ensuring the conduction of steady-state engine tests. Mack will also evaluate the commercial viability of variable valve

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A National Vision of America's Transition to a Hydrogen Economy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Involves thermal, electrolytic, and photolytic processes Delivery The distribution of hydrogen from production and storage sites Involves pipelines, trucks, barges, and fueling...

402

BioFacts: Fueling a stronger economy, Thermochemical conversion of biomass  

DOE Green Energy (OSTI)

A primary mission of the US DOE is to stimulate the development, acceptance, and use of transportation fuels made from plants and wastes called biomass. Through the National Renewable Energy Laboratory (NREL), Doe is developing and array of biomass conversion technologies that can be easily integrated into existing fuel production and distribution systems. The variety of technology options being developed should enable individual fuel producers to select and implement the most cost-effective biomass conversion process suited to their individual needs. Current DOE biofuels research focuses on the separate and tandem uses of biochemical and thermochemical conversion processes. This overview specifically addresses NREL`s thermochemical conversion technologies, which are largely based on existing refining processes.

NONE

1994-12-01T23:59:59.000Z

403

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

404

Effects of Air Conditioner Use on Real-World Fuel Economy  

Science Conference Proceedings (OSTI)

Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

Huff, Shean P [ORNL; West, Brian H [ORNL; Thomas, John F [ORNL

2013-01-01T23:59:59.000Z

405

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

DOE Green Energy (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

406

Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)  

DOE Green Energy (OSTI)

Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

Not Available

2009-04-01T23:59:59.000Z

407

Coal-fueled high-speed diesel engine development  

DOE Green Energy (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

408

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

409

Vehicle Technologies Office: 21st Century Truck  

NLE Websites -- All DOE Office Websites (Extended Search)

for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and...

410

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

DOE Green Energy (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

411

EERE: Clean Cities Mobile Sites  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Mobile Sites Alternative Fueling Station Locator FuelEconomy.gov Truck Stop Electrification Locator...

412

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

413

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

414

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

415

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

416

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

417

Analysis of the capabilities of domestic auto-manufacturers to improve corporate average fuel economy (information current as of November 1985)  

SciTech Connect

Since 1978, the Department of Energy (DOE) has conducted periodic reviews of the ability of domestic automobile manufacturers to improve their corporate average fuel economy (CAFE) values. This work has allowed DOE to develop a detailed understanding of manufacturer technological capabilities and to forecast the cost, fuel economy improvement, and rate of introduction of individual technologies over a ten-year horizon. DOE uses these forecasts to fulfill its responsibilities under the Energy Policy and Conservation Act (EPCA), to support its forecasts of energy demand and to conduct policy analyses relevant to automobile and energy production industries. Chapters are given for the following areas: (1) review of 1985 CAFE, (2) analysis of current capabilities, (3) modifications of the Technology Cost Segment Model (TCSM), (4) review of market share forecasts, and (5) forecasts of CAFE using the TCSM.

1986-04-01T23:59:59.000Z

418

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

419

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

DOE Green Energy (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

420

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

DOE Green Energy (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

SciTech Connect

This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

Wenzel, Thomas P.

2010-03-02T23:59:59.000Z

422

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Economy Improvemen t Battery Capacity (Ah) Figure 7 FuelFuel Economy Improvemen t Battery Capacity (Ah) Figure 15Fuel Economy Improvemen t Battery Capacity (Ah) Figure 16

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

423

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

used. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Fuel Cell Hybrid Electric Medium Duty Trucks, Roof-top Backup Power, and Advanced Hydrogen...

424

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

425

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

426

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

427

Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel  

SciTech Connect

The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

McCoy, G.A.; Kerstetter, J.

1983-10-01T23:59:59.000Z

428

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

429

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kenworth - W900S Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

430

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

431

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

432

NEW FUEL ECONOMY TESTING  

NLE Websites -- All DOE Office Websites (Extended Search)

drive Highlander Hybrid. This crossover boasts a 3.3-liter V6 gas engine and three electric motors for 270 horsepower. Mileage ratings are 27 city 25 highway. Toyota's full...

433

Energy Economy  

Energy.gov (U.S. Department of Energy (DOE))

Energy is beneficial to America's economy, creating jobs and reducing our dependence on foreign oil.

434

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 20...

435

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Vehicles Topics: Best Practices Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/fleets/fleet_experiences.html Related Tools Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Diesel Idling Reduction Tool and Calculator (Transit, Fuel) ... further results Find Another Tool FIND TRANSPORTATION TOOLS This compilation of case studies shows how other fleets are using alternative fuel vehicles, dealing with infrastructure issues, obtaining

436

Energy Department, Volvo Partnership Builds More Efficient Trucks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the United States. Volvo Truck Corporation is one of the leading heavy truck and engine manufacturers in the world. Volvo Trucks manufactures a line of Class 8 trucks, and is...

437

Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Seattle Bakery Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Google Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Delicious Rank Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Digg Find More places to share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on AddThis.com... Jan. 19, 2013 Seattle Bakery Delivers With Biodiesel Trucks D iscover how Essential Baking Company in Seattle, Washington, relies on

438

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

439

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

DOE Green Energy (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

440

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel economy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Projects to Diversify U.S. Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local governments cut red tape and develop the infrastructure, training and regional planning needed to help meet the demand for alternative fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to expand the transportation options available for businesses and communities and improve the fuel

442

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

443

The Sustainable Hydrogen Economy  

DOE Green Energy (OSTI)

Identifying and building a sustainable energy system is perhaps one of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions and energy security. The hydrogen economy then is the production of hydrogen, its distribution and utilization as an energy carrier. A key piece of this hydrogen economy is the fuel cell. A fuel cell converts the chemical energy in a fuel into low-voltage dc electricity and when using hydrogen as the fuel, the only emission is water vapor. While the basic understanding of fuel cell technology has been known since 1839, it has only been recently that fuel cells have shown their potential as an energy conversion device for both transportation and stationary applications. This talk will introduce the sustainable hydrogen economy and address some of the issues and barriers relating to its deployment as part of a sustainable energy system.

Turner, John (NREL)

2005-07-06T23:59:59.000Z

444

Truck Thermoacoustic Generator and Chiller  

DOE Green Energy (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

445

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum gas (LPG, consisting predominantly of propane) or renewable fuels such as biogas from wastewater treatments plants. Fuel cells for auxiliary power units in trucks will...

446

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

447

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

448

Alternative Fuels Data Center: Alabama Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Fuel Economy Efficiency on Facebook Tweet about Alternative...

449

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

450

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

451

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

452

Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

453

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

454

Alternative Fuels Data Center: Washington Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

455

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

456

Alternative Fuels Data Center: California Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

457

Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...