Powered by Deep Web Technologies
Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

2

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

3

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

4

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption  

Broader source: Energy.gov [DOE]

The U.S. Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, during which time they often park at truck stops idling the engines to provide heating,...

5

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

6

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

7

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract NumberProject Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

California at Davis, University of

8

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

9

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

10

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

11

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

12

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

13

FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION  

SciTech Connect (OSTI)

This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.

Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

2014-09-25T23:59:59.000Z

14

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF)  

E-Print Network [OSTI]

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF) Oak Ridge National Laboratory approved ORNL's plan to conduct a Phase II Pilot Test titled Safeguarding Truck-Shipped Wholesale

15

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

16

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network [OSTI]

performed a study on PEM fuel cell APUs. Based upon previousConsiderations for a PEM Fuel Cell Powered Truck APU Davidsuccessfully demonstrated a PEM fuel cell APU on a Century

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

17

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

18

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect (OSTI)

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

19

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

20

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

22

Estimation of Fuel Use by Idling Commercial Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

23

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

24

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

25

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

26

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption Fact 787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption The U.S. Department of...

27

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Website Canada's Fuel Consumption Guide Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canada's Fuel Consumption Guide Website Focus Area: Fuel Efficiency Topics: Market Analysis Website: oee.nrcan.gc.ca/transportation/tools/fuelratings/ratings-search.cfm Equivalent URI: cleanenergysolutions.org/content/canadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website provides a compilation of fuel consumption ratings for passenger cars and light-duty pickup trucks, vans and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices

28

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Broader source: Energy.gov (indexed) [DOE]

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

29

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

30

NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than  

E-Print Network [OSTI]

wear on truck engines. More than 2 million gal of diesel is wasted on a daily basis nationwide (6). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour emissions and fuel consumption, · Examination of factors affecting results and analysis, and · Measurement

31

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

32

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

33

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

34

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

35

High Fuel Economy Heavy-Duty Truck Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

36

Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors  

Broader source: Energy.gov [DOE]

The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

37

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

38

Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication  

SciTech Connect (OSTI)

In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

2014-01-01T23:59:59.000Z

39

The Impact of Using Derived Fuel Consumption Maps to Predict...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the...

40

Fuel Consumption | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck...  

Broader source: Energy.gov (indexed) [DOE]

Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted...

42

Novel Concept of Long-Haul Trucks Powered by Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

A scale-model hydrogen fuel-cell truck has been designed and its performance tested to gain an improved understanding of the technical challenges of full- scale trucks employing on-board storage and hydrogen f...

Bahman Shabani; John Andrews

2013-01-01T23:59:59.000Z

43

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect (OSTI)

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

44

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

45

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

46

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

47

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

48

Reduction of fuel consumption  

Science Journals Connector (OSTI)

Replacing standard oil pumps with bypass control by regulated oil pumps with variable oil pressure which adapt their variable oil pumping quantity to the engine oil pressure requirements promises reductions in fuel

Dieter Voigt

2003-12-01T23:59:59.000Z

49

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network [OSTI]

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs are used to provide this power, rather than idling the engine, because they use less fuel and reduce wear

50

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration  

Broader source: Energy.gov [DOE]

Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

51

SuperTruck Making Leaps in Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department and industry partners are improving fuel efficiency of long-haul tractor-trailers in an effort to reduce the nations oil consumption, decrease carbon pollution, and move our economy forward.

52

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Broader source: Energy.gov (indexed) [DOE]

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

53

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel engineDiesel Idling diesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

54

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel enginediesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

55

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

56

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

57

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

58

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

59

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

60

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

62

Power Management Strategy for a Parallel Hybrid Electric Truck Power Management Strategy for a Parallel Hybrid Electric Truck  

E-Print Network [OSTI]

. The design procedure starts by defining a cost function, such as minimizing a combination of fuel consumption of a small increase in fuel consumption. #12;Power Management Strategy for a Parallel Hybrid Electric Truck I. INTRODUCTION Medium and heavy trucks running on diesel engines serve an important role in modern societies

Grizzle, Jessy W.

63

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

64

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

65

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

66

Research and Development Opportunities for Heavy Trucks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

67

Fuel Consumption per Vehicle.xls  

U.S. Energy Information Administration (EIA) Indexed Site

... 729 NA 618 628 652 681 Table 9. Fuel Consumption per Vehicle, Selected Survey Years (Gallons) Survey Years Page A-1 of A-5 1983 1985...

68

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

69

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, its necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

70

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...  

Office of Environmental Management (EM)

Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans...

71

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

2010-01-01T23:59:59.000Z

72

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

SciTech Connect (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

73

Complex System Method to Assess Commercial Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle...

74

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Broader source: Energy.gov (indexed) [DOE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

75

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety...

76

Impact of Driving Behavior on PHEV Fuel Consumption for Different...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain,...

77

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

78

SuperTruck Making Leaps in Fuel Efficiency  

Broader source: Energy.gov [DOE]

The recent SuperTruck demonstration at the Energy Department's headquarters in Washington, D.C., showed off a new Class 8 tractor-trailer that achieves a 20% increase in engine efficiency and a 70% increase in freight efficiency, reaching over 10

79

Current Demands on Fuel Consumption Measurement  

Science Journals Connector (OSTI)

The general focus on the reduction of greenhouse gases, specifically of CO2..., is also increasingly drawing the attention of engine developers back to the priority of lowering fuel consumption. Fundamental to th...

Karl Kck; Romain Lardet; Rainer Schantl

2011-09-01T23:59:59.000Z

80

The determinants of fuel use in the trucking industryvolume, fleet characteristics and the rebound effect  

Science Journals Connector (OSTI)

This paper studies the determinants of fuel use in the trucking industry in Denmark, using aggregate time series data for the period 19802007. The model captures the main linkages between the demand for freight transport, the characteristics of the vehicle fleet, and the demand for fuel. Results include the following. First, we precisely define and estimate a rebound effect of improvements in fuel efficiency in the trucking industry: behavioural adjustments in the industry imply that an exogenous improvement in fuel efficiency reduces fuel use less than proportionately. Our best estimate of this effect is approximately 10 % in the short run and 17 % in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firms to invest in newer, typically more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are ? 0.13 and ? 0.22 in the short run and in the long run, respectively. The empirical results of this paper have implications for judging the implications of fuel efficiency standards and regulations with respect to larger trucks in the EU.

Bruno De Borger; Ismir Mulalic

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Medium Truck Duty Cycle (MTDC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

82

A summary of truck fuel-saving measures developed with industry participation  

SciTech Connect (OSTI)

This report describes the third project undertaken by the Center for Transportation Research, Argonne National Laboratory (ANL), in a US Department of Energy program designed to develop and distribute compendiums of measures for saving transportation fuel. A matrix, or chart, of more than 60 fuel-saving measures was developed by ANL and refined with the assistance of trucking industry operators and researchers at an industry coordination meeting held in August 1982. The first two projects used similar meetings to refine matrices developed for the international maritime and US railroad industries. The consensus reached by those at the meeting was that the single most important element in a truck fuel-efficiency improvement program is the human element -- namely the development of strong motivation among truck drivers to save fuel. The role of the driver is crucial to the successful use of fuel-saving equipment and operating procedures. Identical conclusions were reached in the earlier maritime and rail meetings, thus providing a strong indication of the pervasive importance of the human element in energy-efficient transportation systems. The number and variety of changes made to the matrix are also delineated, including addition and deletion of various options and revisions of fuel-saving estimates, payback period estimates, and remarks concerning items such as the advantages, disadvantages, and cautions associated with various measures. The quality and quantity of the suggested changes demonstrate the considerable value of using a forum of industry operators and researchers to refine research data that are intended for practical application.

Bertram, K.M.; Saricks, C.L. [Argonne National Lab., IL (United States); Gregory, E.W. II [USDOE, Washington, DC (United States); Moore, A.J. [Northwestern Univ., Evanston, IL (United States)

1983-09-01T23:59:59.000Z

83

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network [OSTI]

Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing...

Sprague, Stephen M.

2011-02-22T23:59:59.000Z

84

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

85

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

86

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

87

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

88

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

89

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

90

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

91

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

92

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September...

93

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

of steady state engine fuel consumption and emission maps.affecting engine load and consequently fuel consumption. Theand engine speed which it then relates to fuel consumption

Scora, George Alexander

2011-01-01T23:59:59.000Z

94

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

95

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Injection Diesel Engine Fuel Consumption, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

96

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

97

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

SciTech Connect (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells PowerEdge units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuveras PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-Bs facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

98

Field monitoring and modeling of pavement response and service life consumption due to overweight truck traffic  

E-Print Network [OSTI]

A number of pavement structures experience deterioration due to high traffic volume and growing weights. Recently, the Texas Legislatures passed bills allowing trucks of gross vehicle weight (GVW) up to 556 kN routinely to use a route in south Texas...

Oh, Jeong-Ho

2004-11-15T23:59:59.000Z

99

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

100

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

102

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

103

Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: August 9, 5: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment to someone by E-mail Share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Facebook Tweet about Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Twitter Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Google Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Delicious Rank Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Digg Find More places to share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on

104

Reducing fuel consumption on the field, by continuously measuring...  

Broader source: Energy.gov (indexed) [DOE]

session part 1- poster nP-03 10PFT047 - NIRIS - DEER elevator 1 2 Reducing fuel consumption on the field, by continuously measuring fuel quality on electronically fuel...

105

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

106

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network [OSTI]

is proposed. The design goal of the control strategy is to minimize fuel consumption and engine-out NOx and PM studied in this paper is a Class VI, 7.3L diesel engine truck (International Truck, 4700 series), mainly) and a 49KW electric motor was developed, and a sub-optimal controller which considers only fuel consumption

Peng, Huei

107

Taking an Alternative Route: A guide for fleet operators and individual owners using alternative fuels in cars and trucks  

SciTech Connect (OSTI)

Taking an Alternative Route is a 30-page guide for fleet managers and individual owners on using alternative fuels in cars and trucks. Discussed in detail are all fuels authorized for federal credits under the Energy Policy Act of 1992 (EPAct). The publication informs federal and state fleet managers about how to comply with EPAct, and provides information about the Clean Air Act Amendments.

LaRocque, T.

2001-04-18T23:59:59.000Z

108

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

109

Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: December 12, 5: December 12, 2011 Fuel Consumption Standards for Combination Tractors to someone by E-mail Share Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Facebook Tweet about Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Twitter Bookmark Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Google Bookmark Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Delicious Rank Vehicle Technologies Office: Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors on Digg Find More places to share Vehicle Technologies Office: Fact #705:

110

Reducing fishing vessel fuel consumption and NOX emissions  

Science Journals Connector (OSTI)

There is a growing concern with the impact of marine operations on the environment. This requires reducing fuel consumption and vessel pollution during operation. On-board computers and satellite communications will enable the operator to reduce fuel consumption and NOX emissions during vessel operations. This paper presents the results of a study on this problem and how such an on-board system could be implemented to reduce fuel consumption and engine NOX emissions.

Robert Latorre

2001-01-01T23:59:59.000Z

111

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

112

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards  

Broader source: Energy.gov [DOE]

The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

113

,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

114

,"New York Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","1031...

115

Farm Motorization, Consumption and Prices of Motor Fuels  

Science Journals Connector (OSTI)

... Development of Farm Motorization and Consumption and Prices of Motor ... of Motor Fuels in Member Countries is the title of a publication recently issued by the Organization for ...

1963-12-21T23:59:59.000Z

116

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

117

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

118

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network [OSTI]

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits III locomotive to serve power generating station. Catawba $200,000 $203,000 $403,000 Dylex Partners

119

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

120

Hydrogen Consumption Measurement Research Platform for Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Hydrogen consumption measurement research platform is designed for fuel economy test of the proton exchange membrane fuel cell vehicle (PEM FCV). Hardware is constructed with industrial PC (IPC), field bus data acquisition module and device control module. ... Keywords: Hydrogen Consumption Measuremen, LabVIEW, Data Acquisition

Fang Maodong; Chen Mingjie; Lu Qingchun; Jin Zhenhua

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

122

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

123

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

124

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

125

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

126

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

127

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

fact that the diesel engines fuel consumption and emissionsDiesel Modal Emissions and Fuel Consumption Model Connection to engineDiesel Modal Emissions and Fuel Consumption Model unit; 5) engine-

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

128

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network [OSTI]

residential density on vehicle usage and energy consumption.of residential density on vehicle usage and fuel consumptionresidential density on vehicle usage and fuel consumption*

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

129

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress...

130

Fuel consumption and emissions of hybrid diesel applications  

Science Journals Connector (OSTI)

GM Powertrain Europe and the Politecnico di Torino have experimentally assessed the potentialities in terms of fuel consumption reduction and the challenges in terms of ... 1.9 l four-cylinder in-line diesel engine

Prof.-Dr. Andrea Emilio Catania; Prof.-Dr. Ezio Spessa

2008-12-01T23:59:59.000Z

131

,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:26:12 PM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

132

Multiscale Impact of Fuel Consumption on Air Quality  

Science Journals Connector (OSTI)

Multiscale Impact of Fuel Consumption on Air Quality ... A key element in the technical approaches is the application of air quality and exposure modeling using spatially nested descriptions of atmospheric phenomena. ...

G. M. Hidy

2002-01-08T23:59:59.000Z

133

Consumers Surplus with a Racial Apology? Black Relative to Non-Black Inequality in the Welfare Gains of Fuel-Efficient Cars and Trucks  

Science Journals Connector (OSTI)

This paper considers whether race conditions the welfare gains associated with the purchase of cars and trucks that comply with National Highway Traffic Safety Administration Corporate Average Fuel Efficiency Sta...

Juliet U. Elu; Gregory N. Price

2014-07-01T23:59:59.000Z

134

Cost evaluation of a novel 5-kW diesel-powered solid oxide fuel cell auxiliary power unit (APU).  

E-Print Network [OSTI]

??Idling heavy-duty trucks result in poor fuel consumption and harmful emissions. The Auxiliary Power Unit (APU) is one of the methods to reduce idling. The (more)

Pillala, Chakradhar.

2009-01-01T23:59:59.000Z

135

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

SciTech Connect (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

136

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

137

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

138

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

139

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

140

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

142

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

143

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Alaska Natural Gas Consumption by End Use Lease

144

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 183,870 204,390 193,822 189,173 229,053 200,239 163,218 1990's 228,485 125,198 123,111 130,916 139,427 178,827 177,508 144,787 176,262 136,708 2000's 141,785 135,786 114,919 123,585 129,825 134,434 138,558 154,323 166,500 169,631 2010's 157,751 147,268 163,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Texas Natural Gas Consumption by End Use Lease

145

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

146

Fuel consumption of a vehicle with power split CVT system  

Science Journals Connector (OSTI)

Continuously variable transmissions have made notable progress, especially in the automotive industry, in recent years. In this work, we study the performance of a mid passenger car provided with an original Power Split CVT (PS-CVT) system. The main advantage of the proposed solution is to improve the efficiency of the CVT by means of a power flow without recirculation using two separate phases of operation. By means of a simulation model we evaluate the vehicle's fuel consumption with the hypothesis to consider the value of transmission ratio speed that minimises the specific fuel consumption. Furthermore the PS-CVT performance is compared with that of traditional CVT.

Giacomo Mantriota

2005-01-01T23:59:59.000Z

147

Berth allocation considering fuel consumption and vessel emissions  

Science Journals Connector (OSTI)

We propose a more elaborate model on berth allocation considering fuel consumption than before, and overcome the nonlinear complexity by casting it as a mixed integer second order cone programming model. Furthermore, we conduct the vessel emission (in sailing periods) calculation with the widely-used emission factors. Besides, vessel emissions in mooring periods are also analyzed through a post-optimization phase on waiting time. Experimental results demonstrate that the new berth allocation strategy, reflected by the proposed model, is competent to significantly reduce fuel consumption and vessel emissions, while simultaneously retaining the service level of the terminal.

Yuquan Du; Qiushuang Chen; Xiongwen Quan; Lei Long; Richard Y.K. Fung

2011-01-01T23:59:59.000Z

148

Chapter 14 - Ship Trials: Endurance and fuel consumption  

Science Journals Connector (OSTI)

Publisher Summary This chapter is designed to discuss endurance and fuel consumption. In endurance and fuel consumption trials, the vessel is run at Maximum Continuous Rating (MCR) power for a fixed duration, say 6-24 hours. During this period of time, the following information is measured and recorded: fuel consumption in kg/kW hour, propeller and engine rpm, indicated power (Pi) within the engine room, feed water used, and engine oil pressures and temperatures. There are certain factors that the engine room staff need to take care of. On making a group of runs at a given speed, the original engine settings used when first approaching the measured distance should be rigorously maintained throughout the group. When a controllable-pitch propeller is fitted, the pitch settings used when first approaching the measured mile should be left unaltered throughout the group of runs. By fitting diesel machinery in a ship of similar power, displacement, and speed, a saving of about 10% in the daily fuel consumption can be achieved. The differences in the cost of fuel/tonne must be taken into account plus the size of the machinery arrangement installed in the ship.

C.B. Barrass

2004-01-01T23:59:59.000Z

149

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

150

Shielding and criticality analyses of phase I reference truck and rail cask designs for spent nuclear fuel  

SciTech Connect (OSTI)

Results are presented herein to determine the adequacy with respect to shielding regulations of reference designs for a truck cask containing 2 PWR or 5 BWR assemblies of standard burnup (45 GWd/MTU for PWR, 40 GWd/MTU for BWR) and 1 PWR assembly with extended burnup (55 GWd/MTU). The study also includes reference and modified rail cask designs with projected payloads of 8, 10, or 12 PWR assemblies. The burnup/age trends are analyzed in one dimension for both Pb and depleted uranium (DU) gamma-ray shields. The results of the two-dimensional shielding analysis uphold the one-dimensional results as being an appropriate means of studying the burnup/age trends for the truck cask. These results show that the reference design for the Pb-shield truck cask is inadequate for all cases considered, while the DU-shield truck cask is capable of carrying the desired payloads. The one-dimensional shielding analysis results for the reference Pb and DU rail casks indicate substantial margins exist in the side doses for reasonable burnup/age combinations. For a Pb-cask configuration, margins exist primarily for long-cooled (15 years) fuel. For the modified Pb and DU rail casks, the 2-m dose rates offer substantial margins below the regulatory limits for all burnup values considered provided the spent fuel has cooled for {>=}10 years. The modified Pb and DU casks yield essentially identical results and, hence, could be considered equivalent from a shielding perspective. The criticality analyses that were performed indicate that a truck basket can be designed to provide an adequate subcritical margin for 2 PWR assemblies enriched to 5 wt%. While the 10- and 12- assembly rail cask designs are very close to the regulatory limit of 0.95 for k{sub eff}, after accounting for a 0.01 {Delta}k bias and 2 standard deviations, the limit is exceeded by about 3%. It is believed that a combination of decreased enrichments and/or increased water gaps should allow these baskets to be acceptable.

Broadhead, B.L.; Childs, R.L.; Parks, C.V.

1996-03-01T23:59:59.000Z

151

A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application  

Science Journals Connector (OSTI)

Abstract The paper presents a model-based approach to supporting battery selection for a fuel cell (FC)-based auxiliary power unit (APU). It is introduced to a case study of electrical power production and consumption management in a truck anti-idling application of a diesel-powered FC-based APU, a system under development in FCGEN, a FCH JU European project of the FP7 program. With fuel cell and related technologies increasingly competing with others in the market, they need to form complete systems with matching and well-balanced components to enable using the technology to its best. Within the whole system, the battery, serving as an energy buffer, represents a medium-cost element, but it affects the operating parameters importantly. Within the scope of this study, a purpose-oriented model of the diesel powered FC-based system is developed together with a realistic load scenario for the comparison of three batteries. The battery size and type are investigated and discussed in the light of the simulation results.

Botjan Pregelj; Darko Vre?ko; Janko Petrov?i?; Vladimir Jovan; Gregor Dolanc

2015-01-01T23:59:59.000Z

152

Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)  

SciTech Connect (OSTI)

This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

Lammert, M.; Gonder, J.

2014-07-01T23:59:59.000Z

153

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

154

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

155

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

engine performance and fault detection that can be remotely monitored. 48 Navy vessels have reported fuel consumptionengines, transmissions and drive trains for the Armys truck fleet potentially could save significant costs from increased overall performance, reduced fuel consumption

Williams, Charles

2014-01-01T23:59:59.000Z

156

Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

157

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

158

Energy management of HEV to optimize fuel consumption and pollutant emissions  

E-Print Network [OSTI]

AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

Paris-Sud XI, Université de

159

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

160

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

where K 0 is the cost of the fuel cell stack, fuel storagefuel cell stack, plumbing, inverter, fuel storage tank, and accessories), fuel cost,costs of about $700 per kW for the basic solid oxide fuel cell stack

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of di?erent sizes of direct-hydrogen PEM fuel cell

2002-01-01T23:59:59.000Z

162

SuperTruck ? Development and Demonstration of a Fuel-Efficient...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

163

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

164

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas.  

E-Print Network [OSTI]

??The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources (more)

Gokhale, Bhushan

2007-01-01T23:59:59.000Z

165

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

166

Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks  

Broader source: Energy.gov [DOE]

Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

167

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

168

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

169

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

170

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

171

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT - Testimony to the U.S. House of Representatives Science Committee, February 9, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT? 2:00 pm, Wednesday, February 9, 2005 Rayburn House Office Building, Room 2318 by Dr. David L. Greene Corporate Fellow Engineering Science and Technology Division Oak Ridge National Laboratory 1. WHAT ARE THE POLICY OPTIONS FOR ENCOURAGING THE ADOPTION OF FUEL EFFICIENT TECHNOLOGIES AND THEIR ADVANTAGES AND DISADVANTAGES? There are many ways to structure policies to achieve significant increases in fuel economy effectively and efficiently. I will focus on five below. It is possible to create policies that are reasonably effective, efficient, and fair. Our own experience with our CAFE standards and difficulties we have had updating the CAFE law indicates that we should also prefer policies that

172

Fuels of the Future for Cars and Trucks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Final Report - Hydrogen Delivery Infrastructure Options Analysis Cost Analysis of Hydrogen Storage Systems FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

173

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

174

Virginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing  

E-Print Network [OSTI]

sources such as hybrid-electric technologies, bio-ethanol, and hydrogen fuel cells are emergingVirginia Tech Comprehensive Power-based Fuel Consumption Model: Model Development and Testing, Moran, Saerens, and Van den Bulck 2 ABSTRACT Existing fuel consumption and emission models suffer from

Rakha, Hesham A.

175

Computer simulation of optimal functioning regimes with minimum fuel consumption for automotives  

Science Journals Connector (OSTI)

The paper deals with computer simulation that allows the calculus of operating regimes with minimum fuel consumption for road vehicles, using engines mechanical characteristics for power and consumption, charact...

Salvadore Mugurel Burciu

2014-10-01T23:59:59.000Z

176

Causal relationship between fossil fuel consumption and economic growth in the world  

Science Journals Connector (OSTI)

Fossil fuels are major sources of energy, and have several advantages over other primary energy sources. Without extensive dependence on fossil fuels, it is questionable whether our economic prosperity can continue. This paper analyses cointegration and causality between fossil fuel consumption and economic growth in the world over the period 1971 to 2008. The estimation results indicate that fossil fuel consumption and GDP are cointegrated and there exists long-run unidirectional causality from fossil fuel consumption to GDP. This paper also investigates the nexus between non-fossil energy consumption and GDP, and shows that there is no causality between the variables. The conclusions are that reducing fossil fuel consumption may hamper economic growth, and that it is unlikely that non-fossil energy will substantially replace fossil fuels. This paper also examines causal linkages between the variables using a trivariate model, and obtains the same results as those from the bivariate model.

Hazuki Ishida

2012-01-01T23:59:59.000Z

177

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

178

The Potential of Turboprops to Reduce Aviation Fuel Consumption  

E-Print Network [OSTI]

and adoption, is challenged by fuel price uncertainty.Fuel price uncertainty is due fuel and energy priceplanning under such fuel price uncertainty and environmental

Smirti, Megan; Hansen, Mark

2009-01-01T23:59:59.000Z

179

Minimising cold start fuel consumption and emissions from a gasoline fuelled engine.  

E-Print Network [OSTI]

??Several constrained optimisation problems are considered, in which different tailpipe emissions regulations are the constraints under which the fuel consumption is minimised. The solutions of (more)

Andrianov, Denis

2011-01-01T23:59:59.000Z

180

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

182

Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden...  

Broader source: Energy.gov (indexed) [DOE]

by lawn and garden equipment. The fuel used in this equipment accounts for only 1.8% of total gasoline use. Fuel Consumption from Lawn and Garden Equipment, 2008 Bar graph...

183

Mixing Correlations for Smoke and Fuel Consumption of Direct Injection Engines  

Science Journals Connector (OSTI)

The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operatin...

P. A. Lakshminarayanan; Yogesh V. Aghav

2010-01-01T23:59:59.000Z

184

Optimisation of gasoline engine performance and fuel consumption through combination of technologies  

Science Journals Connector (OSTI)

The gasoline engine has undergone intensive development in recent history ... introduction of technologies such as turbocharging and direct fuel injection. In addition to the reduction of part load fuel consumption

Dr.-Ing. Peter Wieske; Bernhardt Lddecke; Sebastian Ewert

2009-11-01T23:59:59.000Z

185

Cable length optimization for trawl fuel consumption reduction  

Science Journals Connector (OSTI)

A numerical method for optimization of the cable lengths in trawls with respect to the ratio between the estimated trawl drag and the predicted catch efficiency is developed and applied. The trawl cables of interest are warps, bridles, headline and footrope. The optimization algorithm applies an ordered sequential process changing one cable length at the time. It is assumed in the predictions that the catch efficiency of the trawl is proportional with the trawl mouth area. In a case study optimizing a bottom trawl used on a research vessel by applying the new method it is predicted that it would be possible to reduce the ratio between trawl drag and catch efficiency by up to 46% by optimizing the cable lengths. Thus this would enable a considerable reduction in fuel consumption to catch a specific amount of fish. Moreover, we predict an increase in the value of the trawl mouth area leading to better catching efficiency without increase in otter door drag.

Ramez Khaled; Daniel Priour; Jean-Yves Billard

2013-01-01T23:59:59.000Z

186

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

187

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

188

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

189

Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks  

Science Journals Connector (OSTI)

Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (?7 and 22 C) operating on two fuels (ultra low sulfur diesel and 20% soy biodiesel blend) over three driving cycles: cold start, warm start and heavy-duty urban dynamometer driving cycle. ... Different 2007+ aftertreatment technologies involving catalyst regeneration led to significant modifications of VOC emissions that were compound-specific and highly dependent on test conditions. ... However, emissions of other toxic partial combustion products such as carbonyls were not reduced in the modern diesel vehicles tested. ...

Ingrid J. George; Michael D. Hays; Richard Snow; James Faircloth; Barbara J. George; Thomas Long; Richard W. Baldauf

2014-11-13T23:59:59.000Z

190

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

191

Comparison of Real-World Fuel Use and Emissions for Dump Trucks Fueled with B20 Biodiesel Versus Petroleum Diesel  

E-Print Network [OSTI]

Versus Petroleum Diesel By H. Christopher Frey, Ph.D. Professor Department of Civil, Construction-world in-use on-road emissions of selected diesel vehicles, fueled with B20 biodiesel and petroleum diesel was tested for one day on B20 biodiesel and for one day on petroleum diesel. On average, there were 4.5 duty

Frey, H. Christopher

192

Emissions and fuel consumption characteristics of an HCNG-fueled heavy-duty engine at idle  

Science Journals Connector (OSTI)

Abstract The idle performance of an 11-L, 6-cylinder engine equipped with a turbocharger and an intercooler was investigated for both compressed natural gas (CNG) and hydrogen-blended CNG (HCNG) fuels. HCNG, composed of 70% CNG and 30% hydrogen in volume, was used not only because it ensured a sufficient travel distance for each fueling, but also because it was the optimal blending rate to satisfy EURO-6 emission regulation according to the authors' previous studies. The engine test results demonstrate that the use of HCNG enhanced idle combustion stability and extended the lean operational limit from excess air ratio (?)=1.5 (CNG) to 1.6. A decrease of more than 25% in the fuel consumption rate was achieved in HCNG idle operations compared to CNG. Total hydrocarbon and carbon monoxide emissions decreased when fueled with HCNG at idle because of the low carbon content and enhanced combustion characteristics. In particular, despite hydrogen enrichment, less nitrogen oxides (NOx) were emitted with HCNG operations because the amount of fuel supplied for a stable idle was lower than with CNG operations, which eventually induced lower peak in-cylinder combustion temperature. This low HCNG fuel quantity in idle condition also induced a continuous decrease in \\{NOx\\} emissions with an increase in ?. The idle engine test results also indicate that cold-start performance can deteriorate owing to low exhaust gas temperature, when fueled with HCNG. Therefore, potential solutions were discussed, including combustion strategies such as retardation of spark ignition timing combined with leaner air/fuel ratios.

Sunyoup Lee; Changgi Kim; Young Choi; Gihun Lim; Cheolwoong Park

2014-01-01T23:59:59.000Z

193

,"Oklahoma Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

194

,"Michigan Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

195

,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

196

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

197

,"Florida Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

198

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

199

,"Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

200

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"South Dakota Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:44 PM"

202

,"Alaska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:46 PM"

203

,"Kentucky Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1840_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1840_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:39 PM"

204

,"Arkansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

205

,"Nebraska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:51 PM"

206

,"California Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

207

,"Illinois Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Consumption (MMcf)" Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sil_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sil_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:21 PM"

208

,"Colorado Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

209

,"Utah Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:53 PM"

210

,"Kansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

211

,"Tennessee Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

212

,"Montana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

213

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodieseldiesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodieseldiesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

214

A note on Berth allocation considering fuel consumption and vessel emissions  

Science Journals Connector (OSTI)

Du et al. [Du, Y., Chen, Q., Quan, X., Long, L., Fung, R.Y.K., 2011. Berth allocation considering fuel consumption and vessel emissions. Transportation Research Part E 47, 10211037] dealt with a berth allocation problem incorporating ship fuel consumption minimization. To address the difficulty posed by the power function between fuel consumption rate and sailing speed, they formulated a tractable mixed-integer second-order cone programming model. We propose two quadratic outer approximation approaches that can handle general fuel consumption rate functions more efficiently. In the static quadratic outer approximation approach, the approximation lines are generated a priori. In the dynamic quadratic outer approximation approach, the approximation lines are generated dynamically. Numerical experiments demonstrate the advantages of the two approaches.

Shuaian Wang; Qiang Meng; Zhiyuan Liu

2013-01-01T23:59:59.000Z

215

More efficiency in fuel consumption using gearbox optimization based on Taguchi method  

Science Journals Connector (OSTI)

Automotive emission is becoming a critical threat to todays human health. Many researchers are studying engine designs leading to less fuel consumption. Gearbox selection plays a key role in an engine design. In...

Masoud Goharimanesh; Aliakbar Akbari

2014-05-01T23:59:59.000Z

216

Characteristic fuel consumption and exhaust emissions in fully mechanized logging operations  

Science Journals Connector (OSTI)

A study was done using eight different logging machines (harvesters and forwarders) in clear-felling operations to quantify the associated fuel consumption, and to define the inherent relationship between engine ...

Radomir Klvac; Alois Skoupy

2009-12-01T23:59:59.000Z

217

Fuel consumption reduction through friction optimisation of a four-cylinder gasoline engine  

Science Journals Connector (OSTI)

Working in co-operation, BMW and PSA have created a completely new fourcylinder gasoline engine family which is presented in detail in ... objective throughout the development phase was to minimise fuel consumption

Wolfgang Meldt; Werner Tripolt; Gerald Gaberscik; Johann Schopp

2007-07-01T23:59:59.000Z

218

Design features which influence pollutant emissions and fuel consumption in four-stroke engines  

Science Journals Connector (OSTI)

The efficiency of an internal-combustion engine and, hence, its specific fuel consumption are largely dependent on the process characteristics ... . As the internal-combustion process in the engine cannot really ...

Univ.-Prof. Dr. Ing. Fred Schfer

1995-01-01T23:59:59.000Z

219

Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - No Data Reported;...

220

Truck driver environmental and energy attitudes an exploratory analysis  

Science Journals Connector (OSTI)

In recent years, US federal and state regulators have developed policies and programs designed to encourage tractortrailer drivers to reduce engine idling as a way to cut down on diesel emissions and fuel consumption. It has proven difficult, however, to target education and outreach to truck drivers, partially because little is known about them. Based on a nationwide interview survey of over 350 drivers, the link between drivers environmental and energy attitudes and their adoption of idle-reduction measures is examined. Cluster analysis shows that truckers with some college and with college completion consistently expressed agreement with pro-environmental statements. A logit model indicates that concerns over fuel consumption, resource depletion, and cost are associated with an interest in idle-reduction alternatives among owner-operators, but not with purchases. Costs of technology and fuel are the driving considerations affecting the adoption of idle-reduction strategies.

Lisa Schweitzer; Christie-Joy Brodrick; Sue E. Spivey

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of different sizes of direct-hydrogen PEM fuel cell

2001-01-01T23:59:59.000Z

222

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

223

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents [OSTI]

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

224

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

225

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption U.S. Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

226

A fuel consumption model for off-road use of mobile machinery in agriculture  

Science Journals Connector (OSTI)

Abstract Until 2009, the annual reporting of emissions by off-road transport in agriculture in Belgium was based on a 1994 calculation model that needed to be updated. An energy consumption model was established for plant production in Belgium as a backbone for a new emission model. The model starts from agricultural activities involving off-road fuel consumption. Effects of soil type, tractor size, field size and machine load are modelled. Twenty-seven \\{FCIs\\} (fuel consumption indicators) were computed for plant production. \\{FCIs\\} are expressed per year and are used for emission estimates on a regional level. \\{FCIs\\} ranged from 37 to 311L/ha. Sensitivity analysis showed the highest impact of tractor size with a surplus fuel consumption between 10 and 41% depending on the crop type. Fuel consumption (L) can be further processed into greenhouse gas emissions. \\{FCIs\\} can be adopted in LCA (life cycle assessment) studies. With ?310L/ha, orchards are most fuel intensive, followed by field vegetables and sugar beets (?150L/ha). The total off-road energy consumption of field vegetables is high because second cropping is a common practice.

Veerle Van linden; Lieve Herman

2014-01-01T23:59:59.000Z

227

Integrated Rankine bottoming cycle for diesel truck engines  

SciTech Connect (OSTI)

This study assessed the feasibility of incorporating a Rankine bottoming cycle into a diesel truck engine. An organic Rankine bottoming cycle (ORBC) previously demonstrated by the US Department of Energy in a heavy-duty, long-haul truck reduced the truck's fuel consumption by about 12%. However, that system was considered too complex and costly to be commercialized. The integrated Rankine bottoming cycle (IRBC) described here is expected to be simpler and less costly than the ORBC. In the IRBC, one cylinder of a six-cylinder diesel truck engine will be used for power recovery, instead of the turbine and reduction gears of the ORBC; engine coolant will serve as the working fluid; and the engine radiator will also serve as the condenser. Toluene and steam were considered as working fluids in this assessment, and we concluded that steam (at 1000 psi, partially vaporized to about 33% saturation in the cylinder head, and superheated in an evaporator) would be the more practical of the two. Both heat exchangers are smaller than those of the ORBC system, but may pose a challenge in an under-the-hood installation. Overall, the concept appears feasible. 13 refs., 9 figs., 7 tabs.

Sekar, R.; Cole, R.L.

1987-09-01T23:59:59.000Z

228

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

229

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012. Status: 50% complete. Budget FY12 390K (Vehicle System) 50K (Fuel Cell Specific runs) 75K (link with market analysis) Barriers Evaluate the...

230

Simultaneous optimization of propellerhull systems to minimize lifetime fuel consumption  

Science Journals Connector (OSTI)

Abstract In traditional naval architecture design methodologies optimization of the hull and propeller are done in two separate phases. This sequential approach can lead to designs that have sub-optimal fuel consumption and, thus, higher operational costs. This work presents a method to optimize the propellerhull system simultaneously in order to design a vessel to have minimal fuel consumption. The optimization uses a probabilistic mission profile, propellerhull interaction, and engine information to determine the coupled system with minimum fuel cost over its operational life. The design approach is tested on a KCS SIMMAN container ship using B-series propeller data and is shown to reduce fuel consumption compared to an optimized traditional design approach.

M. Nelson; D.W. Temple; J.T. Hwang; Y.L. Young; J.R.R.A. Martins; M. Collette

2013-01-01T23:59:59.000Z

231

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

232

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

233

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

234

Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR? System for Retrofit of In-Use? Trucks  

Broader source: Energy.gov [DOE]

Reports on truck fleet emission test results obtained from retrofitting in-use? old class-8 trucks with IMETs GreenPower? DPF-Hydrated-EGR system

235

NREL: Fleet Test and Evaluation - Truck Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

236

Emission Controls for Heavy-Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

237

Zero Emission Heavy Duty Drayage Truck Demonstration | Department...  

Office of Environmental Management (EM)

Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

238

Microsoft Word - EVS25_Primary Factors Impact Fuel Consumption of PHEV_FINAL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVS-25 Shenzhen, China, Nov. 5-9, 2010 EVS-25 Shenzhen, China, Nov. 5-9, 2010 The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles Richard 'Barney' Carlson, Matthew G. Shirk, and Benjamin M. Geller Energy Storage and Transportation Systems Department, Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83401, USA E-mail: richard.carlson@inl.gov Abstract- Plug-in hybrid electric vehicles (PHEVs) have proven to significantly reduce petroleum consumption when compared to conventional internal combustion engine vehicles by utilizing onboard electrical energy storage for propulsion. Through extensive testing of PHEVs, analysis has shown that fuel consumption of PHEVs is more

239

Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks  

Science Journals Connector (OSTI)

This study presents an artificial neural network (ANN) model to predict the torque and brake specific fuel consumption of a gasoline engine. An explicit ANN based formulation is developed to predict torque and brake specific fuel consumption of a gasoline engine in terms of spark advance, throttle position and engine speed. The proposed ANN model is based on experimental results. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. An ANN model based on a back-propagation learning algorithm for the engine was developed. The performance and an accuracy of the proposed ANN model are found satisfactory. This study demonstrates that ANN is very efficient for predicting the engine torque and brake specific fuel consumption. Moreover, the proposed ANN model is presented in explicit form as a mathematical function.

Necla Kara Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

240

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document  

Broader source: Energy.gov [DOE]

Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document.

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Analysis and Simulation of Fuel Consumption and Energy Throughput on a Parallel Diesel-Electric Hybrid Powertrain.  

E-Print Network [OSTI]

??The aim of this master thesis is to study the energy throughput and fuel consumption of a parallel diesel-electric hybrid vehicle. This has been done (more)

Gustafsson, Johanna

2009-01-01T23:59:59.000Z

242

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings  

Broader source: Energy.gov [DOE]

Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

243

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments [OSTI]

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

244

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

245

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

246

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

247

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

248

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

249

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

250

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

251

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

252

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

253

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

254

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

255

U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Lease Fuel Consumption (Million Cubic Feet) Lease Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 595,172 687,356 598,475 573,793 741,268 697,703 640,633 1990's 807,735 672,314 710,250 723,118 699,842 792,315 799,629 776,306 771,366 679,480 2000's 746,889 747,411 730,579 758,380 731,563 756,324 782,992 861,063 864,113 913,229 2010's 916,797 938,340 987,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption U.S. Natural Gas Consumption by End Use

256

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

257

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

258

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

259

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

260

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Broader source: Energy.gov (indexed) [DOE]

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Broader source: Energy.gov [DOE]

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

262

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

263

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

264

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

265

Reaction-Diffusion Model for Combustion with Fuel Consumption: I. Dirichlet Boundary Conditions  

Science Journals Connector (OSTI)

......9JT, UK Department of Chemistry, University of Leeds...Reaction-Diffusion Model for Combustion with Fuel Consumption...SCOTT Department of Chemistry, University of Leeds...runaway in stockpiles of coal, wool, cellulose...smouldering or fully fledged combustion and their attendant......

G. ZHANG; J. H. MERKIN; S. K. SCOTT

1991-01-01T23:59:59.000Z

266

Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels  

Science Journals Connector (OSTI)

Abstract Resolving the berth and quay-crane allocation problem improves the efficiency of seaside operations by optimally allocating berthing spaces and quay cranes to vessels, typically by considering a vessels sailing speed and arrival time at a port as constant parameters, while ignoring the impact of arrival times on fuel consumption and emissions when sailing. This work applied a novel nonlinear multi-objective mixed-integer programming model that considered a vessels fuel consumption and emissions, and then transformed this model into a second-order mixed-integer cone programming model to solve the problems computational intractability. Furthermore, the impact of number of allocated quay cranes on port operational cost, and a vessels fuel consumption and emissions was analyzed. Additionally, a vessels emissions while moored are also calculated based on wait time. Experimental results demonstrate that the new berth and quay-crane allocation strategy with a vessels arrival time as a decision variable can significantly improve vessels fuel consumption and emissions, the air quality around ports and utilization of berths and quay cranes without reducing service quality.

Qing-Mi Hu; Zhi-Hua Hu; Yuquan Du

2014-01-01T23:59:59.000Z

267

Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine  

Science Journals Connector (OSTI)

This study presents genetic programming (GP) based model to predict the torque and brake specific fuel consumption a gasoline engine in terms of spark advance, throttle position and engine speed. The objective of this study is to develop an alternative robust formulations based on experimental data and to verify the use of GP for generating the formulations for gasoline engine torque and brake specific fuel consumption. Experimental studies were completed to obtain training and testing data. Of all 81 data sets, the training and testing sets consisted of randomly selected 63 and 18 sets, respectively. Considerable good performance was achieved in predicting gasoline engine torque and brake specific fuel consumption by using GP. The performance of accuracies of proposed GP models are quite satisfactory (R2=0.9878 for gasoline engine torque and R2=0.9744 for gasoline engine brake specific fuel consumption). The prediction of proposed GP models were compared to those of the neural network modeling, and strictly good agreement was observed between the two predictions. The proposed GP formulation is quite accurate, fast and practical.

Necla Togun; Sedat Baysec

2010-01-01T23:59:59.000Z

268

Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels  

Science Journals Connector (OSTI)

Resolving the berth and quay-crane allocation problem improves the efficiency of seaside operations by optimally allocating berthing spaces and quay cranes to vessels, typically by considering a vessel's sailing speed and arrival time at a port as constant ... Keywords: Berth and quay crane allocation problem, Emission, Fuel consumption, Nonlinear optimization, Second-order cone programming

Qing-Mi Hu, Zhi-Hua Hu, Yuquan Du

2014-04-01T23:59:59.000Z

269

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

270

2014 Best and Worst MPG Trucks, Vans and SUVs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

271

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

272

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

273

Spark ignition engine control strategies for minimising cold start fuel consumption under cumulative tailpipe emissions constraints  

Science Journals Connector (OSTI)

Abstract This paper proposes a methodology for minimising the fuel consumption of a gasoline fuelled vehicle during cold starting. It first takes a validated dynamic model of an engine and its aftertreatment reported in a previous study (Andrianov, Brear, & Manzie, 2012) to identify optimised engine control strategies using iterative dynamic programming. This is demonstrated on a family of optimisation problems, in which fuel consumption is minimised subject to different tailpipe emissions constraints and exhaust system designs. Potential benefits of using multi-parameter optimisation, involving spark timing, airfuel ratio and cam timing, are quantified. Single switching control policies are then proposed that perform close to the optimised strategies obtained from the dynamic programming but which require far less computational effort.

D.I. Andrianov; C. Manzie; M.J. Brear

2013-01-01T23:59:59.000Z

274

LANL debuts hybrid garbage truck  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid garbage truck LANL debuts hybrid garbage truck The truck employs a system that stores energy from braking and uses that pressure to help the truck accelerate after each...

275

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

276

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

277

Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations  

Broader source: Energy.gov [DOE]

Development and validation of a simple strategy-based technique using four engine parameters to minimize emissions and fuel consumption

278

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation-- What the Industry Does and What the Government Can Do  

Broader source: Energy.gov [DOE]

Smart regulations, funding for advanced technologies, and improvements to operations and infrastructure play important roles in reducing fuel consumption

279

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363  

E-Print Network [OSTI]

Poster Session--Fuel Consumption During Prescribed Fires in Big Sage--Wright, Ottmar USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 363 Fuel Consumption During Prescribed Fires in Big Sage Ecosystems1 Clinton S. Wright2 and Roger D. Ottmar2 Introduction Fuel consumption was evaluated for a series

Standiford, Richard B.

280

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,34 33419,9 33785,9 34150,8 34515,22

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,7 33785,9 34150,27 34515,68 34880,75

282

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:20 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,6 40224,5 40252,6 40283,6 40313,6 40344,6 40374,6

283

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,3 33419,0 33785,3 34150,4 34515,3 34880,4

284

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,4 33419,9 33785,27 34150,255 34515,550

285

,"California Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:09 PM" "Back to Contents","Data 1: California Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCA_2" "Date","California Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1153 40224,1041 40252,1153 40283,1116

286

,"Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:28 PM" "Back to Contents","Data 1: Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SMA_2" "Date","Massachusetts Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,1 33785,2 34150,2

287

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

288

,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sal_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sal_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:05 PM" "Back to Contents","Data 1: Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAL_2" "Date","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,9 40224,8 40252,9 40283,9 40313,9 40344,9

289

,"Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCT_2" "Date","Connecticut Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,2

290

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:57 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,2 33785,5 34150,7 34515,5

291

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,2

292

,"Florida Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:14 PM" "Back to Contents","Data 1: Florida Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SFL_2" "Date","Florida Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,5 40224,5 40252,5 40283,5 40313,5 40344,5

293

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 35611,284 35976,0 36341,380 36707,0 37072,0 37437,0 37802,0 38168,0

294

,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:27 PM" "Back to Contents","Data 1: Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SLA_2" "Date","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1

295

,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:58 PM" "Back to Contents","Data 1: South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSD_2" "Date","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0

296

,"Idaho Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:19 PM" "Back to Contents","Data 1: Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SID_2" "Date","Idaho Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,10 34880,19

297

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

298

,"Indiana Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sin_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sin_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:23 PM" "Back to Contents","Data 1: Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SIN_2" "Date","Indiana Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,4 40224,4 40252,4 40283,4 40313,4 40344,4

299

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0 40344,0

300

,"Colorado Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sco_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sco_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SCO_2" "Date","Colorado Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,21 40224,19 40252,21 40283,20 40313,21

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Arizona Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:07 PM" "Back to Contents","Data 1: Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAZ_2" "Date","Arizona Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,37 33785,46 34150,44 34515,61 34880,118

302

,"Georgia Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sga_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sga_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:16 PM" "Back to Contents","Data 1: Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SGA_2" "Date","Georgia Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,78 40224,70 40252,78 40283,75 40313,78

303

,"Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM" "Back to Contents","Data 1: Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAR_2" "Date","Arkansas Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,3 34880,2

304

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

305

,"Alaska Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sak_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sak_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:04 PM" "Back to Contents","Data 1: Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SAK_2" "Date","Alaska Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,2 40224,2 40252,2 40283,2 40313,2 40344,2

306

,"South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssc_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssc_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:56 PM" "Back to Contents","Data 1: South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SSC_2" "Date","South Carolina Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1

307

,"Kansas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sks_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sks_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:24 PM" "Back to Contents","Data 1: Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SKS_2" "Date","Kansas Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,1 40224,1 40252,1 40283,1 40313,1 40344,1

308

Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project  

Broader source: Energy.gov [DOE]

Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck...

309

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles  

Science Journals Connector (OSTI)

Life Cycle Inventory Energy Consumption and Emissions for Biodiesel versus Petroleum Diesel Fueled Construction Vehicles ... In general, LCI emissions of HC and CO are lower if NSPS-compliant soyoil plants are used. ... The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and ... ...

Shih-Hao Pang; H. Christopher Frey; William J. Rasdorf

2009-07-16T23:59:59.000Z

310

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

311

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

highway transportation technologies to reduce petroleum consumption, reducing operating cost, fuel consumption, environmental impact, and time to market * Approach: Through...

312

The methodology of variable management of propellant fuel consumption by jet-propulsion engines of a spacecraft  

Science Journals Connector (OSTI)

Traditionally, management of propellant fuel consumption on board of a spacecraft is only associated with the operation of jet-propulsion engines (JPE) that are actuator devices of ... systems (MCS). The efficien...

V. S. Kovtun

2012-12-01T23:59:59.000Z

313

Multiple Injection and Boosting Benefits for Improved Fuel Consumption on a Spray Guided Direct Injection Gasoline Engine  

Science Journals Connector (OSTI)

The combination of turbocharging and direct injection offers a significant potential for SI engines to improve fuel consumption, specific power output, raw emissions and ... shows the latest results of the T-SGDI...

Jason King; Oliver Bcker

2013-01-01T23:59:59.000Z

314

Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption  

Science Journals Connector (OSTI)

One of the major goals of engine designers is the reduction of fuel consumption and pollutant emissions while keeping or even improving engine performance. In recent years, different technical ... have been inves...

A. J. Torregrosa; A. Broatch; P. Olmeda

2008-08-01T23:59:59.000Z

315

Effect of stratified water injection on exhaust gases and fuel consumption of a direct injection diesel engine  

Science Journals Connector (OSTI)

The direct injection Diesel engine with its specific fuel consumption of about 200 g/kWh is one of the most efficient thermal engines. However in case of relatively low CH...x...concentration in the exhaust gas t...

Rainer Pauls; Christof Simon

2004-01-01T23:59:59.000Z

316

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane  

Science Journals Connector (OSTI)

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane ... The land provides both mechanical support and electrical contact to the porous transport layer (PTL), while the fuel and oxidant are distributed to the catalyst layer (CL) through the channels, again via the PTL. ... The anisotropic nature of the distributions suggest that there may be localized hot spots where an increased rate of power consumption could heat the membrane and cause it to fail. ...

Venkateshwar R. Devulapalli; Aaron V. Phoenix

2010-06-24T23:59:59.000Z

317

Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy  

Broader source: Energy.gov [DOE]

Discusses forward looking dynamic models developed for 6.6L diesel engine and a ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

318

Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass  

SciTech Connect (OSTI)

This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

2014-10-01T23:59:59.000Z

319

Effects of Magnetic Field on Fuel Consumption and Exhaust Emissions in Two-Stroke Engine  

Science Journals Connector (OSTI)

The energy of permanent magnets was used in this research for the treatment of vehicle fuel (Iraqi gasoline), to reducing consumption, as well as reducing the emission of certain pollutants rates. The experiments in current research comprise the using of permanent magnets with different intensity (2000, 4000, 6000, 9000) Gauss, which installed on the fuel line of the two-stroke engine, and study its impact on gasoline consumption, as well as exhaust gases. For the purpose of comparing the results necessitated the search for experiments without the use of magnets. The overall performance and exhaust emission tests showed a good result, where the rate of reduction in gasoline consumption ranges between (9-14) %, and the higher the value of a reduction in the rate of 14% was obtained using field intensity 6000 Gauss as well as the intensity 9000 Gauss. It was found that the percentages of exhaust gas components (CO, HC) were decreased by 30%, 40% respectively, but CO2 percentage increased up to 10%. Absorption Spectrum of infrared and ultraviolet radiation showed a change in physical and chemical properties in the structure of gasoline molecules under the influence of the magnetic field. Surface tension of gasoline exposed to different intensities of magnetic field was measured and compared with these without magnetization.

Ali S. Faris; Saadi K. Al-Naseri; Nather Jamal; Raed Isse; Mezher Abed; Zainab Fouad; Akeel Kazim; Nihad Reheem; Ali Chaloob; Hazim Mohammad; Hayder Jasim; Jaafar Sadeq; Ali Salim; Aws Abas

2012-01-01T23:59:59.000Z

320

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

322

A parametric study for specific fuel consumption of an intercooled diesel engine using a neural network  

Science Journals Connector (OSTI)

Turbocharging is a process wherein the amount of oxygen used in a combustion reaction is increased to raise output and decrease specific fuel consumption. On account of this, fuel economy and thermal efficiency are more important for all engines. The use of an intercooler reduces the temperature of intake air to the engine, and this cooler and denser air increases thermal and volumetric efficiency. Most research projects on engineering problems usually take the form of experimental studies. However, experimental research is relatively expensive and time consuming. In recent years, Neural Networks (NNs) have increasingly been used in a diverse range of engineering applications. In this study, various parametric studies are executed to investigate the interrelationship between a single variable and two steadies and two constant parameters on the brake specific fuel consumption (BSFC, g/kWh). The variables selected are engine speed, load and Crankshaft Angel (CA). The data used in the present study were obtained from previous experimental research by the author. These data were used to enhance, train and test a NN model using a MATLAB-based program. The results of the NN based model were found to be convincing and were consistent with the experimental results. The trained NN based model was then used to perform the parametric studies. The performance of the NN based model and the results of parametric studies are presented in graphical form and evaluated.

Abdullah Uzun

2012-01-01T23:59:59.000Z

323

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

324

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

various powertrains and alternative fuel options have beenthe corresponding breakeven alternative fuel price needed totruck, hybridization, alternative, fuel cell, fuel economy,

Zhao, Hengbing

2013-01-01T23:59:59.000Z

325

Large Scale Truck Duty Cycle.pub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

326

Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption  

Science Journals Connector (OSTI)

Abstract In general, when the internal combustion engine of a vehicle is started, its operationally connected cooling system provides excessive cooling, resulting in unnecessary energy consumption and excessive emission of exhaust gas. If the rotational speed of the engine is high, the excessive cooling causes the combustion efficiency to decrease. Therefore, better control of the operating temperature range of the engine through use of an active cooling system can achieve better fuel economy and reduction of exhaust gas emission. Effective control of the cooling system in accordance with the operating conditions of the engine can be realized by changing the mass flow rate of the coolant. In this study, we designed electromagnetic clutch water pumps that can control the coolant flow. We made two types of water pump: (1) a planetary gear (PG)-type water pump which can reduce the rotation speed of the water pump by 65%, compared with a pulley; and (2) an on/off-type water pump which can completely stop the rotation of the impeller. The performance evaluation of these pumps consisted of a warm-up test and the New European Driving Cycle (NEDC). Warm-up test results showed that the time required to achieve a temperature of approximately 80C with the PG water pump and the on/off water pump was improved by 7.3% and 24.7% respectively, compared with that of a conventional water pump. Based on the NEDC results, we determined that the fuel economy of the engine using the PG water pump and the on/off water pump was improved by 1.7% and 4.0% compared with the fuel economy when using the conventional water pump. The application of clutch water pumps is expected to contribute to the improvement of engine cooling system performance, because their effect in reducing the fuel consumption rate is similar to that of an electric water pump.

Yoon Hyuk Shin; Sung Chul Kim; Min Soo Kim

2013-01-01T23:59:59.000Z

327

Integrated probabilistic design of marine propulsors to minimize lifetime fuel consumption  

Science Journals Connector (OSTI)

Marine propellers are typically designed to achieve optimal performance at a single or a few design points. It is well understood that the performance of marine propulsion systems decays at off-design conditions, where the system operates for the majority of its life, where fuel consumption rates are high and the system as a whole operates at lower efficiencies. This paper presents a novel integrated design methodology that considers the propeller, prime mover, and vessel as one integrated system, and considers the probabilistic operational profile of the vessel, to minimize lifetime fuel consumption. The proposed design methodology represents a new approach to evaluate the tradeoffs between different design objectives and constraints by considering the system performance characteristics along with probability of occurrence, and hence allows for global optimization of the propeller geometry. Results are shown for a pair of fixed-pitch propellers designed for a twin-screw naval combatant craft. System performance for a design obtained using the proposed methodology is compared with designs obtained using traditional point-based design approaches. This methodology can be easily extended to investigate the effects of variations in resistance, operational profile or additional performance criteria, such as safety during extreme operations, lifetime carbon emission, and life cycle costs.

Michael R. Motley; Mayer Nelson; Yin L. Young

2012-01-01T23:59:59.000Z

328

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

Broader source: Energy.gov [DOE]

Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

329

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Broader source: Energy.gov (indexed) [DOE]

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

330

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

331

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

332

Development and Demonstration of a Fuel-Efficient HD Engine  

Broader source: Energy.gov [DOE]

Approach to selection of technologies and their contribution to enhance heavy-duty truck fuel efficiency.

333

The implications of using hydrocarbon fuels to generate electricity for hydrogen fuel powered automobiles on electrical capital, hydrocarbon consumption, and anthropogenic emissions  

Science Journals Connector (OSTI)

This paper considers some of the impacts of adopting hydrogen fuel cell powered electric automobiles in the US. The change will need significant adjustments to the electrical generation industry including additional capital and hydrocarbon fuel consumption as well as impacting anthropogenic greenhouse emissions. Examining the use of three fuels to generate hydrogen fuels, using three production methods, distributed in three geographic scenarios, we determine that while the change reduces anthropogenic greenhouse emissions with minimal additional electrical generation capital expenditures, it accelerates the use of natural gas. Electrolysis provides a sustainable, longer-term solution, but requires more capital investment in electrical generation and yields an increase in anthropogenic greenhouse emissions.

Derek Tittle; Jingwen Qu

2013-01-01T23:59:59.000Z

334

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Broader source: Energy.gov (indexed) [DOE]

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

335

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Broader source: Energy.gov (indexed) [DOE]

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

336

Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison  

Buildings Energy Data Book [EERE]

4 4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles Passenger Car gallons - Gasoline Van, Pickup Truck, or SUV gallons - Gasoline Heavy Truck gallons - Diesel Fuel Tractor Trailer Truck gallons - Diesel Fuel Note(s): Source(s): 10,749 95.8 211,312 1) Stock refrigerator consumption is per household refrigerator consumption, not per refrigerator.

337

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Fuel Cell Technologies http://www.hydrogen.energy.gov/pdfs/12020_fuel_cell_system_cost_2012.pdf; Program Record, [

Zhao, Hengbing

2013-01-01T23:59:59.000Z

338

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

339

Reduction of fuel consumption in gasoline engines by introducing HHO gas into intake manifold  

Science Journals Connector (OSTI)

Browns gas (HHO) has recently been introduced to the auto industry as a new source of energy. The present work proposes the design of a new device attached to the engine to integrate an HHO production system with the gasoline engine. The proposed HHO generating device is compact and can be installed in the engine compartment. This auxiliary device was designed, constructed, integrated and tested on a gasoline engine. Test experiments were conducted on a 197cc (Honda G 200) single-cylinder engine. The outcome shows that the optimal surface area of an electrolyte needed to generate sufficient amount of HHO is twenty times that of the piston surface area. Also, the volume of water needed in the cell is about one and half times that of the engine capacity. Eventually, the goals of the integration are: a 2030% reduction in fuel consumption, lower exhaust temperature, and consequently a reduction in pollution.

Ammar A. Al-Rousan

2010-01-01T23:59:59.000Z

340

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

RESULTSRESULTS Assisted in selection of APU mounting configuration on truck  

E-Print Network [OSTI]

subcomponents, using actual frame-rail data as vibration input from truck · Enabled measurement location Motion Fuel Cell Auxiliary Power Unit (APU): Dynamic ModelingFuel Cell Auxiliary Power Unit (APU@coe.eng.ua.edu OBJECTIVESOBJECTIVES ·Develop a computer model to predict the vibratory response of the fuel cell APU components ·Use

Carver, Jeffrey C.

342

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network [OSTI]

27% of the total US energy consumption and 72% of theof Figures Figure 2-1 U.S. energy consumption by source andU.S. (FHWA, Figure 2-1 U.S. energy consumption by source and

Scora, George Alexander

2011-01-01T23:59:59.000Z

343

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Generated_thumb20130810-31804-cpho29 Truck Stop Electrification Sites Generated_thumb20130810-31804-cpho29 Trend of TSE sites by state from 2006-2012 Last update November 2012 View Graph Graph Download Data Map_thumbnail Truckstop Electrification Facilities Map_thumbnail Last update May 2013 View Graph Graph Truck Stop Electrification Sites

344

An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine  

Science Journals Connector (OSTI)

This paper presents the results of an experimental investigation into the influence of a ferrous picrate based homogeneous combustion catalyst on fuel consumption and smoke emission of a laboratory diesel engine. The catalyst used in this study was supplied by Fuel Technology Pty. Ltd. The fuel consumption and smoke emission were measured as a function of engine load, speed and catalyst dosing ratio. The brake specific fuel consumption and smoke emission decreased as the dosing ratio of the catalyst doped in the diesel fuel increased. At the catalyst dosing ratio of 1:3200, the brake specific fuel consumption was reduced by from 2.1% to 2.7% and the smoke emission was reduced by from 6.7% to 26.2% at the full engine load at speeds from 2600rpm to 3400rpm. The results also indicated that the potential of the fuel saving seems to be greater when the engine was run under light load.

Mingming Zhu; Yu Ma; Dongke Zhang

2011-01-01T23:59:59.000Z

345

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 102% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 3012% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 235% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

346

Aerodynamic Forces on Truck Models, Including Two Trucks in Tandem  

E-Print Network [OSTI]

rear-edge shaping on the aerodynamic drag of bluff vehiclesOF CALIFORNIA, BERKELEY Aerodynamic Forces on Truck Models,TRANSIT AND HIGHWAYS Aerodynamic Forces on Truck Models,

Hammache, Mustapha; Michaelian, Mark; Browand, Fred

2001-01-01T23:59:59.000Z

347

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

efficient highway transportation technologies to reduce petroleum consumption, operating cost, fuel consumption, environmental impact, and time to market for high risk high...

348

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

349

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

350

Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption  

Broader source: Energy.gov [DOE]

The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

351

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

SciTech Connect (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

352

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank Capacity and Gas Pump...

353

CMVRTC: Medium Truck Duty Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

354

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

355

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

356

Analysis of the market for diesel PEM fuel cell auxiliary power units onboard long-haul trucks and of its implications for the large-scale adoption of PEM \\{FCs\\}  

Science Journals Connector (OSTI)

Proton exchange membrane fuel cells (PEM FCs) offer a promising alternative to internal combustion engines in road transport. During the last decade PEM FC research, development and demonstration (RD&D) activities have been steadily increasing worldwide, and targets have been set to begin their commercialisation in road transport by 20152020. However, there still is considerable uncertainty on whether these targets will actually be met. The picture is complex and market and technology issues are closely interlinked; investment in RD&D projects is essential but not sufficient; the development of suitable early markets is also necessary and policy is set to play an important role. Auxiliary power units (APUs) are generally regarded as one important early market for \\{FCs\\} in transport. This paper analyses the possible future market for diesel PEM FC \\{APUs\\} onboard long-haul trucks and its implications for the development of PEM \\{FCs\\} in general. The analysis, part of the project HyTRAN (EC Contract no. 502577), is aided by the use of a dynamic simulation model of technology and markets developed by the author. Results suggest that an interesting window of opportunity for diesel PEM FC \\{APUs\\} exists but this is subject to additional research particularly targeted at the rapid development of fuel processors.

Marcello Contestabile

2010-01-01T23:59:59.000Z

357

Reduction of Fuel Consumption By Thermodynamical Optimization of the Otto-Engine  

Science Journals Connector (OSTI)

By the example of the PORSCHE 924 2-liter Otto engine it was demonstrated that the optimization of ... the compression ratio, combustion chamber shape, air/fuel ratio, and ignition timing is a means to reduce fuel

Dr. D. Gruden; R. Hahn; H. Lrcher

1980-01-01T23:59:59.000Z

358

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network [OSTI]

Diesel Engines Using Four Fuels, Southwest Research Institute, 25. J.B.Heywood, Internal Combustion Engine Fundamentals,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

359

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck...

360

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

362

Aerospace Engineering Pickup Truck AerodynamicsPickup Truck Aerodynamics  

E-Print Network [OSTI]

distribution on a generic pickup truck geometry. · To measure the unsteady flow field in the near wake, suction type wind tunnel · Pickup truck model provided by GM R&D · Ground board mounted on top side of tunnel · Actual wind tunnel cross section 60 x 50 cm · Model mounted 380 mm from ground board leading

Al-Garni, Abdullah M.

363

Table 5.3. U.S. per Vehicle Miles Traveled, Vehicle Fuel Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Consumption (gallons) Expenditures (dollars) 1.8 1.0 1.0 1.0 0.5 Race of Householder White ... 138.6 11.5 581 670 19.8 1.4 Black...

364

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Labeling Requirement Every alternative fuel automobile, truck, motorcycle, motor home, or off-road vehicle must bear a reflective placard from the National Fire Protection...

365

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

366

Demonstrating Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control  

Broader source: Energy.gov [DOE]

Presents a next generation model-based engine controller that incorporates real-time fuel efficiency optimization and tested under fully transient engine and vehicle operating conditions.

367

Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption  

Broader source: Energy.gov [DOE]

Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps

368

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Broader source: Energy.gov (indexed) [DOE]

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

369

Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine  

Science Journals Connector (OSTI)

The ability of an artificial neural network model, using a back propagation learning algorithm, to predict specific fuel consumption and exhaust temperature of a Diesel engine for various injection timings is studied. The proposed new model is compared with experimental results. The comparison showed that the consistence between experimental and the network results are achieved by a mean absolute relative error less than 2%. It is considered that a well-trained neural network model provides fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

Adnan Parlak; Yasar Islamoglu; Halit Yasar; Aysun Egrisogut

2006-01-01T23:59:59.000Z

370

Volvo Super Truck Overview and Approach  

Broader source: Energy.gov [DOE]

Provides overview and discusses approach of the Volvo Super Truck Team to develop a number of advanced technologies to significantly improve freight efficiency of long-haul trucks

371

Maryland Hybrid Truck Goods Movement Initiative | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-- Washington D.C. tiarravt063rice2010p.pdf More Documents & Publications Maryland Hybrid Truck Goods Movement Initiative Maryland Hybrid Truck Goods Movement Initiative...

372

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Broader source: Energy.gov (indexed) [DOE]

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

373

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

fuel supply cut-off. Fuel prices had jumped, and fuelWhen CAFE was passed, the fuel price increases of 1973 hadof pressure from higher fuel prices. The mpg of new trucks

Schipper, Lee

2009-01-01T23:59:59.000Z

374

Coal consumption: An alternate energy resource to fuel economic growth in Pakistan  

Science Journals Connector (OSTI)

Abstract This study is an attempt to revisit the causal relationship between coal consumption and economic growth in case of Pakistan. The present study covers the period of 19742010. The direction of causality between the variables is investigated by applying the VECM Granger causality approach. Our findings have exposed that there exists bidirectional Granger causality between economic growth and coal consumption. The Cumulative Sum (CUSUM) and Cumulative Sum of Square (CUSUMSQ) diagrams have not found any structural instability over the period of 19742010.

Saqlain Latif Satti; Muhammad Shahid Hassan; Haider Mahmood; Muhammad Shahbaz

2014-01-01T23:59:59.000Z

375

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

376

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

natural-gas Go natural-gas Go Generated_thumb20130810-31804-eaiva6 Consumption of Natural Gas in the U.S. Generated_thumb20130810-31804-eaiva6 Last update January 2013 View Graph Graph Download Data L_i-ng Natural Gas Incentives and Laws, by State L_i-ng View Map Graph Generated_thumb20130810-31804-1gs1r9t Estimated Consumption of Alternative Fuels by AFVs Generated_thumb20130810-31804-1gs1r9t Trends of alternative fuel consumption in AFVs by fuel type from 1992-2010 Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-b9jpvs U.S. Transit Buses by Fuel Type Generated_thumb20130810-31804-b9jpvs Trend of buses powered by various fuels in the U.S. from 1996-2010 Last update April 2013 View Graph Graph Download Data Freight_tons_thumbnail Daily Truck Freight Tons

377

Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans  

Broader source: Energy.gov [DOE]

In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight....

378

Reduced Energy Consumption through the Development of Fuel-Flexible Gas Turbines  

Broader source: Energy.gov [DOE]

Gas turbinesheat engines that use high-temperature and high-pressure gas as the combustible fuelare used extensively throughout U.S. industry to power industrial processes. The majority of...

379

Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review  

Broader source: Energy.gov [DOE]

Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck Program...

380

Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice  

Broader source: Energy.gov [DOE]

Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine  

Broader source: Energy.gov [DOE]

Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

382

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine  

Broader source: Energy.gov [DOE]

Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

383

Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

384

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kenworth - W900S Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISX12 G...

385

Driving Pattern Recognition for Control of Hybrid Electric Trucks  

E-Print Network [OSTI]

strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified that determines the proper power split and transmission gear position to minimize the fuel consumption of Energy and Department of Defense, is one such example [1.]. It is widely believed that the 3-times fuel

Peng, Huei

386

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

387

"Cumulated Vehicle Acceleration": An Attribute of GPS Probe Vehicle Traces for On-Line Assessment of Vehicle Fuel Consumption in Traffic and Transportation Networks  

E-Print Network [OSTI]

To perform a reliable on-line assessment of fuel consumption in vehicles, we introduce "cumulated vehicle acceleration" as an attribute of GPS probe vehicle traces. The objective of the calculation of the attribute "cumulated vehicle acceleration" in the GPS probe vehicle data is to perform a reliable on-line dynamic traffic assignment for the reduction of vehicle consumption in traffic and transportation networks.

Kerner, Boris S

2014-01-01T23:59:59.000Z

388

CMVRTC: Heavy Truck Duty Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

389

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

390

Effects of Village Power Quality on Fuel Consumption and Operating Expenses  

SciTech Connect (OSTI)

Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

Richard Wies; Ron Johnson

2008-12-31T23:59:59.000Z

391

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

392

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

393

A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TM TM -2003/171 A Study of the Discrepancy Between Federal and State Measurements of On-Highway Motor Fuel Consumption July 2003 Ho-Ling Hwang Lorena F. Truett Stacy C. Davis DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the followi ng source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.fedworld.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

394

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

395

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

396

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

397

Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Seattle Bakery Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Google Bookmark Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Delicious Rank Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Digg Find More places to share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on AddThis.com... Jan. 19, 2013 Seattle Bakery Delivers With Biodiesel Trucks D iscover how Essential Baking Company in Seattle, Washington, relies on

398

Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels  

Science Journals Connector (OSTI)

Depletion of fossil fuels resources and the gradual increase in cost of their extraction and transportation to the places of their consumption put forward into a line of the most urgent tasks the problem of rational and economical utilization of fuel and energy resources, as well as introduction of new energy sources into various sectors of the national economy. The nuclear energy sources which are widely spread in power engineering have not yet been used to a proper extent in the sectors of industrial technologies and residentidal space heating, which are the most energy consuming sectors in the national economy. The most effective way of solving this problem can be the development and commercialization of high temperature nuclear reactors, as the majority of power consuming industrial processes and those involved in chemico-thermal systems of distant heat transmission demand the temperature of a heat carrier generated by nuclear reactors and assimilated by the above processes to be in the range from 900 to 1000C.

E.K. Nazarov; A.T. Nikitin; N.N. Ponomarev-Stepnoy; A.N. Protsenko; A.Ya. Stolyarevskii; N.A. Doroshenko

1990-01-01T23:59:59.000Z

399

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 19952008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ?0.2 and ?0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of +0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

400

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Transportation Infrastructure Transportation Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Freight_tons_thumbnail Daily Truck Freight Tons Freight_tons_thumbnail Last update February 2013 View Image Graph Generated_thumb20130810-31804-v750g6 Miles of U.S. Transportation Infrastructure Generated_thumb20130810-31804-v750g6 Distance covered by different types of transportation infrastructure Last update April 2013

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

renewable-natural-gas Go renewable-natural-gas Go Freight_tons_thumbnail Daily Truck Freight Tons Freight_tons_thumbnail Last update February 2013 View Image Graph Generated_thumb20131211-30676-1y0adz7 Clean Cities Petroleum Savings by AFV Type Generated_thumb20131211-30676-1y0adz7 Trend of displacement by fuels used in AFVs from 2004-2012 Last update December 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1gs1r9t Estimated Consumption of Alternative Fuels by AFVs Generated_thumb20130810-31804-1gs1r9t Trends of alternative fuel consumption in AFVs by fuel type from 1992-2010 Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-78hthx Incentive and Law Additions by Fuel/Technology Type Generated_thumb20130810-31804-78hthx Trend of state incentive and law enactments listed by the targeted

402

Impact of Fuel-Borne Catalysts on Diesel Aftertreatment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems...

403

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

404

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect (OSTI)

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

405

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

406

Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire  

Broader source: Energy.gov [DOE]

A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

407

A Quantum Leap for Heavy-Duty Truck Engine Efficiency- Hybrid Power System of Diesel and WHR-ORC Engines  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

408

Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners?  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

409

Alternative Fuels Data Center: Schwan's Home Service Delivers...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Service Delivers With Propane-Powered Trucks to someone by E-mail Share Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Facebook Tweet...

410

Truck loading rack blending  

SciTech Connect (OSTI)

Blending, the combining of two or more components to make a single product, has become widely used in most loading rack applications. Blending should not be confused with additive injection, which is the injection of very small doses of enhancers, detergents and dyes into a product stream. Changes in the environmental protection laws in the early 90`s have put increasing demands on marketing terminals with regards to reformulated fuels and environmental protection concerns. As a result of these new mandates, terminals have turned to blending at the loading rack as an economical and convenient means in meeting these new requirements. This paper will discuss some of these mandates and how loading rack blending is used for different applications. Various types of blending will also be discussed along with considerations for each method.

Boubenider, E. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

411

Cost effectiveness of converting to alternative motor vehicle fuels. A technical assistance study for the City of Longview  

SciTech Connect (OSTI)

The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The city currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.

McCoy, G.A.

1983-11-18T23:59:59.000Z

412

Alternative Fuels Data Center: Onboard Idle Reduction Equipment for  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Onboard Idle Reduction Onboard Idle Reduction Equipment for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Onboard Idle Reduction Equipment for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction

413

The Trucking Sector Optimization Model: A tool for predicting carrier and shipper responses to policies aiming to reduce GHG emissions  

Science Journals Connector (OSTI)

Abstract In response to the growing Climate Change problem, governments around the world are seeking to reduce the greenhouse gas (GHG) emissions of trucking. The Trucking Sector Optimization (TSO) model is introduced as a tool for studying the decisions that shippers and carriers make throughout time (focusing on investments in Fuel Saving Technologies), and for evaluating their impact on life-cycle GHG emissions. A case study of fuel taxation in California is used to highlight the importance of (1) modeling the trucking sector comprehensively, (2) modeling the dynamics of the stock of vehicles, and (3) modeling different sources of emissions.

Sebastian E. Guerrero; Samer M. Madanat; Robert C. Leachman

2013-01-01T23:59:59.000Z

414

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or on road conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macin; Bernardo Tormos; Vicente Bermdez; Leonardo Ramrez

2014-01-01T23:59:59.000Z

415

Early Markets: Fuel Cells for Material  

E-Print Network [OSTI]

lift trucks, pallet jacks, and stock pickers. MHE can use Polymer Electrolyte Membrane (PEM) fuel cell. Fuel cell powered lift trucks can reduce the labor cost of refueling/recharging by up to 80 be cost-competitive with batteries on a lifecycle basis. Additionally, fuel cells are currently eligible

416

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

417

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

418

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

419

Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Coca-Cola Charges Coca-Cola Charges Forward With Hybrid Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Google Bookmark Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Delicious Rank Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on AddThis.com... Aug. 18, 2012 Coca-Cola Charges Forward With Hybrid Delivery Trucks

420

Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Golden Eagle Delivers Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on AddThis.com... Aug. 3, 2013 Golden Eagle Delivers Beer With Natural Gas Trucks

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Virginia Cleans up Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Google Bookmark Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Delicious Rank Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Digg Find More places to share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on AddThis.com... May 11, 2013 Virginia Cleans up With Natural Gas Refuse Trucks W atch how Richmond, Virginia, powers refuse haulers and other city vehicles

422

Which idling reduction system is most economical for truck owners?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

423

NREL: Learning - Alternative Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

424

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mobile Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to...

425

A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels  

E-Print Network [OSTI]

), and directly affects cost and sizing of fuel cell subsystems. Within several regions of PEMFC operating Fuel Cell Gas Channels E. J. See and S. G. Kandlikar Department of Mechanical Engineering, Rochester in proton exchange membrane fuel cells (PEMFCs). The ability to model two-phase flow and pressure drop

Kandlikar, Satish

426

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

427

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect (OSTI)

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

428

Desulfurization Fuel Filter  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

429

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

430

Fact #671: April 18, 2011 Average Truck Speeds  

Broader source: Energy.gov [DOE]

The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between...

431

Underground Salt Haul Truck Fire at the Waste Isolation Pilot...  

Office of Environmental Management (EM)

Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the...

432

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

433

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

434

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

435

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

436

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

437

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

438

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

439

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

440

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

to policy makers such as fuel price, GHG emission (bothdimensions, namely, fuel price, GHG emissions and marketa FGIS results in higher fuel price, lower fuel consumption,

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

442

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

443

Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami  

E-Print Network [OSTI]

Author Abstract This study estimates the operating costs for commercial vehicle operators in Minnesota, but variable costs change with the level of output. Daniels (1974) divided vehicle operating cost into two different categories, running costs (includes fuel consumption, engine oil consumption, tire costs

Levinson, David M.

444

Waste Management's LNG Truck Fleet: Final Results  

SciTech Connect (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

445

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Broader source: Energy.gov (indexed) [DOE]

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards...

446

Solid SCR Demonstration Truck Application | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology...

447

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

448

Cummins Light Truck Clean Diesel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004deerstang2.pdf More Documents & Publications...

449

Manhattan Project truck unearthed at landfill cleanup site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

truck we found was used for," said Bruce Schappell, LANL's deputy associate director for Environmental Programs. "It's in pretty bad shape." The truck will be crushed, packaged...

450

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Office of Environmental Management (EM)

truck we found was used for," said Bruce Schappell, LANL's deputy associate director for Environmental Programs. "It's in pretty bad shape." The truck will be crushed, packaged...

451

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11,...

452

Emissions from Idling Trucks for Extended Time Periods | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002deerlewis.pdf...

453

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

454

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

455

AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act...  

Broader source: Energy.gov (indexed) [DOE]

RAM Experimental PHEV Pickup Truck Recovery Act project testing results AVTA: Chrysler RAM Experimental PHEV Pickup Truck Recovery Act project testing results The Vehicle...

456

Impact of Real Field Diesel Quality Variability on Engine Emissions and Fuel Consumption Solutions for Onboard Optimisation  

Broader source: Energy.gov [DOE]

A matrix of 10 diesel fuels was prepared and tested to establish an optimized ECU setting and a compensating algorithm for the engine.

457

POST 10/Truck Inspection Station (Map 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

458

Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: September 12, 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Google Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Delicious Rank Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Digg

459

Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 24, 3: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 to someone by E-mail Share Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 on Facebook Tweet about Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 on Twitter Bookmark Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 on Google Bookmark Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 on Delicious Rank Vehicle Technologies Office: Fact #113: January 24, 2000 Fuel Conservation Equipment on Medium and Heavy Trucks: 1992-1997 on Digg

460

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap  

Broader source: Energy.gov [DOE]

Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR.

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Feature - Fuel Economy for Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles heavy duty trucks Argonne researcher Aymeric Rousseau was part of a National Academy of Science (NAS) committee established to make recommendations on improving and regulating fuel consumption for medium- and heavy-duty vehicles. On March 31, the committee issued a report that evaluates various technologies and methods that could improve the fuel economy of these vehicles. As a system analysis engineer at Argonne's Center for Transportation Research, Rousseau contributed his expertise on vehicle modeling and simulation to the committee, which was comprised of 19 members from industry, research organizations and academia. Rousseau, who leads the development of Argonne's PSAT and Autonomie software tools, helped the committee determine how modeling and simulation tools can be used to:

462

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect (OSTI)

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

463

Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Lee's Summit R-7 Lee's Summit R-7 School District Delivers with Electric Trucks to someone by E-mail Share Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Facebook Tweet about Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Twitter Bookmark Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Google Bookmark Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Delicious Rank Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on Digg Find More places to share Alternative Fuels Data Center: Lee's Summit R-7 School District Delivers with Electric Trucks on AddThis.com...

464

Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Largest U.S. Port Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on AddThis.com...

465

Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

V Garofalo Carting V Garofalo Carting Cleans up New York With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: V Garofalo Carting Cleans up New York With Natural Gas Trucks on AddThis.com...

466

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

E-Print Network [OSTI]

Existing Vessels, Reducing Shipboard Fuel Consumption and48 Navy vessels have reported fuel consumption into the Navy

Williams, Charles

2014-01-01T23:59:59.000Z

467

Analysis, Design, And Evaluation Of AVCS For Heavy-duty Vehicles: Phase 1 Report  

E-Print Network [OSTI]

fuel consumption. iii Contents 1 Introduction 2 Longitudinal Truck Model Turbocharged TC diesel engine

Yanakiev, Diana; Kanellakopoulos, Ioannis

1995-01-01T23:59:59.000Z

468

Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

469

Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine  

Science Journals Connector (OSTI)

Abstract This paper describes a predictive NOX and consumption model, which is oriented to control and optimisation of DI Diesel engines. The model applies the Response Surface Methodology following a two-step process: firstly, the relationship between engine inputs (intake charge conditions and injection settings) and some combustion parameters (peak pressure, indicated mean effective pressure and burn angles) is determined; secondly, engine outputs (NOX and consumption) are predicted from the combustion parameters using NOX and mechanical losses models. Splitting the model into two parts allows using either experimental or modelled combustion parameters, thus enhancing the model flexibility. If experimental in-cylinder pressure is used to obtain combustion parameters, the mean error of predicted NOX and consumption are 2% and 6% respectively, with a calculation time of 5.5ms. Using modelled parameters reduces the calculation time to 1.5ms, with a penalty in the accuracy. The model performs well in a multi-objective optimisation, reducing NOX and consumption in different amounts depending on the objective of the optimisation.

S. Molina; C. Guardiola; J. Martn; D. Garca-Sarmiento

2014-01-01T23:59:59.000Z

470

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

114SD Application: Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L Cummins Westport - ISX12 G...

471

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Freightliner - Business Class M2 112 Applications: Tractor, Vocational truck Fuel Types: CNG, LNG Power Source(s): Cummins Westport - ISL G 8.9L...

472

Energy Department Invests $7 Million to Commercialize Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

per fueling and test 20 of these trucks at FedEx facilities in Tennessee and California. Air Products and Chemicals, Inc., of Allentown, Pennsylvania, and Structural Composites...

473

State of the States: Fuel Cells in America  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GENCO, was awarded ARRA funding to demonstrate the economic benefits of large fleet conversions of lift trucks from batteries to fuel cell power. A Wegmans warehouse is one...

474

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers [EERE]

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

475

Fuel Cell Technologies Office Record 14010 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

476

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and 21st Century Truck Programs. 2006deerfulton.pdf More Documents & Publications BiodieselFuelManagementBestPracticesReport.pdf Vehicle Technologies Office: 2008-2009...

477

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

478

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

OSHKOSH TRUCK CORPORATION FOR AN ADVANCE OSHKOSH TRUCK CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCL-3-32060-03 UNDER CONTRACT NO. DE-AC36-98G010337; W(A)-04-007; CH-1178 The Petitioner, Oshkosh Truck Corporation (OTC), has requested a waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above- identified subcontract entitled "Advanced Heavy Hybrid Propulsion Systems for Increased Fuel Efficiency and Decreased Emissions". OTC is leading a teaming arrangement including Rockwell Automation, Inc. (Rockwell), and the National Renewable Energy Laboratory (NREL) to develop heavy hybrid propulsion systems. Rockwell has petitioned separately for a waiver of patent rights for all subject inventions its employees may make under Rockwell's lower tier

479

Advanced Fuels in HDV Applications  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

480

Batteries, Fuel Cells, and Flywheels  

Science Journals Connector (OSTI)

Cars and trucks are responsible for using almost 30 percent of the fossil fuel energy consumed in the United States. Almost all of this energy comes from petroleum products. When gasoline and diesel oil is bur...

Sidney Borowitz

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "truck fuel consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

482

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

483

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

484

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

485

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

486

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

487

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

488

Thermal management for heavy vehicles (Class 7-8 trucks)  

SciTech Connect (OSTI)

Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

Wambsganss, M.W.

2000-04-03T23:59:59.000Z

489

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate truck stops with electrification sites. Click on a location on the map for site details. A U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels Data Center dditional Resources View list of electrification sites in the U.S. by state. Learn more about idle reduction techniques.

490

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

491

A new hybrid pneumatic combustion engine to improve fuel consumption of windDiesel power system for non-interconnected areas  

Science Journals Connector (OSTI)

This paper presents an evaluation of an optimized Hybrid Pneumatic-Combustion Engine (HPCE) concept that permits reducing fuel consumption for electricity production in non-interconnected remote areas, originally equipped with hybrid WindDiesel System (WDS). Up to now, most of the studies on the pneumatic hybridization of Internal Combustion Engines (ICE) have dealt with two-stroke pure pneumatic mode. The few studies that have dealt with hybrid pneumatic-combustion four-stroke mode require adding a supplementary valve to charge compressed air in the combustion chamber. This modification means that a new cylinder head should be fabricated. Moreover, those studies focus on spark ignition engines and are not yet validated for Diesel engines. Present HPCE is capable of making a Diesel engine operate under two-stroke pneumatic motor mode, two-stroke pneumatic pump mode and four-stroke hybrid mode, without needing an additional valve in the combustion chamber. This fact constitutes this studys strength and innovation. The evaluation of the concept is based on ideal thermodynamic cycle modeling. The optimized valve actuation timings for all modes lead to generic maps that are independent of the engine size. The fuel economy is calculated for a known site during a whole year, function of the air storage volume and the wind power penetration rate.

Tammam Basbous; Rafic Younes; Adrian Ilinca; Jean Perron

2012-01-01T23:59:59.000Z

492

Fact #714: February 13, 2012 Light Truck Sales on the Rise  

Broader source: Energy.gov [DOE]

Light trucks sales have gained market share in relation to car sales from 1970. In 2001, light trucks outsold cars for the first time. Light truck sales reached a peak in 2004. By 2008, truck sales...

493

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

medium- and heavy-duty vehicles must implement strategies to reduce petroleum consumption and emissions by using alternative fuels and improving vehicle fleet fuel...

494

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina...

495

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

496

The Increasing Role of Diesel Trucks in National Petroleum Use...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Increasing Role of Diesel Trucks in National Petroleum Use The Increasing Role of Diesel Trucks in National Petroleum Use Presentation given at DEER 2006, August 20-24, 2006,...

497

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect (OSTI)

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

498

Fact #707: December 26, 2011 Illustration of Truck Classes  

Broader source: Energy.gov [DOE]

There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

499

Vehicle Technologies Office: 21st Century Truck Partners  

Broader source: Energy.gov [DOE]

The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

500

EERE: VTO - UPS Truck PNG Image | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

UPS Truck PNG Image EERE: VTO - UPS Truck PNG Image upstruck18187.png More Documents & Publications EERE: VTO - Red Leaf PNG Image EERE: VTO - Hybrid Bus PNG Image Research Site...