Sample records for trough power tower

  1. Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint

    SciTech Connect (OSTI)

    Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

    2010-10-01T23:59:59.000Z

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  2. Current and future costs for parabolic trough and power tower systems in the US market.

    SciTech Connect (OSTI)

    Turchi, Craig (National Renewable Energy Laboratory, Golden, CO); Kolb, Gregory J.; Mehos, Mark Steven (National Renewable Energy Laboratory, Golden, CO); Ho, Clifford Kuofei

    2010-08-01T23:59:59.000Z

    NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

  3. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  4. SMUD Kokhala Power Tower Study

    SciTech Connect (OSTI)

    Price, Henry W. [National Renewable Energy Laboratory, Golden, CO (United States); Whitney, Daniel D.; Beebe, H.I. [Sacramento Municipal Utility District, CA (United States)

    1997-06-01T23:59:59.000Z

    Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

  5. Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2006-07-01T23:59:59.000Z

    This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

  6. Simplified Methodology for Designing Parabolic Trough Solar Power Plants.

    E-Print Network [OSTI]

    Vasquez Padilla, Ricardo

    2011-01-01T23:59:59.000Z

    ?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for… (more)

  7. Simplified Methodology for Designing Parabolic Trough Solar Power Plants.

    E-Print Network [OSTI]

    Vasquez Padilla, Ricardo

    2011-01-01T23:59:59.000Z

    ??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the… (more)

  8. Multi-objective optimization of solar tower power plants

    E-Print Network [OSTI]

    Ábrahám, Erika

    Multi-objective optimization of solar tower power plants Pascal Richter Center for Computational · Optimization of solar tower power plants 1/20 #12;Introduction ­ Solar tower power plants Solar tower PS10 (11 MW) in Andalusia, Spain · Solar tower with receiver · Heliostat field with self-aligning mirrors

  9. Parabolic trough solar power for competitive U.S. markets

    SciTech Connect (OSTI)

    Price, H.W.; Kistner, R.

    1999-07-01T23:59:59.000Z

    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 190. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a results of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive US power market.

  10. Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sof Energy Jun Luof EmergencyMeteringPower PurchasePower

  11. Sandia National Laboratories: Power Towers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights forAwardsPolyFlowPowerPower

  12. Parabolic Trough Solar Power Plant Simulation Model: Preprint

    SciTech Connect (OSTI)

    Price, H.

    2003-01-01T23:59:59.000Z

    As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

  13. Solar power tower development: Recent experiences

    SciTech Connect (OSTI)

    Tyner, C.; Kolb, G.; Prairie, M. [and others

    1996-12-01T23:59:59.000Z

    Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

  14. PARABOLIC TROUGH POWER FOR THE CALIFORNIA COMPETITIVE MARKET

    E-Print Network [OSTI]

    California is about to complete its third year of a deregulated competitive wholesale power market. During the first two years of the competitive market, power prices averaged between 2 and 3¢/kWh. During 2000, electric supply to California was constrained a number of times causing maximum the price of power to peak over 100¢/kWh, and the average price of power to quadruple. The power output from solar plants tends to coincide with the high power demand periods in California. This fact had been demonstrated by the solar electric generating stations (SEGS) located in the California Mojave Desert, which operate under specific contracts signed in the 1980’s and early 1990’s with the local utility. This paper, on the other hand, examines how new parabolic trough solar plants would have faired on the wholesale competitive power market during 1999 and 2000.

  15. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePowerResearch TroughNet

  16. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    None

    2012-01-11T23:59:59.000Z

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  17. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01T23:59:59.000Z

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  18. Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators

    E-Print Network [OSTI]

    Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

  19. Energy 101: Concentrating Solar Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Description From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies...

  20. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines

    SciTech Connect (OSTI)

    Kearney, D.

    2013-03-01T23:59:59.000Z

    The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

  1. Solar Two: A successful power tower demonstration project

    SciTech Connect (OSTI)

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02T23:59:59.000Z

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  2. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01T23:59:59.000Z

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  3. PS10 Solar Power Tower Xi Jing, Fang

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    the solar energy to the grid in 2007 Operating cash flow 1.4 millions in 2007.Operating cash flow 1PS10 Solar Power Tower Xi Jing, Fang #12;Overview Magnitudes , Cost & TechnologiesMagnitudes , Cost Technological ,Social Problems and PolicyTechnological ,Social Problems and Policy ChallengesChallenges #12

  4. Brayton Cycle Baseload Power Tower CSP System

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  5. Today`s Solar Power Towers

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This [updated 1/95] report outlines the technology of modern solar central receiver power plants, showing how they could be an important domestic source of energy within the next decade

  6. Strategies in tower solar power plant optimization

    E-Print Network [OSTI]

    Ramos, A

    2012-01-01T23:59:59.000Z

    A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

  7. Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations

    E-Print Network [OSTI]

    Colin S. Rosenthal

    1998-04-03T23:59:59.000Z

    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

  8. Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint

    SciTech Connect (OSTI)

    Price, H.; Kearney, D.

    2003-01-01T23:59:59.000Z

    Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

  9. Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.

    2008-03-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

  10. System and method for aligning heliostats of a solar power tower

    DOE Patents [OSTI]

    Convery, Mark R.

    2013-01-01T23:59:59.000Z

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  11. The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance , J. Chapman1

    E-Print Network [OSTI]

    Manuel, Lance

    The Use of Tall Tower Field Data for Estimating Wind Turbine Power Performance A. Swift1 , J wind speed measurements on the TTU WISE 200m and 78m towers. A hypothetical wind turbine is shown. At potential wind turbine sites, it is uncommon to have wind measurements available at multiple heights. Then

  12. Concentrating Solar Power Commercial Application Study

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

  13. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect (OSTI)

    Anderson, Bruce

    2013-12-31T23:59:59.000Z

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  14. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    SciTech Connect (OSTI)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

    2010-12-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  15. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-01-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  16. Two-tank indirect thermal storage designs for solar parabolic trough power plants.

    E-Print Network [OSTI]

    Kopp, Joseph E.

    2009-01-01T23:59:59.000Z

    ??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

  17. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect (OSTI)

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01T23:59:59.000Z

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  18. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    SciTech Connect (OSTI)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20T23:59:59.000Z

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  19. Economic evaluation of solar-only and hybrid power towers using molten salt technology

    SciTech Connect (OSTI)

    Kolb, G.J.

    1996-12-01T23:59:59.000Z

    Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

  20. Linear Concentrator System Basics for Concentrating Solar Power...

    Office of Environmental Management (EM)

    towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in...

  1. Design considerations for concentrating solar power tower systems employing molten salt.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01T23:59:59.000Z

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  2. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Turchi, C. S.; Heath, G. A.

    2013-02-01T23:59:59.000Z

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  3. Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofatRenewableConcentrating Solar Power

  4. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower Generation |SystemModule |Reduce

  5. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  6. Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

    2008-05-01T23:59:59.000Z

    A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

  7. An evaluation of possible next-generation high temperature molten-salt power towers.

    SciTech Connect (OSTI)

    Kolb, Gregory J.

    2011-12-01T23:59:59.000Z

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  8. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25T23:59:59.000Z

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  9. Trough to trough The Colorado River

    E-Print Network [OSTI]

    de Lijser, Peter

    Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor Trough to trough....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts geological excursions and observations of the Colorado Desert region by William Phipps Blake, 1853 and 1906

  10. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01T23:59:59.000Z

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  11. Engineering, Financial and Net Energy Performance, and Risk Analysis for Parabolic Trough Solar Power Plants

    E-Print Network [OSTI]

    Luo, Jun

    2014-08-08T23:59:59.000Z

    concentrating solar power plant. A set of engineering performance, financial and net energy models were developed as tools to predict a plant’s engineering performance, cost and energy payback. The models were validated by comparing the predicted results...

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power

    E-Print Network [OSTI]

    Hu, Weihao

    @et.aau.dk, csu@et.aau.dk, zch@et.aau.dk Abstract ­ Grid connected wind turbines are fluctuating power sources due on the power system small signal stability of wind turbines based on fixed-speed induction generators, doubly two interconnected power systems [9]. The wind power fluctuations produced by grid connected variable

  13. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    SciTech Connect (OSTI)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    2014-04-01T23:59:59.000Z

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.

  14. Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThree Biorefineries to ProduceNuclearDerrickDepartment

  15. Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.

    SciTech Connect (OSTI)

    Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

    2013-03-01T23:59:59.000Z

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  16. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    Trough Receiver (NRELTP-550-45633): NREL, 2009. 2. Kutscher C, et al. Line-Focus Solar Power Plant Cost Reduction Plan: NREL Milestone Report, 2010. 3. Mahoney R. Trough...

  17. Parabolic trough solar collectors : design for increasing efficiency

    E-Print Network [OSTI]

    Figueredo, Stacy L. (Stacy Lee), 1981-

    2011-01-01T23:59:59.000Z

    Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

  18. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

  19. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16T23:59:59.000Z

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  20. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  1. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  2. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  3. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  4. Energy 101: Concentrating Solar Power

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  5. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  6. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

  7. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 3: Multiple Plants at a Common Location, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., regarding a system analysis of multiple solar parabolic trough plants at a common location.

  8. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08T23:59:59.000Z

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  9. Windmill tower

    SciTech Connect (OSTI)

    Schachle, C.; Schachle, E.C.; Schachle, J.R.; Schachle, P.J.

    1982-04-06T23:59:59.000Z

    A windmill tower supports a propeller and a platform that in turn supports a propeller feather control system and a generator system. The entire tower rotates at its base under changes in wind direction so the rotating propeller is constantly maintained upwind of the tower. The tower is a rigid structure that withstands cyclic thrust and torque loading sufficiently to reduce resonant vibrations of the tower as the propeller rotates under the influence of the wind. The resonant frequency of the tower can be higher than the passing frequency of the rotating propeller blades. The tower includes a pair of generally upright fore legs that converge upwardly toward a first apex on the propeller axis of rotation near the front of the platform immediately behind the propeller hub. A diagonal bracing strut extends downwardly from the first apex away from the plane of the fore legs and toward the rear of the tower. The bottoms of the fore legs and the diagonal bracing strut are rigidly interconnected by base plane truss members. A pair of upwardly converging aft legs extend diagonally upwardly from the bottoms of the fore legs toward a second apex aft of the first apex at the rear of the platform. At regular vertical intervals, stiffening trusses add rigidity to the main upright members of the tower structure. The natural frequency of the tower is raised by the fore legs and the diagonal bracing strut being interconnected in a rigid base plane truss. The diagonal bracing strut resists thrust loading on the tower, and the fore legs and aft legs resist torsional forces produced at the top of the tower.

  10. Rinse trough with improved flow

    DOE Patents [OSTI]

    O`Hern, T.J.; Grasser, T.W.

    1998-08-11T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

  11. Field Survey of Parabolic Trough Receiver Thermal Performance: Preprint

    SciTech Connect (OSTI)

    Price, H.; Forristall, R.; Wendelin, T.; Lewandowski, A.; Moss, T.; Gummo, C.

    2006-04-01T23:59:59.000Z

    This paper describes a technique that uses an infrared camera to evaluate the in-situ thermal performance of parabolic trough receivers at operating solar power plants.

  12. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005

    SciTech Connect (OSTI)

    Kelly, B.

    2006-07-01T23:59:59.000Z

    Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

  13. High-Temperatuer Solar Selective Coating Development for Power Tower Receivers

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. Cooling Towers, The Debottleneckers

    E-Print Network [OSTI]

    Burger, R.

    Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units...

  15. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

    1996-01-01T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  16. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  17. Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.

    SciTech Connect (OSTI)

    Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

    2004-07-01T23:59:59.000Z

    Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

  18. Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One's heliostat field and turbine generator. Successful operation of the convertedplant, called SolarTwo, will reduce

  19. Multi-objective optimization of solar tower heliostat fields

    E-Print Network [OSTI]

    Ábrahám, Erika

    Multi-objective optimization of solar tower heliostat fields Pascal Richter, Martin Frank and Erika Introduction Solar tower plants generate electric power from sunlight by focusing concentrated solar radiation electricity. Fig. 1 Solar tower plant PS10, 11 MW in Andalusia, Spain. [Source: flickr] Solar tower plants

  20. Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!!

    E-Print Network [OSTI]

    Burger, R.

    requirements before a cooling tower is purchased. This relates to the volume of circulating water, hot water temperature on the tower, cold water discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower...

  1. Vortex-augmented cooling tower - windmill combination

    DOE Patents [OSTI]

    McAllister, J.E. Jr.

    1982-09-02T23:59:59.000Z

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  2. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01T23:59:59.000Z

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

  3. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  4. The Long-Term Market Potential of Concentrating Solar Power (CSP) Systems

    SciTech Connect (OSTI)

    Smith, Steven J.

    2012-10-30T23:59:59.000Z

    This chapter will examine the conditions under which thermal CSP systems might play a large role in the global energy system. CSP technologies, such as troughs or power towers, have a large advantage over other solar technologies in that they offer the potential for firm power delivery, mitigating intermittency issues. These systems require relatively cloud-free conditions to operate, which limits their geographic applicability.

  5. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    SciTech Connect (OSTI)

    Zhu, G.; Lewandowski, A.

    2012-11-01T23:59:59.000Z

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  6. Technical Manual for the SAM Physical Trough Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Gilman, P.

    2011-06-01T23:59:59.000Z

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  7. Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!!

    E-Print Network [OSTI]

    Burger, R.

    requirements before a cooling tower is purchased. This relates to the volume of circulatlng water, hot water temperature on the tower, cold water temperature discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity... rather than a portion of it for water breakup and splash resulting in a net lower temperature. b. Water ~roughs or enclosed flumes in counterflow towers should be changed to a low-pressure spray piping system. c. Existing spray systems can...

  8. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  9. Multi-tower line focus Fresnel array project

    SciTech Connect (OSTI)

    Mills, D.R.; Morrison, G.; Pye, J.; Le Lievre, P. [Solar Heat & Power SHP Pty. Ltd., Sydney, NSW (Australia)

    2006-02-15T23:59:59.000Z

    As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.

  10. Vortex-augmented cooling tower-windmill combination

    DOE Patents [OSTI]

    McAllister, Jr., John E. (Aiken, SC)

    1985-01-01T23:59:59.000Z

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  11. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  12. Vice President CEO, Tower Foundation

    E-Print Network [OSTI]

    Su, Xiao

    Vice President CEO, Tower Foundation Administrative Assistant to the AVP Information Representative Tower Foundation Charitable Gifts Officer Gift Analyst Gift Analyst Gift Analyst Senior Analyst Tower Foundation Stewardship Director Graphic Designer Administrative Assistant Web Communications

  13. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  14. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect (OSTI)

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01T23:59:59.000Z

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  15. Solar Updraft TowersSolar Updraft Towers Presentation 5

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Solar Updraft TowersSolar Updraft Towers CEE 491 Presentation 5 Travis Satsuma May 5, 2009 #12 Benefits Solar tower built in the desert, instigates plant growth Condensation created at night enlivens turbines running 24/7 CO2 only produced during construction of tower #12;HistoryHistory In 1903, Catalan

  16. Advanced photovoltaic-trough development

    SciTech Connect (OSTI)

    Spencer, R.; Yasuda, K.; Merson, B.

    1982-04-01T23:59:59.000Z

    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  17. Sandia National Laboratories: Trough Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI ResearchersTrough Systems CSP Industry Links

  18. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers

    E-Print Network [OSTI]

    Smith, M.

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  19. A simulation software for cooling towers optimal operation

    SciTech Connect (OSTI)

    Damian, M.; Motoiu, I.; Caracasian, L. [Inst. of Power Studies and Design, Bucharest (Romania)

    1998-12-31T23:59:59.000Z

    Deregulation of power markets in Europe will facilitate competing alternatives in power supplies, more competitive energy prices and will improve customer service. The Romanian power sector is also characterized by profound transformation from old, polluting system to one reaching for efficiencies of market-driven economy. In order to reduce the production costs of combined electricity and heat generation power plants, the paper presents the software called CTO for optimization of the cross-current cooling tower`s operation. The optimum operation of the cooling tower will be that which performs the removal of the waste heat-of imposed thermal level- at a minimum specific cost. For different alternatives of the known input values and for all possible operation diagrams the cooling tower parameters are calculated through the developed software. As a result its optimum operation conditions are indicated.

  20. Wind Shear Characteristics at Central Plains Tall Towers: Preprint

    SciTech Connect (OSTI)

    Schwartz, M.; Elliott, D.

    2006-06-01T23:59:59.000Z

    Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

  1. Dynamic response of guyed towers

    E-Print Network [OSTI]

    Gillcrist, Mark Christopher

    2012-06-07T23:59:59.000Z

    guyed towers. A parametric study was conducted using eigen analysis to determine the effects of consistent mass, geometric stiffness and P-Delta gravity loads. Time domain solutions were obtained by direct integration for motion due to regular Stokes... guyed tower 2 References to guyed tower dynamic analysis 4 Effect of mass formulation on tower natural periods. 5 P-Delta effect on fundamental period. 6 Effect of axial compression on the 1st & 2nd mode. 7 Geometric stiffness effect on natural...

  2. Windmill tower shadow eliminator

    SciTech Connect (OSTI)

    Randolph, A.J.

    1984-04-17T23:59:59.000Z

    In a wind driven propeller system an airfoil support for the shaft of a propeller having an even number of blades extends above and below the shaft a distance at least equal to the blade length and pivots with the propeller into the wind for substantially eliminating tower shadow effects on the propeller.

  3. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  4. Variable Frequency AC Drives for Cooling Tower Energy Efficiency

    E-Print Network [OSTI]

    Corey, R. W.

    1982-01-01T23:59:59.000Z

    speed fan drives. Fan speed is reduced to yield specific water temperatures at thermal conditions less difficult than design. The reduced air flow is accomplished by reduced fan power consumption, resulting in optimum cooling tower operation... and economics. Automatic fan speed control by sensing cold water temperature is the economic essence of the application of adjustable frequency power to A-C fan motors. 2.2 Cell Partitions In some multi-cell mechanical-draft cooling towers, the isolation...

  5. High-Temperatuer Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was...

  6. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parabolic Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo...

  7. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    SciTech Connect (OSTI)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01T23:59:59.000Z

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  8. A novel power block for CSP systems

    SciTech Connect (OSTI)

    Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

    2010-10-15T23:59:59.000Z

    Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

  9. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

  10. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    SciTech Connect (OSTI)

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01T23:59:59.000Z

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  11. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  12. Stellar Explosions by Magnetic Towers

    E-Print Network [OSTI]

    Dmitri A. Uzdensky; Andrew I. MacFadyen

    2006-05-05T23:59:59.000Z

    We propose a magnetic mechanism for the collimated explosion of a massive star relevant for GRBs, XRFs and asymmetric supernovae. We apply Lynden-Bell's magnetic tower scenario to the interior of a massive rotating star after the core has collapsed to form a black hole with an accretion disk or a millisecond magnetar acting as a central engine. We solve the force-free Grad-Shafranov equation to calculate the magnetic structure and growth of a tower embedded in a stellar environment. The pressure of the toroidal magnetic field, continuously generated by differential rotation of the central engine, drives a rapid expansion which becomes vertically collimated after lateral force balance with the surrounding gas pressure is reached. The collimation naturally occurs because hoop stress concentrates magnetic field toward the rotation axis and inhibits lateral expansion. This leads to the growth of a self-collimated magnetic tower. When embedded in a massive star, the supersonic expansion of the tower drives a strong bow shock behind which an over-pressured cocoon forms. The cocoon confines the tower by supplying collimating pressure and provides stabilization against disruption due to MHD instabilities. Because the tower consists of closed field lines starting and ending on the central engine, mixing of baryons from the cocoon into the tower is suppressed. The channel cleared by the growing tower is thus plausibly free of baryons and allows the escape of magnetic energy from the central engine through the star. While propagating down the stellar density gradient, the tower accelerates and becomes relativistic. During the expansion, fast collisionless reconnection becomes possible resulting in dissipation of magnetic energy which may be responsible for GRB prompt emission.

  13. Improving Process Cooling Tower Eddiciency

    E-Print Network [OSTI]

    Turpish, W.

    2013-01-01T23:59:59.000Z

    of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 7 Improving Cooling Tower Efficiency ? Two Improvements in Capacity/Performance 1. Filtration for water quality control Side stream filtration Make up water quality...-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Types of Cooling Towers Forced Draft Towers ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 3 Types...

  14. Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.

    E-Print Network [OSTI]

    Daba, Robera

    2011-01-01T23:59:59.000Z

    ??A solar updraft tower power plant – sometimes also called 'solar chimney' or just ‘solar tower’ – is a solar thermal power plant utilizing a… (more)

  15. A Linear Parabolic Trough Solar Collector Performance Model

    E-Print Network [OSTI]

    Qu, M.; Archer, D.; Masson, S.

    2006-01-01T23:59:59.000Z

    A performance model has been programmed for solar thermal collector based on a linear, tracking parabolic trough reflector focused on a surface-treated metallic pipe receiver enclosed in an evacuated transparent tube: a Parabolic Trough Solar...

  16. Cooling Towers, Energy Conservation Strategies

    E-Print Network [OSTI]

    Burger, R.

    1983-01-01T23:59:59.000Z

    system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified...

  17. Cooling Towers, Energy Conservation Machines

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01T23:59:59.000Z

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  18. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2010-02-01T23:59:59.000Z

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  19. OPTICAL DESIGN OF A NOVEL 2-STAGE SOLAR TROUGH CONCENTRATOR BASED ON PNEUMATIC POLYMERIC

    E-Print Network [OSTI]

    of a solar thermal power plant [1,2]. An innovative concept for fabricating trough concentrators based concrete frame of rectangular shape. The advantages are five- folded: Fig. 1. Scheme of conceptual design;1) the concrete structure is more rigid and stronger than a conventional metallic frame; 2) wind induced

  20. LQG control of horizontal wind turbines for blades and tower loads alleviation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LQG control of horizontal wind turbines for blades and tower loads alleviation A. Pintea*, N of power produced by two bladed horizontal variable speed wind turbines. The proposed controller ensures oscillations and with the tower bending tendency. Keywords: LQG control, Wind turbines, Multi-objective control

  1. Geographic Trough Filling for Internet Datacenters

    E-Print Network [OSTI]

    Xu, Dan

    2011-01-01T23:59:59.000Z

    To reduce datacenter energy consumption and cost, current practice has considered demand-proportional resource provisioning schemes, where servers are turned on/off according to the load of requests. Most existing work considers instantaneous (Internet) requests only, which are explicitly or implicitly assumed to be delay-sensitive. On the other hand, in datacenters, there exist a vast amount of delay-tolerant jobs, such as background/maintainance jobs. In this paper, we explicitly differentiate delay-sensitive jobs and delay tolerant jobs. We focus on the problem of using delay-tolerant jobs to fill the extra capacity of datacenters, referred to as trough/valley filling. Giving a higher priority to delay-sensitive jobs, our schemes complement to most existing demand-proportional resource provisioning schemes. Our goal is to design intelligent trough filling mechanisms that are energy efficient and also achieve good delay performance. Specifically, we propose two joint dynamic speed scaling and traffic shifti...

  2. 7.2.9. Tower 7.2.10. Winterdienstgebude /

    E-Print Network [OSTI]

    Berlin,Technische Universität

    .2.9.3.5.3 Überwachung der Kälteversorgung des Towers 7.2.9.3.6 Wärmeversorgung des Towers / Heat Supply of Tower 7

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    towers have also been well explored, notably by BrightSource, Solarsolar concentrator, a hybrid balancing the pros and cons of traditional dish and power-tower

  4. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B. (Albuquerque, NM)

    2010-02-23T23:59:59.000Z

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  5. The solar towers of Chankillo

    E-Print Network [OSTI]

    Sparavigna, Amelia Carolina

    2012-01-01T23:59:59.000Z

    An ancient solar observatory is composed by thirteen towers lined on a hill of a coastal desert of Peru. This is the Chankillo observatory. Here we discuss it, showing some simulations of the local sun direction. An analysis of the behaviour of shadows is also proposed.

  6. Cooling Tower Inspection with Scuba

    E-Print Network [OSTI]

    Brenner, W.

    1982-01-01T23:59:59.000Z

    tower pump suction basin was accomplished by diving into the basin using SCUBA gear. It was possible to see a build-up of debris on the pump suction basket strainers and on the floor of the sumps. Also, it was discovered that one of the four baskets had...

  7. Siting Utility-Scale Concentrating Solar Power Projects

    SciTech Connect (OSTI)

    Mehos, M.; Owens, B.

    2005-01-01T23:59:59.000Z

    In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

  8. Advanced Low-Cost Recievers for Parabolic Troughs

    Broader source: Energy.gov (indexed) [DOE]

    PROJECT OBJECTIVES KEY RESULTS AND OUTCOMES NEXT MILESTONES 1. Burkholder F, Kutscher C. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver (NRELTP-550-45633):...

  9. NREL: TroughNet - Parabolic Trough Power Plant Market, Economic Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagement Image of twoWorking

  10. Sandia National Laboratories: Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

  11. Sandia National Laboratories: Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights

  12. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Van Geet, O.; Mosey, G.

    2013-03-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  13. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  14. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  15. Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data

    SciTech Connect (OSTI)

    Gay, G.T.

    1982-03-01T23:59:59.000Z

    During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

  16. Concentrating Solar Power: Energy from Mirrors

    SciTech Connect (OSTI)

    Poole, L.

    2001-02-27T23:59:59.000Z

    This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

  17. Pueblo Towers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place: WashingtonTowers Jump to:

  18. Sandia National Laboratories: Solar Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMoltenTower Solar CSP R&D

  19. Wind turbine tower for storing hydrogen and energy

    DOE Patents [OSTI]

    Fingersh, Lee Jay (Westminster, CO)

    2008-12-30T23:59:59.000Z

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  20. A Microcomputer Model of Crossflow Cooling Tower Performance

    E-Print Network [OSTI]

    Reichelt, G. E; Jones, J. W.

    1984-01-01T23:59:59.000Z

    The energy use characteristics of evaporative cooling towers are of interest because, although such towers are widely used in industry, they do require a substantial amount of energy. Evaporative cooling towers are basically large heat exchangers...

  1. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf More Documents &...

  2. Wind, Thermal, and Earthquake Monitoring of the Watts Towers

    E-Print Network [OSTI]

    English, Jackson

    2013-01-01T23:59:59.000Z

    C Solar heating will introduce stresses into the tower’sTower. The LACMA weather station records additional variables such as humidity and solar

  3. Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint

    SciTech Connect (OSTI)

    Ma, Z.; Turchi, C. S.

    2011-03-01T23:59:59.000Z

    The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

  4. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect (OSTI)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01T23:59:59.000Z

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

  6. The Tower Shielding Facility: Its glorious past

    SciTech Connect (OSTI)

    Muckenthaler, F.J.

    1997-05-07T23:59:59.000Z

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  7. Optimal sequencing of a cooling tower with multiple cells

    E-Print Network [OSTI]

    Zhang, Z.; Liu, J.

    2012-01-01T23:59:59.000Z

    This paper evaluates the energy savings potential of multi-cell cooling tower optimal sequencing control methods. Annual tower fan energy usage is calculated for a counter-flow tower with multiple variable-speed fans. Effectiveness-NTU tower model...

  8. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01T23:59:59.000Z

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  9. Effects of guy wires on SWECS tower dynamics. Technical report

    SciTech Connect (OSTI)

    Butterfield, C P; Pykkonen, K R; Sexton, J H

    1980-07-01T23:59:59.000Z

    The Rocky Flats (RF) Supporting Research and Technology (SRT) study for tower testing/analysis has led to some useful information concerning the effect of tower guy pretension on small wind system tower dynamics. The effect of guy-wire pretension on tower natural frequencies is usually considered negligible if the guy: (1) has no sag caused by gravity, and (2) the tension is not approaching the tower buckling load. At the rf test center it was found that, for the test tower even when these conditions were avoided, the guy fundamental frequency must be 30% greater than the tower fundamental frequency to maintain the fundamental's characteristics.

  10. Cooling Towers--Energy Conservation Strategies

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

  11. Projective preservation : reframing Rudolph's Tower for Boston

    E-Print Network [OSTI]

    Turner, Jessica K

    2012-01-01T23:59:59.000Z

    By 2012, the fate of Paul Rudolph's tower in downtown Boston has been in question for years while a vision of a denser city calls for its demolition. Projected development on the site currently argues that to move forward, ...

  12. Cooling Towers, The Neglected Energy Resource

    E-Print Network [OSTI]

    Burger, R.

    1985-01-01T23:59:59.000Z

    Loving care is paid to the compressors, condensers, and computer programs of refrigeration systems. When problems arise, operator: run around in circles with expensive "fixes", but historically ignore the poor orphan, the cooling tower perched...

  13. Advanced wet-dry cooling tower concept

    E-Print Network [OSTI]

    Snyder, Troxell Kimmel

    The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

  14. Hydraulic Cooling Tower Driver- The Innovation

    E-Print Network [OSTI]

    Dickerson, J. A.

    One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro...

  15. Top 10 Things You Didn't Know About Concentrating Solar Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solar power tower systems are viable. The Solar One project near Barstow, California, paved the way for Solar Two, the world's first large-scale molten salt power tower...

  16. Cooling Towers, The Neglected Energy Resource

    E-Print Network [OSTI]

    Burger, R.

    COOLING TOWERS, THE NEGLECTED ENERGY RESOURCE ROBERT BURGER President, Burger Associates, Inc. Dallas, Texas (USA) Loving care is paid to the compress ors, condensers, and computer programs of refrigeration and air conditioning systems... is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. COOLING TOWERS: 1) are just as important a link in the chain as the other equipment, 2) are an important source...

  17. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  18. A study of mobile trough genesis over the Yellow Sea - East China Sea region

    E-Print Network [OSTI]

    Komar, Keith Nickolas

    1997-01-01T23:59:59.000Z

    The purpose of this study was to understand the mechanisms responsible for the formation of mobile troughs over a prolific source region in the Yellow Sea and East China Sea. Two mobile troughs which intensified significantly after formation were...

  19. NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-08-01T23:59:59.000Z

    New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes.

  20. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of Energy 40 Jobs Later:DepartmentA DeskIndustry in

  1. A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ

    E-Print Network [OSTI]

    Schultz, David

    A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ Cooperative with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model--time series at a single surface station may possess a pressure trough and wind shift in the warm

  2. Lifting system and apparatus for constructing wind turbine towers

    DOE Patents [OSTI]

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01T23:59:59.000Z

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  3. Digital places : rethinking urban elements : the case of the tower

    E-Print Network [OSTI]

    Gichuhi, Christopher M. (Christopher Mwethera), 1976-

    2004-01-01T23:59:59.000Z

    Problem - How can we make working, living and all aspects of our life in the urban tower more palatable? How can we create environment at the urban tower scale. With technology as one of the biggest drivers of social and ...

  4. Wind Turbine Towers Establish New Height Standards and Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

  5. Lab Helps FAA Build Energy-Efficient Control Towers | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Helps FAA Build Energy-Efficient Control Towers Lab Helps FAA Build Energy-Efficient Control Towers April 23, 2010 - 10:57am Addthis With help from the Pacific Northwest...

  6. Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

    2013-09-01T23:59:59.000Z

    Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

  7. An optimized model and test of the China's first high temperature parabolic trough solar receiver

    SciTech Connect (OSTI)

    Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong [Southeast University, Nanjing (China)

    2010-12-15T23:59:59.000Z

    The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

  8. Structural Optimization of High Voltage Transmission Line Towers considering

    E-Print Network [OSTI]

    Colominas, Ignasi

    Structural Optimization of High Voltage Transmission Line Towers considering Continuum and Discrete/or to common designs largely repeated (e.g. automotive compo- nents), and high voltage transmission towers can than conventional designs of high voltage transmission line towers. The optimization model proposed

  9. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    SciTech Connect (OSTI)

    Stynes, J. K.; Ihas, B.

    2012-04-01T23:59:59.000Z

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  10. Untapped Energy Savings from Cooling Towers

    E-Print Network [OSTI]

    Phelps Jr., P.

    2011-01-01T23:59:59.000Z

    source of energy and monetary savings. Many of these savings can come from simple maintenance or by changing the way the tower is operated. The more dramatic savings can come from changing to advanced fill concepts. Over our 40 years of working...

  11. Bonneville Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In reply refer to: PGP Ms. Renata Kurshner Manager, Generation Resource Management, BC Hydro and Power Authority 6911 Southpoint Drive, Tower 15 Burnaby, BC V3N 4X8 Dear Ms....

  12. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    SciTech Connect (OSTI)

    Bennett, C

    2007-11-15T23:59:59.000Z

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  13. Light-weight-trough type solar concentrator shell

    SciTech Connect (OSTI)

    Severson, A.M.

    1981-01-06T23:59:59.000Z

    A parabolic cylindrical trough solar concentrator shell is disclosed having a pair of oppositely disposed end support members jointed by spanning structural support members which may be in the form of individual elongated generally triangular polygon members to form the parabolic cylindrical trough. The inwardly directed surface of each polygon member is concave in shape and rendered highly reflective and so disposed such that the composite produces a highly reflective, concave, generally parabolic surface which reflects and focusses radiant energy striking upon it along a line parallel to and above the surface of the trough. A radiant energy receiving and absorbing conduit which carries a fluid heat transfer medium is provided along the focal line. The conduit is structurally supported from the end support members in a manner which allows free rotation of the structure relative to the support. In addition to the composite triangular polygon members, the structure may be fabricated using other shapes or a spanning sheet corrugated for strength covered by a separate reflecting surface.

  14. Experimental Results with two Wireless Power Transfer Systems Alanson Sample1,2

    E-Print Network [OSTI]

    Herr, Hugh

    thermometer/hygrometer with LCD display using only RF power harvested from a TV transmission tower. II. WISP of up to several meters from the reader. The second system harvests VHF or UHF energy from TV towers or UHF energy from TV towers. We describe an experiment in which we powered a commercially available

  15. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect (OSTI)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01T23:59:59.000Z

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  16. Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010

    SciTech Connect (OSTI)

    Kearney, D.

    2011-05-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

  17. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  18. Composite Tower Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation, search Name:CXD) Jump23TechnologyTower

  19. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    are low risk Goal: Develop solar selective coatings for next- generation concentrated solar power towers that exhibit high absorptance with low thermal emittance, that can...

  20. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Office of Environmental Management (EM)

    systems with hub heights of at least 120 meters. Scaling to taller towers allows wind turbines to capture less turbulent and often stronger wind resources, thereby increasing...

  1. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Broader source: Energy.gov (indexed) [DOE]

    and logistics constraints affecting the deployment of taller utility-scale wind turbine systems with hub heights of at least 120 meters. Scaling to taller towers allows wind...

  2. Comparative evaluation of cooling tower drift eliminator performance

    E-Print Network [OSTI]

    Chan, Joseph Kwok-Kwong

    The performance of standard industrial evaporative cooling tower drift eliminators is analyzed using experiments and numerical simulations. The experiments measure the

  3. Flue gas injection control of silica in cooling towers.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01T23:59:59.000Z

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  4. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01T23:59:59.000Z

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  5. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologiesgovInstrumentsacr-jpl Comments? WegovInstrumentsaerosol-tower-eml

  6. Towering Cumulus Stage Mature Stage Dissipating Stage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: An EnzymePersonal Computerso wSolutionTowering

  7. Tower, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooele County, Utah:JumpVesselTower, Minnesota:

  8. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect (OSTI)

    Kearney, D.; Mehos, M.

    2010-12-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  9. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    SciTech Connect (OSTI)

    Michael McDowell; Alan Schwartz

    2010-03-31T23:59:59.000Z

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

  10. An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader

    E-Print Network [OSTI]

    that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator designAn Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader 1 , Maurizio Barbato 2 , Andrea Pedretti 3 , Aldo Steinfeld 1,4,* 1 Department of Mechanical and Process Engineering, ETH Zurich

  11. hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector Gang Xiao 30th October of closed-box parabolic trough concentrated solar collector. By accepting an optical loss of a few, and the potential of improvement. The basic design of the closed collector is given in Section 2. It is a hermetic

  12. The spiral troughs of Mars as cyclic steps Isaac B. Smith,1

    E-Print Network [OSTI]

    Spiga, Aymeric

    The spiral troughs of Mars as cyclic steps Isaac B. Smith,1 John W. Holt,1 Aymeric Spiga,2 Alan D to estimate the rate of upstream migration caused by katabatic winds for the spiral troughs. Citation: Smith are constructional features, having migrated northward during deposition since their onset [Smith and Holt, 2010

  13. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect (OSTI)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  14. Data Center Economizer Cooling with Tower Water; Demonstration of a

    E-Print Network [OSTI]

    exchanger was configured to use higher temperature water produced by a cooling tower alone. The other coilLBNL-6660E Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger-temperature cooling water, so that it can support many more hours of free cooling compared to traditional systems

  15. Experimental Investigation of the Padding Tower for Air Dehumidifier

    E-Print Network [OSTI]

    Wang, J.; Liu, J.; Li, C.; Zhang, G.; An, S.

    2006-01-01T23:59:59.000Z

    . Under same solution flux, the total pressure drop of the tower adds lineally along with the increase of padding height. Fig. 2 (b) reflects the air vapor content variety at the tower outlet along with the padding filling height variety under...

  16. E-Print Network 3.0 - airport control towers Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Airport Tower Automation With the construction of Bergstrom International Airport in South Austin, the FAA has Summary: . The tower communicates with the airplanes via...

  17. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07T23:59:59.000Z

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  18. Reliability Analysis of Cooling Towers: Influence of Rebars Corrosion on Failure

    SciTech Connect (OSTI)

    Sudret, Bruno [Electricite de France - EDF, Research and Development Division, Dpt of Materials and Mechanics of Components, Site des Renardieres, 77818 Moret-sur-Loing Cedex (France); Pendola, Maurice [PHI-MECA Engineering, 1 Allee Alan Turing, 63170 - Aubiere (France)

    2002-07-01T23:59:59.000Z

    Natural-draught cooling towers are used in nuclear power plants as heat exchangers. These structures are submitted to environmental loads such as wind and thermal gradients that are stochastic in nature. A probabilistic framework has been developed by EDF (Electricite de France) for assessing the durability of such structures. In this paper, the corrosion of the rebars due to concrete carbonation and the corresponding weakening of the reinforced concrete sections is considered. Due to the presence of time in the definition of the limit state function associated with the loss of serviceability of the cooling tower, time-variant reliability analysis has to be used. A novel approach is proposed to take into account the random 'initiation time', which corresponds to the time necessary for the carbonation to attain the rebars. Results are given in terms of the probability of failure of the structure over its life time. (authors)

  19. Gary Works No. 13 blast furnace: A new removable trough design

    SciTech Connect (OSTI)

    Schuett, K.J.; Pawlak, J.P. [U.S. Steel Group, Gary, IN (United States). Gary Works; Traina, L.; Brenneman, R.G.

    1995-12-01T23:59:59.000Z

    No. 13 Blast Furnace at US Steel`s Gary Works is a 35 tuyere furnace with a 36.5 ft. hearth capable of producing over 9,000 tons of hot metal per day. The current casthouse design was placed in service following the second reline in the fall of 1979. This design anticipated daily production rates averaging 7,500 tons of hot metal per day and provided for removable troughs at two of the three tapholes. At the time, the troughs were rammed with a high alumina/silicon carbide granular ramming material that provided the operators with trough campaign lives between 60,000--70,000 tons of hot metal produced. As refractory technology progressed, low cement/low moisture castables were introduced to the trough systems on No. 13 Blast Furnace. The immediate success of the castables was tempered by emergence of a new unexpected problem. That problem was the thermal expansion of the castable. The paper describes the problems that resulted in the need to modify the trough design, the new design of the trough, and its improvement in iron trough campaign life and reliability.

  20. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

    1998-01-01T23:59:59.000Z

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  1. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

    1999-01-01T23:59:59.000Z

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  2. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1999-03-30T23:59:59.000Z

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  3. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1998-03-31T23:59:59.000Z

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  4. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    Emilio Carrizosa

    2015-03-26T23:59:59.000Z

    Mar 26, 2015 ... ... as well as the heliostat field layout, seeking to minimize the levelized cost of thermal energy. The optimization problem is high dimensional, ...

  5. Optimization of Multiple Receivers Solar Power Tower systems

    E-Print Network [OSTI]

    2015-03-25T23:59:59.000Z

    Mar 25, 2015 ... that higher conversion efficiency of solar energy to electricity can be achieved only at the high ...... Sustainable Energy Reviews, 20, 142–154.

  6. Concentrating Solar Power Tower System Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 DocumentationA variety of hybridThis photoTheEnergy OneIn

  7. Alpine SunTower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria

  8. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectat HighDepartment ofBrayton

  9. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORT Americium/CuriumSunwaysDatang ChifengDhahran, SaudiDobreveHomeDon Ana

  10. Microsoft Word - PowerTower_work_2009.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3 Subject: TankINL busing TO:1 of

  11. A Global Optimization Approach to the Design of Solar Power Plants

    E-Print Network [OSTI]

    E. Carrizosa

    2014-04-01T23:59:59.000Z

    Apr 1, 2014 ... Abstract: A method for optimizing a Solar Power Tower system is proposed, in which both the location of the heliostats and the characteristics of ...

  12. Power Line Communications: An Overview Part II Muhammad Salman Yousuf 1

    E-Print Network [OSTI]

    Rizvi, Syed Z.

    ) \\in the frequency range of 50-60 Hz. It is a fact that power transmission towers and lines are some

  13. A Global Optimization Approach to the Design of Solar Power Plants

    E-Print Network [OSTI]

    2014-05-08T23:59:59.000Z

    May 8, 2014 ... A method for optimizing a Solar Power Tower system is proposed, ... at a high temperature is then transferred to the heat transfer fluid to ...

  14. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01T23:59:59.000Z

    tower plant in China. ” Renewable and Sustainable Energyby plant in Guangxi. ” Renewable and Sustainable EnergyChina’s Thirst for Renewable Power: Water Implications of

  15. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  16. Mechanical development of the actuation system of a parabolic solar trough

    E-Print Network [OSTI]

    O'Rourke, Conor R. (Conor Rakis)

    2011-01-01T23:59:59.000Z

    This thesis documents my personal contribution to the engineering and design of an actuation system with the purpose of rotating a parabolic solar trough to track the sun throughout the day. The primary focus of the design ...

  17. Error analysis of motion transmission mechanisms : design of a parabolic solar trough

    E-Print Network [OSTI]

    Koniski, Cyril (Cyril A.)

    2009-01-01T23:59:59.000Z

    This thesis presents the error analysis pertaining to the design of an innovative solar trough for use in solar thermal energy generation fields. The research was a collaborative effort between Stacy Figueredo from Prof. ...

  18. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01T23:59:59.000Z

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  19. Mechanical development of an actuation system for a parabolic solar trough collector

    E-Print Network [OSTI]

    Carrillo, Juan Felipe (Carrillo Salazar)

    2013-01-01T23:59:59.000Z

    This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators ...

  20. Seismic reflection data analysis of the Oriente and Swan Fracture Zones bounding the Cayman Trough

    E-Print Network [OSTI]

    Tinker, Mary Norris

    2012-06-07T23:59:59.000Z

    SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Submitted to the Graduate College of Texas A8 M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geophysics SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Approved as to style and content by: D. A. Fa quiet...

  1. Introducing an Online Cooling Tower Performance Analysis Tool

    E-Print Network [OSTI]

    Muller, M.R.; Muller, M.B.; Rao, P.

    2012-01-01T23:59:59.000Z

    and variable nature of all of the factors that can influence performance; fan speed, wind speed, sump temperature, heat load, ambient temperature, relative humidity, etc. This can be overwhelming for a regular operator resulting in many cooling towers being set...

  2. Energy Efficiency Evaluation of Guangzhou West Tower Façade System

    E-Print Network [OSTI]

    Meng, Q.; Zhang, L.

    2006-01-01T23:59:59.000Z

    Guangzhou West Tower is an extremely tall public building. The energy efficiency evaluation of its façade should be different than that of ordinary public buildings. Based on the national code GB50189-2005, “Design Standard for Energy efficiency...

  3. Cooling Towers - Energy Conservation and Money Making Mechanisms

    E-Print Network [OSTI]

    Burger, R.

    1981-01-01T23:59:59.000Z

    cooling towers in operation are performing at levels as low as 50% of capability. This is energy wasteful and financially foolish. There are many reasons for this deficiency, among them the present service is greater than the original requirements...

  4. About the Design & Construction Collaborative Life Sciences Building & Skourtes Tower

    E-Print Network [OSTI]

    Chapman, Michael S.

    About the Design & Construction Collaborative Life Sciences Building & Skourtes Tower With an emphasis on connection, the inter-disciplinary, multi-institutional building's design reflects its. Anticipating LEED Platinum rating, the building incorporated sustainable construction practices, including div

  5. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01T23:59:59.000Z

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  6. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  7. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Office of Environmental Management (EM)

    for Baseload Operation This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona....

  8. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  9. A new parabolic trough solar collector P. Kohlenbach1

    E-Print Network [OSTI]

    oil is circulated inside the absorber tube, and transfers the heat to a ORC FP6 unit sourced from of this facility, to develop efficient new methods of capturing and harnessing solar heat for combined heat) and remote power and energy. The array is designed to drive a small Organic Rankine Cycle unit with a power

  10. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect (OSTI)

    Kolb, G.J.

    1991-01-01T23:59:59.000Z

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  11. CSP Tower Air Brayton Combustor (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Southwest Research Institute is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  12. Automatically controlled wind propeller and tower shadow eliminator

    SciTech Connect (OSTI)

    Randolph, A.J.

    1982-01-12T23:59:59.000Z

    A propeller hub carries pivotally-mounted blades that are linked to a spring-loaded collar on the propeller shaft for automatic coning and feathering under predetermined high velocity movement along the propeller shaft to change the blade pitch angle during low wind velocity conditions. An airfoil support mounts a propeller shaft and turns therewith to reduce tower shadow effects. This is called a ''down-wind system'' meaning the propeller is behind the tower and causes the assembly to rotate into the wind without a tail vane.

  13. Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature

    E-Print Network [OSTI]

    Salvaggio, Carl

    of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal Abstract Determination of the internal temperature of a mechanical draft cooling tower (MDCT) from remotelyRadiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction

  14. THE TOWER FOUNDATION OF SAN JOSE STATE UNIVERSITY Procurement Card Application

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    THE TOWER FOUNDATION OF SAN JOSE STATE UNIVERSITY Procurement Card Application CARDHOLDER card is lost or stolen, I will notify the Tower Foundation immediately. I will surrender my Procurement Card to Tower Foundation upon termination of employment or upon reallocation of duties which do

  15. Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor Zuerst. The adaptive controller was successlullytesteclover il pcriod of tu'o nonths at a biogas tower reuetoriu pilot are not applicable to the biogas tower reüctor.since a dontinatingf-eatureof the new reactol' prir-rciplc-is its

  16. Cooling Tower Considerations for Energy Optimizations

    E-Print Network [OSTI]

    Burger, R.

    1986-01-01T23:59:59.000Z

    fiberglass state of the art fans can be installed and additional motor horse power added. However, the most dramatic improvement that can be obtained in producing colder water is to retrofit modern film fill to replace the old fashioned wood splash bar slats....

  17. The Postnikov tower in motivic stable homotopy theory

    E-Print Network [OSTI]

    's slice tower #12;Categories of spaces Fix a field k (perfect?). · Spc := the category of simplicial sets: "spaces". · Spc(k) := the category of presheaves of spaces on Sm/k: "spaces over k". · Pointed versions Spc, Spc(k). Spc Spc(k): S "constant presheaf" S. Sm/k Spc(k): X "representable presheaf" Y Hom

  18. TOWER FOUNDATION OF SJSU VENDOR/CONSULTANT DATA FORM

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    TOWER FOUNDATION OF SJSU VENDOR/CONSULTANT DATA FORM ONE WASHINGTON SQUARE, SAN JOSE, CA 95192. Vendor/Consultant Name: Mailing Address: City, State, Zip Code: Telephone Number: Email Address: Vendor or an employee of SJSU. Vendor's Taxpayer I.D. Number ­ NOTE: Payment will not be processed without

  19. 800mm luxury : pencil tower phenomenon in Hong Kong, China

    E-Print Network [OSTI]

    Yam, Hiu Lan

    2012-01-01T23:59:59.000Z

    150m2 - 40m2 - 60m3. Pencil Towers are slender pencil-like apartment buildings. They are commonly found in high-dense Asian cities such as Hong Kong, Tokyo and Singapore. Focusing on Hong Kong as the context of research, ...

  20. Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of1 the Benue Trough, Nigeria2

    E-Print Network [OSTI]

    Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of1 the Benue Trough address: romain.vullo@univ-rennes1.fr9 10 Abstract11 Selachian and ray-finned fish remains from various Cenomanian­early Turonian and25 Maastrichtian) created opportunities for the dispersal of many marine fish

  1. SunLab: Concentrating Solar Power Program Overview

    SciTech Connect (OSTI)

    NONE

    1998-11-24T23:59:59.000Z

    DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

  2. High thermal energy storage density molten salts for parabolic trough solar power generation.

    E-Print Network [OSTI]

    Wang, Tao

    2011-01-01T23:59:59.000Z

    ??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

  3. Analysis of Parabolic Trough Solar Energy Integration into Different Geothermal Power Generation Concepts.

    E-Print Network [OSTI]

    Vahland, Sören

    2013-01-01T23:59:59.000Z

    ?? The change in climate as a consequence of anthropogenic activities is a subject ofmajor concerns. In order to reduce the amount of greenhouse gas… (more)

  4. Phase Change Material Tower | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L.3 AgencyEnergyB.PetraPhase

  5. Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

  6. Effect of electron-density gradients on propagation of radio waves in the mid-latitude trough. Master's thesis

    SciTech Connect (OSTI)

    Citrone, P.J.

    1991-01-01T23:59:59.000Z

    Partial contents of this thesis include: (1) Radio-wave propagation and the mid-latitude trough; (2) Ionospheric measurements; (3) Modification of time-dependent ionospheric model output with latitudinal electron-density profiles from digisonde trough depictions; (4) Ray-tracing simulations to examine ground range; and (5) Effects of three-dimensional gradients in electron density on radio-wave propagation in the trough region. Data is tabulated for geophysical conditions, solar activity level, geomagnetic activity level, conditions for vertical ray refraction to surface, and ray-tracing fixed-input conditions.

  7. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  8. A study of a cooling tower with variable packing geometries

    E-Print Network [OSTI]

    Azad, Abul Kalam

    1957-01-01T23:59:59.000Z

    /deck pex' sq. ft. of tower ground Surface area (sq. ft. )s per deck~ pez sq, ft. of towex' gz ound area, 0, 298 0, 181 0. 113 2, 26 1. 21 0 ' 86 0, 298 0 ' 306 0, 316 The experimenter observed the following ma)or things with those thxee.../section 2. 28 Height of each section, ft. 3 Hoard foot of mater1al/deck per st ft. of tower ground area 0. 302 0. 1940 0. 0432 1. 26 0, 956 6 6 3 3 Number of sections tested 1, 2 k 3 1~ 2 d 3 1, 2 d 3 eTriangular type tested with vertex down . /In...

  9. Cooling Tower Energy Conservation Through Hydraulic Fan Drives

    E-Print Network [OSTI]

    Dickerson, J.

    Fan Drive Eliminates These Problems from the Drive Train. The electric motor is at ground level; close coupled to a hydraulic pump, filters and oil reservoir. Hydraulic lines bring oil flow to the lightweight hydraulic motor mounted at the fan... Tower Fan Drives Are Many: It removes the hazard of costly fan wrecks and shaft coupling breakage. It eliminates gearbox maintenance, breakdown or replacement. The electric motor is mounted with the reservoir and pump at ground level for ease...

  10. Energy (Cost) Savings by Zero Discharge in Cooling Towers

    E-Print Network [OSTI]

    Matson, J. V.; Gardiner, W. M.; Harris, T. G.; Puckorius, P. R.

    1982-01-01T23:59:59.000Z

    . Relatively clean water may be added directly to the cooling tower basin (see Figure n. Reuse streams containing high suspended solids but of otherwise acceptable quality may be input just before the filters ~n the J The remainingireuse The flowrate..., silica, phos phates, and suspended solids. Other potential foulants and scale-forming species must be controlled by inhibitors or removed by an additional process in the sidestream treatment. Waste streams with scaling and corrosion potential before...

  11. Near-term improvements in parabolic troughs: an economic and performance assessment

    SciTech Connect (OSTI)

    Gee, R.; Murphy, L.M.

    1981-08-01T23:59:59.000Z

    Improved parabolic-trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis qualifies the performance potential of various parabolic-trough component improvements from a systems viewpoint and uses these performance data to determine the worth of each improvement on an economic basis. The improvements considered are evacuated receivers, silvered-glass reflectors, improved receiver, selective coatings, higher optical accuracy concentrations, and higher transmittance receiver glazings. Upper-bound costs for each improvement are provided as well as estimates of the increased solar system rates of return that are made possible by these improvements. The performance and economic potential of some of these improvements are shown to be substantial, especially at higher collector operating temperatures.

  12. Department of Mechanical Engineering Spring 2013 Green Towers Vertical Aquaponic Microfarm

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2013 Green Towers Vertical Aquaponic gardens" inside of vertically placed, twenty-foot tall shipping containers. The gardens utilize aquaponic

  13. The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world

    E-Print Network [OSTI]

    Laughlin, Robert B.

    gas emissions, primarily carbon dioxide. Rising energy consumption worldwide is increas- ing the severity of this development; the Inter- national Energy Agency (IEA) estimates that by 2030, consumption Studies Greenpeace/ESTIA 2005 Sarasin 2007 Greenpeace EREC 2007 US Department of Energy IEA min. IEA max

  14. Performance characteristics of an induced draft, counterflow, spray cooling tower

    E-Print Network [OSTI]

    Jones, Charles Edward

    2012-06-07T23:59:59.000Z

    V Total mass transfer coefi'icient, pounds of water per hour per square Zoot per pound of vapor per pound of dry air Tower characteristic Number of nozzles used XX SURVEY OF LXTERATUHE The currently accepted theory of heat and mass exchange between... a stream of' water droplets and a stream of unsatu rated air was first proposed by Robinson (8)o in 1MS, and, ln 19S5$ by Waker g Lewi s y and 5!cAdams ( 1 ) . Al so in 1985, -gerlrel (5), using the same basic equations somewhat moxe rigorously...

  15. Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Area SolarConnecticut:659243°Broadwind Energy Formerly Tower Tech

  16. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubbles andof the Trough and its

  17. Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building

    E-Print Network [OSTI]

    Seryak, J.; Kissock, J. K.

    2002-01-01T23:59:59.000Z

    Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering... University of Dayton Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers...

  18. The Only Way is Up On A Tower of Abstractions for Biology

    E-Print Network [OSTI]

    Vardi, Moshe Y.

    The Only Way is Up On A Tower of Abstractions for Biology Jasmin Fisher1 , Nir Piterman2 Abstract. We draw an analogy between biology and computer hard- ware systems and argue for the need that in reverse engineering of biological systems; only by using a tower of abstractions we would be able

  19. Daily Texan April 1, 2014 Keeping Tower dark for Earth Hour was

    E-Print Network [OSTI]

    John, Lizy Kurian

    of the University's Energy and Water Conservation program, said the Tower going dark was a gesture similarDaily Texan April 1, 2014 Keeping Tower dark for Earth Hour was intended to raise awareness British thermal units, of natural gas. According to the University's Utilities and Energy Management

  20. UT tower goes dark to conserve energy by KVUE.com

    E-Print Network [OSTI]

    Johnston, Daniel

    UT tower goes dark to conserve energy by KVUE.com Posted on November 22, 2013 at 5:12 PM Updated, but the first time the tower turned off its lights for the initiative. In previous initiatives, the UT Energy and Water Conservation (EWC) Program simply asked the campus community to turn off lights, computers

  1. GreenCache: Augmenting Off-the-Grid Cellular Towers with Multimedia Caches

    E-Print Network [OSTI]

    Shenoy, Prashant

    or commercial advantage and that copies bear this notice and the full citation on the first page. To copy to run cellular towers "off the grid" [4]. Today's "off the grid" cellu- lar towers operate off diesel with expensive and "dirty" diesel fuel. S

  2. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

    1997-01-01T23:59:59.000Z

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  3. SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR

    E-Print Network [OSTI]

    Boyer, Edmond

    SHM BASED SYSTEM DESIGN OFA WIND TURBINE TOWER USING A MODAL SENSITIVITY BASED BAYES DETECTOR Mads@ramboll.com ABSTRACT It is investigated if material based structural safety can be replaced with safety obtained from of the NREL 5MW wind turbine tower subjected to bending fatigue and horizontal circumferential cracking

  4. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  5. Thermal performance upgrade of the Arkansas Nuclear One cooling tower: A ``root cause`` analysis approach

    SciTech Connect (OSTI)

    Liffick, G.W. [Entergy Operations, Inc., Russellville, AR (United States); Cooper, J.W. Jr. [John Cooper and Associates, Tampa, FL (United States)

    1995-10-01T23:59:59.000Z

    The thermal performance efficiency of the natural draft cooling tower at Entergy Operations` 858 MWe Arkansas Nuclear One, Unit 2 was successfully upgraded to 101% of design performance capability in April 1994 as the end result of a unique root-cause analysis of the cooling tower`s long-standing performance deficiencies. Through application of state-of-the-art diagnostic testing methods and computer modeling techniques, Entergy was able to identify and correct air/water maldistribution problems in the 447 foot tall counterflow cooling tower at minimal cost. Entergy estimates that the savings realized, as a result of the 1.2 F reduction in cooling tower outlet water temperature, will pay for the thermal upgrade project in approximately 14 months.

  6. Coupled dynamics of a tower with an elevated wave tank. Part 1: Equations of motion and eigenoscillations

    E-Print Network [OSTI]

    Coupled dynamics of a tower with an elevated wave tank. Part 1: Equations of motion problem is derived to describe coupled dynamics of a tower with an elevated tank on the tower top, elevated tanks, Ritz'-Treftz method 1. INTRODUCTION Modeling the dynamic behavior of elevated liquid

  7. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30T23:59:59.000Z

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  8. Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California

    E-Print Network [OSTI]

    Lajoie, Lia Joyce

    2012-01-01T23:59:59.000Z

    D I P IPPO , R. (2012). Geothermal Power Plants: Principles,in the vicinity of geothermal power plants worldwide, it isregional effects of geothermal power production. This study

  9. Improvement of risk estimate on wind turbine tower buckled by hurricane

    E-Print Network [OSTI]

    Li, Jingwei

    2013-01-01T23:59:59.000Z

    Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

  10. Operating characteristics of a spray tower for cooling gas at moderate temperatures

    E-Print Network [OSTI]

    Legler, Bobby

    2012-06-07T23:59:59.000Z

    of multiport gas burners was placed. The top of the tower was fitted with an adapter, a square duct elbow and a reducing duct tying the top of the tower to a cyclone separator. A circular 12-inch elbow out of the top of the cyclone separator led to a venturi..., in the inlet-gas 11 stream, in the outlet-gas stream and in the ventur1. Wet bulb tempera- tures were obtained at top of tower and in the venturi by mercury-column thermometers fitted with wicks. Water-and gas-flow rates were measured by calibrated...

  11. Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column

    SciTech Connect (OSTI)

    Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

    2014-01-15T23:59:59.000Z

    Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

  12. "BECAUSE SOME STORIES DO LIVE FOREVER": STEPHEN KING'S THE DARK TOWER SERIES AS MODERN ROMANCE

    E-Print Network [OSTI]

    McMurray, Rachel Elizabeth

    2012-05-31T23:59:59.000Z

    Stephen King's Dark Tower series is a seven-volume work that contains elements from myths, fairy tales, American westerns, legends, popular culture, Gothic literature, and medieval romance. Few scholars have engaged with ...

  13. The Binary Cooling Tower Process: An Energy Conserving Water Reuse Technology

    E-Print Network [OSTI]

    Lancaster, R. L.; Sanderson, W. G.; Cooke, R. L., Jr.

    1981-01-01T23:59:59.000Z

    The Binary Cooling Tower (BCT) harnesses cooling system waste heat to accomplish concentration of waste and process streams. The BCT can also be integrated to isolate and improve the efficiency of critical cooling loops. This paper describes the BCT...

  14. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect (OSTI)

    Susan Edwards

    2008-05-30T23:59:59.000Z

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  15. Economic and design analysis of daylighting a commercial tower in a hot and humid climate

    E-Print Network [OSTI]

    Roscow, Robert F

    1981-01-01T23:59:59.000Z

    A forty story commercial office tower in Tampa, Florida was redesigned for daylighting. The methods are outlined and results illustrated, A cooling load comparison is done to determine the economic feasibility of such a ...

  16. Exquisite corpse: a tower for the public in the era of exhausted modernity

    E-Print Network [OSTI]

    Jang, Sungwoo

    2012-01-01T23:59:59.000Z

    Towers in Manhattan, especially in business areas, have historically used a single overarching system in order to visualize images of their corporate identity and immerse the public in the image of development. While using ...

  17. Microsoft Word - CX-Driscoll-Naselle-TowerMove-FY13_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    3 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Stacie Hensley Project Manager - TEP-TPP-4 Proposed Action: Driscoll-Naselle No. 1 Tower Relocation Project...

  18. RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower...

    Broader source: Energy.gov (indexed) [DOE]

    of4 RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012...

  19. Beyond the ivory tower : in search of a new form for campus-community relationships

    E-Print Network [OSTI]

    Bowman, Anne (Anne Renee)

    2011-01-01T23:59:59.000Z

    The terms "ivory tower" and "town-gown" have long been used to characterize the relationship between institutions of higher education and the communities in which they reside. While these adversarial phrases reflect the ...

  20. Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown

    E-Print Network [OSTI]

    Puckorius, P. R.

    1981-01-01T23:59:59.000Z

    Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow...

  1. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  2. 24 M meteorological tower data report period: January--December, 1994

    SciTech Connect (OSTI)

    Freeman, D.; Bowen, J.; Egami, R. [and others] [and others

    1997-08-01T23:59:59.000Z

    This report was prepared by the Desert Research Institute (DRI) for the U.S. Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT.

  3. Thermodynamic modeling and optimization of a screw compressor chiller and cooling tower system

    E-Print Network [OSTI]

    Graves, Rhett David

    2004-09-30T23:59:59.000Z

    THERMODYNAMIC MODELING AND OPTIMIZATION OF A SCREW COMPRESSOR CHILLER AND COOLING TOWER SYSTEM A Thesis by RHETT DAVID GRAVES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2003 Major Subject: Mechanical Engineering THERMODYNAMIC MODELING AND OPTIMIZATION OF A SCREW COMPRESSOR CHILLER AND COOLING TOWER SYSTEM A Thesis by RHETT DAVID GRAVES Submitted to Texas A&M University in partial...

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    demonstrated. A linear Fresnel collector system in Sevilleeconomical. Linear Fresnel and parabolic trough collectortemperature collectors (parabolic trough, linear Fresnel,

  5. Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-05-01T23:59:59.000Z

    Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.

  6. Shallow hydrothermal regime of the East Brawley and Glamis known geothermal resource areas, Salton Trough, California

    SciTech Connect (OSTI)

    Mase, C.W.; Sass, J.H.; Brook, C.A.; Munroe, R.J.

    1981-01-01T23:59:59.000Z

    Thermal gradients and thermal conductivities were obtained in real time using an in situ heat-flow technique in 15 shallow (90 to 150 m) wells drilled between Brawley and Glamis in the Imperial Valley, Southern California. The in situ measurements were supplemented by follow-up conventional temperature logs in seven of the wells and by laboratory measurements of thermal conductivity on drill cuttings. The deltaic sedimentary material comprising the upper approx. 100 m of the Salton Trough generally is poorly sorted and high in quartz resulting in quite high thermal conductivities (averaging 2.0 Wm/sup -1/ K/sup -1/ as opposed to 1.2 to 1.7 for typical alluvium). A broad heat-flow anomaly with maximum of about 200 mWm/sup -2/ (approx. 5 HFU) is centered between Glamis and East Brawley and is superimposed on a regional heat-flow high in excess of 100 mWm/sup -2/ (> 2.5 HFU). The heat-flow high corresponds with a gravity maximum and partially with a minimum in electrical resistivity, suggesting the presence of a hydrothermal system at depth in this area.

  7. LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

    2009-07-20T23:59:59.000Z

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  8. At 200 feet tall, the Tower at Sandia National Laboratories

    E-Print Network [OSTI]

    components and systems in proposed solar thermal electrical plants planned for large-scale power generation for a variety of activities, including: · Nuclear thermal flash simulation. · Thermal performance testingkW thermal power and peak fluxes up to 1500 W/cm2. They are individually controlled to track to sun

  9. Magnetar-Driven Magnetic Tower as a Model for Gamma-Ray Bursts and Asymmetric Supernovae

    E-Print Network [OSTI]

    Dmitri A. Uzdensky; Andrew I. MacFadyen

    2007-06-26T23:59:59.000Z

    We consider a newly-born millisecond magnetar, focusing on its interaction with the dense stellar plasma in which it is initially embedded. We argue that the confining pressure and inertia of the surrounding plasma acts to collimate the magnetar's Poynting-flux-dominated outflow into tightly beamed jets and increases its magnetic luminosity. We propose this process as an essential ingredient in the magnetar model for gamma-ray burst and asymmetric supernova central engines. We introduce the ``pulsar-in-a-cavity'' as an important model problem representing a magnetized rotating neutron star inside a collapsing star. We describe its essential properties and derive simple estimates for the evolution of the magnetic field and the resulting spin-down power. We find that the infalling stellar mantle confines the magnetosphere, enabling a gradual build-up of the toroidal magnetic field due to continuous twisting. The growing magnetic pressure eventually becomes dominant, resulting in a magnetically-driven explosion. The initial phase of the explosion is quasi-isotropic, potentially exposing a sufficient amount of material to $^{56}$Ni-producing temperatures to result in a bright supernova. However, if significant expansion of the star occurs prior to the explosion, then very little $^{56}$Ni is produced and no supernova is expected. In either case, hoop stress subsequently collimates the magnetically-dominated outflow, leading to the formation of a magnetic tower. After the star explodes, the decrease in bounding pressure causes the magnetic outflow to become less beamed. However, episodes of late fallback can reform the beamed outflow, which may be responsible for late X-ray flares.

  10. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect (OSTI)

    Colborn, Robert

    2012-04-30T23:59:59.000Z

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  11. 24 m meteorological tower data report period: January through December, 1996

    SciTech Connect (OSTI)

    Freeman, D.; Bowen, J.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01T23:59:59.000Z

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. This report presents results of the monitoring for January--December, 1996, providing: a status of the measurement systems during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  12. 24 m meteorological tower data report period: January through December, 1995

    SciTech Connect (OSTI)

    Freeman, D.; Bowen, J.B.; Egami, R.; Coulombe, W.; Crow, D.; Cristani, B.; Schmidt, S.

    1997-12-01T23:59:59.000Z

    This report was prepared by the Desert Research Institute (DRI) for the US Department of Energy (DOE). It summarizes meteorological data collected at the 24 meter tower at the Nevada Test Site Hazardous Material Spill Center (HAZMAT) located at Frenchman Flat near Mercury, Nevada, approximately 75 miles northwest of Las Vegas, Nevada. The tower was originally installed in July, 1993 to characterize baseline conditions for an EPA sponsored experimental research program at the HAZMAT. A previous report reported monitoring results for 1994. This report presents results of the monitoring for January--December, 1995, providing: a status of the measurement systems (including any quality assurance activities) during the report period and a summary of the meteorological conditions at the HAZMAT during the report period. The scope of the report is limited to summary data analyses and does not include extensive meteorological analysis. The tower was instrumented at 8 levels. Wind speed, wind direction, and temperature were measured at all 8 levels. Relative humidity was measured at 3 levels. Solar and net radiation were measured at 2 meters above the ground. Barometric pressure was measured at the base of the tower and soil temperature was measured near the base of the tower.

  13. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  14. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  15. High-Temperature Solar Selective Coating Development for Power Tower Receivers- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Sandia National Laboratories/NREL project, funded by SunShot, for the first quarter of fiscal year 2013.

  16. High-Temperature Solar Selective Coating Development for Power Tower Receivers- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this SNL project, funded by SunShot, for the second quarter of fiscal year 2013.

  17. Simulations of absorbance efficiency and power production of three dimensional tower arrays for use in photovoltaics

    E-Print Network [OSTI]

    Bennett, Gisele

    to the geometrical characteristics of the system aspect ratio, spacing, size, shape, etc. . Simulated modeling has in photovoltaics Jack Flicker1 and Jud Ready2,a 1 Materials Science and Eng., Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA 2 Electro-optical Systems Laboratory, Georgia Tech Research Institute

  18. Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard" form. To create aGAInformationPV

  19. Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from

    E-Print Network [OSTI]

    Salvaggio, Carl

    of remote thermal imagery. Knowledge of the temperature of the cooling towers is necessary for inputRadiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal Imagery Matthew Montanaroa, Carl Salvaggioa, Scott D. Browna

  20. 7/4/2014 Will TinyWindmills Power Your Future Smartphone? -FUTURESCOPE http://futurescope.co/post/73321275992/will-tiny-windmills-power-your-future-smartphone 1/4

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    ? txchnologist: by Michael Keller In the world of wind power generation, there are mills that tower 360 feet txchnologist Tags: future tech power windmills smartphone wearables wind power Notes 1. dystopia3 likes this 2 by HYPERMORGEN INTERACTION About Get the RSS Browse the Archive Random post Submit Ask me anything Follow us

  1. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700 -foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line.

  2. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect (OSTI)

    Herman, D.L.

    1991-04-01T23:59:59.000Z

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  3. Top: Rudder Tower is one of 24 Texas A&M buildings undergoing energy efficiency upgrades.

    E-Print Network [OSTI]

    Top: Rudder Tower is one of 24 Texas A&M buildings undergoing energy efficiency upgrades. Bottom control energy costs and provide a greener, more energy efficient campus for a more environmentally' building automation system (BAS) will improve energy efficiency and enable better HVAC control in buildings

  4. PIPE CLEANER TOWERS ACTIVITY Contributors: Dr. Laura Bottomley & Heather Smolensky Page 1 of 2

    E-Print Network [OSTI]

    PIPE CLEANER TOWERS ACTIVITY Contributors: Dr. Laura Bottomley & Heather Smolensky Page 1 of 2 Box of limited resources and constraints Teamwork Project Planning Materials: Each group will need: 15 Pipe that the ends of the pipe cleaner wires may be sharp. Introduction: Use the information from the section titled

  5. Behavior of Scaled Steel-Concrete Composite Girders and Steel Monopole Towers Strengthened with CFRP

    E-Print Network [OSTI]

    Behavior of Scaled Steel-Concrete Composite Girders and Steel Monopole Towers Strengthened with CFRP DAVID SCHNERCH AND SAMI RIZKALLA Cost-effective rehabilitation and/or strengthening of steel. The current research program makes use of new high modulus types of carbon fiber for strengthening steel

  6. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20T23:59:59.000Z

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  7. Trade-off Analysis of Regenerative Power Source for Long Duration Loitering Airship

    E-Print Network [OSTI]

    : photovoltaic flat panels, thin film photovoltaic panels, trough solar concentrators, Stirling dish solar by their excessive drag. Flat solar technologies (i.e. thin film, LSC, and flat panel PV) are ranked the highest, the airship needs a reliable, low-weight, renewable power generation system. This analysis is focused on solar

  8. Cooling Tower Report, October 2008 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird Quarter OverallDepartmentSpace Heating

  9. High Energy Gamma-Ray Observations of the Crab Nebula and Pulsar with the Solar Tower Atmospheric Cherenkov Effect Experiment

    E-Print Network [OSTI]

    STACEE Collaboration; S. Oser; D. Bhattacharya; L. M. Boone; M. C. Chantell; Z. Conner; C. E. Covault; M. Dragovan; P. Fortin; D. T. Gregorich; D. S. Hanna; R. Mukherjee; R. A. Ong; K. Ragan; R. A. Scalzo; D. R. Schuette; C. G. Theoret; T. O. Tumer; D. A. Williams; J. A. Zweerink

    2000-06-21T23:59:59.000Z

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is a new ground-based atmospheric Cherenkov telescope for gamma-ray astronomy. STACEE uses the large mirror area of a solar heliostat facility to achieve a low energy threshold. A prototype experiment which uses 32 heliostat mirrors with a total mirror area of ~ 1200\\unit{m^2} has been constructed. This prototype, called STACEE-32, was used to search for high energy gamma-ray emission from the Crab Nebula and Pulsar. Observations taken between November 1998 and February 1999 yield a strong statistical excess of gamma-like events from the Crab, with a significance of $+6.75\\sigma$ in 43 hours of on-source observing time. No evidence for pulsed emission from the Crab Pulsar was found, and the upper limit on the pulsed fraction of the observed excess was E_{th}) = (2.2 \\pm 0.6 \\pm 0.2) \\times 10^{-10}\\unit{photons cm^{-2} s^{-1}}. The observed flux is in agreement with a continuation to lower energies of the power law spectrum seen at TeV energies.

  10. Energy Savings Accomplished by Replacing Steam Ejectors with Electric Driven Vacuum Pumps in Crude Distillation Vacuum Towers

    E-Print Network [OSTI]

    Nelson, R. E.

    1982-01-01T23:59:59.000Z

    The low cost of steam combined with the maintenance free operation of steam ejectors has assured their unquestioned use in providing the necessary vacuum for crude distillation vacuum towers. However, the cost of steam production has risen...

  11. Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.

    E-Print Network [OSTI]

    Galenianou, Olympia

    2006-01-01T23:59:59.000Z

    A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

  12. Available online at www.sciencedirect.com Energy Procedia 00 (2013) 000000

    E-Print Network [OSTI]

    towers. Solar thermal power systems via trough systems, have a strong track record, with 354MWe at supporting and improving the technology has continued within the ANU Solar Thermal Group since then. In 2005. In recent times, large scale solar thermal electric power generation technology based on concentrator

  13. From: No Towers To: Congestion Study Comments Subject: No NIETC"s

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Electrical Resistivityconnie0:59 PMWednesday,Tuesday,No Towers

  14. Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to: navigation, search

  15. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to: navigation,

  16. Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations

    SciTech Connect (OSTI)

    Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

    2012-01-01T23:59:59.000Z

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  17. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

  18. The energy market is diversifying. In addition to traditional power sources, decision makers can choose among solar, wind, and

    E-Print Network [OSTI]

    the steps of analyzing the energy outputs and economics of a solar, wind, or geothermal project. NREL power towers. SAM even calculates the value of saved energy from a domestic solar water heating systeminnovati n The energy market is diversifying. In addition to traditional power sources, decision

  19. Wind for Schools Project Power System Brief

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.

  20. Low Wind Speed Technology Phase I: Evaluation of Design and Construction Approaches for Economical Hybrid Steel/Concrete Wind Turbine Towers; BERGER/ABAM Engineers Inc.

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    This fact sheet describes a subcontract with BERGER/ABAM Engineers Inc. to study the economic feasibility of concrete and hybrid concrete/steel wind turbine towers.

  1. Trigger LVL1 "Tower Builder" Add: Cables transmission of fast pulses for: The level 1 calorimeter-trigger in ATLAS (sent on 24-01-1995)

    E-Print Network [OSTI]

    Pascual, J

    1994-01-01T23:59:59.000Z

    Trigger LVL1 "Tower Builder" Add: Cables transmission of fast pulses for: The level 1 calorimeter-trigger in ATLAS (sent on 24-01-1995)

  2. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

  3. Solar Trough Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00289

    SciTech Connect (OSTI)

    Gray, A.

    2011-05-01T23:59:59.000Z

    New HCEs were installed on the hot sides of the thermal loops at SEGS VIII and IX from mid-2007 to mid-2008. Due to significant increases in plant performance, an interest in a further increase performance by installing new HCEs on the cold portions of the loop developed. Although it was assumed that the plant performance would increase, the exact amount was unknown. The objective of this project was to estimate the performance improvements with new HCEs installed on the cold sides of the loop, with performance being evaluated as potential increases in electrical power production (megawatt-hours). A comparison of performance prior to and post installation of new HCEs on the hot sides of the loops was done. For completeness, an estimate of performance losses - such as the optical efficiency, mirror reflectivity, and optical accuracy - was also included in this analysis. National Renewable Energy Laboratory's (NREL's) HCE Survey System was used to determine if the HCEs were hot or cold.

  4. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  5. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    SciTech Connect (OSTI)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)] [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)

    2013-07-01T23:59:59.000Z

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is discussed, along with the measured performance results, calibration methodology and verification, and minimum detectable activity levels. (authors)

  6. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to: navigation, search Property Name

  7. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed Jump to: navigation, search Property

  8. Power-control based scheduling for commercial transatlantic flights Husam Fahmi, Seowoo Jang and Saewoong Bahk

    E-Print Network [OSTI]

    Bahk, Saewoong

    the flight times/pattern of transatlantic flight to provide an efficient transmission schedule for all nodes. The scheme also dynamically changes transmission power according to traffic rate and node density expects high quality connectivity in any place and at any time. Cell towers utilizing 4G/3G technology

  9. Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for use in Concentrating Solar Power Plants

    E-Print Network [OSTI]

    Malik, Darren R.

    2010-07-14T23:59:59.000Z

    of the Solar Two power tower and is currently employed as the TES material at Andasol 1 in Spain. Concentrations of alumina nanoparticles between 0.1% and 10% by weight were introduced into the base material in an effort to create nanofluids which would exhibit...

  10. Towns across Massachusetts are considering wind power, not only because it is one of the cleanest,

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ? Unlike conventional power plants, where a wind turbine is located has a major effect on the amount and maintenance equipment. Distance to transmission lines and loads ­ Elec- tricity generated by a wind turbine of surface roughness. Taller towers can also be used to get the rotor above the turbulent zone. · · Wind

  11. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01T23:59:59.000Z

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  12. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China

    SciTech Connect (OSTI)

    Yuechun, Y.; Jixue, W.; Hongfang, W.; Guimin, L.; Bolin, Y.; Scott, G.; Elliott, D.; Kline, D.

    2012-01-01T23:59:59.000Z

    With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In view of this, HydroChina Corporation and the United States National Renewable Energy Laboratory (NREL) conducted a comparative test near a wind farm in Hebei Province, China. We present the results of an analysis characterizing the measurement performance of a state-of-the-art Sound Detection and Ranging (sodar) device when compared to a traditional tower measurement program. NREL performed the initial analysis of a three-month period and sent the results to HydroChina. When another month of data became available, HydroChina and their consultant Beijing Millenium Engineering Software (MLN) repeated NREL's analysis on the complete data set, also adding sensitivity analysis for temperature, humidity, and wind speed (Section 6). This report presents the results of HydroChina's final analysis of the four-month period.

  13. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  14. Power Factor Reactive Power

    E-Print Network [OSTI]

    power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

  15. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    exploring small-scale solar tower demonstration project andfilm PV cells, and CSP solar tower. Figure 3. Map of China'sCSP technologies such as solar towers and parabolic troughs.

  16. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    E-Print Network [OSTI]

    A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes Hampshire, Morse Hall, 39 College Road, Durham, NH 03824, USA b NE Research Station, USDA Forest Service 2006 Abstract Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE

  17. A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3

    E-Print Network [OSTI]

    Forest Service, 271 Mast Road, Durham, NH 03824 USA.25 #12;RANDOM ERRORS IN ENERGY AND CO2 FLUX1 A multi-site analysis of random error2 in tower-based measurements of carbon and energy fluxes3 4 Forest Service, 271 Mast Road, Durham, NH 03824, USA.11 3 LI-COR Biosciences, Inc., 4421 Superior Street

  18. Department of Mechanical Engineering Spring 2010 Kenya Water Well Drill Rig Redesign of Engine Drive Train System & Support Tower

    E-Print Network [OSTI]

    Demirel, Melik C.

    of Engine Drive Train System & Support Tower Overview The team was presented with the task of redesigning the engine drive train system and support structure for a water drill rig to be used in Kenya. The original engine drive train system was fabricated by a professional machinist and had many intricate components

  19. tall tower facility and instrumentation New coNstraiNts oN the Nitrous oxide budget of agricultural ecosystems

    E-Print Network [OSTI]

    Minnesota, University of

    thick. The FAO classification is Chernozem. The field site has been under cultivation for the past 125. The tall tower source footprint is dominated by agricultural land use. The domi- nant crop types include measured at 100 m using a three dimensional sonic anemometer- thermometer for computation of energy, water

  20. Prototype Test Results of the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE)

    E-Print Network [OSTI]

    STACEE Collaboration

    1997-04-03T23:59:59.000Z

    There are currently no experiments, either satellite or ground-based, that are sensitive to astrophysical gamma-rays at energies between 20 and 250 GeV. We are developing the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) to explore this energy range. STACEE will use heliostat mirrors at a solar research facility to collect Cherenkov light from extensive air showers produced by high energy gamma-rays. Here we report on the results of prototype test work at the solar facility of Sandia National Laboratories (Albuquerque, NM). The work demonstrates that the facility is suitable for use as an astrophysical observatory. In addition, using a full scale prototype of part of STACEE, we detected atmospheric Cherenkov radiation at energies lower than any other ground-based experiment to date.

  1. Fuzzy Logic Application for Optimization of the Cooling Towers Control System

    E-Print Network [OSTI]

    Blanc, D

    2000-01-01T23:59:59.000Z

    The control system for the SPS-BA6 cooling towers station is considered in order to introduce the concept of a multivariable process. Multivariable control means the maintenace of several controlled variables at independent set points. In a single-variable system, to keep the single process variables within their critical values is considered a rather simple operation. In a complex multivariable system, the determination of the optimal operation point results in a combination of all set values of the variables. Control of a multivariable system requires therefore a more complex analysis. As the solution based on a mathematical model of the process is far beyond acceptable complexity, most mathematical models involve extensive simplifications and linearizations to optimize the resulting controllers. In this report the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

  2. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect (OSTI)

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10T23:59:59.000Z

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  3. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1983-12-31T23:59:59.000Z

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

  4. Session: What have studies of communications towers suggested regarding the impact of guy wires and lights on birds and bats

    SciTech Connect (OSTI)

    Kerlinger, Paul

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The paper ''Wind turbines and Avian Risk: Lessons from Communications Towers'' was given by Paul Kerlinger. The presenter outlined lessons that have been learned from research on communications (not cell) towers and about the impacts of guy wires and lights on birds and bats and how they could be useful to wind energy developers. The paper also provided specific information about a large 'fatality' event that occurred at the Mountaineer, WC wind energy site in May 2003, and a table of Night Migrant Carcass search findings for various wind sites in the US.

  5. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31T23:59:59.000Z

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  6. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  7. Microtopographic characterization of ice-wedge polygon landscape in Barrow, Alaska: a digital map of troughs, rims, centers derived from high resolution (0.25 m) LiDAR data

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03T23:59:59.000Z

    The dataset represents microtopographic characterization of the ice-wedge polygon landscape in Barrow, Alaska. Three microtopographic features are delineated using 0.25 m high resolution digital elevation dataset derived from LiDAR. The troughs, rims, and centers are the three categories in this classification scheme. The polygon troughs are the surface expression of the ice-wedges that are in lower elevations than the interior polygon. The elevated shoulders of the polygon interior immediately adjacent to the polygon troughs are the polygon rims for the low center polygons. In case of high center polygons, these features are the topographic highs. In this classification scheme, both topographic highs and rims are considered as polygon rims. The next version of the dataset will include more refined classification scheme including separate classes for rims ad topographic highs. The interior part of the polygon just adjacent to the polygon rims are the polygon centers.

  8. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27T23:59:59.000Z

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  9. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect (OSTI)

    Bailey, Catherine N.; /Case Western Reserve U.

    2010-01-01T23:59:59.000Z

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c{sup 2}. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as well as the SuperCDMS detector development with the focus on monitoring and improving ionization collection in the detectors.

  12. Towering oak, the sun - porch house winner of the ''1982 German research award''

    SciTech Connect (OSTI)

    Berndt, G.W.P.

    1983-12-01T23:59:59.000Z

    The design for this energy-efficient house was developed to suit a benign climate with much rain, wind, and fog. The building's basic construction guarantees the most limited energy-use possible. This is achieved through a unique houseform, which encloses and warms the living spaces with a thick thermal coat: walls = 6'' semi-rigid glass fiber boards, R-19; roof = 10'' foil faced fiber glass, R = 30. Windows are located only on the south side, to ensure optimal sun-ray capture. The housefront consists of a ''sun-porch'' (Sonnenhof), which is a further development of the well-known German ''Wintergarten'' (winter garden). In this climate region, one can only expect a yearly average of five days with a summer temperature of over 25/sup 0/C (77/sup 0/F); however, with a ''sun-porch'' the summer can make itself at home. In winter, the ''sun-porch'' protects against storms and always offers temperatures above the 7/sup 0/C (45/sup 0/F) minimum, a product of the compact roof and double glass with selective coating. On sunny winter days, one may even dine on the balconies. The estimation technique represented here is based on a procedure devised at the Los Alamos Scientific Laboratory, New Mexico, (Passive Solar Handbook, Vol. 2, J.D. Balcomb). ''Towering Oak's'' solar savings fraction = 49.0%; heating load = 2.56 BTU/sq. ft. Better results have yet to be achieved in Germany. In the USA, this could be increased to a solar fraction of up to 90%. Some modifications would, however, be necessary to suit the local climate (sun control devices, etc.).

  13. Optimizing the CSP Tower Air Brayton Cycle System to Meet the SunShot Objectives

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  14. FINAL REPORT: EDDY-COVARIANCE FLUX TOWER AND TRACER TECHNOLOGY SUPPORT FOR THE UNIVERSITY OF GEORGIA PROPOSAL: FROM TOWER TO PIXEL: INTEGRATION OF PATCH-SIZE NEE USING EXPERIMENTAL MODELING FOOTPRINT ANALYSIS.

    SciTech Connect (OSTI)

    LEWIN,K.F.; NAGY, J.; WATSON, T.B.

    2007-09-01T23:59:59.000Z

    Brookhaven National Laboratory has been funded since October of 2000 to provide assistance to the University of Georgia in conducting footprint analyses of individual towers based on meteorology and trace gas measurements. Brookhaven researchers conducted air flow measurements using perfluorocarbon tracers and meteorological instrumentation for three experimental campaigns at an AmeriFlux research site maintained by Dr. Monique Leclerc near Gainesville, FL. In addition, BNL provided assistance with remote data collection and distribution from remote field sites operated by Dr. John Hom of the US Forest Service in the Pine Barrens of New Jersey and at FACE research sites in North Carolina and Wisconsin.

  15. The Whitehorse Trough is an early Mesozoic marine sedimentary basin, which extends from southern Yukon to Dease Lake in British Columbia. This paper outlines the stratigraphy and structure, and characterises the overall petroleum

    E-Print Network [OSTI]

    Johnston, Stephen T.

    and structure, and characterises the overall petroleum resource potential of the central Whitehorse Trough component of the stratigraphy. Potential petroleum traps are provided by antiforms, thrust faults stratigraphique de Inklin. Le thème du gaz BULLETIN OF CANADIAN PETROLEUM GEOLOGY VOL. 53, NO. 2 (JUNE, 2005), P

  16. Property:EnergyAccessPowerUse | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumed JumpMoverNercErcotEndYearEnergyAccessPowerUse

  17. Removal site evaluation report on the Tower Shielding Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This removal site evaluation report for the Tower Shielding Facility (TSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Tower Shielding Facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and if remedial site evaluations or removal actions are, therefore, required. The scope of the project included a review of historical evidence regarding operations and use of the facility; interviews with facility personnel concerning current and past operating practices; a site inspection; and identification of hazard areas requiring maintenance, removal, or remedial actions. Based an the findings of this removal site evaluation, adequate efforts are currently being made at the TSF to contain and control existing contamination and hazardous substances on site in order to protect human health and the environment No conditions requiring maintenance or removal actions to mitigate imminent or potential threats to human health and the environment were identified during this evaluation. Given the current conditions and status of the buildings associated with the TSF, this removal site evaluation is considered complete and terminated according to the requirements for removal site evaluation termination.

  18. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29T23:59:59.000Z

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  19. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  20. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01T23:59:59.000Z

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  1. NREL: News - NREL Report Finds Similar Value in Two CSP Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two CSP Technologies Findings demonstrate increasing importance for systems with thermal energy storage February 11, 2014 Parabolic troughs and dry-cooled towers deliver similar...

  2. Combining a monostatic sodar with a radar wind profiler and RASS in a power plant pollution study

    SciTech Connect (OSTI)

    Crescenti, G.H.; Templeman, B.D.; Gaynor, J.E.

    1995-05-01T23:59:59.000Z

    A single-beam monostatic sodar, radar wind profiler, radio acoustic sounding system (RASS), and in situ sensors mounted on a 100-m tower were used to acquire meteorological data in the vicinity of a coal burning power plant in a northern Thailand valley. These data were used to examine the atmospheric processes that are responsible for fumigation of high concentrations of sulfur dioxide to the surface on a near daily basis during the cool season.

  3. Green Building Technological Approaches for Re-alization from an Investors Perspective based on the MUNICH RE Tower as an Example

    E-Print Network [OSTI]

    Garzorz, H.

    2008-01-01T23:59:59.000Z

    The Development ?MUNICH RE TOWER? was built from 2001-2003 by MEAG MUNICH ERGO AssetManagement GmbH un-der the Management of Hubert Garzorz. In 1999 the architects Allmann Sattler Wappner won the first prize of the architectural competition and were assigned...

  4. LANIER, BRYAN KEITH. Study in the Improvement in Strength and Stiffness Capacity of Steel Multi-sided Monopole Towers Utilizing Carbon Fiber Reinforced

    E-Print Network [OSTI]

    Multi-sided Monopole Towers Utilizing Carbon Fiber Reinforced Polymers as a Retrofitting Mechanism a strengthening solution utilizing high-modulus carbon fiber polymers as a retrofitting mechanism for monopole the behavior and validates the effectiveness of carbon fiber in increasing the flexural capacity of existing

  5. 23.11.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers

    E-Print Network [OSTI]

    Zevenhoven, Ron

    23.11.2014Ã?bo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers Ron Zevenhoven Ã?bo Akademi University Thermal and Flow Engineering Laboratory Engineering Piispankatu 8, 20500 Turku 2/36 7.1 Humid air #12;23.11.2014 Ã?bo Akademi Univ - Thermal and Flow

  6. Power supply

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

    2007-12-04T23:59:59.000Z

    A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Nenad Sarunac; Edward Levy

    2005-03-01T23:59:59.000Z

    This is the eighth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture, prior to firing in a pulverized coal boiler. Analyses were performed to determine the effects of coal product moisture on unit performance. Results are given showing how the coal product moisture level affects parameters such as boiler efficiency, power required to drive the fluidizing air fan, other station service power needed for fans and pulverizers, net unit heat rate, thermal energy rejected by the cooling tower, and stack emissions.

  8. Observations of the Pulsar PSR B1951+32 with the Solar Tower Atmospheric Cherenkov Effect Experiment

    E-Print Network [OSTI]

    J. Kildea; J. Zweerink; J. Ball; J. E. Carson; C. E. Covault; D. D. Driscoll; P. Fortin; D. M. Gingrich; D. S. Hanna; A. Jarvis; T. Lindner; C. Mueller; R. Mukherjee; R. A. Ong; K. Ragan; D. A. Williams

    2007-10-25T23:59:59.000Z

    We present the analysis and results of 12.5 hours of high-energy gamma-ray observations of the EGRET-detected pulsar PSR B1951+32 using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). STACEE is an atmospheric Cherenkov detector, in Albuquerque, New Mexico, that detects cosmic gamma rays using the shower-front-sampling technique. STACEE's sensitivity to astrophysical sources at energies around 100 GeV allows it to investigate emission from gamma-ray pulsars with expected pulsed emission cutoffs below 100 GeV. We discuss the observations and analysis of STACEE's PSR 1951+32 data, accumulated during the 2005 and 2006 observing seasons.

  9. Observations of the Pulsar PSR B1951+32 with the Solar Tower Atmospheric Cherenkov Effect Experiment

    E-Print Network [OSTI]

    Kildea, J; Ball, J; Carson, J E; Covault, C E; Driscoll, D D; Fortin, P; Gingrich, D M; Hanna, D S; Jarvis, A; Lindner, T; Müller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A

    2007-01-01T23:59:59.000Z

    We present the analysis and results of 12.5 hours of high-energy gamma-ray observations of the EGRET-detected pulsar PSR B1951+32 using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE). STACEE is an atmospheric Cherenkov detector, in Albuquerque, New Mexico, that detects cosmic gamma rays using the shower-front-sampling technique. STACEE's sensitivity to astrophysical sources at energies around 100 GeV allows it to investigate emission from gamma-ray pulsars with expected pulsed emission cutoffs below 100 GeV. We discuss the observations and analysis of STACEE's PSR 1951+32 data, accumulated during the 2005 and 2006 observing seasons.

  10. Method and apparatus for automobile actuated power generation

    SciTech Connect (OSTI)

    Rosenblum, J.

    1984-03-13T23:59:59.000Z

    A plurality of cylindrical rollers are embedded in a roadway over which wheeled vehicles move such that the vehicle wheels rotate the contacted rollers. A shaft transverse to the roadway supports the rollers and turns with them to transfer power from vehicle contact to an electrical generating apparatus. Power accumulating apparatus, such as a water or hydraulic fluid reservoir, may intervene between the shaft and the generator to smooth the power flow when vehicle travel is intermittent. Alternate apparatus may directly link the shaft to an electrical generator which may, in turn, charge batteries or pump water upwardly to accumulate power for response to later demand. The rollers may be housed in a metal or concrete trough and cross one or more lanes of traffic to a median power collector such as a spider and bevel gear arrangement that is capable of receiving rotating motion from four right angle directions at once. In its simplest form, power is taken from auto wheels to turn the rollers and their shaft or shafts, and shaft rotation is communicated directly to an electrical generator to supply demand.

  11. Wind shear for large wind turbine generators at selected tall tower sites

    SciTech Connect (OSTI)

    Elliott, D.L.

    1984-04-01T23:59:59.000Z

    The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

  12. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddress JumpFloorAreaTotal JumpOid

  13. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2004-02-01T23:59:59.000Z

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  14. Power System Equipment Module Test Project

    SciTech Connect (OSTI)

    Schilling, J.R.

    1980-12-01T23:59:59.000Z

    The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

  15. Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment ofAnnouncementAugust 30,PowerJuneenabled Wind

  16. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  17. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  18. Line-Focus Solar Power Plant Cost Reduction Plan (Milestone Report)

    SciTech Connect (OSTI)

    Kutscher, C.; Mehos, M.; Turchi, C.; Glatzmaier, G.; Moss, T.

    2010-12-01T23:59:59.000Z

    Line-focus solar collectors, in particular parabolic trough collectors, are the most mature and proven technology available for producing central electricity from concentrated solar energy. Because this technology has over 25 years of successful operational experience, resulting in a low perceived risk, it is likely that it will continue to be a favorite of investors for some time. The concentrating solar power (CSP) industry is developing parabolic trough projects that will cost billions of dollars, and it is supporting these projects with hundreds of millions of dollars of research and development funding. While this technology offers many advantages over conventional electricity generation -- such as utilizing plentiful domestic renewable fuel and having very low emissions of greenhouse gases and air pollutants -- it provides electricity in the intermediate power market at about twice the cost of its conventional competitor, combined cycle natural gas. The purpose of this document is to define a set of activities from fiscal year 2011 to fiscal year 2016 that will make this technology economically competitive with conventional means.

  19. Parabolic Trough | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on2005-74LaboratoriesCERCLAConcentrating Solar

  20. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration Project 209 - Control Tower and Support Building, Las Vegas, NV

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31T23:59:59.000Z

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be built in Las Vegas, Nevada by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  1. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building Oakland, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-01T23:59:59.000Z

    This report represents findings of a design review team that evaluated construction documents (at the 70% level) and operating specifications for a new control tower and support building that will be build at Oakland, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specification that would result in additional energy savings for the FAA that would not have otherwise occurred.

  2. Power Recovery

    E-Print Network [OSTI]

    Murray, F.

    .POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

  3. Power combiner

    DOE Patents [OSTI]

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05T23:59:59.000Z

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  4. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-04-01T23:59:59.000Z

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide.

  5. Cleco Power- Power Miser New Home Program

    Broader source: Energy.gov [DOE]

    Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

  6. Power inverters

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

    2011-11-15T23:59:59.000Z

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  7. Power Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPower

  8. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  9. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01T23:59:59.000Z

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, average fish length remained relatively consistent (132 {+-} 39 mm), after which average lengths increased to 294 {+-} 145 mm for mid-November though early December. Fish behavior analysis indicates milling in front of the intake tower was the most common behavior observed throughout the study period (>50% of total fish events). The next most common movement patterns were fish traversing along the front of the tower, east-to-west and west-to-east. The proportion of fish events seen moving into (forebay to tower) or out of (tower to forebay) the tower was generally low throughout the spring, summer, and early fall for both directions combined. From mid-December 2010 through the end of the study, the combined proportions of fish moving into and out of the tower were higher than previous months of this study. Schooling behavior was most distinct in the spring from late April through mid-June. Schooling events were present in 30 - 96% of the fish events during that period, with a peak in mid-May. Schooling events were also present in the summer, but at lower numbers. Diel distributions for schooling fish during spring, fall, and winter months indicate schooling was concentrated during daylight hours. No schooling was observed at night. Predator activity was observed during late spring, when fish abundance and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months. For the two days of BlueView data analyzed for vertical distribution in the forebay, a majority of fish (>50%) were present in the middle of the water column (10 - 20 m deep). Between 20 and 41 % of total fish abundance were found in the bottom of the water column (20 - 30 m deep). Few fish were observed in the top 10 m of the water column.

  10. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  11. Star Power

    SciTech Connect (OSTI)

    None

    2014-10-17T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  12. Star Power

    ScienceCinema (OSTI)

    None

    2014-11-18T23:59:59.000Z

    The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

  13. PowerJet Wind Turbine Project

    SciTech Connect (OSTI)

    Bartlett, Raymond J

    2008-11-30T23:59:59.000Z

    PROJECT OBJECTIVE The PowerJet wind turbine overcomes problems characteristic of the small wind turbines that are on the market today by providing reliable output at a wide range of wind speeds, durability, silent operation at all wind speeds, and bird-safe operation. Prime Energy�s objective for this project was to design and integrate a generator with an electrical controller and mechanical controls to maximize the generation of electricity by its wind turbine. The scope of this project was to design, construct and test a mechanical back plate to control rotational speed in high winds, and an electronic controller to maximize power output and to assist the base plate in controlling rotational speed in high winds. The test model will continue to operate beyond the time frame of the project, with the ultimate goal of manufacturing and marketing the PowerJet worldwide. Increased Understanding of Electronic & Mechanical Controls Integrated With Electricity Generator The PowerJet back plate begins to open as wind speed exceeds 13.5 mps. The pressure inside the turbine and the turbine rotational speed are held constant. Once the back plate has fully opened at approximately 29 mps, the controller begins pulsing back to the generator to limit the rotational speed of the turbine. At a wind speed in excess of 29 mps, the controller shorts the generator and brings the turbine to a complete stop. As the wind speed subsides, the controller releases the turbine and it resumes producing electricity. Data collection and instrumentation problems prevented identification of the exact speeds at which these events occur. However, the turbine, controller and generator survived winds in excess of 36 mps, confirming that the two over-speed controls accomplished their purpose. Technical Effectiveness & Economic Feasibility Maximum Electrical Output The output of electricity is maximized by the integration of an electronic controller and mechanical over-speed controls designed and tested during the course of this project. The output exceeds that of the PowerJet�s 3-bladed counterparts (see Appendix). Durability All components of the PowerJet turbine assembly�including the electronic and mechanical controls designed, manufactured and field tested during the course of this project�proved to be durable through severe weather conditions, with constant operation and no interruption in energy production. Low Cost Materials for the turbine, generator, tower, charge controllers and ancillary parts are available at reasonable prices. Fabrication of these parts is also readily available worldwide. The cost of assembling and installing the turbine is reduced because it has fewer parts and requires less labor to manufacture and assemble, making it competitively priced compared with turbines of similar output manufactured in the U.S. and Europe. The electronic controller is the unique part to be included in the turbine package. The controllers can be manufactured in reasonably-sized production runs to keep the cost below $250 each. The data logger and 24 sensors are for research only and will be unnecessary for the commercial product. Benefit To Public The PowerJet wind-electric system is designed for distributed wind generation in 3 and 4 class winds. This wind turbine meets DOE�s requirements for a quiet, durable, bird-safe turbine that eventually can be deployed as a grid-connected generator in urban and suburban settings. Results As described more fully below and illustrated in the Appendices, the goals and objectives outlined in 2060 SOPO were fully met. Electronic and mechanical controls were successfully designed, manufactured and integrated with the generator. The turbine, tower, controllers and generators operated without incident throughout the test period, surviving severe winter and summer weather conditions such as extreme temperatures, ice and sustained high winds. The electronic controls were contained in weather-proof electrical boxes and the elec

  14. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P. (Cambridge, GB)

    2003-01-01T23:59:59.000Z

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  15. Power Right. Power Smart. Efficient Computer Power Supplies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

  16. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  17. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building, Reno, Nevada

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-06-30T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  18. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01T23:59:59.000Z

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  19. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    SciTech Connect (OSTI)

    Not Available

    1983-12-31T23:59:59.000Z

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  20. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  1. Subdue solids in towers

    SciTech Connect (OSTI)

    Sloley, A.W.; Martin, G.R.

    1995-01-01T23:59:59.000Z

    Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

  2. Cooling Towers Make Money

    E-Print Network [OSTI]

    Burger, R.

    20 year life cycle costs for energizing the fan horsepower they proposed installing. The purchasing department issued an order for the low bid of $650,000.000, as opposed to the next bidder who quoted $790,000.00. This looked like a $140... constant 8 cent per kilowatt hour costs, Illustration 2 shows that after 19 months of operation the purchase price plus energizing the four fan motors would costs the same and beyond that for 20 year analysis, the difference would be over one and one...

  3. Phase Change Material Tower

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteries for Advanced26, 2005from thePeterInnovative

  4. Education Tower Emergency Instructions

    E-Print Network [OSTI]

    de Leon, Alex R.

    Security at 403-220-5333 from a safe location Hazardous Materials Spill Only attempt to clean up a spill to an armed assailant, run away from the subject Hide - if you cannot flee, or do not know the location of the shooter, hide in a locked or barricaded room and turn out the lights Fight ­ if confronted by the shooter

  5. ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess

    E-Print Network [OSTI]

    illumination on a single cell proportionally reduces its current, and hence affects the performance of all, Performance, Characterisation, Light uniformity 1 INTRODUCTION The Combined Heat and Power Solar (CHAPS then be used for building heating and domestic hot water. The CHAPS system, and its electrical and thermal

  6. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

  7. FUTURE POWER GRID INITIATIVE Future Power Grid

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets » Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

  8. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01T23:59:59.000Z

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  9. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    SciTech Connect (OSTI)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany)] [Institute of Photonic Technology, Laser Diagnostics, Albert-Einstein-Str. 9, 07745 Jena (Germany); Eigenbrod, Christian; Klinkov, Konstantin [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany)] [Center of Applied Space Technology and Microgravity, University Bremen, Am Fallturm, 28359 Bremen (Germany); Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)] [Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

    2014-03-15T23:59:59.000Z

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (?g) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (?? < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under ?g conditions. In order to demonstrate the capabilities of the capsule laser as a tool for ?g combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  10. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01T23:59:59.000Z

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish length during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, the average fish length remained relatively consistent (132 {+-} 54 mm), after which average lengths increased to 295 {+-} 148 mm for mid-November though early December. From mid-December through January the average fish length decreased to 151 {+-} 76 mm. Milling in front of the WTC tower was the most common fish behavior observed throughout the study period. Traversing along the front of the tower, east-to-west and west-to-east, was the next common behavior. The percentage of fish events showing movement from the forebay to the tower or from the tower to the forebay was generally low throughout the spring, summer, and early fall (0 to 30% for both directions combined, March through early November). From mid-November 2010 through the end of the study (January 31, 2011), the combined percentages of fish moving into and out of the tower were higher (25 to 70%) than during previous months of the study. Schooling behavior was most distinct in the spring. Schooling events were present in 30 to 96% of the fish events during that period, with a peak on May 19. Schooling events were also present in the summer, but at lower numbers. With the exception of some schooling in mid-December, few to no schooling events were observed in the fall and winter months. Diel distributions for schooling fish during spring and fall months indicate schooling was concentrated during daylight hours and no schooling was observed at night. However, in December, schooling occurred at night, after midnight, and during daylight hours. Predator activity, most likely bull trout or rainbow trout according to a USACE biologist, was observed during late spring, when fish abundance index and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months.

  11. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

  12. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    and Battery-Electric Powered Special Purpose Vehicles, SAELead-Acid Powered Electric Vehicles, Fifth Internationalmeantime, battery-powered electric vehicles can be expected

  13. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

  14. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  15. Power oscillator

    DOE Patents [OSTI]

    Gitsevich, Aleksandr (Montgomery Village, MD)

    2001-01-01T23:59:59.000Z

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  16. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    1.18: Largest PV Power Plants……………………………………………………32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

  17. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01T23:59:59.000Z

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  18. AustCham Beijing (China -Australia Chamber of Commerce in Beijing) E Floor, Office Tower, Hong Kong Macau Centre (Swisstel), 2 Chaoyangmenbei Dajie, Beijing 100027, P.R. China

    E-Print Network [OSTI]

    AustCham Beijing (China - Australia Chamber of Commerce in Beijing) E Floor, Office Tower, Hong Kong Macau Centre (Swissôtel), 2 Chaoyangmenbei Dajie, Beijing 100027, P.R. China 2 E 100027 E: info inaugural year, the China-Australia Chamber of Commerce Beijing (AustCham Beijing) is pleased to announce

  19. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Closed- Brayton-Cycle Solar Power Towers," ASME Journal ofNaF-NaBF4) cooled solar power tower plant is presented;high temperature solar power tower designs to date.

  1. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOE Patents [OSTI]

    Winkelman, Paul F. (Beaverton, OR)

    1982-01-01T23:59:59.000Z

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  2. LIFE Power Plant Fusion Power Associates

    E-Print Network [OSTI]

    LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) § Removes ion threat and mitigates x-ray threat ­ allows simple steel piping § No need

  3. Evaluation of line focus solar central power systems. Volume II. Systems evaluation

    SciTech Connect (OSTI)

    Not Available

    1980-03-15T23:59:59.000Z

    An evaluation was completed to ascertain the applicability of line focus technologies to electrical power applications and to compare their performance and cost potential with point focus central receiver power systems. It was concluded that although the high temperature line focus (SRI) and fixed mirror line focus (GA) concepts duplicate the heat source characteristics and power conversion technology of the central receiver concepts these configurations do not offer a sufficient improvement in cost to warrant full scale development. The systems are, however, less complex than their point focus counterpart and should the central receiver system development falter they provide reasonable technology alternatives. The parabolic trough concept (BDM) was found to provide a low temperature technology alternative to the central receiver concept with promising performance and cost potential. Its continued development is recommended, with special emphasis on lower temperature (< 700/sup 0/F) applications. Finally, a variety of new promising line focus power system configurations were identified for a range of utility and industrial applications and recommendations were made on their implementation. This volume contains the detailed report. (WHK)

  4. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

  5. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  6. Power System Dispatcher

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

  7. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03T23:59:59.000Z

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  8. TVA- Green Power Providers

    Broader source: Energy.gov [DOE]

    Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

  9. Southwestern Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTC Home Courses Instructors NERC Continuing Education 2014 Power Operations Training Center Courses The 2014 Power Operations Training Center course schedule is currently being...

  10. HOUSEHOLD SOLAR POWER SYSTEM.

    E-Print Network [OSTI]

    Jiang, He

    2014-01-01T23:59:59.000Z

    ?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power… (more)

  11. Concentrated Solar Power Generation.

    E-Print Network [OSTI]

    Jin, Zhilei

    2013-01-01T23:59:59.000Z

    ??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

  12. Solar powered desalination system

    E-Print Network [OSTI]

    Mateo, Tiffany Alisa

    2011-01-01T23:59:59.000Z

    As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

  13. Assessment of Combined Heat and Power Premium Power Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

  14. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

  15. Power network analysis and optimization

    E-Print Network [OSTI]

    Zhang, Wanping

    2009-01-01T23:59:59.000Z

    hierarchical power distribution design with a power tree [T. Roy, “Power distribution system design methodology andChen, “3D Power Distribution Network Co-design for Nanascale

  16. Project Profile: High-Temperature Solar Selective Coating Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Selective Coating Development for Power Tower Receivers Project Profile: High-Temperature Solar Selective Coating Development for Power Tower Receivers Sandia National...

  17. Power Series Introduction

    E-Print Network [OSTI]

    Vickers, James

    Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

  18. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01T23:59:59.000Z

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  19. Dispersed power and renewables

    SciTech Connect (OSTI)

    O`Sullivan, J.B.

    1995-12-31T23:59:59.000Z

    Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

  20. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    towers are not visible (Des-Rosiers, 2002) and, similarly, decreases in annoyance with wind facility sounds if turbines

  1. Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance

    SciTech Connect (OSTI)

    Wagner, M. J.; Kutscher, C.

    2010-01-01T23:59:59.000Z

    This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL's Solar Advisor Model (SAM).

  2. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D. (Environmental Science Division)

    2011-08-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emergi

  3. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  4. High power fast ramping power supplies

    SciTech Connect (OSTI)

    Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

    2009-05-04T23:59:59.000Z

    Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

  5. Alternative Energy Development and China's Energy Future

    E-Print Network [OSTI]

    Zheng, Nina

    2012-01-01T23:59:59.000Z

    not have a commercial CSP tower plant in operation, a recentUnlike solar PV power plants, CSP towers do not requireis successful. The CSP tower power plant consists of 100

  6. Analysis of 2011 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    SciTech Connect (OSTI)

    Aluzzi, F J

    2012-02-27T23:59:59.000Z

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, NY and the Kesselring Site Operations (KSO) facility near Ballston Spa, NY are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the US Environmental Protection Agency (EPA), which regulates these facilities. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted by KAPL to process the on-site data for the calendar year 2011. The purpose of this document is to: (1) summarize the procedures used in the preparation/analysis of the 2011 meteorological data; and (2) document adherence of these procedures to the guidance set forth in 'Meteorological Monitoring Guidance for Regulatory Modeling Applications', EPA document - EPA-454/R-99-005 (EPA-454). This document outlines the steps in analyzing and processing meteorological data from the Knolls Atomic Power Laboratory and Kesselring Site Operations facilities into a format that is compatible with the steady state dispersion model CAP88. This process is based on guidance from the EPA regarding the preparation of meteorological data for use in regulatory dispersion models. The analysis steps outlined in this document can be easily adapted to process data sets covering time period other than one year. The procedures will need to be modified should the guidance in EPA-454 be updated or revised.

  7. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    that is powered by an electric motor which is driven byPower module Reactor Electric motor Toyota EVlH electricdesign package including an electric motor and associated

  8. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  9. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  10. Space Solar Power Program

    SciTech Connect (OSTI)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01T23:59:59.000Z

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  11. Idaho Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  12. Power production and ADS

    SciTech Connect (OSTI)

    Raja, Rajendran; /Fermilab

    2010-03-01T23:59:59.000Z

    We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

  13. Body powered thermoelectric systems

    E-Print Network [OSTI]

    Settaluri, Krishna Tej

    2012-01-01T23:59:59.000Z

    Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

  14. Soldier power. Battery charging.

    E-Print Network [OSTI]

    Hong, Deog Ki

    hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

  15. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    resistant material for contact with s Low-cost seals Low-cost electrolyte Specific power is low Thermal

  16. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  17. An evaluation of the ecological consequences of partial-power operation of the K Reactor, SRS

    SciTech Connect (OSTI)

    Gladden, J.B.; Mackey, H.E.; Paller, M.H.; Specht, W.L.; Wike, L.D.; Wilde, E.W.

    1991-06-01T23:59:59.000Z

    The K Reactor at the Savannah River Site (SRS) shut-down in spring 1988 for maintenance and safety upgrades. Since that time the receiving stream for thermal effluent, Indian Grave Branch and Pen Branch, have undergone a pattern of post-thermal recovery that is typical of other SRS streams following removal of thermal stress. Divesity of fish and aquatic macroinvertebrate communities has increased and available habitats have been colonized by numerous species of herbaceous and woody plants. K Reactor is scheduled to resume operation in 1991 and operate through 1992 without a cooling tower to cool the discharge. It is likely that the reactor will operate at approximately one-third to one-half of full power (800--1200 MW thermal) during this period and effluent temperatures will be substantially lower than earlier operation at full power. Monthly average discharge temperatures at half-power operation will range from approximately 42{degrees}C in winter to 49{degrees}C in summer. The volume of water discharged will not be affected by altered power levels and will average approximately 10--11 m{sup 3}/s. The ecological consequences of this mode of operation on the Indian Grave/Pen Branch stream system have been evaluated.

  18. Green Power Inverter Prvningsrapport

    E-Print Network [OSTI]

    Green Power Inverter Prøvningsrapport SolenergiCentret Søren Poulsen Ivan Katic Oktober 2004 #12;Green Power Inverter målerapport.doc SolenergiCentret - 04-03-2005 2 Forord Nærværende rapport indeholder Teknologisk Instituts bidrag til målinger i forbindelse med PSO projektet "Green Power Inverter

  19. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  20. Power/Privilege Definitions

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Major; People's Institute for Survival and Beyond, New Orleans 2. Power is the ability to define reality and to convince other people that it is their definition. ~ Dr. Wade Nobles 3. Power is the capacity to act. 4 different cultures. [JL] RACISM Racism is race prejudice plus power [See Racist]. People's Institute calls

  1. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 8-10, 2014 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  2. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 9-11, 2013 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  3. Power Dancers Audition Packet

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Power Dancers Dance Team Audition Packet September 10 & 12, 2012 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

  4. How Power is Lost: Illusions of Alliance Among the Powerful

    E-Print Network [OSTI]

    Brion, Sebastien

    2010-01-01T23:59:59.000Z

    while most accounts of power loss focus on ethical breachesPower Loss .1. Proposed Model of Power Loss Figure 2. Social Monitoring

  5. Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

  6. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

  7. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01T23:59:59.000Z

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  8. Lite Trough LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109.Lindley,LipscombWindLitchfield,

  9. Sandia National Laboratories: parabolic trough test platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile

  10. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  11. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  12. Update on use of mine pool water for power generation.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2006-09-30T23:59:59.000Z

    In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

  13. Survival of zooplankton entrained into the cooling water system and supplemental cooling towers of a steam-electric generating station located on Galveston Bay, Texas

    E-Print Network [OSTI]

    Chase, Cathleen Louise

    2012-06-07T23:59:59.000Z

    not necessarily be used to predict conditions at power plants in other areas (Bauereis 1975; Davies and Jensen 1975). Aquatic organisms drawn into the current of cooling water flowing towards the intake structure of a power plant are sus- ceptible... organisms are those that are located in the dilution water contributing to the turbulent mixing and cooling at the discharge from the power plant (Coutant 1974). Damage to intake-entrained organisms can be re- lated to the individual or synergistic...

  14. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  15. Dynamic Reactive Power Control of Isolated Power Systems

    E-Print Network [OSTI]

    Falahi, Milad

    2012-10-03T23:59:59.000Z

    This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

  16. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01T23:59:59.000Z

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  17. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  18. Parallel Condensing System As A Heat Sink For Power Plants

    E-Print Network [OSTI]

    Akhtar, S. Z.

    Conventional heat sink technologies of use the condenser/cooling tower arrangement or an air cooled condenser for condensing exhaust steam from steam turbines. Each of these two systems have certain advantages as well as disadvantages. This paper...

  19. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    the exhaust steam in an indirect condenser and rejects heatSteam Feedwater Heaters* - Installed Cost of the Dry-Cooling Tower and Condenser* -steam feedwater heaters Feedwater (50BoK, 14.5 MPa) I nd irect condenser

  20. July 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Traczyk, P.A. (1994) 535 > ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 > Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A....

  1. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A....

  2. Southeastern Power Administration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeastern Power Administration Southeastern Power Administration Southeastern Power Administration View All Maps Addthis...

  3. Concentrating Solar Power �¢���� Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    SciTech Connect (OSTI)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30T23:59:59.000Z

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to test scale prototype receiver, off sun but at temperature, at a molten salt loop at ground level adjacent to the tower also had to be abandoned. Thus, no test facility existed for a molten salt receiver test. As a result, PWR completed the prototype receiver design and then fabricated key components for testing instead of fabricating the complete prototype receiver. A number of innovative design ideas have been developed. Key features of the receiver panel have been identified. This evaluation includes input from Solar 2, personal experience of people working on these programs and meetings with Sandia. Key components of the receiver design and key processes used to fabricate a receiver have been selected for further evaluation. The Test Plan, Concentrated Solar Power Receiver In Cooperation with the Department of Energy and Sandia National Laboratory was written to define the scope of the testing to be completed as well as to provide details related to the hardware, instrumentation, and data acquisition. The document contains a list of test objectives, a test matrix, and an associated test box showing the operating points to be tested. Test Objectives: 1. Demonstrate low-cost manufacturability 2. Demonstrate robustness of two different tube base materials 3. Collect temperature data during on sun operation 4. Demonstrate long term repeated daily operation of heat shields 5. Complete pinhole tube weld repairs 6. Anchor thermal models This report discusses the tests performed, the results, and implications for design improvements and LCOE reduction.

  4. Alternative Energy Technologies Solar Power

    E-Print Network [OSTI]

    Scott, Christopher

    #12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

  5. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  6. Entangling Power of Permutations

    E-Print Network [OSTI]

    Lieven Clarisse; Sibasish Ghosh; Simone Severini; Anthony Sudbery

    2005-04-11T23:59:59.000Z

    The notion of entangling power of unitary matrices was introduced by Zanardi, Zalka and Faoro [PRA, 62, 030301]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with possible exception for 36. Our result enables us to construct generic examples of 4-qudits maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimension 4 and 9, and we give some estimates for higher dimensions.

  7. Power transaction issues in deregulated power systems

    E-Print Network [OSTI]

    Roycourt, Henrik

    2000-01-01T23:59:59.000Z

    numbers Slack Bus IVI, 0 P;, Q; Gen. Bus Q 0 2, 3, 4, . . . , l+NPV Load Bus Pu Qi 2+NPV, 3+NPV, . . . , N Using the Kirchhoff's current law at a given node, the real and reactive power balance equations are written at each bus of the system: n P... ~ 822 821 827 9!, '7 Fig. 4. IEEE 30 bus system. 11 Figure 5 shows the bus dialog box for bus 13, where a 10MW increase in real power generation is entered. 1 IOIOOO 1QOtKMCO QOQINIO QOXCOO O'I OOXI -0 DDDOCO tg. . us ata. Step 1. Let us...

  8. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08T23:59:59.000Z

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  9. Interleaved power converter

    DOE Patents [OSTI]

    Zhu, Lizhi (Canton, MI)

    2007-11-13T23:59:59.000Z

    A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

  10. Trumping and Power Majorization

    E-Print Network [OSTI]

    David W. Kribs; Rajesh Pereira; Sarah Plosker

    2012-10-24T23:59:59.000Z

    Majorization is a basic concept in matrix theory that has found applications in numerous settings over the past century. Power majorization is a more specialized notion that has been studied in the theory of inequalities. On the other hand, the trumping relation has recently been considered in quantum information, specifically in entanglement theory. We explore the connections between trumping and power majorization. We prove an analogue of Rado's theorem for power majorization and consider a number of examples.

  11. Nuclear power browning out

    SciTech Connect (OSTI)

    Flavin, C.; Lenssen, N.

    1996-05-01T23:59:59.000Z

    When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

  12. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy from Elizabeth C. PPortland DataBoard -Energy SolutionsPower

  13. Balancing of Wind Power.

    E-Print Network [OSTI]

    Ülker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind… (more)

  14. Solar Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

  15. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  16. Critical pulse power components

    SciTech Connect (OSTI)

    Sarjeant, W.J.; Rohwein, G.J.

    1981-01-01T23:59:59.000Z

    Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

  17. Municipal Electric Power (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

  18. Power Supply Negotiations

    Office of Environmental Management (EM)

    Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

  19. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  20. Energy 101: Hydroelectric Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.