National Library of Energy BETA

Sample records for trough solar concentrating

  1. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  2. A new trough solar concentrator and its performance analysis

    SciTech Connect (OSTI)

    Tao, Tao; Hongfei, Zheng; Kaiyan, He; Mayere, Abdulkarim

    2011-01-15

    The operation principle and design method of a new trough solar concentrator is presented in this paper. Some important design parameters about the concentrator are analyzed and optimized. Their magnitude ranges are given. Some characteristic parameters about the concentrator are compared with that of the conventional parabolic trough solar concentrator. The factors having influence on the performance of the unit are discussed. It is indicated through the analysis that the new trough solar concentrator can actualize reflection focusing for the sun light using multiple curved surface compound method. It also has the advantages of improving the work performance and environment of high-temperature solar absorber and enhancing the configuration intensity of the reflection surface. (author)

  3. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle Concentrator (Dish or Trough) Figure 1--1 : An overview of ammonia-based solar energy storage. (Sourced from

  4. An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader

    E-Print Network [OSTI]

    An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader 1 , Maurizio Barbato 2 that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator design at the receiver's windowed aperture, amounting to 13% and 9% of the solar power input, respectively. The pressure

  5. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  6. OPTICAL DESIGN OF A NOVEL 2-STAGE SOLAR TROUGH CONCENTRATOR BASED ON PNEUMATIC POLYMERIC

    E-Print Network [OSTI]

    ; the measured one with a flat secondary reflector was 55 suns. Keywords: parabolic trough collector, optical-length 7.9 m-width sun-tracking prototype system. Theoretical maximum solar concentration ratio is 151 suns of the sun-tracking prototype system. 2. Optical analysis Fig. 2 shows a perspective view of the optical

  7. Solar parabolic trough

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar parabolic trough section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  9. Solar photovoltaic reflective trough collection structure

    DOE Patents [OSTI]

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  10. Parabolic trough solar collectors : design for increasing efficiency

    E-Print Network [OSTI]

    Figueredo, Stacy L. (Stacy Lee), 1981-

    2011-01-01

    Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

  11. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  12. Energy 101: Concentrating Solar Power

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity.

  13. hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector Gang Xiao 30th October of closed-box parabolic trough concentrated solar collector. By accepting an optical loss of a few 2007 Parabolic trough[1] is the most mature technology for large scale exploitation of solar energy

  14. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs of water consumed by concentrating solar power systems." Because of the huge solar resource available

  15. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    SciTech Connect (OSTI)

    Bennett, C

    2007-11-15

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  16. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  17. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  18. Parabolic Trough Solar Power for Competitive U.S. Markets

    SciTech Connect (OSTI)

    Henry W. Price

    1998-11-01

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market.

  19. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  20. Concentrating Solar Power Facilities and Solar Potential | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type All Plants In Operation New in 2014 In Progress Tower and Heliostat Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hoursmday) 2500 4000...

  1. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  2. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  3. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  4. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  5. A new parabolic trough solar collector P. Kohlenbach1

    E-Print Network [OSTI]

    A new parabolic trough solar collector P. Kohlenbach1 , S. McEvoy1 , W. Stein1 , A. Burton1 , K) power generation system. The parabolic trough collectors have been installed in the National Solar in a 2x2 matrix with a total aperture area of approximately 132m2 . The mirrors reflect the sun

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  7. A Linear Parabolic Trough Solar Collector Performance Model 

    E-Print Network [OSTI]

    Qu, M.; Archer, D.; Masson, S.

    2006-01-01

    A performance model has been programmed for solar thermal collector based on a linear, tracking parabolic trough reflector focused on a surface-treated metallic pipe receiver enclosed in an evacuated transparent tube: a ...

  8. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  9. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect (OSTI)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  10. Project Profile: Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  11. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  12. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  13. SunLab: Advancing Concentrating Solar Power Technology

    SciTech Connect (OSTI)

    1998-11-24

    Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

  14. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  15. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  16. Design and analysis of hydraulically driven actuation system For a parabolic solar trough

    E-Print Network [OSTI]

    Popovi?, Katarina, S.B. Massachusetts Institute of Technology

    2013-01-01

    This thesis documents Katarina Popovic's contribution to the design of hydraulic cylinder actuation system for day to day solar trough sun tracking, a semester long project within 2.752 Development of Mechanical Products ...

  17. Mechanical development of an actuation system for a parabolic solar trough collector

    E-Print Network [OSTI]

    Carrillo, Juan Felipe (Carrillo Salazar)

    2013-01-01

    This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators ...

  18. A new parabolic trough solar collector P. Kohlenbach1

    E-Print Network [OSTI]

    parabolic trough array designed to provide the thermal energy required to drive a organic rankine cycle (ORC) and remote power and energy. The array is designed to drive a small Organic Rankine Cycle unit with a power

  19. Project Profile: High-Concentration, Low-Cost Parabolic Trough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the larger aperture, while incorporating additional advancements that substantially lower installed solar field costs. For example, the reflective film surfaces are being...

  20. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  1. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  2. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  3. Concentrating Solar Power Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.

  4. Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005

    SciTech Connect (OSTI)

    Prabhu, E.

    2006-03-01

    Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

  5. Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations

    E-Print Network [OSTI]

    Colin S. Rosenthal

    1998-04-15

    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

  6. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  7. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  8. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  9. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  10. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  11. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.

  12. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  13. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  14. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous...

  15. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    from Concentrix Solar," in Concentrator Photovoltaics, A.L.Solar Concentrators: Using optics to boost photovoltaics,”Solar Concentrators: Using optics to boost photovoltaics,”

  16. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    self-tracking solar concentration: design and materialsself- tracking solar concentration: design and materialsSolar Concentrators," in International Optical Design

  17. Design of inflatable solar concentrator

    E-Print Network [OSTI]

    Carrasquillo, Omar (Omar Y. Carrasquillo De Armas)

    2013-01-01

    Solar concentrators improve the performance of solar collection systems by increasing the amount of usable energy available for a given collector size. Unfortunately, they are not known for their light weight and portability, ...

  18. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  19. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  20. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    1 Introduction 1.1. Solar Photovoltaics Semiconductingmulti-junction photovoltaics, solar beamsplitting 1.Concentrator Photovoltaics Multijunction solar cells were

  1. Concentrating Solar Power: Efficiently Leveraging Equilibrium...

    Energy Savers [EERE]

    Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium...

  2. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that’s collected as heat.

  3. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News

  4. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    SciTech Connect (OSTI)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  5. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  6. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J. (New Brunswick, NJ)

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  7. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  8. Concentrating Solar Power Competitive Awards

    Broader source: Energy.gov [DOE]

    DOE funds concentrating solar power (CSP) research and development (R&D) projects through competitive solicitations, which are released for public response as financial opportunity announcements. The following projects represent recent and ongoing research efforts.

  9. Concentrated solar power on demand

    E-Print Network [OSTI]

    Codd, Daniel Shawn

    2011-01-01

    This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten salt pool, which also functions ...

  10. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect (OSTI)

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  11. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  12. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Analysis and design of holographic solar concentrators,”reflection design may enable multiband solar power usingoptical geometry and design of a two band, solar splitting

  13. Modeling of concentrating solar thermoelectric generators

    E-Print Network [OSTI]

    Ren, Zhifeng

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

  14. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  15. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  16. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  17. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  18. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    for generating low-cost solar power, LSC development facesand lowering the cost, luminescent solar concentrations (cells. Using solar concentrators, the cost of solar energy

  19. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell April 18, 2013 -...

  20. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  1. ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess

    E-Print Network [OSTI]

    , the main cost driver in a flat plate system. PV systems, whether flat plate or concentrating, normally haveANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E, ACT, 0200 Australia, email: Joe.Coventry@anu.edu.au ABSTRACT: The primary advantage of a PV

  2. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):

  3. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    glass-?lms. Solar Energy Materials and Solar Cells, 33(4):concentrator. Solar Energy Materials and Solar Cells, 93(8):concentrator. Solar Energy Materials and Solar Cells, 91(1):

  4. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    improvements over first- Figure 3.14 Second-generation concentrator under test (a). A multijunction solar cellimprovements through material science and novel cell architectures [7][8][9]. Figure 1.1 Multijunction solar

  5. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power...

  6. Funding Opportunity Announcement: Concentrating Solar Power:...

    Broader source: Energy.gov (indexed) [DOE]

    transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study,...

  7. Microtracking and Self-Adaptive Solar Concentration

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Concentrating Solar Power: Best Practices Handbook for the Collection...

    Open Energy Info (EERE)

    Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar...

  9. Light shield for solar concentrators

    DOE Patents [OSTI]

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  10. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  11. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  12. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    A. Büchtemann, “A luminescent solar concentrator with 7.1%simulations of luminescent solar concentrators for buildingVanmaekelbergh, “Luminescent Solar Concentrators - A review

  13. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  14. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  15. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  16. Concentrating Solar Power Research and Development

    Broader source: Energy.gov [DOE]

    In 2007, DOE issued the Concentrating Solar Power (CSP) Research and Development Funding Opportunity Announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  17. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  18. Finite element modeling of concentrating solar collectors for evauation of gravity loads, bending, and optical characterization.

    SciTech Connect (OSTI)

    Christian, Joshua M.; Ho, Clifford Kuofei

    2010-04-01

    Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.

  19. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  20. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    Organic Solar Concentrators for Photovoltaics,” Science,Polymer Photovoltaics for Solar Energy Conversion,” Adv.solar concentrators for building integrated photovoltaics,”

  1. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    ing ?uorescent dye for solar energy conversion based on aimprove the the solar energy conversion e?ciency. Outputcheaper solar energy concentration and conversion methods,

  2. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    by one-sun solar simulator. . . . . . . . . . . . . . .two kinds of solar concentrators, one is based on geomet-to utilize the whole solar spectrum, one of the methods is

  3. Project Profile: Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    Norwich Technologies, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing a novel receiver for parabolic trough CSP systems that will dramatically improve performance while substantially reducing acquisition and operation and maintenance (O&M) costs.

  4. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  5. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power...

    Energy Savers [EERE]

    Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals...

  6. 2014 SunShot Initiative Concentrating Solar Power Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Subprogram Overview 2014 SunShot Initiative Concentrating Solar Power Subprogram Overview These slides correspond to a presentation given by SunShot...

  7. World's Largest Concentrating Solar Power Plant Opens in California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

  8. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  9. Enhanced Thermal Stability of W-Ni-Al[subscript 2]O[subscript 3] Cermet-Based Spectrally Selective Solar Absorbers with W Infrared Reflectors

    E-Print Network [OSTI]

    Cao, Feng

    Solar thermal technologies such as solar hot water and concentrated solar power trough systems rely on spectrally selective solar absorbers. These solar absorbers are designed to efficiently absorb the sunlight while ...

  10. Resonance-shifting luminescent solar concentrators

    DOE Patents [OSTI]

    Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

    2014-09-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  11. MAP: Concentrating Solar Power Across the United States

    Broader source: Energy.gov [DOE]

    Explore our latest map, charting the location of concentrating solar power plants across the country.

  12. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect (OSTI)

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  13. Concentrating Solar Power Commercial Application Study

    SciTech Connect (OSTI)

    none,

    2009-10-01

    This report has been prepared in response to section 603(b) of the Energy Independence and Security Act of 2007, (Pub. L. No. 110-140), which states that “…the Secretary of Energy shall transmit to Congress a report on the results of a study on methods to reduce the amount of water consumed by concentrating solar power systems.”

  14. World's Largest Concentrating Solar Power Plant Opens in California...

    Broader source: Energy.gov (indexed) [DOE]

    Ivanpah, the world's largest concentrating solar plant, opened in California on February 13.Credit: BrightSource Energy The Ivanpah Solar Electric Generating System, the world's...

  15. Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers

    E-Print Network [OSTI]

    Reusswig, Philip David

    2014-01-01

    The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

  17. Material for a luminescent solar concentrator

    DOE Patents [OSTI]

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  18. Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power

    SciTech Connect (OSTI)

    Kennedy, C. E.; Terwilliger, K.

    2007-01-01

    Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

  19. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  20. Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system

    E-Print Network [OSTI]

    California at San Diego, University of

    Available online 8 January 2015 Keywords: Concentrating solar power Solar absorber Cobalt oxide Light trapping High temperature a b s t r a c t Concentrating solar power is becoming an increasingly important an increasingly urgent need for human society [1,2]. Concentrating solar power (CSP) systems (or solar thermal sys

  1. Concentrating Solar Power Program Review 2013 (Book) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

  2. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    1998-11-24

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  3. Optical design and efficiency improvement for organic luminescent solar concentrators

    E-Print Network [OSTI]

    Hirst, Linda

    in a standard flat-plate PV panel3 . Nonimaging Optics: Efficient Design for Illumination and SolarOptical design and efficiency improvement for organic luminescent solar concentrators Chunhua Wanga and efficiency improvement method. Keywords: Organic luminescent solar concentrators, Photovoltaic, solar energy

  4. Shape-Adaptive Ultra-Lightweight Solar Concentrators

    E-Print Network [OSTI]

    RESEARCH HIGHLIGHTS Shape-Adaptive Ultra-Lightweight Solar Concentrators From the Resnick-Lightweight Solar Concentrators Global Significance Solar energy offers a number of benefits such as reducing solar power (CSP) uses mirrors to focus the sunlight down to 100-1000x the normal intensity, and uses

  5. TOPCAT Solar Cell Alignment & Energy Concentration Technology

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-03-12

    This technology is a new technique for parabolic trough mirror alignment based on the use of an innovative Theoretical Overlay Photographic (TOP) approach. It is a variation of current methods used on parabolic dish systems and involves overlay of theoretical images of the Heat Collection Element (HCE) in the mirrors onto carefully surveyed photographic images and adjustment of mirror alignment until they match....

  6. Design, construction, and startup of a concentrating photovoltaic solar energy system in Hawaii: Phase II. Final report

    SciTech Connect (OSTI)

    Spencer, R.; Harper, R.; Maberry, G.; Bedard, R.; Rafinejad, D.

    1982-10-01

    Acurex Corporation has designed, constructed, and is now operating a 35-kWp concentrating photovoltaic solar system located at the G.N. Wilcox Memorial Hospital in Lihue, Kauai, Hawaii. The facility consists of 446 m/sup 2/ (4800 ft/sup 2/) of parabolic trough photovoltaic collectors, an electrical power generation system which converts the direct current field output into grid-compatible alternating current power, and a thermal power subsystem for heating the hospital potable water. This report summarizes the design, construction, startup, and performance of this solar facility.

  7. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    c) Cyrium multi-junction solar cell. (d) Faulhaber miniaturecan leverage expensive multi-junction solar cells to achievec) Cyrium multi-junction solar cell. ( d) Faulhaber

  8. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    silicon cells 2 . Multi-junction solar cells hope becomethe motivation for multi- junction solar cells which layerassociated with multi-junction solar cells. The superior

  9. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    12] A.Rabl, Active Solar Collectors and Their Applications (23, A.Rabl, Active Solar Collectors and Their Applications (Rabl, A. , [Active Solar Collectors and Their Applications],

  10. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Planar Micro-Optic Solar Collectors," Optics for Solarin planar micro-optic solar collectors,” Optics Express, (inin planar micro-optic solar collectors,” Optics Express (in

  11. Sandia Energy - Concentrating Solar Power (CSP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,Concentrating Solar Power (CSP)

  12. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  13. Theoretical analysis of error transfer from surface slope to refractive ray and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01

    This paper presents the general equation to calculate the standard deviation of reflected ray error from optical error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 8 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope errors in two direction is transferred to any one direction of the focus ray when the incidence angle is more than 0 for solar trough and heliostats reflector; for point focus Fresnel lens, point focus parabolic glass mirror, line focus parabolic galss mirror, the error transferring coefficient from optical to focus ray will increase when the rim angle increase; for TIR-R concentrator, it will decrease; for glass heliostat, it relates to the incidence angle and azimuth of the reflecting point. Keywords: optic error, standard deviation, refractive ray error, concentrated solar collector

  14. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    IN LUMINESCENT SOLAR CONCENTRATOR EFFICIENCY AND COLORM.A. Baldo, "High-efficiency organic solar concentrators forin luminescent solar concentrator efficiency and color

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Energy Storage in Concentrated Solar Thermal Power Plants AEnergy Storage in Concentrated Solar Thermal Power Plants by

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Coreysystems for concentrated solar thermal power (CSP) systems.

  17. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  18. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    and W. Warta, "Solar cell efficiency tables (version 35), "1.1 Multijunction solar cell efficiency (purple) has rapidly1.1 Multijunction solar cell efficiency (purple) has rapidly

  19. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    Collectors," Optics for Solar Energy, OSA paper STuD2 (Collectors," Optics for Solar Energy, OSA paper STuD2 (Collectors," Optics for Solar Energy, OSA paper STuD2 (

  20. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    planar micro-optic solar collectors," Opt. Express 19, A673-planar micro-optic solar collectors," Opt. Express 19, A673-

  1. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  2. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  3. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    for multijunction cells," in 2009 34th IEEE Photovoltaicmultijunction solar cell (Cyrium Technologies). The photovoltaic

  4. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems,” Proceedings of

  5. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Solar Thermal Designs .temperatures. Solar Thermal Designs As stated earlier, mostperformance of any solar concentrator design. Two different

  6. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  7. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Global Warming Potential, and Water for Distributed Concentrating SolarGlobal Warming Potential, and Water for Distributed Concentrating Solar

  8. National Laboratory Concentrating Solar Power Research and Development

    Office of Environmental Management (EM)

    Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

  9. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.Concentrations for Photovoltaic Technologies A dissertationThirteenth IEEE Photovoltaic Specialists Conference- 1978—

  10. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  11. Low-Cost Light Weigh Thin Film Solar Concentrators

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  12. $60 Million to Fund Projects Advancing Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The SunShot initiative announces a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States.

  13. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anThermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

  14. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  16. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  17. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  18. The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world

    E-Print Network [OSTI]

    Laughlin, Robert B.

    only be achieved through the extensive use of renewable energy sources. Each year, the sun sends over for power generation and solar-thermal collectors for producing hot water. The solar- thermal principle i from the sun into electricity. This is done in large-scale power plants with a capacity of up to 250

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    analysis of current solar power plants. Solar desalinationin concentrating solar power plants. Because theseor nuclear power plant can instead harness solar energy as

  20. SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR

    E-Print Network [OSTI]

    solar thermal applications. As contact thermometry is often not appropriate in the presence of high;Introduction In high temperature solar thermal applications, where key components are driven near reflections1,2 . The distinction between the emitted thermal and the reflected solar radiation becomes

  1. Solargenix Energy Advanced Parabolic Trough Development

    SciTech Connect (OSTI)

    Gee, R. C.; Hale, M. J.

    2005-11-01

    The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

  2. Automated micro-tracking planar solar concentrators

    E-Print Network [OSTI]

    Hallas, Justin Matthew

    2011-01-01

    I : Introduction I.A Concentrated Photovoltaic Systemsconcentrated photovoltaic (CPV) systems and their trackingConcentrated photovoltaic (CPV) systems use optical

  3. Mini-Optics Solar Energy Concentrator

    E-Print Network [OSTI]

    Mark Davidson; Mario Rabinowitz

    2003-09-12

    This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

  4. The Role of Concentrating Solar Power in Integrating Solar and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetration of about 30%. The simulation uses the REFlex dispatch model to simulate hourly operation of the thermal fleet in response to the load, wind, and solar generation...

  5. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  6. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. Eastern Standard Time (EST).

  7. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Environmental Management (EM)

    Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

  8. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  9. Planar micro-optic solar concentration

    E-Print Network [OSTI]

    Karp, Jason Harris

    2010-01-01

    mechanical tracking to maintain alignment to the sun.understand tracking needs, we first investigated the sun?stracking because it enables the concentrator to follow the sun?

  10. Rinse trough with improved flow

    DOE Patents [OSTI]

    O'Hern, Timothy J. (Albuquerque, NM); Grasser, Thomas W. (Albuquerque, NM)

    1998-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

  11. Rinse trough with improved flow

    DOE Patents [OSTI]

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  12. Secretary Chu Announces up to $62 Million for Concentrating Solar...

    Energy Savers [EERE]

    of low-cost solar technologies we can create new jobs and pave the way towards a clean-energy future." CSP technologies concentrate the sun's energy and capture that energy as...

  13. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information about the student activitylesson plan from your search. Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with...

  14. A solar concentrating photovoltaic / thermal collector J.S. Coventry

    E-Print Network [OSTI]

    solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban in this area are summarised. The Combined Heat and Power Solar (CHAPS) collector, under development collector. Some of the technical challenges in the design of the CHAPS collector are discussed

  15. Concentrating Solar Power Program Technology Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2001-04-01

    Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

  16. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdate |CSP Solar Power Research

  17. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    nuclear power plant can instead harness solar energy as theenergy to be dissipated in concentrating solar power plants.

  18. Concentration Solar la Mancha | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtdDevelopmentsolar powerSolar la

  19. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use of Solar

  20. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.heat transfer in solar thermal power plants utilizing phase

  2. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    3_60 (1981). [12] Solar Photovoltaics: Status, Costs, andorganic solar concentrators for photovoltaics," Sciencesolar concentrators ( LSCs) offer low cost improvements to building- integrated photovoltaics.

  3. Top 10 Things You Didn't Know About Concentrating Solar Power...

    Office of Environmental Management (EM)

    Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter by CSP...

  4. Concentrating Solar Power Projects | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgram ManagerCorridor6YellowstonePermittingComputer System RetirementConcentrating

  5. Concentrating Solar Power Newsletter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOofforCompany TemplateCompletedConcentrating

  6. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    The calculated sun power is the product of total collectorcrossing the sun (see Fig. 19), and a solar collector whichcollectors (parabolic trough, linear Fresnel, power tower) generally require a tracking mechanism to concentrate a large number of suns

  7. Optofluidic solar concentrators using electrowetting tracking: Concept, design, and characterization

    SciTech Connect (OSTI)

    Cheng, JT; Park, S; Chen, CL

    2013-03-01

    We introduce a novel optofluidic solar concentration system based on electrowetting tracking. With two immiscible fluids in a transparent cell, we can actively control the orientation of fluid fluid interface via electrowetting. The naturally-formed meniscus between the two liquids can function as a dynamic optical prism for solar tracking and sunlight steering. An integrated optofluidic solar concentrator can be constructed from the liquid prism tracker in combination with a fixed and static optical condenser (Fresnel lens). Therefore, the liquid prisms can adaptively focus sunlight on a concentrating photovoltaic (CPV) cell sitting on the focus of the Fresnel lens as the sun moves. Because of the unique design, electrowetting tracking allows the concentrator to adaptively track both the daily and seasonal changes of the sun's orbit (dual-axis tracking) without bulky, expensive and inefficient mechanical moving parts. This approach can potentially reduce capital costs for CPV and increases operational efficiency by eliminating the power consumption of mechanical tracking. Importantly, the elimination of bulky tracking hardware and quiet operation will allow extensive residential deployment of concentrated solar power. In comparison with traditional silicon-based photovoltaic (PV) solar cells, the electrowetting-based self-tracking technology will generate,similar to 70% more green energy with a 50% cost reduction. (C) 2013 Elsevier Ltd. All rights reserved.

  8. NREL: Learning - Concentrating Solar Power Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The Geospatial Toolkit isPublicationsConcentrating

  9. Solar2010, the 48th AuSES Annual Conference 1-3 December 2010, Canberra, ACT, Australia

    E-Print Network [OSTI]

    Concentrating Solar Power, Energy Storage, Molten Salt. INTRODUCTION Concentrating solar power (CSP) can both generate and store renewable energy all in the one plant. Curved mirrors concentrate the sun's energy by concentrating solar plants with storage. CURRENT COMMERCIAL STORAGE TECHNOLOGY Parabolic Trough plants

  10. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

    1996-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  11. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  12. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    E-Print Network [OSTI]

    Maragliano, Carlo; Stefancich, Marco

    2015-01-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate the solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates the light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3x1 cm2 area and a maximum concentration of 210x for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the...

  13. Thermal concentrator homogenized with solar-shaped mantle

    E-Print Network [OSTI]

    Petiteau, David; Bellieud, Michel; Zerrad, Myriam; Amra, Claude

    2015-01-01

    We propose solar-shaped thermal concentrators designed with orthoradial layers and obtained in practice through the homogenization of an ideal thermal concentrator. Considering the spectral regime of the heat equation, we quantitatively evaluate at different pulsations the effectiveness of the homogenized concentrators by comparing the thermal flux existing in an ideal concentrator and the thermal flux in an homogenized concentrator. Dependence on the pulsation is shown to be negligible and plotting the effectiveness of the homogenized concentrators as a function of the number of orthoradial layers $N$, we determine the number of layers needed to achieve a certain effectiveness. Significantly high numbers $N$(ranging from a hundred to tens of thousands layers) are found highlighting the fact that achieving high effectiveness demands a high level of engineering of the homogenized concentrator.

  14. Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Concentrators

    E-Print Network [OSTI]

    Patrick, David L.

    Sterically Engineered Perylene Dyes for High Efficiency Oriented Fluorophore Luminescent Solar Luminescent solar concentrators (LSCs) collect and concentrate sunlight for use in solar power generation.1 or interior lighting, increasing the combined-cycle efficiency. Accordingly, LSC performance is expressed

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  16. Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif

    E-Print Network [OSTI]

    Reif, John H.

    1 Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif, Kingdom of Saudi Arabia wsalhalabi@kau.edu.sa Abstract Solar concentrating systems are optical systems that concentrate solar energy for conversion into usable energy. Ideally, a solar concentrating system should have

  17. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    3 Fig. 1.2. Solar power plant operation [Different types of solar power plants have been designed andAmong the concentrating solar power plants (CSPP) are Solar

  18. The role of Förster Resonance Energy Transfer in luminescent solar concentrator efficiency and color tunability

    E-Print Network [OSTI]

    Balaban, Benjamin

    2013-01-01

    design," Solar Energy Materials and Solar Cells Vol. 111,Solar Energy for the Built Environment," Advanced Energy Materials,energy transfer (FRET) is demonstrated in a luminescent solar concentrator (LSC) material

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

  20. STEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED

    E-Print Network [OSTI]

    that commercial steam turbines operate at. It is envisaged that plants based on large arrays of dishes wouldSTEAM RECEIVER MODELS FOR SOLAR DISH CONCENTRATORS: TWO MODELS COMPARED José Zapata, Keith response of a parabolic dish steam cavity receiver. Both approaches are based on a heat transfer model

  1. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  2. Project Profile: Advanced High Temperature Trough Collector Development

    Broader source: Energy.gov [DOE]

    The Solar Millennium Group and its subsidiary Flagsol, under the CSP R&D FOA, are completing work on an advanced parabolic trough collector that uses molten salt as a heat transfer fluid.

  3. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  4. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  5. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    Broader source: Energy.gov [DOE]

    As clean energy increasingly becomes part of the national dialogue, lenders, utilities, and lawmakers need the most comprehensive and accurate information on GHG emissions from various sources of energy to inform policy, planning, and investment decisions. The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that gives decision makers and investors more precise estimates of life cycle GHG emissions for renewable and conventional generation, clarifying inconsistent and conflicting estimates in the published literature, and reducing uncertainty.

  6. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  7. Solar Energy Applications Page 1 Rev. September 23, 2009 Field Office Serial

    E-Print Network [OSTI]

    Laughlin, Robert B.

    MW Concentrating Solar Power (CSP) Trough Located in Maricopa Co. between Harquahala Mtns Horn Mountains and north of I- 10. Pending 5. AZA 034540 Aguila Horizon Wind Energy LLC 3/4/2008 11 Valley Arizona Renewable Ventures 8/12/08 14,765 500 MW CSP Trough Located in Maricopa Co. in Dendora

  8. Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications

    Broader source: Energy.gov [DOE]

    Abengoa Solar, under the CSP R&D FOA, is developing the technology needed to build a competitive parabolic trough industry for the U.S. utility market.

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Potential, and Water for Distributed Concentrating Solarconcentrating solar has the potential for significantscenarios evaluate the potential for solar-thermal serving

  10. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    1.1 Solar Energy . . . . . . . . .Ho?mann. Photovoltaic Solar Energy Gen- eration. Opticalon ?uorescent glass-?lms. Solar Energy Materials and Solar

  11. Efficient Solar Concentrators: Affordable Energy from Water and Sunlight

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: Teledyne is developing a liquid prism panel that tracks the position of the sun to help efficiently concentrate its light onto a solar cell to produce power. Typically, solar tracking devices have bulky and expensive mechanical moving parts that require a lot of power and are often unreliable. Teledyne’s liquid prism panel has no bulky and heavy supporting parts—instead it relies on electrowetting. Electrowetting is a process where an electric field is applied to the liquid to control the angle at which it meets the sunlight above and to control the angle of the sunlight to the focusing lensthe more direct the angle to the focusing lens, the more efficiently the light can be concentrated to solar panels and converted into electricity. This allows the prism to be tuned like a radio to track the sun across the sky and steer sunlight into the solar cell without any moving mechanical parts. This process uses very little power and requires no expensive supporting hardware or moving parts, enabling efficient and quiet rooftop operation for integration into buildings.

  12. Optimized scalable stack of fluorescent solar concentrator systems with bifacial silicon solar cells

    SciTech Connect (OSTI)

    Martínez Díez, Ana Luisa, E-mail: a.martinez@itma.es [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain); Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Gutmann, Johannes; Posdziech, Janina; Rist, Tim; Goldschmidt, Jan Christoph [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany); Plaza, David Gómez [Fundación ITMA, Parque Empresarial Principado de Asturias, C/Calafates, Parcela L-3.4, 33417 Avilés (Spain)

    2014-10-21

    In this paper, we present a concentrator system based on a stack of fluorescent concentrators (FCs) and a bifacial solar cell. Coupling bifacial solar cells to a stack of FCs increases the performance of the system and preserves its efficiency when scaled. We used an approach to optimize a fluorescent solar concentrator system design based on a stack of multiple fluorescent concentrators (FC). Seven individual fluorescent collectors (20 mm×20 mm×2 mm) were realized by in-situ polymerization and optically characterized in regard to their ability to guide light to the edges. Then, an optimization procedure based on the experimental data of the individual FCs was carried out to determine the stack configuration that maximizes the total number of photons leaving edges. Finally, two fluorescent concentrator systems were realized by attaching bifacial silicon solar cells to the optimized FC stacks: a conventional system, where FC were attached to one side of the solar cell as a reference, and the proposed bifacial configuration. It was found that for the same overall FC area, the bifacial configuration increases the short-circuit current by a factor of 2.2, which is also in agreement with theoretical considerations.

  13. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  14. Low Concentration Photovoltaic Systems (LCPV), where solar irradiance is concentrated by a factor of 1-10, present

    E-Print Network [OSTI]

    Rollins, Andrew M.

    1 Abstract-- Low Concentration Photovoltaic Systems (LCPV), where solar irradiance is concentrated--concentrating photovoltaic, solar radiation durability, lifetime and degradation science, reliability. NOMENCLATURE LCPV: low modern society. As a direct method for harnessing the sun's energy, photovoltaic systems have a large

  15. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  16. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    take advantage of solar energy, one must first understanda non-tracking solar concentrator, one must first understandOne provides the reader with some of the fundamentals of solar

  17. Engineering the optical properties of luminescent solar concentrators at the molecular scale

    E-Print Network [OSTI]

    Mulder, Carlijn Lucinde

    2012-01-01

    Luminescent Solar Concentrators (LSCs) concentrate solar radiation onto photovoltaic (PV) cells using an inexpensive collector plate to absorb incoming photons and waveguide fluorescently re-emitted photons to PVs at the ...

  18. EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator.

  19. NREL: Concentrating Solar Power Research - NREL Handbook Helps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Handbook Helps Industry Collect and Interpret Solar Resource Data for Solar Energy Applications Comprehensive handbook is a valuable resource for the solar industry on the...

  20. THEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH

    E-Print Network [OSTI]

    cost is subject to highly volatile market. Solar concentrators usually make use of mobile mirrors ableTHEORETICAL STUDY OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS USING A MONTE CARLO APPROACH a theoretical study of luminescent solar concentrators (LSCs) based on a ray-tracing technique with a Monte

  1. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New ! ! ! ! ! !

  2. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

  3. High concentration low wattage solar arrays and their applications

    SciTech Connect (OSTI)

    Hoffmann, R.; OGallagher, J.; Winston, R.

    1997-02-01

    Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

  4. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  5. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect (OSTI)

    White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  6. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    R. (1974). Principles of Solar Concentrators of a noveldesign. Solar Energy Winston, R. , and Hinterberger, H. (cylindrical concentrators for solar energy. Solar Energy 17,

  7. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  8. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New Model for

  9. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  10. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  11. field fabricated solar powered steam turbinesfield fabricated solar powered steam turbines energy and computationenergy and computation

    E-Print Network [OSTI]

    and computationenergy and computation 5/10/065/10/06 Amy SunAmy Sun Center for Bits and AtomsCenter for Bits and Atoms energy using a parabolic troughfocusing solar energy using a parabolic trough concentrator sun light also, demo!)(see also, demo!) efficiency cost Solar collector 50% $50 Boiler 50% $35 Turbine 40% $60

  12. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    12 2.2.1. Solar Potential ………………. …………………………… 13 2.2.2.to an electrical generator. 2.2.1. Solar Potential To fullyunderstand the energy potential of solar power, it is useful

  13. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy, andfor efficient energy production. Solar thermal plants, such

  14. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    are like multi-junction solar cells [GH05]. Fourth, dyes canof the solar spectrum like multi-junction cells to improve

  15. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  16. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    SciTech Connect (OSTI)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  17. Broadband enhancement of light harvesting in luminescent solar concentrator

    E-Print Network [OSTI]

    Xiao, Yun-Feng; Xiao, Lixin; Sun, Fang-Wen; Gong, Qihuang

    2010-01-01

    Luminescent solar concentrator (LSC) can absorb large-area incident sunlight, then emit luminescence with high quantum efficiency, which finally be collected by a small photovoltaic (PV) system. The light-harvesting area of the PV system is much smaller than that of the LSC system, potentially improving the efficiency and reducing the cost of solar cells. Here, based on Fermi-golden rule, we present a theoretical description of the luminescent process in nanoscale LSCs where the conventional ray-optics model is no longer applicable. As an example calculated with this new model, we demonstrate that a slot waveguide consisting of a nanometer-sized low-index slot region sandwiched by two high-index regions provides a broadband enhancement of light harvesting by the luminescent centers in the slot region. This is because the slot waveguide can (1) greatly enhance the spontaneous emission due to the Purcell effect, (2) dramatically increase the effective absorption cross-section of luminescent centers, and (3) str...

  18. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect (OSTI)

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-10-15

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  19. Technical Manual for the SAM Physical Trough Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  20. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    collectors to harness the energy. Passive solar techniques include orienting a build- ing to the Sun,

  1. Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  2. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  3. Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California

    SciTech Connect (OSTI)

    Stoddard, L.; Abiecunas, J.; O'Connell, R.

    2006-04-01

    This study provides a summary assessment of concentrating solar power and its potential economic return, energy supply impact, and environmental benefits for the State of California.

  4. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This is a presentation by Yiping Liu from Sporian Microsystems at the 2013 SunShot Concentrating Solar Power Program Review.

  5. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  6. Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  7. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  8. Evaluation of concentration solar cells for terrestrial applications

    E-Print Network [OSTI]

    An, Tao, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

  9. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    convert solar energy directly into electricity. A PV cell isSolar energy is a prominent renewable source of electricitysolar energy will become a very prominent renewable source of electricity.

  10. NREL: Concentrating Solar Power Research - Report Targets Data...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Targets Data on Avian Issues at Solar Energy Facilities May 4, 2015 Understanding how birds are affected by utility-scale solar facilities is the focus of a new NREL report...

  11. A novel procedure for the optical characterization of solar concentrators

    E-Print Network [OSTI]

    Fiisicas, Universidad Complutense, Madrid E-28040, Spain b Plataforma Solar de Almeria, CIEMAT, P.O. Box 22

  12. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  13. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    solar-thermal electricity gen- eration,” Solar Energy, vol.Energy pay- back time - a key number for the assessment of thermal solarSolar Thermal Wind Coal CC Gas Turbine Nuclear Reference Energy

  14. Dye-doped polymer nanoparticles for flexible, bulk luminescent solar concentrators

    E-Print Network [OSTI]

    Rosenberg, Ron, S.B. Massachusetts Institute of Technology

    2013-01-01

    Bulk luminescent solar concentrators (LSC) cannot make use of Forster resonance energy transfer (FRET) due to necessarily low dye concentrations. In this thesis, we attempt to present a poly-vinylalcohol (PVA) waveguide ...

  15. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    point of use and one installed to the grid; solar technologyconcentrator solar technology in 2005 [13], one of only a

  16. Tarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems

    E-Print Network [OSTI]

    Drop in Crystalline Silicon Solar Cells. 20 iii. Temperature Dependence of the Spectral and Efficiency. This is because the cost of solar panels compared to the amount of power they produce makes their purchaseTarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems

  17. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    the manufacturing of solar cells and photovoltaic arrays hasfor providing us Photovoltaic cells, lumines- cent materialsthe currently available photovoltaic cells. The property of

  18. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    hours, since electricity storage is rather inefficient.efficient than electricity storage, solar thermal becomes ato generate electricity. Since heat storage is more

  19. Methods for Analyzing the Economic Value of Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value,...

  20. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

  1. Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove and A. Luzzi

    E-Print Network [OSTI]

    Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove to the success of all solar concentrators of this nature are cost effective and durable mirror panel components World Solar Congress 743 #12;Economic Mass Producible Mirror Panels for Solar Concentrators Johnston

  2. Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies

    E-Print Network [OSTI]

    Wang, Chunhua

    2011-01-01

    improvement, the device performance is approaching the thermodynamic limit of similar to 28% for single- junction Si solar cells.improvement by PbS near infrared QDs due to the broaden absorption spectrum and near infrared emission properties for PV solar cells.

  3. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  4. Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ........

    E-Print Network [OSTI]

    Reif, Rafael

    Energy Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ...................................................................................EN.3 Nano-engineered Organic Solar-energy-harvesting System

  5. Intergrated function nonimaging concentrating collector tubes for solar thermal energy. Final technical report

    SciTech Connect (OSTI)

    Winston, R

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 m/sup 2/ panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200/sup 0/C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100/sup 0/C to 300/sup 0/C range including industrial process heat, air conditioning and Rankine engine operation.

  6. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    S. Lewis, “Toward Cost-Effective Solar Energy Use,” Science,D. S. Ginley, “Low-Cost Inorganic Solar Cells: From Ink Toto lowering the cost of solar electricity production with

  7. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    of solar-thermal electricity gen- eration,” Solar Energy,electricity generation - a critical comparison of energy supply options,” in 21st European Photovoltaic Solarelectricity supply across the supply chain. (2) In many solar energy

  8. Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light

    DOE Patents [OSTI]

    Lewandowski, Allan A. (Evergreen, CO); Yampolskiy, Vladislav (Moscow, RU); Alekseev, Valerie (Moscow, RU); Son, Valentin (Moscow, RU)

    2001-01-01

    According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

  9. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  10. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  11. National Laboratory Concentrating Solar Power Research and Development...

    Office of Environmental Management (EM)

    receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for 0.06kWh. cspnatllabrdfactsheet.pdf More Documents & Publications...

  12. Solar Junction Develops World Record Setting Concentrated Photovoltaic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment CertificationSolar HotSolar Cell

  13. Solar Junction Develops World Record Setting Concentrated Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the company's concentrated photovoltaic technology that also set a world record for conversion efficiency. The company's cell technology relies on inexpensive lenses to magnify...

  14. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  15. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications 

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as ...

  16. DOE Announces up to $52.5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    plans to provide up to 52.5 million to research, develop, and demonstrate Concentrating Solar Power systems capable of providing low-cost electrical power both day and night....

  17. Solar concentrator with integrated tracking and light delivery system with summation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  18. Solar concentrator with integrated tracking and light delivery system with collimation

    DOE Patents [OSTI]

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  19. Design of a compact, lightweight, and low-cost solar concentrator

    E-Print Network [OSTI]

    González, Gabriel J. (Gabriel Joe), 1980-

    2004-01-01

    The objective of this mechanical design project was to improve the current design of large and heavy solar concentrators. The three main design goals were: making the system compact, making the system lightweight, and ...

  20. Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy's SunShot Initiative made an award to Colorado School of Mines (CSM) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  1. Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

  2. Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States

    SciTech Connect (OSTI)

    Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

    2012-10-01

    This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

  3. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Environmental Installation impacts of PV electricity generation - a critical comparison of energy supply options,” in 21st European Photovoltaic Solar

  4. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  5. National Laboratory Concentrating Solar Power Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating Solar Power Research and Development Motivation

  6. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  7. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    a heat engine, such as a steam turbine or sterling enginethese concentrations, a steam turbine achieves roughly 25%ratio can run a steam turbine at 35-50% efficiency, with

  8. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  9. Energy Secretary Moniz Dedicates World's Largest Concentrating Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings PerformanceNationwide asSupercomputerPower

  10. Concentrating Solar Power: Best Practices Handbook for the Collection and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercial Jump(Thompson, 1985)(Laney,Use of Solar Resource

  11. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) | SciTechSolar Power:

  12. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power:

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) | SciTechSolar

  13. A HYBRID SOLAR LINEAR CONCENTRATOR PROTOTYPE IN INDIA , J. Daniel

    E-Print Network [OSTI]

    and community power supply, and grid connected PV generation [1]. The need for heat in applications such as domestic hot water, air conditioning, or air heating for drying cash crops, makes hybrid concentrator PV-grid systems for basic lighting, irrigation pumps, cellular phone towers, urban applications, medical

  14. A NEW 500 m PARABOLOIDAL DISH SOLAR CONCENTRATOR K Lovegrove

    E-Print Network [OSTI]

    design is a 494 m² concentrator with 13.4 m focal length and altitude-azimuth tracking. It uses 380. Construction of a first prototype on the ANU campus began in the first quarter of 2008. The first on sun test of receiver support structure would favour a bigger one. A range of basic geometries for the dish tracking

  15. The Green Fuel Project: The Solar / Biodiesel Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar energy efficiency energy transference shading Parabolic Trough Laws of Thermodynamics solar gain Entropy BTU, solar mass RESOURCES AND MATERIALS: Resources: BTU or Bust...

  16. Low-Cost, Lightweight Solar Concentrator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProton ConductivityManagementCostConcentrator

  17. Solar Two is a concentrating solar power plant that can supply electric power "on demand"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One. Project engineers calculated the power tower would operate more efficiently if it used a working fluid it is stored in a "hot" tank. When power production is needed, hot salt is pumped from the hot tank to generate

  18. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  19. Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings

    SciTech Connect (OSTI)

    Kenendy, C. E.

    2007-10-10

    The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

  20. Solar spectral variations and their influence on concentrator solar cell performance

    E-Print Network [OSTI]

    Broderick, Lirong Z.

    A comparative study is performed to quantify the difference in efficiency and spectral sensitivity between a tandem junction and its spectrum splitting parallel junction counterpart. Direct normal solar spectra in a ...

  1. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01

    Assumptions Assembly in India Energy Breakdown t to on3. Energy Breakdown for SolFocus Concentrator System. India

  2. The design of a concentrator solar array for use in low earth orbit 

    E-Print Network [OSTI]

    Kish, Guy Leslie

    1990-01-01

    THE DESIGN OF A CONCENTRATOR SOLAR ARRAY FOR USE IN LOW EARTH ORBIT A Thesis by GUY LESLIE KISH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1990 Major Subject: Mechanical Engineering The Design of a Concentrator Solar Array for use in Low Earth Orbit. A Thesis by Guy Leslie Kish Approved as to style and content by: hn J. ngblom (Co Chair f Commi ee) Oz en 0. Ochoa...

  3. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  4. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  6. Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells

    E-Print Network [OSTI]

    Leow, Shin Woei

    2014-01-01

    concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

  7. Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  8. Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  10. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    SciTech Connect (OSTI)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  11. Method and apparatus for aligning a solar concentrator using two lasers

    DOE Patents [OSTI]

    Diver Jr., Richard Boyer

    2003-07-22

    A method and apparatus are provided for aligning the facets of a solar concentrator. A first laser directs a first laser beam onto a selected facet of the concentrator such that a target board positioned adjacent to the first laser at approximately one focal length behind the focal point of the concentrator is illuminated by the beam after reflection thereof off of the selected facet. A second laser, located adjacent to the vertex of the optical axis of the concentrator, is used to direct a second laser beam onto the target board at a target point thereon. By adjusting the selected facet to cause the first beam to illuminate the target point on the target board produced by the second beam, the selected facet can be brought into alignment with the target point. These steps are repeated for other selected facets of the concentrator, as necessary, to provide overall alignment of the concentrator.

  12. Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications

    E-Print Network [OSTI]

    Thompson, Nicholas John

    2011-01-01

    High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

  13. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect (OSTI)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

  14. THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES

    SciTech Connect (OSTI)

    WIENS, ROGER C.; OLINGER, C.; HEBER, V.S.; REISENFELD, D.B.; BURNETT, D.S.; ALLTON, J.H.; BAUR, H.; WIECHERT, U.; WIELER, R.

    2007-01-02

    The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

  15. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984

    SciTech Connect (OSTI)

    Friedman, P.S.; Parent, C.R.

    1987-04-01

    An investigation of luminescent solar concentrators (LSCs) was begun by the US Department of Energy (DOE) at Owens-Illinois, Inc., in 1978. Experimental and theoretical results of that investigation are summarized in this report. An assessment of the LSC technology was compiled to provide a concise description to guide future research in this field. Since 1978, tremendous progress was made in the development of this device as a practical nonimaging concentrator for achieving solar concentration ratios on the order of 10X. The two most important technical achievements appear to be first, the understanding that dye self-absorption of radiated energy is not as serious a problem as originally thought; and second, the demonstration that organic dyes in polymeric hosts are capable of surviving outdoors in bright sunlight for years without serious degradation. System efficiencies approaching 4% have been achieved for photovoltaic conversion and theoretical efficiencies on the order of 9% appear feasible for large-area devices.

  16. White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve

    E-Print Network [OSTI]

    Islam, M. Saif

    1 White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve California Solar Energy Collaborative, University of California is put into the harvest and storage of solar energy for power generation. There are two mainstream

  17. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  18. Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506

    SciTech Connect (OSTI)

    Turchi, C.

    2014-09-01

    The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

  19. Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop

    SciTech Connect (OSTI)

    Michael Deck; Rick Russell

    2010-01-05

    Soliant Energy is a venture-capital-backed startup focused on bringing advanced concentrating solar panels to market. Our fundamental innovation is that we are the first company to develop a racking solar concentrator specifically for commercial rooftop applications, resulting in the lowest LCOE for rooftop electricity generation. Today, the commercial rooftop segment is the largest and fastest-growing market in the solar industry. Our concentrating panels can make a major contribution to the SAI's objectives: reducing the cost of solar electricity and rapidly deploying capacity. Our commercialization focus was re-shaped in 2009, shifting from an emphasis solely on panel efficiency to LCOE. Since the inception of the SAI program, LCOE has become the de facto standard for comparing commercial photovoltaic systems. While estimation and prediction models still differ, the emergence of performance-based incentive (PBI) and feed-in tariff (FIT) systems, as well as power purchase agreement (PPA) financing structures make LCOE the natural metric for photovoltaic systems. Soliant Energy has designed and demonstrated lower-cost, higher-power solar panels that consists of 6 (500X) PV module assemblies utilizing multi-junction cells and an integrated two-axis tracker. In addition, we have designed and demonstrated a prototype 1000X panel assembly with 8. Cost reductions relative to conventional flat panel PV systems were realized by (1) reducing the amount of costly semiconductor material and (2) developing strategies and processes to reduce the manufacturing costs of the entire system. Performance gains against conventional benchmarks were realized with (1) two-axis tracking and (2) higher-efficiency multi-junction PV cells capable of operating at a solar concentration ratio of 1000X (1000 kW/m2). The program objectives are: (1) Develop a tracking/concentrating solar module that has the same geometric form factor as a conventional flat, roof mounted photovoltaic (PV) panel - the Soliant module will produce more power and cost less than conventional panels of the same size; (2) Target LCOE: $0.079/kWh in 2010; (3) Target efficiency - 26% in 2010 (22% for 2008 prototype, 24% for 2009 pilot); and (4) Target performance - equivalent to 650Wp in 2010 (490W for 2008 prototype, 540W for 2009 pilot).

  20. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  1. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    SciTech Connect (OSTI)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  2. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Office of Environmental Management (EM)

    Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    to be more suited to solar thermal energy sources. Airrenewable energy technologies in solar thermal and PV, andunit of solar thermal and solar electric energy from a DCS-

  4. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater water heaters, thermal protection for electronics, spacecrafts, and solar

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    and solar energy . . . . . . . . . . . . . . . . . . . . . . . . . .Basic research needs for solar energy utilization. Technicalelectricity technology. Solar Energy 76(1-3), 19 – 31. Solar

  7. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Considerations for CPC Solar Collectors." Solar Energy2]. DeWinter, Francis. Solar Collectors, Energy Storage, andHigh-temperature, Solar Collectors for Mass Production.

  8. Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

    SciTech Connect (OSTI)

    Martin, P.M.; Affinito, J.D.; Gross, M.E.; Bennett, W.D.

    1995-03-01

    The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.

  9. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  10. Design of the support structure, drive pedestal, and controls for a solar concentrator

    SciTech Connect (OSTI)

    Goldberg, V.R.; Ford, J.L.; Anderson, A.E. (WG Associates, Dallas, TX (United States))

    1991-08-01

    The glass/metal McDonnell-Douglas dish is the state-of-the-art of parabolic dish concentrators. Because of the perceived high production cost of this concentrator, the Department of Energy's Solar Thermal Program is developing stretch-membrane technology for large (75 kWt) solar concentrators for integration with receivers and engines in 25 kWe dish-Stirling systems. The objective of this development effort is to reduce the cost of the concentrator while maintaining the high levels of performance characteristic of glass-metal dishes. Under contract to Sandia National Laboratories, Science Applications International Corporation, Solar Kinetics Inc. and WG Associates are developing a faceted stretched-membrane heliostat technology. This design will result in a low-risk, near-term concentrator for dish-Stirling systems. WG Associates has designed the support structure, drives and tracking controls for this dish. The structure is configured to support 12 stretched-membrane, 3.5-meter diameter facets in a shaped dish configuration. The dish design is sized to power a dish-Stirling system capable of producing 25 kW (electric). In the design of the structure, trade-off studies were conducted to determine the best'' facet arrangement, dish contour, dish focal length, tracking control and walk-off protection. As part of the design, in-depth analyses were performed to evaluate pointing accuracy, compliance with AISC steel design codes, and the economics of fabrication and installation. Detailed fabrication and installation drawings were produced, and initial production cost estimates for the dish were developed. These issues, and the final dish design, are presented in this report. 7 refs., 33 figs., 18 tabs.

  11. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  12. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Financing Solar Thermal Power Plants

    SciTech Connect (OSTI)

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  14. Financing solar thermal power plants

    SciTech Connect (OSTI)

    Kistner, R.; Price, H.

    1999-07-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been built following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply states, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised in debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects form the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  15. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  16. Electronic film with embedded micro-mirrors for solar energy concentrator systems

    E-Print Network [OSTI]

    Mario Rabinowitz; Mark Davidson

    2004-04-16

    A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

  17. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect (OSTI)

    Citrone, P.J.

    1991-01-01

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  18. AZ Pending Solar Right-of-Way

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AR AZ Pending Solar Right-of-Way Applications IZONA STRIP DISTRICT MOHAVE COUNTY Arizona Strip 34618.36 Yuma FO AZA34540 Horizon Wind G1 CSP Trough 11495.99 Hassayampa FO AZA34554 Next Light Renewable Power, LLC K1 CSP Trough 20777.41 Yuma FO AZA34560 Next Light Renewable Power, LLC K2 CSP Trough

  19. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  20. Commercial Development of an Advanced, High-Temperature, Linear-Fresnel Based Concentrating Solar Power Concept

    SciTech Connect (OSTI)

    Viljoen, Nolan; Schuknecht, Nathan

    2012-05-28

    Included herein is SkyFuel’s detailed assessment of the potential for a direct molten salt linear Fresnel collector. Linear Fresnel architecture is of interest because it has features that are well suited for use with molten salt as a heat transfer fluid: the receiver is fixed (only the mirrors track), the receiver diameter is large (reducing risk of freeze events), and the total linear feet of receiver can be reduced due to the large aperture area. Using molten salt as a heat transfer fluid increases the allowable operating temperature of a collector field, and the cost of thermal storage is reduced in proportion to that increase in temperature. At the conclusion of this project, SkyFuel determined that the cost goals set forth in the contract could not be reasonably met. The performance of a Linear Fresnel collector is significantly less than that of a parabolic trough, in particular due to linear Fresnel’s large optical cosine losses. On an annual basis, the performance is 20 to 30% below that of a parabolic trough per unit area. The linear Fresnel collector and balance of system costs resulted in an LCOE of approximately 9.9¢/kWhre. Recent work by SkyFuel has resulted in a large aperture trough design (DSP Trough) with an LCOE value of 8.9 ¢/kWhre calculated with comparative financial terms and balance of plant costs (White 2011). Thus, even though the optimized linear Fresnel collector of our design has a lower unit cost than our optimized trough, it cannot overcome the reduction in annual performance.

  1. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    been considered for solar thermal energy storages. These areTNO Symposium on Thermal Storage of Solar Energy, Amsterdam,Symposium on Thermal Application of Solar Energy, Hakone (

  2. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Solar Thermal Energy 1.1.1. Physics of Solar Thermal Energy Blackbody Radiation3]. SunTherm Energy, Inc. Solar Thermal Market Research.

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    compete or exceed solar photovoltaics (PV) – which is oftenfor solar-electric energy conversion: photovoltaics whichfor solar-electric energy conversion: photovoltaics which

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  5. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    SunTherm Energy, Inc. Solar Thermal Market Research. Oct.Low-Cost High Temperature Solar Thermal Collector." Thesis.solar thermal .. 1

  6. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    been considered for solar thermal energy storages. These arePCMs for thermal energy storage in solar driven residentialfluid and thermal energy storage medium in the solar heat

  7. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Temperature Solar Thermal Collector." Thesis. University ofSolar Thermal Collectors ..by the sun [1]. A solar thermal collector is a device that

  8. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    S. A. (2004). Solar thermal collectors and applications.yet typical solar-thermal collectors at working temperaturescertain aspects of solar thermal collectors have been coded

  9. Some modifications to the design of a parabolic solar concentrator for construction in Lesotho and their effects on power production

    E-Print Network [OSTI]

    Ferreira, Toni (Toni Jolene)

    2005-01-01

    An experimental study was performed to test the effectiveness of design modifications terms of efficiency and power production in an existing parabolic solar concentrator. The proposed modifications included limiting the ...

  10. Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))

    SciTech Connect (OSTI)

    Wilkins, F.

    2007-02-01

    Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

  11. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  12. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    SciTech Connect (OSTI)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis, E-mail: i.papakonstantinou@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  13. Concentrating Solar Power (Fact Sheet), Electricity, Resources, & Building Systems Integration (ERBSI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Solar Deployment System (CSDS) - A New Model

  14. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    storage: heat storage materials, Solar Energy 30 (1983) 313–and phase change materials, Solar Energy 62 (1998) 19–28 99-heat storage materials. Solar Energy Mater Solar Sells 1992;

  15. Status report on a solar photovoltaic concentrating energy system for a hospital in Hawaii

    SciTech Connect (OSTI)

    Seki, A.; Curtis, G.; Yuen, P.

    1983-06-01

    The largest parabolic concentrating photovoltaic/solar thermal system in the U.S. began producing electricity and hot water for a hospital on the island of Kauai, Hawaii in November 1981. Each of the 80 parabolic collectors is 6 feet by 10 feet and concentrates incident sunlight on photovoltaic cells mounted on two faces of the receiver at the focus. Although the 35 kilowatt system has been designed to produce 22,000 net kilowatt-hours per year of electricity and 620,000 gallons of 180 F water, electrical output (12 to 15 kilowatt-hours per day) is only 20 percent of that expected, primarily because insolation at the site has been only 40 percent of predicted values. A second problem with fungal attack on the receivers has been solved by better sealing. The system has also withstood a hurricane with negligible damage.

  16. Concentrated solar thermal (cst) system for fuelwood replacement and for household water sanitation in developing countries.

    SciTech Connect (OSTI)

    Akinjiola, O. P.; Balachandran, U. (Energy Systems); (Rsage Research, LLC)

    2012-01-01

    Concentrated Solar Thermal (CST) is a proven renewable energy technology that harnesses solar irradiation in its most primitive form. This technology with roots in ancient history is growing at a fast pace in recent times. Developing countries could use CST to solve fundamental human-needs challenges, such as for the substitution of fuelwood and the treatment of water for household use. This paper proposes a conceptual design for a standardized modular CST for these applications in developing countries. A modular-designed parabolic CST with an aperture area of 7.5 m2 is adequate to provide enough solar thermal energy to replace the fuelwood need (5 tons/yr) or to pasteurize the minimum daily water requirement (2500 liters) for a household. Critical parameters of the CST are discussed and an affordable solid thermal storage is recommended to be used as a backup when sunlight is unavailable. A funding program that includes in-country resources and external funding will be needed to sustain the development and wide spread adaptation of this technology.

  17. Development of metallization for GaAs and AlGaAs concentrator solar cells

    SciTech Connect (OSTI)

    Tobin, S.P.

    1987-04-01

    A three-layer metallization system was developed for high temperature stability on GaAs and AlGaAs solar cells. The layers are a Pt ohmic contact metal that forms thermally stable compounds with GaAs, a TiN diffusion barrier, and a gold conductor. The solar cell structure was also designed for contact stability, with the key component being a heavily doped GaAs cap layer. Reactively sputtered TiN was found to act as an excellent barrier when deposited under the proper conditions. The conditions were carefully optimized for low resistivity and low stress in the films. A low but nonzero substrate bias during sputtering was found to be important. Solar cells with sputtered metallizations of Pt/TiN/Ti/Pt/Au were found to be thermally stable up to 500/sup 0/C for 15 minutes in vacuum. At 600/sup 0/C there was catastrophic degradation of the cells due to dissociation of uncapped GaAs surfaces. Below this temperature the metallization performed as designed. The Pt and GaAs layers reacted to form a stable PtGa compound layer that gave low contact resistance. There was no penetration of Au or GaAs through the barrier layer. These results are a very encouraging first step leading to stable, reliable GaAs and AlGaAs concentrator cells.

  18. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  19. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  20. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  1. Method of manufacturing large dish reflectors for a solar concentrator apparatus

    DOE Patents [OSTI]

    Angel, Roger P (Tucson, AZ); Olbert, Blain H (Tucson, AZ)

    2011-12-27

    A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.

  2. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  3. Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector

    SciTech Connect (OSTI)

    Headley, O.StC.; Kothdiwala, A.F.; McDoom, I.A. (Univ. of the West Indies, St. Augustine (Trinidad and Tobago))

    1994-08-01

    A compound parabolic concentrating solar collector (CPC) of concentration ratio 3.9 and aperture area 2.0 m[sup 2] was used to power an intermittent solid adsorption refrigerator and ice maker using activated charcoal (carbon) as the adsorbing medium and methanol as the working fluid. The copper tube receiver of the CPC was packed with 2.5 kg of imported adsorbent 207E3, which was only utilized when the performance of activated charcoal (ACJ1, produced from local coconut shells) was found to be inferior to the imported adsorbent. Up to 1 kg of ice at an evaporator temperature of [minus]6[degrees]C was produced, with the net solar coefficient of performance (COP) being of the order of 0.02. Maximum receiver/adsorbent temperature recorded was 154[degrees]C on a day when the insolation was 26.8 MJ/m[sup [minus]2]. Temperatures in excess of 150[degrees]C are undesirable since they favour the conversion of methanol to dimethyl ether, a noncondensable gas which inhibits both condensation and adsorption. The major advantage of this system is its ability to produce ice even on overcast days (insolation [approximately] 10 MJ/m[sup [minus]2]).

  4. Standard Test Method for Determining Thermal Performance of Tracking Concentrating Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This test method covers the determination of thermal performance of tracking concentrating solar collectors that heat fluids for use in thermal systems. 1.2 This test method applies to one- or two-axis tracking reflecting concentrating collectors in which the fluid enters the collector through a single inlet and leaves the collector through a single outlet, and to those collectors where a single inlet and outlet can be effectively provided, such as into parallel inlets and outlets of multiple collector modules. 1.3 This test method is intended for those collectors whose design is such that the effects of diffuse irradiance on performance is negligible and whose performance can be characterized in terms of direct irradiance. Note 1—For purposes of clarification, this method shall apply to collectors with a geometric concentration ratio of seven or greater. 1.4 The collector may be tested either as a thermal collection subsystem where the effects of tracking errors have been essentially removed from t...

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    boosting the overall solar efficiency of the system, DCS-CHPheat at 8-10% solar-electric efficiency while simultaneouslyare at 20 – 35% solar-electric efficiency (Mills [18]). This

  6. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Performance-Cost analysis of solar combined heat and powerCHP system where the solar field cost is split between thea predicted levelized solar thermal cost of $0.03/kWh, this

  7. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    2009, May). Solar heat worldwide: Markets and contributionis a large proven market for solar energy. With widespreadSolar Rankine thermodynamics matches California demand To get a first approximation of the market

  8. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    164. Golden, Colorado, USA: Solar Energy Research Institute;heat storage materials, Solar Energy 30 (1983) 313–332 13-experimental. Trans ASME, J Solar Energy Eng 1990;112:125–

  9. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    40. 10- Lane GA. Solar heat storage—latent heat materials,332 13- Lane, G.A. Solar Heat Storage: Latent Heat Material,14-Lane, G.A. Solar Heat Storage: Latent Heat Material, vol.

  10. Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano, Muhammad Faryad, Peter B. Monk, Thomas E. Mallouk, and Akhlesh Lakhtakia

    E-Print Network [OSTI]

    Periodically multilayered planar optical concentrator for photovoltaic solar cells Manuel E. Solano concentrator for photovoltaic solar cells Manuel E. Solano,1 Muhammad Faryad,2 Peter B. Monk,1 Thomas E-Si solar cells due to embedded nanoparticles J. Appl. Phys. 102, 093713 (2007); 10.1063/1.2809368 Surface

  11. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    SciTech Connect (OSTI)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct marketing research, identify opportunities for use of this technology, and to the extent possible, secure an agreement leading to a pre-commercialization demonstration or prototype plant. This was accomplished with the agreement to conduct the Noor al Salaam program as a tri-lateral project between Egypt, Israel, and the U.S. The tri-lateral project was led by the University of Alabama in Huntsville (UAH); this included the Egyptian New and Renewable Energy Authority and the Israeli USISTC participants. This project, known was Noor al Salaam, was funded by the U.S. Agency for International Development (USAID) through the Department of Energy (DOE). The Egyptian activity was under the auspices of the Egyptian Ministry of Energy and Electricity, New and Renewable Energy Authority (NREA) as part of Egypt's plans for renewable energy development. The objective of the Noor al Salaam project was to develop the conditions necessary to obtain funding and construct and operate an approximately 10 to 20 Megawatt hybrid solar/natural gas demonstration power plant in Zaafarana, Egypt that could serve both as a test bed for advanced solar technology evaluations, and as a forerunner to commercial plant designs. This plant, termed Noor Al Salaam, or “Light of Peace”, reached the initial phase of system definition before being curtailed, in part by changes in USAID objectives, coupled with various delays that were beyond the scope of the program to resolve. The background of the USISTF technology development and pre-commercialization effort is provided in this report, together with documentation of the technology developments conducted under the Noor al Salaam program. It should be noted that only a relatively small part of the Noor al Salaam funding was expended over the approximately five years for which UAH was prime contractor before the program was ordered closed (Reference 1) so that the remaining funds could be returned to USAID.

  12. DOE to Invest More than $5 Million for Concentrating Solar Power...

    Broader source: Energy.gov (indexed) [DOE]

    million (Fiscal Year 2007; and FY'08, subject to Congressional appropriations) are integral to President Bush's Solar America Initiative (SAI), which seeks to make solar energy...

  13. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    solar-electric system (typical for thin-film panels currently) plus a 58% efficient solar-thermal system (flat-plate efficiency

  14. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    for evening cooking in a solar cooker. Energy Convers ManageThermal performance of a solar cooker based on an evacuated

  15. A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna 

    E-Print Network [OSTI]

    Loizou, Loizos

    2012-02-14

    , rods, dielectrics, and other structures can create reconfigurable periodic line sources. These trough waveguide antennas (TWA) are then capable of providing both fixedfrequency and frequency-dependent beam steering. This was originally performed using...

  16. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    power to local residences or businesses. Although it may seem that the decreased efficiency of solar-

  17. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    in solar thermal electricity technology. Solar Energy 76(1-solar energy is ubiquitous, and valuable when converted to high-grade heat or electricity.electricity in a natural gas, coal or nuclear power plant can instead harness solar energy

  18. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    California at Berkeley, University of

    of a theoretical solar CHP system. Then, we explore the economic and technological impetus for a solar powered across 1 #12;varying conditions, and concluding that solar CHP generated electricity is comparable to PV thermal power plants. Chapter 3 explores the expander as an enabling technology for small solar Rankine

  19. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    global warming affects. Recent advances on deployment of solar energy to generate electricity shows potential

  20. Advances on multijunction solar cell characterization aimed at the optimization of real concentrator performance

    SciTech Connect (OSTI)

    Garcia-Linares, Pablo Dominguez, César Voarino, Philippe Besson, Pierre Baudrit, Mathieu

    2014-09-26

    Multijunction solar cells (MJSC) are usually developed to maximize efficiency under test conditions and not under real operation. This is the case of anti-reflective coatings (ARC), which are meant to minimize Fresnel reflection losses for a family of incident rays at room temperature. In order to understand and quantify the discrepancies between test and operation conditions, we have experimentally analyzed the spectral response of MJSC for a variety of incidence angles that are in practice received by a concentrator cell in high-concentration photovoltaic (HCPV) receiver designs. Moreover, we characterize this angular dependence as a function of temperature in order to reproduce real operation conditions. As the refractive index of the silicone is dependent on temperature, an optical mismatch is expected. Regarding other characterization techniques, a method called Relative EL Homogeneity Analysis (RELHA) is applied to processed wafers prior to dicing, allowing to diagnose the wafer crystalline homogeneity for each junction. Finally, current (I)-voltage (V) characterization under strongly unbalanced light spectra has also been carried out for a number of low-level irradiances, providing insight on each junction shunt resistance and corresponding radiative coupling.

  1. Geographic Trough Filling for Internet Datacenters

    E-Print Network [OSTI]

    Xu, Dan

    2011-01-01

    To reduce datacenter energy consumption and cost, current practice has considered demand-proportional resource provisioning schemes, where servers are turned on/off according to the load of requests. Most existing work considers instantaneous (Internet) requests only, which are explicitly or implicitly assumed to be delay-sensitive. On the other hand, in datacenters, there exist a vast amount of delay-tolerant jobs, such as background/maintainance jobs. In this paper, we explicitly differentiate delay-sensitive jobs and delay tolerant jobs. We focus on the problem of using delay-tolerant jobs to fill the extra capacity of datacenters, referred to as trough/valley filling. Giving a higher priority to delay-sensitive jobs, our schemes complement to most existing demand-proportional resource provisioning schemes. Our goal is to design intelligent trough filling mechanisms that are energy efficient and also achieve good delay performance. Specifically, we propose two joint dynamic speed scaling and traffic shifti...

  2. Cascade luminescent solar concentrators Sthy Flores Daorta, Antonio Proto, Roberto Fusco, Lucio Claudio Andreani, and Marco Liscidini

    E-Print Network [OSTI]

    a bourgeoning inter- est in photovoltaic (PV) research with the goal of reducing the cost of solar energy. To this end, most of the efforts have been focused on decreasing the cost of PV cells while main- taining the impact of PV cells on the total cost of energy production. The most common and utilized concentrators

  3. Current flow and efficiencies of concentrator InGaP/GaAs/Ge solar cells at temperatures below 300K

    SciTech Connect (OSTI)

    Kalinovsky, Vitaly S. Kontrosh, Evgeny V. Dmitriev, Pavel A. Pokrovsky, Pavel V. Chekalin, Alexander V. Andreev, Viacheslav M.

    2014-09-26

    The forward dark current density – voltage (J-V) characteristic is one of the most important characteristics of multi-junction solar cells. It indicates that the mechanisms of current flow in the space charge region of photoactive p-n junctions. If one is to idealize the optical and electrical (coupling) elements of the solar cells, it is the J-V characteristic that determines the theoretically possible efficiency of the solar cell. In this paper, using the connection between the dark J-V and photovoltaic (?-J{sub g}) efficiency – generated current density characteristics, the effect of current transport mechanisms in the space charge on the efficiency of multi-junction solar cells was investigated in the temperature range of 300 – 80 K. In the experimental J-V and ?-J{sub g} curves of the multi-junction solar cells, segments corresponding to the dominant current transport mechanisms were identified. The developed method, based on the analysis of forward dark J-V characteristics, makes it possible to identify the parameters affecting the efficiency of the multi-junction solar cells in a wide range of temperatures and solar radiation concentration.

  4. Renewable energy technologies for federal facilities: Solar water heating

    SciTech Connect (OSTI)

    1996-05-01

    This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

  5. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    2007). Global Concentrated Solar Power Markets andLLC. (2007). Global Concentrated Solar Power Markets and

  6. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01

    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  7. Microscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 Myriam Paire,1,2,3,4,a)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    thin film solar cell material,7 and efficiencies over 20% were achieved recently. We study CIGS to decrease with illumination. The device described in this letter is a glass/Mo/CIGS/ CdS/ZnO solar cellMicroscale solar cells for high concentration on polycrystalline Cu(In,Ga)Se2 thin films Myriam

  8. PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui Taumoefolau, Sawat Paitoonsurikarn, Piya Siangsukone, Greg Burgess, Andreas Luzzi,

    E-Print Network [OSTI]

    PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT POWER GENERATION Keith Lovegrove , Tui of distributed dish, central generation solar thermal power systems using either direct steam generation-dish, steam-based, solar thermal power station in White Cliffs (Kaneff 1991). A parallel line

  9. Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells

    SciTech Connect (OSTI)

    Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

    2014-04-24

    The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

  10. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01

    energy storage system; thermal storage and heat transfer in1308. 32- Telkes, M. Thermal storage for solar heating andeditor. Phase change thermal storage materials. McGraw Hill

  11. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    well a molten salt thermal storage system could be utilizedof Solar Two [2] Thermal storage in these plants is anper kilowatt goes towards thermal storage[3]. Considering a

  12. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Energy 3 Sun-of solar energy, descriptions of sun-Earth geometricemission of the energy by the sun can be used to understand

  13. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    normal to the sun at solar noon (not tracking) and recordingSun-Earth Geometry To understand the design of a non-tracking

  14. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    Energy 3 Sun-that describe the sun as an energy source. Additionally, theof solar energy, descriptions of sun-Earth geometric

  15. Concentrating Solar Power and Water Issues in the U.S. Southwest

    SciTech Connect (OSTI)

    Bracken, N.; Macknick, J.; Tovar-Hastings, A.; Komor, P.; Gerritsen, M.; Mehta, S.

    2015-03-01

    Concentrating solar power (CSP) systems utilize the sun's energy to create heat that is used to generate electrical power. CSP systems in the United States are installed primarily in the Southwest, with 92% of plants that are operational, under construction, or under development located in three western states--Arizona, California, and Nevada. This report provides an overview of CSP development in these states, or the 'Southwest' for the purposes of this discussion, with a particular focus on the water supply issues associated with CSP. The Western Governors' Association (WGA) commissioned staff from the Western States Water Council (WSWC) to collaborate with staff from the National Renewable Energy Laboratory (NREL) to prepare this report. The WGA has long supported the effective management of the West's water resources, as well as the development of a clean, diverse, reliable, and affordable energy supply consisting of traditional and renewable energy resources. This report is specifically intended to help inform these goals, especially as WGA continues to underwrite a Regional Transmission Expansion Planning project, undertaken by the WSWC and the Western Electricity Coordinating Council (WECC), to better understand energy development within the existing and future water resource constraints of the West. This report builds upon earlier research conducted by NREL, the University of Colorado-Boulder, and Stanford University that was supported through the Joint Institute for Strategic Energy Analysis (JISEA) and presents information gathered through extensive research and literature reviews, as well as interviews and outreach with state water administrators and energy regulators, WECC and other experts familiar with CSP development in the Southwest.

  16. Lite Trough LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy ResourcesGrove, Iowa:Lisle,Trough LLC Jump to:

  17. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  18. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    team hopes to employ innovative approaches to developing the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional...

  19. Performance testing of the Acurex solar-collector Model 3001-03

    SciTech Connect (OSTI)

    Dudley, V.E.; Workhoven, R.M.

    1982-03-01

    Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

  20. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  1. Single element spectral splitting solar concentrator for multiple cells CPV system

    E-Print Network [OSTI]

    Stefancich, Marco

    Shockley Read Hall equation poses a limit to the maximum conversion efficiency of broadband solar radiation attainable by means of a single bandgap converter. A possible approach to overcome such a limit is to convert ...

  2. Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting

    E-Print Network [OSTI]

    Noone, Corey J. (Corey James)

    2011-01-01

    In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

  3. Performance analysis of medium temperature non-tracking solar thermal concentrators

    E-Print Network [OSTI]

    Balkoski, Kevin

    2011-01-01

    For stationary collectors, one must understand sun-Earthby the sun [1]. A solar thermal collector is a device thatthe collector due south and tilted to be normal to the sun

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    28 Life Cycle Assessment of a single solar dish collectorMay). Comparing two life cycle assessment approaches: aM. (2006). Dynamic life cycle assessment (LCA) of renewable

  5. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; García, Iván

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  6. Concentration solar power optimization system and method of using the same

    DOE Patents [OSTI]

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  7. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  8. Mechanism of Hydrogen Formation in Solar Paraboic Trough Receivers

    SciTech Connect (OSTI)

    Moens, L.; Blake, D.

    2008-02-01

    Technical report that provides an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

  9. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  10. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  11. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.

  12. Final Report-- A Novel Storage Method for Concentrating Solar Power Plants Allowing Storage at High Temperature

    SciTech Connect (OSTI)

    Morris, Jeffrey F.

    2014-09-29

    The main objective of the proposed work was the development and testing of a storage method that has the potential to fundamentally change the solar thermal industry. The development of a mathematical model that describes the phenomena involved in the heat storage and recovery was also a main objective of this work. Therefore, the goal was to prepare a design package allowing reliable scale-up and optimization of design.

  13. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W; Miner, Kris

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  14. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  15. Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership onProtonConcentrators FY13 Q2 Low-Cost,

  16. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  17. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  18. Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. High 400?°C operation temperature blue spectrum concentration solar junction in GaInN/GaN

    SciTech Connect (OSTI)

    Zhao, Liang; Detchprohm, Theeradetch; Wetzel, Christian

    2014-12-15

    Transparent wide gap junctions suitable as high temperature, high flux topping cells have been achieved in GaInN/GaN by metal-organic vapor phase epitaxy. In structures of 25 quantum wells (QWs) under AM1.5G illumination, an open circuit voltage of 2.1?V is achieved. Of the photons absorbed in the limited spectral range of <450?nm, 64.2% are converted to electrons collected at the contacts under zero bias. At a fill factor of 45%, they account for a power conversion efficiency of38.6%. Under concentration, the maximum output power density per sun increases from 0.49?mW/cm{sup 2} to 0.51?mW/cm{sup 2} at 40?suns and then falls 0.42?mW/cm{sup 2} at 150?suns. Under external heating, a maximum of 0.59?mW/cm{sup 2} is reached at 250?°C. Even at 400?°C, the device is fully operational and exceeds room temperature performance. A defect analysis suggests that significantly higher fill factors and extension into longer wavelength ranges are possible with further development. The results prove GaInN/GaN QW solar junctions a viable and rugged topping cell for concentrator photovoltaics with minimal cooling requirements. By capturing the short range spectrum, they reduce the thermal load to any conventional cells stacked behind.

  20. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case parabolic solar troughs. A flow control valve adjustable for temperature and pressure, allowed the pressure within the troughs to build, thus increasing the boiling point of the water. At a temperature greater

  1. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    10MW Thin Film Solar Power Plant for Sempra Generation. ”2009). “Concentrating solar power plants of the southwest1.11. Concentrating solar power plants of the southwest

  2. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  3. Manufacture of and Apparatus for Nearly Frictionless Operation of a Rotatable Array of Micro-Mirrors in a Solar Concentrator Sheet

    E-Print Network [OSTI]

    Mario Rabinowitz; David V. Overhauser

    2006-01-28

    Due to an ever growing shortage of conventional energy sources, there is an increasingly intense interest in harnessing solar energy. The instant invention can contribute to the goal of achieving environmentally clean solar energy to be competitive with conventional energy sources. A novel method is described for manufacturing a transparent sheet with an embedded array of mirrored spheroidal micro-balls for use in a solar energy concentrator, and analogous applications such as optical switches and solar rocket assist. The micro-balls are covered with a thin spherical shell of lubricating liquid so that they are free to rotate in an almost frictionless encapsulation in the sheet. Novel method and apparatus are presented for producing the preferred embodiment of a close-packed monolayer of the array of mirrored micro-balls.

  4. Weak lensing by galaxy troughs in DES Science Verification data

    E-Print Network [OSTI]

    Gruen, D; Amara, A; Bacon, D; Bonnett, C; Hartley, W; Jain, B; Jarvis, M; Kacprzak, T; Krause, E; Mana, A; Rozo, E; Rykoff, E S; Seitz, S; Sheldon, E; Troxel, M A; Vikram, V; Abbott, T; Abdalla, F B; Allam, S; Armstrong, R; Banerji, M; Bauer, A H; Becker, M R; Benoit-Levy, A; Bernstein, G M; Bernstein, R A; Bertin, E; Bridle, S L; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Neto, A Fausti; Fernandez, E; Flaugher, B; Fosalba, P; Frieman, J; Gerdes, D W; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lima, M; Maia, M A G; March, M; Martini, P; Melchior, P; Miller, C J; Miquel, R; Mohr, J J; Nord, B; Ogando, R; Plazas, A A; Reil, K; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Walker, A R; Wechsler, R H; Weller, J; Zhang, Y; Zuntz, J

    2015-01-01

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10 to 15sigma for the smallest angular scales) for troughs with the redshift range z in [0.2,0.5] of the projected galaxy field and angular diameters of 10'...1{\\deg}. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial LambdaCDM model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy count...

  5. Geochemistry of basalt from the Ayu Trough, equatorial western Pacific

    E-Print Network [OSTI]

    -long divergent margin between the Philippine Sea and Caroline plates located in the western Pacific near interaction among major plates, the Pacific, Indo- Australian and Philippine Sea plates, and the less well- known Caroline plate. The Ayu Trough forms the southeastern boundary of the Philippine Sea plate

  6. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  7. Seasonal variation of upper-level mobile trough development upstream of the Pacific storm track 

    E-Print Network [OSTI]

    Myoung, Boksoon

    2002-01-01

    The purpose of this thesis is to investigate seasonal and interannual statistics of troughs associated with the Pacific storm track and quantify the influence of deformation on trough development upstream of the western ...

  8. A study of mobile trough genesis over the Yellow Sea - East China Sea region 

    E-Print Network [OSTI]

    Komar, Keith Nickolas

    1997-01-01

    The purpose of this study was to understand the mechanisms responsible for the formation of mobile troughs over a prolific source region in the Yellow Sea and East China Sea. Two mobile troughs which intensified significantly after formation were...

  9. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

  10. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  11. Concentrated Solar Thermoelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document summarizes the progress of this MIT project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  12. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' Success OpensTRA51429 Vol.Jungle |

  13. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  14. NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01

    New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes.

  15. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power

    E-Print Network [OSTI]

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies Marissa Hummon 3rd International Solar Power Integration on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must

  16. A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ

    E-Print Network [OSTI]

    Schultz, David

    A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ Cooperative with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model--time series at a single surface station may possess a pressure trough and wind shift in the warm

  17. Solar-Electric Dish Stirling System Development

    SciTech Connect (OSTI)

    Mancini, T.R.

    1997-12-31

    Electrical power generated with the heat from the sun, called solar thermal power, is produced with three types of concentrating solar systems - trough or line-focus systems; power towers in which a centrally-located thermal receiver is illuminated with a large field of sun-tracking heliostats; and dish/engine systems. A special case of the third type of system, a dish/Stirling system, is the subject of this paper. A dish/Stirling system comprises a parabolic dish concentrator, a thermal receiver, and a Stirling engine/generator located at the focus of the dish. Several different dish/Stirling systems have been built and operated during the past 15 years. One system claims the world record for net conversion of solar energy to electric power of 29.4%; and two different company`s systems have accumulated thousands of hours of on-sun operation. Due to de-regulation and intense competition in global energy markets as well as the immaturity of the technology, dish/Stirling systems have not yet found their way into the marketplace. This situation is changing as solar technologies become more mature and manufacturers identify high-value niche markets for their products. In this paper, I review the history of dish/Stirling system development with an emphasis on technical and other issues that directly impact the Stirling engine. I also try to provide some insight to the opportunities and barriers confronting the application of dish/Stirling in power generation markets.

  18. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    S. A. (2004). "Solar thermal collectors and applications".for High Temperature Solar Thermal Collector Units A thesisfor Solar Thermal Collectors……………………………..7 Solar Thermal

  19. Petroleum geology of Benue trough and southeastern Chad basin, Nigeria

    SciTech Connect (OSTI)

    Petters, S.W.; Ekweozor, C.M.

    1982-08-01

    Cretaceous cyclic sedimentation in the southern Benue trough, together with unconformities, provide a tripartite subdivision of the sedimentary succession into (1) the Albian Asu River Group, (2) the late Cenomanian to early Santonian Cross River Group (new name) and interfingering marginal marine sandstones, and (3) the post-Santonian coal measures sequence. Most of the Albian to Eocene marine shales in the Benue trough and the Turonian shales in the southern Chad basin contain well over 0.5% total organic carbon, with values of up to 7.4% in Turonian anaerobic shales. Based on the high content of soluble organic matter, thermal maturity, and the predominantly terrigenous character of the Late Cretaceous shales, mostly natural gas was probably generated in both basins. The late Santonian folding and uplift would have disrupted petroleum reservoirs. Also, crude oil accumulations which were not dissipated by tectonism would be relocated at relatively shallow depths and hence become accessible to invading meteoric waters.

  20. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required

  1. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin; Masson, Denis; Riel, Bruno; Fafard, Simon; Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent

    2010-10-14

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  2. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect (OSTI)

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  3. Fabrication of a luminescent solar concentrator that minimizes self-absorption losses using inter-chromophore energy transfer

    E-Print Network [OSTI]

    Currie, Michael James

    2007-01-01

    The projected need for carbon-free power during this century is immense. Solar power offers the largest resource base to supply this need, but in light of recent silicon shortages, it is an open question whether silicon ...

  4. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    Solar Completes 10MW Thin Film Solar Power Plant for SempraT. ; (2008) Concentrating Solar Power—Technology, Cost, and2009). “Concentrating solar power plants of the southwest

  5. Solar collectors

    SciTech Connect (OSTI)

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  6. Energy Secretary Moniz Dedicates World's Largest Concentrating...

    Energy Savers [EERE]

    Dedicates World's Largest Concentrating Solar Power Project Energy Secretary Moniz Dedicates World's Largest Concentrating Solar Power Project February 13, 2014 - 5:00am Addthis...

  7. Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells

    SciTech Connect (OSTI)

    Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

    2000-01-01

    Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

  8. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  9. Parabolic-Trough Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New PagesParabolic-Trough Technology Roadmap Jump to:

  10. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    and future of solar thermal energy as a primary source ofon harnessing solar thermal energy for water desalinationas an alternative. Solar thermal energy has the potential to

  11. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    4 Ideal Solar Reflector Design……………………………………………5 Designand ideal solar reflector design. Sections three and four1998a). Ideal Solar Reflector Design The ideal reflector

  12. Lead and other metals distribution in local cooking salt from the Fofi salt- spring in Akwana, Middle Benue Trough, Nigeria

    SciTech Connect (OSTI)

    Dim, L.A.; Kinyua, A.M.; Munyithya, J.M.; Adetunji, J. (Centre for Nuclear Science Techniques, Faculty of Engineering, University of Nairobi (Kenya))

    1991-06-01

    Energy Dispersive X-ray Fluorescence (EDXRF) technique has been used to determine the concentrations of lead(Pb) and other heavy metals in local cooking salts (LCS) from Akwana village, Middle Benue Trough, Nigeria. The comparison of the distribution of these metals in LCS, fake salt (FS) and the usual common salts (CS) are given. Lead was found to be enriched in LCS by factor exceeding 200 times compared to the other salts. The origin of Pb contamination in the LCS is examined and its effects on the inhabitants of the village are considered.

  13. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    considerations for CPC solar collectors". Solar Energy 22(view of Dewar 58 Solar Collector Absorber ………8 Figure 3.2view of Dewar 47 Solar Collector Absorber ………11 Figure 3.4

  14. InGaAsP/InP intrastep quantum wells for enhanced solar energy conversion

    E-Print Network [OSTI]

    Chen, Winnie Victoria

    2012-01-01

    photovoltaic) and CSP (concentrated solar power), but stillcan be done. Concentrated solar power, which uses mirrors tothe amount of concentrated solar power in a concentrator

  15. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  16. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore »and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  17. Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study

    SciTech Connect (OSTI)

    Sogabe, Tomah Shoji, Yasushi; Tamayo, Efrain; Okada, Yoshitaka; Mulder, Peter; Schermer, John

    2014-09-15

    We report the fabrication of a thin film InAs/GaAs quantum dot solar cell (QD cell) by applying epitaxial lift-off (ELO) approach to the GaAs substrate. We confirmed significant current collection enhancement (?0.91?mA/cm{sup 2}) in the ELO-InAs QD cell within the wavelength range of 700?nm–900?nm when compared to the ELO-GaAs control cell. This is almost six times of the sub-GaAs bandgap current collection (?0.16?mA/cm{sup 2}) from the wavelength range of 900?nm and beyond, we also confirmed the ELO induced resonance cavity effect was able to increase the solar cell efficiency by increasing both the short circuit current and open voltage. The electric field intensity of the resonance cavity formed in the ELO film between the Au back reflector and the GaAs front contact layer was analyzed in detail by finite-differential time-domain (FDTD) simulation. We found that the calculated current collection enhancement within the wavelength range of 700?nm–900?nm was strongly influenced by the size and shape of InAs QD. In addition, we performed concentrated light photovoltaic study and analyzed the effect of intermediate states on the open voltage under varied concentrated light intensity for the ELO-InAs QD cell.

  18. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  19. Intermediate and deep water formation in the Okinawa Trough Hirohiko Nakamura,1

    E-Print Network [OSTI]

    Rhode Island, University of

    Intermediate and deep water formation in the Okinawa Trough Hirohiko Nakamura,1 Ayako Nishina,1-diffusion equation. On the other hand, deep water in the Okinawa Trough, below the sill depth of the Kerama Gap be maintained by buoyancy gain of the deep water due to strong diapycnal diffusion (4.8­9.5 3 1024 m2 s21

  20. Amplification of Tsunami Heights by Delayed Rupture of Great Earthquakes along the Nankai Trough

    E-Print Network [OSTI]

    Furumura, Takashi

    Amplification of Tsunami Heights by Delayed Rupture of Great Earthquakes along the Nankai Trough of delayed rupture of great earthquakes along the Nankai trough on tsunami heights on the Japanese coast. As the tsunami source, we used a model of the 1707 Hoei earthquake, which consists of four segments: Tokai

  1. Soiling losses for solar photovoltaic systems in California

    E-Print Network [OSTI]

    Mejia, Felipe A; Kleissl, Jan

    2013-01-01

    for concentrating solar power plants that are much morea concentrating solar power desalination plant in Abu Dhabi,

  2. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    et al. (2003). Low-Cost Distributed Solar- Thermal-Electriccooling with solar energy, leading to a more cost effectiveSolar Thermal Collector Units Introduction Increased production costs

  3. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    Cost Distributed Solar- Thermal-Electric Power Generation.S. A. (2004). "Solar thermal collectors and applications".The present and future of solar thermal energy as a primary

  4. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  5. Project Profile: Advanced High Temperature Trough Collector Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the United States. The NTPro design has three primary goals: higher performance, lower cost, and the potential to operate with a molten salt heat transfer fluid (HTF). Solar...

  6. Project Profile: High-Concentration, Low-Cost Parabolic Trough System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefine ReviewImpactDepartment ofBaseload CSP |

  7. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  8. 2010 Solar Technologies Market Report

    E-Print Network [OSTI]

    2010 Solar Technologies Market Report NOVEMBER 2011 #12;ii #12;iii 2010 Solar Technologies Market Solar Power ........................1 1.1 Global Installed PV Capacity ........................................................................................................................................18 2 Industry Trends, Photovoltaic and Concentrating Solar Power ...........................21 2.1 PV

  9. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

    1995-12-01

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  10. Rolling Thunder -- Integration of the Solo 161 Stirling engine with the CPG-460 solar concentrator at Ft. Huachuca

    SciTech Connect (OSTI)

    Diver, R.B.; Moss, T.A.; Goldberg, V.; Thomas, G.; Beaudet, A.

    1998-09-01

    Project Rolling Thunder is a dish/Stirling demonstration project at Ft. Huachuca, a US Army fort in southeastern Arizona (Huachuca means rolling thunder in Apache). It has been supported by the Strategic Environmental Research and Development Program (SERDP), a cooperative program between the Department of Defense (DoD) and the Department of Energy (DOE). As part of a 1992 SERDP project, Cummins Power Generation, Inc. (CPG) installed a CPG 7 kW(c) dish/Stirling system at the Joint Interoperability Test Command (JITC) in Ft. Huachuca, Arizona. The primary objective of the SERDP Dish/Stirling for DoD Applications project was to demonstrate a CPG 7-kW(c) dish/Stirling system at a military facility. Unfortunately, Cummins Engine Company decided to divest its solar operations. As a direct result of Ft. Huachuca`s interest in the Cummins dish/Stirling technology, Sandia explored the possibility of installing a SOLO 161 Stirling power conversion unit (PCU) on the Ft. Huachuca CPG-460. In January 1997, a decision was made to retrofit a SOLO 161 Stirling engine on the CPG-460 at Ft. Huachuca. Project Rolling Thunder. The SOLO 161 Demonstration at Ft. Huachuca has been a challenge. Although, the SOLO 161 PCU has operated nearly flawlessly and the CPG-460 has been, for the most part, a solid and reliable component, integration of the SOLO PCU with the CPG-460 has required significant attention. In this paper, the integration issues and technical approaches of project Rolling Thunder are presented. Lessons of the project are also discussed.

  11. Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010

    SciTech Connect (OSTI)

    Wojtczuk , S.

    2011-06-01

    Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

  12. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

  13. Webinar: Potential Strategies for Integrating Solar Hydrogen...

    Office of Environmental Management (EM)

    Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen...

  14. Modelling of a steam based paraboloidal dish concentrator using TRNSYS Siangsukone P. and Lovegrove K. Proceedings of Solar 2002 -Australian and New Zealand Solar Energy Society Paper 1 1

    E-Print Network [OSTI]

    K. Proceedings of Solar 2002 - Australian and New Zealand Solar Energy Society Paper 1 1 Modelling.Siangsukone@anu.edu.au Abstract Solar Thermal Power plants have components with thermal time constants that can be minutes or even is the solar cavity receiver. This component models the energy balance in the receiver and takes into account

  15. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176)

    E-Print Network [OSTI]

    Smith, David C.

    ^Bacteroides (CFB) phylum have also been enriched from deep sediments of the Nankai Trough southeast of Japan [9 predominantly members of the alpha-, beta-, and gamma- proteobacteria, the CFB phylum and of the high G

  16. Evolution and preservation of closed linear troughs in the Hueco bolson of west Texas 

    E-Print Network [OSTI]

    Burrell, Jonathan K

    1996-01-01

    remained unfilled over time. It was important in this study from an engineering geology standpoint of construction development, to identify the mechanisms acting to maintain the topographic expression of the troughs in the basin....

  17. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    SciTech Connect (OSTI)

    Zhu, G.; Lewandowski, A.

    2012-11-01

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  18. Seismic reflection data analysis of the Oriente and Swan Fracture Zones bounding the Cayman Trough 

    E-Print Network [OSTI]

    Tinker, Mary Norris

    1986-01-01

    SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Submitted to the Graduate College of Texas A8 M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geophysics SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Approved as to style and content by: D. A. Fa quiet...

  19. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh...

  20. Centerless-drive solar collector system

    SciTech Connect (OSTI)

    Butler, B. L.

    1985-12-24

    A parabolic-trough solar collector system is disclosed, with each collector driven to track the sun using a ring driven in centerless fashion. The parabolic troughs are made of laminated plywood or molded or formed of plastics or metals. The drive motor moves a flexible belt, i.e., chain or cable, which is routed about the drive ring on each collector. The motion of the cable moves all drive rings together to track the sun. A photodetector senses the position of the sun and provides the signal needed to drive the collectors in the correct direction.

  1. Increasing Solar Efficiency through Luminescent Solar Concentrators -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in a V2O5

  2. NREL: Concentrating Solar Power Research - Southwest Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News ReleasesChemicalPilotDataResearch Staff

  3. NREL: Concentrating Solar Power Research - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEARIntegrated

  4. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01

    Trough Concentrating Solar Power Plant and Impacts of Keyof a 1.5 MW solar power tower plant in China. ” Renewablelarger commercial solar power tower plants in Northwestern

  5. Foundational Solar Resource Research (Poster)

    SciTech Connect (OSTI)

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  6. Solar Radiation Research Laboratory (Poster)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  7. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01

    2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

  8. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  9. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  10. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' Success OpensTRA51429 Vol.Jungle

  11. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia Report Presents

  12. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia Report

  13. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColin Humphreys Home ColinSandia ReportMolten Salt

  14. Sandia Energy - Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar,

  15. Implications of Wide-Area Geographic Diversity for Short- Term Variability of Solar Power

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    the limits of solar photovoltaics (PV) in traditionalof Concentrating Solar Power and Utility-Scale Photovoltaics

  16. THE EFFECT OF CIRCUMSOLAR RADIATION ON THE ACCURACY OF PYRHELIOMETER MEASUREMENTS OF THE DIRECT SOLAR RADIATION

    E-Print Network [OSTI]

    Grether, D.

    2012-01-01

    data for proposed or actual concentrating solar energyconcentrating solar energy systems. In this paper data from

  17. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    E-Print Network [OSTI]

    Cisneros, Jesus

    2010-01-01

    a motorized sun-tracker to the collectors, designing a non-the sun onto each of the three solar thermal collectors. ix

  18. Concentrator Photovoltaic System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cells. However, challenges exist for concentrators. First, the required concentrating optics are significantly more expensive than the simple covers needed for flat-plate solar...

  19. Engineering, Financial and Net Energy Performance, and Risk Analysis for Parabolic Trough Solar Power Plants 

    E-Print Network [OSTI]

    Luo, Jun

    2014-08-08

    An investigation was conducted to determine how technology innovations, potential risks, plant configuration and size, operating strategy, and financial incentives affect the electricity output, financial payback, and net ...

  20. Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    Broader source: Energy.gov [DOE]

    Abengoa, under the Thermal Storage FOA, is looking at innovative ways to reduce thermal energy storage (TES) system costs.