Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

2

Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts  

DOE Green Energy (OSTI)

Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

Not Available

2003-10-01T23:59:59.000Z

3

Current and Future Costs for Parabolic Trough and Power Tower Systems in the US Market: Preprint  

DOE Green Energy (OSTI)

NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

Turchi, C.; Mehos, M.; Ho, C. K.; Kolb, G. J.

2010-10-01T23:59:59.000Z

4

Current and future costs for parabolic trough and power tower systems in the US market.  

SciTech Connect

NREL's Solar Advisor Model (SAM) is employed to estimate the current and future costs for parabolic trough and molten salt power towers in the US market. Future troughs are assumed to achieve higher field temperatures via the successful deployment of low melting-point, molten-salt heat transfer fluids by 2015-2020. Similarly, it is assumed that molten salt power towers are successfully deployed at 100MW scale over the same time period, increasing to 200MW by 2025. The levelized cost of electricity for both technologies is predicted to drop below 11 cents/kWh (assuming a 10% investment tax credit and other financial inputs outlined in the paper), making the technologies competitive in the marketplace as benchmarked by the California MPR. Both technologies can be deployed with large amounts of thermal energy storage, yielding capacity factors as high as 65% while maintaining an optimum LCOE.

Turchi, Craig (National Renewable Energy Laboratory, Golden, CO); Kolb, Gregory J.; Mehos, Mark Steven (National Renewable Energy Laboratory, Golden, CO); Ho, Clifford Kuofei

2010-08-01T23:59:59.000Z

5

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

6

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

7

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant Market, Economic Assessment and Deployment Parabolic trough technology is the most commercially mature, large-scale solar power technology in the...

8

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

NONE

1998-04-01T23:59:59.000Z

9

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

Not Available

1998-04-01T23:59:59.000Z

10

NREL: Concentrating Solar Power Research - TroughNet Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map TroughNet is a technical resource for evaluation of parabolic trough solar power plant technologies. Parabolic Trough Technology Parabolic trough solar technology offers...

11

Power Tower Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid...

12

OUT Success Stories: Power Towers  

DOE Green Energy (OSTI)

Power towers convert the thermal energy of the sun to electricity. They are large-scale power plants producing clean energy and suited for operation in sunny, semi-arid regions of the world.

Jones, J.

2000-08-31T23:59:59.000Z

13

SMUD Kokhala Power Tower Study  

DOE Green Energy (OSTI)

Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

Price, Henry W. [National Renewable Energy Laboratory, Golden, CO (United States); Whitney, Daniel D.; Beebe, H.I. [Sacramento Municipal Utility District, CA (United States)

1997-06-01T23:59:59.000Z

14

Parabolic Trough Solar Thermal Electric Power Plants  

DOE Green Energy (OSTI)

Although many solar technologies have been demonstrated, parabolic trough solar thermal electric power plant technology represents one of the major renewable energy success stories of the last two decades.

Not Available

2003-06-01T23:59:59.000Z

15

NREL: TroughNet - U.S. Parabolic Trough Power Plant Data  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Parabolic Trough Power Plant Data Here you'll find data on parabolic trough power plants in operation and under development in the United States. The data include plant type,...

16

Cooling Tower Fan Motor Power Optimization Study  

Science Conference Proceedings (OSTI)

Cooling towers are in use at more than 200 major electric generating plants in the United States, representing approximately 800 units and a total of more than 210,000 MW. The auxiliary power consumed by cooling tower fan motors can significantly reduce the net power output of steam-cycle power plants. Cooling tower specifications are established by the economic and operational requirements of maximum unit load and the most demanding environmental conditions expected in the tower’s locale. Since power pl...

2011-11-16T23:59:59.000Z

17

Combined-cycle power tower  

DOE Green Energy (OSTI)

This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

Bohn, M.S.; Williams, T.A.; Price, H.W.

1994-10-01T23:59:59.000Z

18

OUT Success Stories: Solar Trough Power Plants  

DOE Green Energy (OSTI)

The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

Jones, J.

2000-08-05T23:59:59.000Z

19

Parabolic Trough Organic Rankine Cycle Power Plant  

DOE Green Energy (OSTI)

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

20

NREL: TroughNet - Parabolic Trough Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Workshops Parabolic Trough Workshops Here you'll find information about workshops and forums concerning parabolic trough technology and concentrating solar power. Also, see upcoming events on concentrating solar power. Past Workshops and Forums 2007 Parabolic Trough Technology Workshop March 8-9, 2007 Golden, CO 2007 Solar Power Tower, Dish Stirling and Linear Fresnel Technologies Workshop March 7, 2007 Golden, CO 2006 Parabolic Trough Technology Workshop February 14-16, 2006 Incline Village, NV 2004 Solar Thermal Electric International Project Development Forum July 13, 2004 Portland, OR 2003 Parabolic Trough Thermal Energy Storage Workshop February 20-21, 2003 Golden, CO 2001 Solar Energy Forum: The Power to Choose April 21-25, 2001 Washington, D.C. 2000 Parabolic Trough Technology Workshop

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Noise from cooling towers of power parks  

SciTech Connect

A study is presented of the noise pollution problem for large power parks proposed for the future. Such parks might have an area of about 75 sq. miles, and a generating capacity up to 48000 MW. A comparative analysis has been done for natural and mechanical-draft wet towers as the major sources of acoustic power. Noise radiation from single isolated towers as well as from a dispersed array of towers has been considered for both types of cooling systems. Major noise attenuation effects considered are due to the atmospheric absorption and A- weighting. Conditions of 60F and 70 percent relative humidity in a still atmosphere have been assumed. (auth)

Zakaria, J.; Moore, F.K.

1975-10-14T23:59:59.000Z

22

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

23

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

??The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for the… (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

24

Simplified Methodology for Designing Parabolic Trough Solar Power Plants.  

E-Print Network (OSTI)

?? The performance of parabolic trough based solar power plants over the last 25 years has proven that this technology is an excellent alternative for… (more)

Vasquez Padilla, Ricardo

2011-01-01T23:59:59.000Z

25

Concentrating Solar Power Commercial Application Study  

E-Print Network (OSTI)

Concentrating Solar Power Technologies............................................... 7 Parabolic Troughs power technologies are described in this report: parabolic troughs, linear Fresnel, power towers, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power

Laughlin, Robert B.

26

SunShot Initiative: Brayton Cycle Baseload Power Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Brayton Cycle Baseload Power Brayton Cycle Baseload Power Tower to someone by E-mail Share SunShot Initiative: Brayton Cycle Baseload Power Tower on Facebook Tweet about SunShot Initiative: Brayton Cycle Baseload Power Tower on Twitter Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Google Bookmark SunShot Initiative: Brayton Cycle Baseload Power Tower on Delicious Rank SunShot Initiative: Brayton Cycle Baseload Power Tower on Digg Find More places to share SunShot Initiative: Brayton Cycle Baseload Power Tower on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

27

Concentrating Solar Power Tower System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200 megawatts of electricity. Illustration of a power tower power plant. Sunlight is shown reflecting off a series of heliostats surrounding the tower and onto the receiver at the top of the tower. The hot heat-transfer fluid exiting from the receiver flows down the tower, into a feedwater reheater, and then into a turbine, which generates electricity that is fed into the power grid. The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver.

28

Solar power tower development: Recent experiences  

DOE Green Energy (OSTI)

Recent experiences with the 10 MW{sub e} Solar Two and the 2.5 MW{sub t} TSA (Technology Program Solar Air Receiver) demonstration plants are reported. The heat transfer fluids used in these solar power towers are molten-nitrate salt and atmospheric air, respectively. Lessons learned and suggested technology improvements for next-generation plants are categorized according to subsystem. The next steps to be taken in the commercialization process for each these new power plant technologies is also presented.

Tyner, C.; Kolb, G.; Prairie, M. [and others

1996-12-01T23:59:59.000Z

29

PARABOLIC TROUGH SOLAR POWER FOR COMPETITIVE U.S. MARKETS  

E-Print Network (OSTI)

Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market.

Henry W. Price; Maui Hawaii; Henry W. Price; Rainer Kistner

1998-01-01T23:59:59.000Z

30

Parabolic Trough Solar Power for Competitive U.S. Markets  

DOE Green Energy (OSTI)

Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market.

Henry W. Price

1998-11-01T23:59:59.000Z

31

H-FACET: Alignment Tool for Power Tower Heliostats  

H-FACET: Alignment Tool for Power Tower Heliostats ... for the U.S. Department of Energy’s National Nuclear Security Administration. SAND # 2011-4640P

32

Modular Trough Power Plant Cycle and Systems Analysis  

DOE Green Energy (OSTI)

This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

Price, H.; Hassani, V.

2002-01-01T23:59:59.000Z

33

Refrigerant Phase-Change Stirling-Cycle Solar Power Towers  

Science Conference Proceedings (OSTI)

This paper firstly introduces the principles of Refrigerant Phase-Change Stirling-Cycle solar power towers This heat engines use solar reservoire. When the refrigerant in an engine cylinder absorbs heat from high-temperature heat sources, refrigerant ... Keywords: refrigerant phase-change cycle, heat engines, solar power tower, finite-time thermodynamics

Dezhong Huang

2011-01-01T23:59:59.000Z

34

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

35

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world  

E-Print Network (OSTI)

The parabolic trough power plants Andasol 1 to 3 The largest solar power plants in the world and solar-thermal power plants The first parabolic trough power plants in Europe ­ the world's largest solar

Laughlin, Robert B.

36

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

DOE Green Energy (OSTI)

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

37

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

38

Don Ana Sun Tower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Don Ana Sun Tower Solar Power Plant Don Ana Sun Tower Solar Power Plant Jump to: navigation, search Name Don Ana Sun Tower Solar Power Plant Facility Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Dona Ana County, New Mexico Coordinates 32.485767°, -106.7234639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.485767,"lon":-106.7234639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Alpine SunTower Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

SunTower Solar Power Plant SunTower Solar Power Plant Jump to: navigation, search Name Alpine SunTower Solar Power Plant Facility Alpine SunTower Sector Solar Facility Type Concentrating Solar Power Developer NRG Energy/eSolar Location Lancaster, California Coordinates 34.6867846°, -118.1541632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6867846,"lon":-118.1541632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Conversion of Solar Two to a Kokhala hybrid power tower  

DOE Green Energy (OSTI)

The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

Price, H.W.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar Two: A successful power tower demonstration project  

DOE Green Energy (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

42

Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines  

DOE Green Energy (OSTI)

The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

Kearney, D.

2013-03-01T23:59:59.000Z

43

Solar Power Tower Design Basis Document, Revision 0  

DOE Green Energy (OSTI)

This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

ZAVOICO,ALEXIS B.

2001-07-01T23:59:59.000Z

44

SunShot Initiative: Solar Power Tower Improvements with the Potential to  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Tower Improvements Solar Power Tower Improvements with the Potential to Reduce Costs to someone by E-mail Share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Facebook Tweet about SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Twitter Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Google Bookmark SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Delicious Rank SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on Digg Find More places to share SunShot Initiative: Solar Power Tower Improvements with the Potential to Reduce Costs on AddThis.com... Concentrating Solar Power

45

SunShot Initiative: Power Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymeric Mirrors (CSP R&D FOA) Abengoa Solar: Advanced Nitrate Salt Central Receiver Power Plant (Baseload CSP FOA) Abengoa Solar: Reducing the Cost of Thermal Energy Storage...

46

Today`s Solar Power Towers  

SciTech Connect

This [updated 1/95] report outlines the technology of modern solar central receiver power plants, showing how they could be an important domestic source of energy within the next decade

1995-01-01T23:59:59.000Z

47

Power Tower Systems for Concentrating Solar Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is...

48

Strategies in tower solar power plant optimization  

E-Print Network (OSTI)

A method for optimizing a central receiver solar thermal electric power plant is studied. We parametrize the plant design as a function of eleven design variables and reduce the problem of finding optimal designs to the numerical problem of finding the minimum of a function of several variables. This minimization problem is attacked with different algorithms both local and global in nature. We find that all algorithms find the same minimum of the objective function. The performance of each of the algorithms and the resulting designs are studied for two typical cases. We describe a method to evaluate the impact of design variables in the plant performance. This method will tell us what variables are key to the optimal plant design and which ones are less important. This information can be used to further improve the plant design and to accelerate the optimization procedure.

Ramos, A

2012-01-01T23:59:59.000Z

49

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner  

E-Print Network (OSTI)

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner Sandia National Laboratories.S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power, is $48.5 million. The plant will begin operation in early 1996. Introduction A solar power tower plant

Laughlin, Robert B.

50

Solar two: A molten salt power tower demonstration  

Science Conference Proceedings (OSTI)

A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.

Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sutherland, J.P. [Southern California Edison, Rosemead, CA (United States); Gould, W.R. Jr. [Bechtel Corp., San Francisco, CA (United States)

1995-08-01T23:59:59.000Z

51

2011 CERN Waste Heat EN-CV February 28th 2011 Power Dissipated by the Cooling Towers  

E-Print Network (OSTI)

2011 CERN Waste Heat EN-CV February 28th 2012 1 2011 Power Dissipated by the Cooling Towers The cooling circuits at CERN use evaporative open cooling towers to discharge into the atmosphere the heat towers per complex depend on the amount of cooling power required. LHC one cooling tower per even LHC

Wu, Sau Lan

52

Validation of the FLAGSOL parabolic trough solar power plant performance model  

DOE Green Energy (OSTI)

This paper describes the results of a validation of the FLAGSOL parabolic trough solar power plant performance model. The validation was accomplished by simulating an operating solar electric generating system (SEGS) parabolic trough solar thermal power plant and comparing the model output results with actual plant operating data. This comparison includes instantaneous, daily, and annual total solar thermal electric output, gross solar electric generation, and solar mode parasitic electric consumption. The results indicate that the FLAGSOL model adequately predicts the gross solar electric output of an operating plant, both on a daily and an annual basis.

Price, H.W. [National Renewable Energy Lab., Golden, CO (United States); Svoboda, P. [Flachglas-Solartechnik GmbH, Koeln (Germany); Kearney, D. [Kearney and Associates, Del Mar, CA (United States)

1994-10-01T23:59:59.000Z

53

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

54

NREL: TroughNet - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

trough power plants by the following topics: Parabolic trough technology Solar field Thermal energy storage Power plant systems Research and development Market and economic...

55

Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations  

E-Print Network (OSTI)

I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

Colin S. Rosenthal

1998-04-03T23:59:59.000Z

56

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

DOE Green Energy (OSTI)

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

57

Parabolic Trough Power for the California Competitive Market (Presentation)  

DOE Green Energy (OSTI)

This presentation includes discusses the restructuring of the California power market and the resulting impacts.

Price, H.; Cable, B.

2001-04-01T23:59:59.000Z

58

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Program Concentrating Solar Power Program Office of Solar Energy Technologies operate for 80% of the summer mid-peak hours and 66% of the winter mid-peak hours. A natural gas backup system supplements the solar capacity and contributes 25% of the plants' annual output. The SEGS plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. In the SEGS design, the curved solar collectors focus sunlight onto a receiver pipe. Mechanical controls slowly rotate the collectors during the day, keeping them aimed at the sun as it travels across the sky. Synthetic oil flowing through the receiver pipe serves as the heat transfer medium. The collectors concentrate sunlight 30 to 60 times the normal intensity on the receiver, heating the oil as high as 735°F (390°C).

59

Cooling for Parabolic Trough Power Plants: Overview (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses water requirements for power generation and includes an analysis of wet/dry cooling.

Not Available

2006-02-01T23:59:59.000Z

60

An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project  

DOE Green Energy (OSTI)

This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

REILLY, HUGH E.; KOLB, GREGORY J.

2001-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

62

SunLab: Advancing Concentrating Solar Power Technology  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies, including parabolic troughs, power towers, and dish/engines, have the potential to provide the world with tens of thousands of megawatts of clean, renewable, cost-competitive power.

NONE

1998-11-24T23:59:59.000Z

63

NREL: TroughNet - Parabolic Trough FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough FAQs Parabolic Trough FAQs Find answers to frequently asked questions about parabolic trough solar technology. Question topics include: Central station solar benefits Economic and environmental benefits Electricity cost Installation and operation Land use Large-scale vs. distributed power Past construction decline Photovoltaics comparison Power plant cost Power plant siting Technology potential Water use Some of the following documents are available as Adobe Acrobat PDFs. How much does a parabolic trough power plant cost? The cost of a parabolic trough power plant depends on many factors such as plant size, whether thermal energy storage is included, and whether the solar field has been enlarged to increase the annual plant capacity factor. Based on these considerations the current capital cost for large

64

Gaskell Sun Tower and 2 others Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Gaskell Sun Tower and 2 others Solar Power Plant Gaskell Sun Tower and 2 others Solar Power Plant Jump to: navigation, search Name Gaskell Sun Tower and 2 others Solar Power Plant Facility Gaskell Sun Tower and 2 others Sector Solar Facility Type Concentrating Solar Power Facility Status Proposed Developer NRG Energy/eSolar Location Kern County, California Coordinates 35.4937274°, -118.8596804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4937274,"lon":-118.8596804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Wind Tunnel Experiment for Predicting a Visible Plume Region from a Nuclear Power Plant Cooling Tower  

Science Conference Proceedings (OSTI)

The current paper introduces a wind tunnel experiment to study the effect of the cooling tower of a Nuclear Power Plant (NPP) on the flow and the characteristics of visible plume regions. The relevant characteristics of the flow field near the ...

Guo Dong-peng; Yao Ren-tai; Fan Dan

66

Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.

2010-12-01T23:59:59.000Z

67

Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant  

DOE Green Energy (OSTI)

A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

2011-09-20T23:59:59.000Z

68

Economic evaluation of solar-only and hybrid power towers using molten salt technology  

DOE Green Energy (OSTI)

Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

Kolb, G.J.

1996-12-01T23:59:59.000Z

69

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

70

Design considerations for concentrating solar power tower systems employing molten salt.  

DOE Green Energy (OSTI)

The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

2010-09-01T23:59:59.000Z

71

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network (OSTI)

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

72

Technical and economic analysis of parabolic trough concentrating solar thermal power plant.  

E-Print Network (OSTI)

??Includes abstract. This thesis reports on the technical and economic analysis of wet and dry cooling technologies of parabolic trough CSTP plant. This was done… (more)

Kariuki, Kibaara Samuel .

2012-01-01T23:59:59.000Z

73

Survey of Thermal Storage for Parabolic Trough Power Plants; Period of Performance: September 13, 1999 - June 12, 2000  

DOE Green Energy (OSTI)

The purpose of this report is to identify and selectively review previous work done on the evaluation and use of thermal energy storage systems applied to parabolic trough power plants. Appropriate storage concepts and technical options are first discussed, followed by a review of previous work.

Pilkington Solar International GmbH

2000-09-29T23:59:59.000Z

74

Hybrid power towers: A solar boost for natural gas in the Southwest  

SciTech Connect

A new concept to combine central receiver technology with highly efficient natural gas turbines has sparked interest among key utilities in the southwestern United States. The result is a fully dispatchable hybrid power tower that`s expected to use 30% less natural gas than its conventional counterpart. Developed by researcher at the US DOE`s National Renewable Energy Laboratory (NREL), the hybrid power tower is the focus of a developing partnership with the Sacramento Municipal Utility District (SMUD) in California. Although some solar advocates criticize the use of nonrenewable natural gas, the hybrid concept mitigates many of the current barriers to commercializing solar thermal technology. NREL`s innovative concept uses a small central receiver plant to preheat combustion air for natural gas turbines. Solar thermal energy displaces the use of nonrenewable fossil fuel throughout much of the day. When solar heat is no longer available, the natural gas turbines ensure continuous operation to meet a utility`s need for baseload, intermediate, or peaking power, as desired. The combined-cycle power tower has many attractive features, but the bottom line is it can be commercialized in today`s utility market.

Brown, L.R. [National Renewable Energy Lab., Golden, CO (United States)

1995-08-01T23:59:59.000Z

75

Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)  

DOE Green Energy (OSTI)

This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

Turchi, C. S.; Heath, G. A.

2013-02-01T23:59:59.000Z

76

NREL: TroughNet - Parabolic Trough Technology Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Overview Technology Overview Parabolic trough solar power technology offers an environmentally sound and increasingly cost-effective energy source. Here you'll find overviews about the following parabolic trough power plant technologies: Solar Field Collector balance of system Concentrator structure Mirrors Receivers Thermal Energy Storage Molten-salt heat transfer fluid Storage media Storage systems Power Plant Systems Direct steam generation Fossil-fired hybrid backup Power cycles Wet and dry cooling Operation and maintenance For more detailed, technical information, see our publications on parabolic trough power plant technology. Printable Version TroughNet Home Technologies Solar Field Thermal Energy Storage Power Plant Systems Market & Economic Assessment Research & Development

77

Linear Concentrator System Basics for Concentrating Solar Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are...

78

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network (OSTI)

studies of CSP systems were reviewed and screened. Ten studies on parabolic trough and power tower passed in this analysis. Results based on the six estimates for parabolic dish technologies are reported in our journal

79

Testing of an impedance heating system for solar power tower applications  

DOE Green Energy (OSTI)

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI cable heat trace. We found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

Pacheco, J.E.; Kolb, W.J.

1996-05-01T23:59:59.000Z

80

An evaluation of possible next-generation high temperature molten-salt power towers.  

DOE Green Energy (OSTI)

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

Kolb, Gregory J.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of an impedance heating system to mineral insulated heat trace for power tower applications  

DOE Green Energy (OSTI)

A non-conventional type of heating system is being tested at Sandia National Laboratories for solar thermal power tower applications. In this system, called impedance heating, electric current flows directly through the pipe to maintain the desired temperature. The pipe becomes the resistor where the heat is generated. Impedance heating has many advantages over previously used mineral insulated (MI) heat trace. An impedance heating system should be much more reliable than heat trace cable since delicate junctions and cabling are not used and the main component, a transformer, is inherently reliable. A big advantage of impedance heating is the system can be sized to rapidly heat up the piping to provide rapid response times necessary in cyclic power plants such as solar power towers. In this paper, experimental results from testing an impedance heating system are compared to MI heat trace. The authors found impedance heating was able to heat piping rapidly and effectively. There were not significant stray currents and impedance heating did not affect instrumentation.

Pacheco, J.E.; Kolb, W.J.

1997-03-01T23:59:59.000Z

82

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

83

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

84

Enhancement of CN Tower lightning current derivative signals using a modified power spectral subtraction method.  

E-Print Network (OSTI)

??Lightning current measurements are possible using instrumental tall structures or rocket-triggered lightning. The CN Tower has been a source of lightning current data for the… (more)

Mehmud, Huma

2006-01-01T23:59:59.000Z

85

SunShot Initiative: Parabolic Trough  

NLE Websites -- All DOE Office Websites (Extended Search)

development (R&D) in parabolic trough systems as one of four concentrating solar power (CSP) technologies aiming to meet the goals of the SunShot Initiative. Parabolic troughs,...

86

Solar trough systems  

DOE Green Energy (OSTI)

Trough systems predominate among today`s commercial solar power plants. All together, nine trough power plants, also called Solar Energy Generating Systems (SEGS), were built in the 1980s in the Mojave Desert near Barstow, California. These plants have a combined capacity of 354 megawatts (MW) and today generate enough electricity to meet the needs of approximately 500,000 people. Trough systems convert the heat from the sun into electricity. Because of their parabolical shape, troughs can focus the sun at 30--60 times its normal intensity on a receiver pipe located along the focal line of the trough. Synthetic oil captures this heat as the oil circulates through the pipe, reaching temperatures as high as 390 C (735 F). The hot oil is pumped to a generating station and routed through a heat exchanger to produce steam. Finally, electricity is produced in a conventional steam turbine. In addition to operating on solar energy the SEGS plants are configured as hybrids to operate on natural gas on cloudy days or after dark. Natural gas provides 25% of the output of the SEGS plants.

NONE

1998-04-01T23:59:59.000Z

87

Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!!  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. This relates to the volume of circulating water, hot water temperature on the tower, cold water discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower is put on the line and the cold water temperature or volume becomes inadequate, engineers look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on-stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: 1. The present service needed is now greater than the original requirements which the tower was purchased for. 2. “Slippage” due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation. 3. The installation could have been originally undersized due to the low bidder syndrome. 4. New plant expansion needs additional water volume and possibly colder temperatures off the tower.

Burger, R.

1991-06-01T23:59:59.000Z

88

Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!!  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. This relates to the volume of circulatlng water, hot water temperature on the tower, cold water temperature discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower is put on the line and the cold water temperature or volume becomes inadequate, engineers look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on-stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: 1. The present service needed is now greater than the original requirements which the tower was purchased for. 2. "Slippage" due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation. 3. The installation could have been originally undersized due to the low bidder syndrome (1). 4. New plant expansion needs additional water volume and possibly colder temperatures off the tower.

Burger, R.

1990-06-01T23:59:59.000Z

89

Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-one papers presented at a 2003 conference in Charleston, South Carolina discussed industrial experience and provided case histories of cooling tower problems and solutions.

2003-08-12T23:59:59.000Z

90

Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005  

DOE Green Energy (OSTI)

Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

Prabhu, E.

2006-03-01T23:59:59.000Z

91

NREL: TroughNet - Parabolic Trough Thermal Energy Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage Technology One advantage of parabolic trough power plants is their potential for storing solar thermal energy to use during non-solar periods and to dispatch...

92

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

SciTech Connect

Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

93

Proceedings: Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affect availability and heat rate in fossil and nuclear power plants. Twenty-two papers presented at the 1997 Cooling Tower Technology Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions.

1997-08-13T23:59:59.000Z

94

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

95

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

Prueitt, M.L.

1996-01-16T23:59:59.000Z

96

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

97

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

Prueitt, Melvin L. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

98

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

99

Proceedings: Cooling Tower and Advanced Cooling Systems Conference  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems performance strongly affects availability and heat rate in fossil and nuclear power plants. Papers presented at EPRI's 1994 Cooling Tower and Advanced Cooling Systems Conference discuss research results, industry experience, and case histories of cooling tower problems and solutions. Specific topics include cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid cooling systems.

1995-03-09T23:59:59.000Z

100

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint  

DOE Green Energy (OSTI)

Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance of a parabolic trough solar collector.  

E-Print Network (OSTI)

??Parabolic trough solar collectors (PTSCs) constitute a proven source of thermal energy for industrial process heat and power generation, although their implementation has been strongly… (more)

Brooks, Michael John

2005-01-01T23:59:59.000Z

102

Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors  

SciTech Connect

Usual size of parabolic trough solar thermal plants being built at present is approximately 50 MW{sub e}. Most of these plants do not have a thermal storage system for maintaining the power block performance at nominal conditions during long non-insolation periods. Because of that, a proper solar field size, with respect to the electric nominal power, is a fundamental choice. A too large field will be partially useless under high solar irradiance values whereas a small field will mainly make the power block to work at part-load conditions. This paper presents an economic optimization of the solar multiple for a solar-only parabolic trough plant, using neither hybridization nor thermal storage. Five parabolic trough plants have been considered, with the same parameters in the power block but different solar field sizes. Thermal performance for each solar power plant has been featured, both at nominal and part-load conditions. This characterization has been applied to perform a simulation in order to calculate the annual electricity produced by each of these plants. Once annual electric energy generation is known, levelized cost of energy (LCOE) for each plant is calculated, yielding a minimum LCOE value for a certain solar multiple value within the range considered. (author)

Montes, M.J. [E.T.S.I.Industriales - U.N.E.D., C/Juan del Rosal, 12, 28040 Madrid (Spain); Abanades, A.; Martinez-Val, J.M.; Valdes, M. [E.T.S.I.Industriales - U.P.M., C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

2009-12-15T23:59:59.000Z

103

Convection towers  

DOE Patents (OSTI)

Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

Prueitt, M.L.

1994-02-08T23:59:59.000Z

104

NREL: TroughNet - 2007 Parabolic Trough Technology Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Parabolic Trough Technology Workshop 2007 Parabolic Trough Technology Workshop NREL hosted a parabolic trough technology workshop on March 8-9, 2007, in Golden, Colorado. It had three goals: Exchanging technical information Collaborating on SolarPaces projects: receiver testing and dry cooling Gathering industry input on laboratory R&D directions. The workshop featured presentations on the following parabolic trough power plant topics: Current and future market vision Project developments Solar resource assessment Technology trends Molten-salt heat transfer fluids Direct steam generation Advanced tools and testing capabilities Researchers also presented a poster session on laboratory capabilities. Note: if a presentation or poster isn't listed below, NREL hasn't yet received permission or approval to post it.

105

Session: Parabolic Troughs (Presentation)  

DOE Green Energy (OSTI)

The project description is R and D activities at NREL and Sandia aimed at lowering the delivered energy cost of parabolic trough collector systems and FOA awards to support industry in trought development. The primary objectives are: (1) support development of near-term parabolic trought technology for central station power generation; (2) support development of next-generation trought fields; and (3) support expansion of US trough industry. The major FY08 activities were: (1) improving reflector optics; (2) reducing receiver heat loss (including improved receiver coating and mitigating hydrogen accumulation); (3) measuring collector optical efficiency; (4) optimizing plant performance and reducing cost; (5) reducing plant water consumption; and (6) directly supporting industry needs, including FOA support.

Kutscher, C.

2008-04-01T23:59:59.000Z

106

An Optical Characterization Technique for Parabolic Trough Solar Collectors Using Images of the Absorber Reection.  

E-Print Network (OSTI)

?? As the concentrating solar power industry competes to develop a less-expensive parabolic trough collector, assurance is needed that new parabolic trough collectors maintain accurate… (more)

Owkes, Jeanmarie Kathleen

2013-01-01T23:59:59.000Z

107

Capacity Assessment of a Transmission Tower under Wind Loading.  

E-Print Network (OSTI)

??Transmission towers play a vital role in power distribution networks and are often subject to strong wind loads. Lattice tower design is often based on… (more)

Mara, Thomas G

2013-01-01T23:59:59.000Z

108

A new code for the design and analysis of the heliostat field layout for power tower system  

Science Conference Proceedings (OSTI)

A new code for the design and analysis of the heliostat field layout for power tower system is developed. In the new code, a new method for the heliostat field layout is proposed based on the edge ray principle of nonimaging optics. The heliostat field boundary is constrained by the tower height, the receiver tilt angle and size and the heliostat efficiency factor which is the product of the annual cosine efficiency and the annual atmospheric transmission efficiency. With the new method, the heliostat can be placed with a higher efficiency and a faster response speed of the design and optimization can be obtained. A new module for the analysis of the aspherical heliostat is created in the new code. A new toroidal heliostat field is designed and analyzed by using the new code. Compared with the spherical heliostat, the solar image radius of the field is reduced by about 30% by using the toroidal heliostat if the mirror shape and the tracking are ideal. In addition, to maximize the utilization of land, suitable crops can be considered to be planted under heliostats. To evaluate the feasibility of the crop growth, a method for calculating the annual distribution of sunshine duration on the land surface is developed as well. (author)

Wei, Xiudong; Lu, Zhenwu; Yu, Weixing [Changchun Institute of Optics, Fine Mechanics and Physics of Chinese Academy of Sciences, Changchun 130033 (China); Wang, Zhifeng [The Key Laboratory of Solar Thermal Energy and Photovoltaic system, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

2010-04-15T23:59:59.000Z

109

Parabolic trough solar collectors : design for increasing efficiency  

E-Print Network (OSTI)

Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer fluid. The efficiency and cost of the parabolic trough ...

Figueredo, Stacy L. (Stacy Lee), 1981-

2011-01-01T23:59:59.000Z

110

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005  

DOE Green Energy (OSTI)

The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

Kelly, B.

2006-07-01T23:59:59.000Z

111

Linear Concentrator System Basics for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic trough collectors that track the sun. The cooling towers can be seen with the water plume rising into the air, and white water tanks are in the background. Credit: Sandia National Laboratory / PIX 14955 Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear

112

FirstOPTIC Software Package for Parabolic Trough Evaluation  

power (CSP) technologies used in commercial utility-scale power generation plants. A key param­eter for trough performance evaluation is the collector ...

113

NREL: Concentrating Solar Power Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL develops publications, including technical reports and papers, about its R&D activities in concentrating solar power, as well as related information. Below you'll find a list of selected NREL publications concerning these activities. Also see TroughNet's publications on parabolic trough technology, and market and economic assessment. For other NREL concentrating solar power publications, you can search NREL's Publications Database. Selected Publications These publications are available as Adobe Acrobat PDFs. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines NREL Subcontract Report Author: David Kearney - Kearney & Associates Publication Date: March 2013 Simulating the Value of Concentrating Solar Power with Thermal Energy

114

Cooling Towers, The Debottleneckers  

E-Print Network (OSTI)

Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units are large structures, Illustration 1. Big budget money and engineering time goes into gleaming stainless steel equipment and exotic process apparatus, the poor cooling tower is the ignored orphan of the system. Knowledgeable Engineers, however, are now looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more cells in a row. With cells up to 42 feet long so immense in aspect, with fans rotating, operators assume, just by appearances, that all is well, and usually pay no attention to the quality of cold water returning from the cooling tower. The boxes look sturdy, but the function of the cooling tower is repeated ignored production of water as cold as possible.

Burger, R.

1998-04-01T23:59:59.000Z

115

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 3: Multiple Plants at a Common Location, 20 January 2005 - 31 December 2005  

DOE Green Energy (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis of multiple solar parabolic trough plants at a common location.

Kelly, B.

2006-07-01T23:59:59.000Z

116

Proceedings of the Cooling Tower Technology Conference  

Science Conference Proceedings (OSTI)

The performance of cooling towers and associated systems strongly affects availability and heat rate in fossil and nuclear power plants. Twenty-four papers presented at the 2012 Cooling Tower Technology Conference, held August 8–9, 2012, in Pensacola, Florida, discuss research results, industry experience, and case histories of cooling tower problems and solutions. ...

2012-09-13T23:59:59.000Z

117

towers of Hanoi  

Science Conference Proceedings (OSTI)

NIST. towers of Hanoi. (classic problem). Definition: Given three posts (towers) and n disks of decreasing sizes, move the ...

2013-08-23T23:59:59.000Z

118

Solargenix Energy Advanced Parabolic Trough Development  

SciTech Connect

The Solargenix Advanced Trough Development Project was initiated in the Year 2000 with the support of the DOE CSP Program and, more recently, with the added support of the Nevada Southwest Energy Partnership. Parabolic trough plants are the most mature solar power technology, but no large-scale plants have been built in over a decade. Given this lengthy lull in deployment, our first Project objective was development of improved trough technology for near-term deployment, closely patterned after the best of the prior-generation troughs. The second objective is to develop further improvements in next-generation trough technology that will lead to even larger reductions in the cost of the delivered energy. To date, this Project has successfully developed an advanced trough, which is being deployed on a 1-MW plant in Arizona and will soon be deployed in a 64-MW plant in Nevada. This advanced trough offers a 10% increase in performance and over an 20% decrease in cost, relative to prior-generation troughs.

Gee, R. C.; Hale, M. J.

2005-11-01T23:59:59.000Z

119

Cooling Towers, Energy Conservation Strategies  

E-Print Network (OSTI)

Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified for the particular requirements before a cooling tower is purchased. After it is put on the line and the cold water temperature or volume becomes inadequate, they look to solutions other than the obvious. While all cooling towers are purchased to function at 100% of capability in accordance with the required Design Conditions, in actual on stream employment, the level of operation many times is lower, downwards to as much as 50% due to a variety of reasons: (1) The present service needed is now greater than the original requirements which the tower was purchased for; (2) 'Slippage' due to usage and perhaps deficient maintenance has reduced the performance of the tower over years of operation; (3) The installation could have been originally undersized due to the low bidder syndrome; and (4) New plant expansion needs colder temperatures off the tower.

Burger, R.

1983-01-01T23:59:59.000Z

120

Rinse trough with improved flow  

SciTech Connect

Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.

O' Hern, Timothy J. (Albuquerque, NM); Grasser, Thomas W. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen Removal From Heating Oil of a Parabolic Trough ...  

A Method to Selectively Remove & Measure Hydrogen Gas from a Fluid Volume Parabolic trough power plants use concentrated solar thermal energy to ...

122

Parabolic trough solar collectors : design for increasing efficiency.  

E-Print Network (OSTI)

??Parabolic trough collectors are a low cost implementation of concentrated solar power technology that focuses incident sunlight onto a tube filled with a heat transfer… (more)

Figueredo, Stacy L. (Stacy Lee), 1981-

2011-01-01T23:59:59.000Z

123

Field Survey of Parabolic Trough Receiver Thermal Performance: Preprint  

SciTech Connect

This paper describes a technique that uses an infrared camera to evaluate the in-situ thermal performance of parabolic trough receivers at operating solar power plants.

Price, H.; Forristall, R.; Wendelin, T.; Lewandowski, A.; Moss, T.; Gummo, C.

2006-04-01T23:59:59.000Z

124

From Hot Towers to TRMM: Joanne Simpson and Advances in Tropical Convection Research  

Science Conference Proceedings (OSTI)

Joanne Simpson began contributing to advances in tropical convection about half a century ago. The hot tower hypothesis jointly put forth by Joanne Simpson and Herbert Riehl postulated that deep convective clouds populating the “equatorial trough ...

Robert A. Houze Jr.

2003-01-01T23:59:59.000Z

125

Wet cooling towers: rule-of-thumb design and simulation  

DOE Green Energy (OSTI)

A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.

Leeper, S.A.

1981-07-01T23:59:59.000Z

126

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

DOE Green Energy (OSTI)

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

127

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

128

Vortex-augmented cooling tower - windmill combination  

DOE Patents (OSTI)

A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

McAllister, J.E. Jr.

1982-09-02T23:59:59.000Z

129

Combined thermal storage pond and dry cooling tower waste heat rejection system for solar-thermal steam-electric power plants. Final report  

DOE Green Energy (OSTI)

The thermal performance and economics of the combined thermal storage pond and dry cooling tower waste heat rejection system concept for solar-thermal steam-electric plants have been evaluated. Based on the computer simulation of the operation of southwest-sited solar-thermal plants, it has been determined that the combined pond-tower concept has significant cost and performance advantages over conventional dry cooling systems. Use of a thermal storage pond as a component of the dry cooling system allows a significant reduction in the required dry cooling heat exchange capacity and the associated parasitic power consumption. Importantly, it has been concluded that the combined pond-tower dry cooling system concept can be employed to economically maintain steam condensing temperatures at levels normally achieved with conventional evaporative cooling systems. An evaluation of alternative thermal storage pond design concepts has revealed that a stratified vertical-flow cut-and-fill reservoir with conventional membrane lining and covering would yield the best overall system performance at the least cost.

Guyer, E.C.; Bourne, J.G.; Brownell, D.L.; Rose, R.M.

1979-02-28T23:59:59.000Z

130

NREL: TroughNet - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Data and Resources Data and Resources This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and component testing Also see our publications on parabolic trough power plants. Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources Industry Partners Power Plant Data Solar Data Models & Tools System & Component Testing FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

131

Directed flow fluid rinse trough  

SciTech Connect

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

132

A new parabolic trough solar collector P. Kohlenbach1  

E-Print Network (OSTI)

) power generation system. The parabolic trough collectors have been installed in the National Solar-selective paint. The absorber operates in a 50mm non-evacuated glass tube to minimize convection losses. Thermal and power generation (CHP), CSIRO has built a solar thermal parabolic trough collector field which

133

OCCUPATIONAL COOLING TOWERS  

E-Print Network (OSTI)

HEALTH SCIENCES LIBRARY COOLING TOWERS EMPLOYEE HEALTH B C D F E CHILDREN'S ELEVATORS MEDICAL SCHOOL

Crews, Stephen

134

NREL: Concentrating Solar Power Research - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Data and Resources Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for renewable energy power plants. Also see TroughNet's data and resources specifically for parabolic trough technology. Concentrating Solar Power Projects around the World NREL, in conjunction with SolarPACES (Solar Power and Chemical Energy Systems), maintains a database of CSP projects around the world with plants that are either operational, under construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine systems. Each project profile includes background information, a listing of project participants, and data on the power-plant

135

Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint  

SciTech Connect

Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimating the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.

Heath, G.; Burkhardt, J.; Turchi, C.

2012-10-01T23:59:59.000Z

136

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

DOE Green Energy (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

137

Radar Measurement of Cooling Tower Drift  

Science Conference Proceedings (OSTI)

A method of radar measurement of drift, generated by the wet cooling towers of power plants, is proposed. The water given off by the evaporative towers consists of two kinds of droplets: the recondensation droplets—generally less than 20 ?m in ...

Henri Sauvageot

1989-09-01T23:59:59.000Z

138

2006 EPRI Cooling Tower Technology Conference Proceedings  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Fifteen papers presented at a 2006 Conference in Des Moines, Iowa discussed industrial experience and provided case histories of cooling tower problems and solutions.

2006-08-01T23:59:59.000Z

139

Theoretical Investigation of the Closed Type Parabolic Trough  

Science Conference Proceedings (OSTI)

Of a closed type parabolic trough solar collector, the thermal performance was analyzed, and a mathematical model was proposed, and experience system was built. As well mathematical model was validated with the measure data. Keywords: trough solar power, collector, numerical simulation, thermal analysis

Zhong-Zhu Qiu; Qiming Li; Peng Li; Yi Zhang; Jia He; Wenwen Guo

2012-07-01T23:59:59.000Z

140

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough Federal Technology Alert covers parabolic-trough solar...

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

On thermal performance of seawater cooling towers  

E-Print Network (OSTI)

Seawater cooling towers have been used since the 1970s in power generation and other industries, so as to reduce the consumption of freshwater. The salts in seawater are known to create a number of operational problems, ...

Sharqawy, Mostafa H.

142

Assessment of Tall Wind Tower Technology  

Science Conference Proceedings (OSTI)

Technologies that enable wind turbines to capture more energy at a given site have the potential to reduce the overall cost of energy, thereby making wind power more competitive against conventional power generation. Because wind speed generally increases with height above ground, one way to increase energy capture is to elevate the rotor by means of a taller tower. To exploit this potential, a number of tall tower models are under development or have recently been introduced to the wind energy market. I...

2011-11-08T23:59:59.000Z

143

Optimal sequencing of a cooling tower with multiple cells  

E-Print Network (OSTI)

This paper evaluates the energy savings potential of multi-cell cooling tower optimal sequencing control methods. Annual tower fan energy usage is calculated for a counter-flow tower with multiple variable-speed fans. Effectiveness-NTU tower model is employed to predict the cooling tower performance at various conditions. Natural convection when the fan is off is accounted by using an assumed airflow rate. The energy savings at five cities representing different typical climates are studied using typical meteorological year data. The results show that, if the tower capacity can be increased by 50% and 100% by running extra tower cells, the annual total fan power usage can be reduced by 44% and 61%, respectively. A cumulative saving percent curve is generated to help estimate the annual total savings percent when extra cooling tower capacity is available during only part of a year.

Zhang, Z.; Liu, J.

2012-01-01T23:59:59.000Z

144

NREL: TroughNet - Parabolic Trough Technology Models and Software Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Models and Software Tools Technology Models and Software Tools Here you'll find information about models and software tools used to analyze parabolic trough power plant technology. They include: Annual Simulation Solar Advisor Model TRNSYS Other Analysis SolTRACE Receiver Model DView JEDI Annual Simulation Software Because solar power plants rely on an intermittent fuel supply-the sun-it is necessary to model the plant's performance on an hourly (or finer resolution) basis to understand and predict its annual performance. A number of performance and economics models are available for evaluating parabolic trough solar technologies. Industry also has developed a number of proprietary models for evaluating parabolic trough plants. Solar Advisor Model NREL, partnering with the U.S. Department of Energy's Solar Energy

145

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

2002). Advances in parabolic trough solar power technology.use comparable to a parabolic trough with air cooling sincethe working fluid in parabolic trough collectors is in the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

146

2 Technology Description: Solar Thermal Parabolic Trough Solar Thermal  

E-Print Network (OSTI)

– Parabolic troughs track sun, concentrate incident light onto a centralized, tubular receiver that runs length of each trough – Thermal fluid circulates through all receivers in solar field – Thermal fluid brought to one or more centralized power production facilities – Heat transferred to a steam cycle, drives a steam turbine to generate power – Cooled thermal fluid is then recirculated th through h solar fi field ld – Wet cooling is common, dry cooling possible

Timothy J. Skone; Risks Of Implementation

2012-01-01T23:59:59.000Z

147

The Long-Term Market Potential of Concentrating Solar Power (CSP) Systems  

Science Conference Proceedings (OSTI)

This chapter will examine the conditions under which thermal CSP systems might play a large role in the global energy system. CSP technologies, such as troughs or power towers, have a large advantage over other solar technologies in that they offer the potential for firm power delivery, mitigating intermittency issues. These systems require relatively cloud-free conditions to operate, which limits their geographic applicability.

Smith, Steven J.

2012-10-30T23:59:59.000Z

148

Cooling Tower Considerations for Energy Optimizations  

E-Print Network (OSTI)

Energy conservation strategies and production economies involve more than examining the cooling tower fan consumption of horse power. Colder water provides vast potentials for savings. Ask yourself, "What is the dollar and energy utilization value if I can obtain 1°F colder water off my cooling tower than I am now getting?" Therefore, let us first examine the elements of the cooling tower to determine the areas of greatest potential improvement to generate that colder water. The air flow generated by the fan should first be looked at In both counterflow or crossflow towers to determine that maximum flow is available through pitching fans up to within the motor plate amperage limitations and fan stall point calculations. If applicable, new fiberglass state of the art fans can be installed and additional motor horse power added. However, the most dramatic improvement that can be obtained in producing colder water is to retrofit modern film fill to replace the old fashioned wood splash bar slats.

Burger, R.

1986-01-01T23:59:59.000Z

149

Vortex-augmented cooling tower-windmill combination  

DOE Patents (OSTI)

A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

McAllister, Jr., John E. (Aiken, SC)

1985-01-01T23:59:59.000Z

150

NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough  

Science Conference Proceedings (OSTI)

Presentation Title, Thermodynamic Properties of Novel Low Melting Point LiNO3- NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough Solar Power ...

151

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

152

Guidelines for reporting parabolic trough solar electric system performance  

DOE Green Energy (OSTI)

The purpose of this activity is to develop a generic methodology which can be used to track and compare the performance of parabolic trough power plants. The approach needs to be general enough to work for all existing and future parabolic trough plant designs, provide meaningful comparisons of year to year performance, and allow for comparisons between dissimilar plant designs. The approach presented here uses the net annual system efficiency as the primary metric for evaluating the performance of parabolic trough power plants. However, given the complex nature of large parabolic trough plants, the net annual system efficiency by itself does not adequately characterize the performance of the plant. The approach taken here is to define a number of additional performance metrics which enable a more comprehensive understanding of overall plant performance.

Price, H.W.

1997-06-01T23:59:59.000Z

153

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

154

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

DOE Green Energy (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

155

New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation  

SciTech Connect

A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

Zhu, G.; Lewandowski, A.

2012-11-01T23:59:59.000Z

156

NREL: TroughNet - Parabolic Trough System and Component Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

System and Component Testing System and Component Testing Here you'll find information about parabolic trough system and components testing, as well facilities and laboratories used for testing. Tests include those for: Concentrator thermal efficiency Receiver thermal performance Mirror contour and collector alignment Mirror reflectivity and durability Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Concentrator Thermal Efficiency Testing Researchers and industry use the following facilities for testing parabolic trough collectors. AZTRAK Rotating Platform At Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF), the AZTRAK rotating platform has been used to test several parabolic trough modules and receivers. Initially, researchers tested a

157

Technical Manual for the SAM Physical Trough Model  

SciTech Connect

NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

Wagner, M. J.; Gilman, P.

2011-06-01T23:59:59.000Z

158

Status of APS 1-Mwe Parabolic Trough Project  

SciTech Connect

Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

2005-11-01T23:59:59.000Z

159

2009 EPRI Cooling Tower Technology Seminar and Symposium  

Science Conference Proceedings (OSTI)

Cooling towers and associated systems cause significant loss of availability and heat rate degradation in both nuclear and fossil-fired power plants. Twenty-five papers presented at a 2009 conference in Cincinnati, Ohio discussed industrial experience and provided case histories of cooling tower problems and solutions.

2009-10-05T23:59:59.000Z

160

China Solar Tower Development | Open Energy Information  

Open Energy Info (EERE)

Tower Development Jump to: navigation, search Name China Solar Tower Development Place China Sector Solar Product Joint venture for development of solar towers in China, announced...

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology  

DOE Green Energy (OSTI)

Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

Price, H.; Kearney, D.

1999-01-31T23:59:59.000Z

162

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!

Smith, M.

1991-06-01T23:59:59.000Z

163

Wastewater Reuse as Cooling-Tower Makeup  

Science Conference Proceedings (OSTI)

As many parts of the United States begin to face shortages, utilities will look for reliable new water sources. Focusing on the use of wastewater as makeup to cooling towers, this report describes commercially available wastewater treatments for power plant applications and highlights the need for research to control biologic slime and phosphate scale formation.

1987-09-02T23:59:59.000Z

164

Solar-Augment Potential of U.S. Fossil-Fired Power Plants  

DOE Green Energy (OSTI)

Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

2011-02-01T23:59:59.000Z

165

A Brief Practical Guide to Eddy Covariance Flux  

E-Print Network (OSTI)

........................................................................................................................... 27 Power towers for the production of mechanical work and electricity. Parabolic troughs and power towers reach peak efficiencies of parabolic troughs and power towers, thermal storage increases the annual capacity factor7 from typically 20

Noone, David

166

The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers  

SciTech Connect

Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

Abedi-Nik, Farhad [SADRA Institute of Higher Education, Tehran (Iran, Islamic Republic of); Sabouri-Ghomi, Saeid [K.N.T University of Technology, Tehran (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

167

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

DOE Green Energy (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

168

Monsoon Trough Boundary Layer Experiment (MONTBLEX)  

Science Conference Proceedings (OSTI)

The Monsoon Trough Boundary Layer Experiment (MONTBLEX) is a multi-institutional, all-India coordinated program to study the atmospheric boundary-layer processes in the monsoon trough (MT) area of northern India. The experiment is being organized ...

Malti Goel; H. N. Srivastava

1990-11-01T23:59:59.000Z

169

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

170

Mobile trough genesis over the Mongolian Plateau  

E-Print Network (OSTI)

The purpose of this study is to understand the mechanisms responsible for formation of mobile troughs over the large source region in Mongolia. Three winter season mobile troughs which intensified rapidly after formation were analyzed. An objective method developed by Lefevre and Nielsen-Gammon (1995) was used to track the mobile troughs-a quasigeostrophic potential vorticity (QGPV) and associated piecewise tendency diagnosis (PTD) technique developed by Lefevre (1995) was used to analyze the formation mechanisms. Through the PTD technique, which involves in the inversion of QGPV and QGPV advection, it was determined that the mobile troughs developed from a combination of deformation / superposition and downstream development. Baroclinic processes were not evident near the time of formation, but were important as the troughs moved over the Sea of Japan. Two troughs interacted with surface cyclones, but in both cases only minor development occurred. As the troughs moved underneath a climatological mean long wave trough, all three troughs weakened from deformation. There was evidence of orographic masking in one of the cases as the mobile trough existed at upper-levels (above 500 mb) prior to formation by the objective method. However, as the trough moved to the lee-side of the Altai-Sayan mountains, the trough lowered to 500 mb and was initialized by the objective method.

McEver, Gregory David

1996-01-01T23:59:59.000Z

171

Pueblo Towers | Open Energy Information  

Open Energy Info (EERE)

Towers Towers Jump to: navigation, search Name Pueblo Towers Facility Pueblo Towers Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Vestas Towers Developer Vestas Towers Energy Purchaser Vestas Towers Location CO Coordinates 38.205834°, -104.588141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.205834,"lon":-104.588141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

NREL: Concentrating Solar Power Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. NREL collaborates with industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus on components R&D and systems analysis related to power tower and parabolic trough technologies: Collectors Receivers Power block Thermal energy storage Analysis. In addition, NREL has received funding through the following competitively awarded projects: 10-megawatt supercritical carbon dioxide (s-CO2) turbine test Near-blackbody, enclosed-particle receiver integrated with a

173

A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna  

E-Print Network (OSTI)

Trough waveguides (TWG) have been utilized in a variety of radio frequency (RF) and other related applications including radar, the treatment of hypothermia and in the generation of plasmas. Perturbing the guided wave in these structures with blocks, rods, dielectrics, and other structures can create reconfigurable periodic line sources. These trough waveguide antennas (TWA) are then capable of providing both fixedfrequency and frequency-dependent beam steering. This was originally performed using electro-mechanical “cam-and-gear” mechanisms. Previous work related to the excitation of TWG and the performance of TWA topologies are limited when compared to more common antenna designs, yet they possess many desirable features that can be exploited in a modern system. This thesis will examines an S-band rectangular-to-trough waveguide transition and trough guide antenna that has been designed for broadband reconfigurable antenna applications considering as well the airflow characteristics for sensing applications. The design, fabrication, and electromagnetic performance (mode conversion, impedance matching, and antenna performance) are discussed, including the use of metallic cantilever perturbations placed along the troughguide sidewalls that are designed to provide improved impedance matching when steering the beam from the backward quadrant through broadside, towards the forward quadrant. Impedance matching techniques such as use of circular holes at the edge of each actuated cantilever are used to reduce power reflections and provide a low voltage standing wave ratio (VSWR) along the S-band. Finite element simulations will provide a demonstration of the airflow and turbulence characteristics throughout the entire structure, where the metallic cantilevers are used to manipulate the flow of air, to distribute it across the surfaces of the structure better and improve its potential for sensing operations.

Loizou, Loizos

2010-12-01T23:59:59.000Z

174

Abstract On the Automorphism Tower  

E-Print Network (OSTI)

In this thesis I study the automorphism tower of free nilpotent groups. Our main tool in studying the automorphism tower is to embed every group as a lattice in some Lie group. Using known rigidity results the automorphism group of the discrete group can be embedded into the automorphism group of the Lie group. This allows me to lift the description of the derivation tower of the free nilpotent Lie algebra to obtain information about the automorphism tower of the free nilpotent group. The main result in this thesis states that the automorphism tower of the free nilpotent group ?(n, d) on n generators and nilpotency class d, stabilizes after finitely many steps. If the nilpotency class is small compared to the number of generators we have that the height of the automorphism tower is at most

Of Free Nilpotent Groups; Martin Dimitrov Kassabov

2003-01-01T23:59:59.000Z

175

Experimental Investigation of the Padding Tower for Air Dehumidifier  

E-Print Network (OSTI)

Air conditioning with all fresh air is founded on the principle of dehumidifying by liquid desiccant. It has the characteristics of being clean, power-saving, easy to operate, and requiring low-grade heat. It is suitable for applying waste heat, and solar power as the heat source for regeneration. Hence, this system has a great latent potential for energy savings and environmental protection. The system chooses the padding tower as a dehumidifier and regenerator, which are often used in petrochemical industry. The system chooses a padding tower as a dehumidifier, and LiCl-Water as a liquid desiccant. The vapor in the air is absorbed by the spray of the LiCl solution, and then the absorbed vapor will be released by heating the absorbent. These processes form the circle of absorptive refrigeration operating in atmospheric pressure. This paper describes studies on the theory and experiment of the padding tower of the dehumidifying air conditioning, including selecting different padding and measuring the speed of the air flow and the solution flow and the pressure drop between the layers of the padding. The experimental and computational results indicate that the design parameters of the padding tower significantly influence the characteristics of the liquid desiccant air conditioning. Of these design parameters, the framework of the padding tower, ratio of the air and the concentration of the inlet solution is largest through the tower, the temperature and effects of the dehumidifying capability of the tower.

Wang, J.; Liu, J.; Li, C.; Zhang, G.; An, S.

2006-01-01T23:59:59.000Z

176

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

Loving care is paid to the compressors, condensers, and computer programs of refrigeration systems. When problems arise, operator: run around in circles with expensive "fixes", but historically ignore the poor orphan, the cooling tower perched on the roof or located somewhere in the backyard. When the cooling water is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. Cooling Towers: 1) . . . are just as important a link in the chain as the other equipment, 2) ... are an important source of energy conservation, 3) ... can be big money makers, and 4 ) .. . operators should be aware of the potential of maximizing cold water. Most towers designed over 20 years ago were inefficiently engineered due to cheap power and the "low bidder" syndrome. Operating energy costs were ignored and purchasing criteria was to award the contract to the lowest bidder. This paper investigates internal elements of typical towers, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation.

Burger, R.

1985-01-01T23:59:59.000Z

177

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

Loving care is paid to the compressors, condensers, and computer programs of refrigeration and air conditioning systems. When problems arise, operators and engineers run around in circles with expensive "fixes" , but historically ignore the poor orphan of the system, the cooling tower perched on the roof or located somewhere in the backyard. When cooling water is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. Cooling towers: 1) are just as important a link in the chain as the other equipment; 2) are an important source of energy conservation; 3) can be big money makers; 4) operators should be aware of the potential of maximising cold water. Most towers were designed over 20 years ago and were inefficiently engineered due to cheap power and the "low bidder gets the sale" syndrome. Operating energy costs were ignored and purchasing criteria was to award the contract to the lowest bidder. All too often the low bidder - even though some of the most respected firms were involved - cut thermal corners for the sale. This paper investigates the internal elements of the typical types of cooling towers currently used, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation. Hard before and after statistics of costs and profits obtained through optimization of colder water by engineered thermal upgrading will be discussed. Salient points will be reenforced with on-the-job, hands-on, slides and illustrations.

Burger, R.

1987-09-01T23:59:59.000Z

178

Seismic analysis of lattice towers.  

E-Print Network (OSTI)

??In the absence of specific guidelines for the seismic analysis of self-supporting telecommunication towers, designers may be tempted to apply simplified building code approaches to… (more)

Khedr, Mohamed Abdel Halim.

1998-01-01T23:59:59.000Z

179

Laboratoire de Conception de Systmes Mcaniques Gnie mcanique  

E-Print Network (OSTI)

two existing technologies, namely a tower and a parabolic trough power plant and to find out whether-economic optimization of a combined trough-tower solar power plant Author Jorge López Moreno Supervisor Prof. Dr. Daniel-Objective Optimization Trough Power Plant Model Tower Power Plant Model Results & Conclusions The tower power plant model

Lausanne, Ecole Polytechnique Fédérale de

180

Use of nanofiltration to reduce cooling tower water usage.  

SciTech Connect

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Use of nanofiltration to reduce cooling tower water consumption.  

Science Conference Proceedings (OSTI)

Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

Altman, Susan Jeanne; Ciferno, Jared

2010-10-01T23:59:59.000Z

182

Update: Cooling tower and spray pond technology  

SciTech Connect

The 9th Cooling Tower and Spray Pond Symposium, under the auspices of the International Association for Hydraulic Research, took place at the von Karman Institute for Fluid Dynamics, Belgium, in September 1994. Technical topics discussed included cooling system design, performance, operation, environmental effects, modeling and components. Symposium proceedings will not be published. However, information of primary interest to staffs of power plants in the United States is summarized in this article.

Bartz, J.A.

1995-05-01T23:59:59.000Z

183

FLORIDA TOWER FOOTPRINT EXPERIMENTS  

SciTech Connect

The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

2007-01-01T23:59:59.000Z

184

Fabrication of trough-shaped solar collectors  

SciTech Connect

There is provided a radiant energy concentration and collection device formed of a one-piece thin-walled plastic substrate including a plurality of nonimaging troughs with certain metallized surfaces of the substrate serving as reflective side walls for each trough. The one-piece plastic substrate is provided with a seating surface at the bottom of each trough which conforms to the shape of an energy receiver to be seated therein.

Schertz, William W. (Batavia, IL)

1978-01-01T23:59:59.000Z

185

Advanced photovoltaic-trough development  

DOE Green Energy (OSTI)

The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

Spencer, R.; Yasuda, K.; Merson, B.

1982-04-01T23:59:59.000Z

186

Flux Sampling Errors for Aircraft and Towers  

Science Conference Proceedings (OSTI)

Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower ...

L. Mahrt

1998-04-01T23:59:59.000Z

187

Energy 101: Concentrating Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Below is the text version for the Energy 101: Concentrating Solar Power video. The video opens with the words "Energy 101: Concentrating Solar Power." OK. Take the natural heat from the sun, reflect it against a mirror, focus all of that heat on one area, send it through a power system, and you've got a renewable way of making electricity. It's called concentrating solar power, or CSP. Caption: Concentrating Solar Power (CSP): Focuses the sun's heat to make steam and electricity. Now, there are many types of CSP technologies. Towers, dishes, linear mirrors, and troughs. The video goes through a quick panorama of several different types, and several different views, of all of the different types of CSP. Finally, it

188

NREL: TroughNet - Industry Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

the solar energy industry that partner with the U.S. Department of Energy's SunLab on parabolic trough technology research, development, and deployment efforts. Industry Partner...

189

Thermal performance of cooling towers  

SciTech Connect

Wet cooling towers are often used in HVAC applications to reject heat to the atmosphere. Heat rejection is accomplished within the tower by heat and mass transfer between hot water droplets and ambient air. These heat and mass transfer processes and the resulting coefficient of performance are often misunderstood and misinterpreted. To demystify these concepts, the heat and mass transfer exchange at the water droplet level are reviewed. This is followed by an analysis of an idealized spray-type tower to show how cooling tower performance is affected by fill height, water retention time, and air and water mass flow rates. Finally, the so-called coefficient of performance of cooling towers is examined.

Bernier, M.A. [Ecole Polytechnique de Montreal, Quebec (Canada)

1995-04-01T23:59:59.000Z

190

Central receiver solar thermal power system, Phase 1. Pilot plant cost and commercial plant cost and performance preliminary design report. [150 MW commercial tower focus plant and 10 MW pilot plant  

DOE Green Energy (OSTI)

Detailed cost and performance data for the 10 MWe Pilot Plant and the 150 MWe Commercial Plant are given. The Commercial Plant consists of 15 integrated collector - receiver modules. Each module contains 1325 heliostats and an internally mounted steam-generating receiver on a steel tower with an aperture height of 90 M. The Pilot Plant consists of one full-scale collector - receiver module. The two-stage sensible heat storage system utilizes a heat transfer salt medium and a hydrocarbon oil storage medium. The electric power generation system uses a conventional steam turbine-generator. The Pilot Plant is one module of the Commercial Plant, providing for one-to-one scaling in the most critical areas. (WHK)

None

1977-01-01T23:59:59.000Z

191

Theoretical analysis of natural-convection towers for solar-energy conversion  

DOE Green Energy (OSTI)

A theoretical study of solar-powered natural convection tower (chimney) performance is presented. Both heated and cooled towers are analyzed, the latter using evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmospheric ideally approaches the Carnot efficiency limit of approx. 3.4%/km(1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. 2.75%/km(0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important for cooled natural convection towers.

Lasier, D.D.; Jacobs, E.W.

1983-05-01T23:59:59.000Z

192

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

193

Definition: Parabolic trough | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Parabolic trough Jump to: navigation, search Dictionary.png Parabolic trough A solar energy conversion device that uses a trough covered with a highly reflective surface to focus sunlight onto a linear absorber containing a working fluid that can be used to spin a turbine for electricity generation; with a single-axis sun-tracking system, the configuration of a parabolic trough can track the sun from east to west during the day.[1][2][3] View on Wikipedia Wikipedia Definition A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The energy of sunlight which enters the

194

A novel power block for CSP systems  

SciTech Connect

Concentrating Solar Thermal Power (CSP) and in particular parabolic trough, is a proven large-scale solar power technology. However, CSP cost is not yet competitive with conventional alternatives unless subsidized. Current CSP plants typically include a condensing steam cycle power block which was preferably designed for a continuous operation and higher operating conditions and therefore, limits the overall plant cost effectiveness and deployment. The drawbacks of this power block are as follows: (i) no power generation during low insolation periods (ii) expensive, large condenser (typically water cooled) due to the poor extracted steam properties (high specific volume, sub-atmospheric pressure) and (iii) high installation and operation costs. In the current study, a different power block scheme is proposed to eliminate these obstacles. This power block includes a top Rankine cycle with a back pressure steam turbine and a bottoming Kalina cycle comprising another back pressure turbine and using ammonia-water mixture as a working fluid. The bottoming (moderate temperature) cycle allows power production during low insolation periods. Because of the superior ammonia-water vapor properties, the condensing system requirements are much less demanding and the operation costs are lowered. Accordingly, air cooled condensers can be used with lower economical penalty. Another advantage is that back pressure steam turbines have a less complex design than condensing steam turbines which make their costs lower. All of these improvements could make the combined cycle unit more cost effective. This unit can be applicable in both parabolic trough and central receiver (solar tower) plants. The potential advantage of the new power block is illustrated by a detailed techno-economical analysis of two 50 MW parabolic trough power plants, comparing between the standard and the novel power block. The results indicate that the proposed plant suggests a 4-11% electricity cost saving. (author)

Mittelman, Gur [ASP Ltd., Advanced Solar Power, Industrial Zone, Be'er Tuviyya (Israel); Epstein, Michael [Solar Research Facilities Unit, Weizmann Institute of Science (Israel)

2010-10-15T23:59:59.000Z

195

Hydrogen Removal From Heating Oil of a Parabolic Trough ...  

Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life of the Trough and its Components A Method to Selectively Remove & Measure Hydrogen Gas from ...

196

Parabolic Trough VSHOT Optical Characterization in 2005-2006 (Presentation)  

DOE Green Energy (OSTI)

This presentation regarding parabolic trough VSHOT optical characterization describes trough deployment and operation phases including: development, manufacture/installation, and maintenance/operation.

Wendelin, T.

2006-02-01T23:59:59.000Z

197

NREL: Concentrating Solar Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's concentrating solar power (CSP) projects focus on components R&D and systems analysis related to power tower and parabolic trough technologies. We support the U.S. Department of Energy (DOE) in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar power research projects. Through a competitive process, NREL was selected to lead the following projects: Novel Components to Overcome Existing Barriers-Particle Receiver Integrated with a Fluidized Bed Thermodynamic Cycle to Revolutionize CSP Systems-10-Megawatt Supercritical Carbon Dioxide (s-CO2) Turbine Test Nanomaterials for thermal energy storage in CSP plants In addition to these efforts, NREL is also a key partner on two other

198

Predict particle collection in spray towers  

SciTech Connect

Spray tower wet scrubbers are used for control of particulates (as well as gaseous pollutants). The author has found that in cocurrent spray scrubbers, the most important parameter in determining particle collection efficiency is inlet dust particle size, followed by (in decreasing order of importance) gas velocity, collector droplet size, liquid-to-gas ratio, and length of scrubber. In countercurrent scrubbers, the most important parameters are collector droplet size, liquid-to-gas ratio, length of scrubber, and gas velocity. Note that some of these factors are directly related to collection, and some are related indirectly. This article provides equations, based on theoretical considerations and empirical data, for predicting particle collection efficiencies. The parameter ranges covered are typical of those encountered in the practical operation of conventional spray towers that use a ``cool`` (or cooled) inlet gas stream, so the equations are applicable to many industrial spray tower systems. The results are limited based on the ranges of the parameters evaluated, and while it may be possible to extrapolate beyond that, this has not been verified. (The initial model was for a flue-gas desulfurization system at a large power station that requires both particulate removal and SO{sub 2} absorption.)

Hesketh, H.E. [Southern Illinois Univ., Carbondale, IL (United States)

1995-10-01T23:59:59.000Z

199

Hybrid Tower Study: Volume 3: Phase 3 -- Scale Model Development and Full-Scale Tests  

Science Conference Proceedings (OSTI)

Hybrid towers maximize the power transmission efficiency of the available space whenever there is the need to have both ac and dc lines in the same corridor. This study developed calculation techniques and design rules for the placement of conductors energized with HVAC and HVDC circuits on the same towers. Significantly, the study did not identify any hybrid interactions that would prevent the successful operation of a hybrid corridor or hybrid tower transmission line.

1994-06-29T23:59:59.000Z

200

Cooling Towers, Energy Conservation Machines  

E-Print Network (OSTI)

Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water returning from the cooling tower, greater chemical product volume can be condensed and less energy is required to run compressors. This paper will discuss two case histories and the rapid cost-effective savings thereby accruing through retrofit.

Burger, R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy 101: Concentrating Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How does it work? Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that's collected as heat. Some of the heat is used to produce electricity immediately. The rest is stored so that the generators can provide power for homes and businesses long after the sun has set Whether capturing the sun's heat from towers, dishes, or troughs, concentrating solar power (CSP) technology is making exciting advances. So exciting, in fact, that the federal government is looking at more than 25 square miles in Nevada to demonstrate new CSP technology research.

202

Tower Temperature and Humidity Sensors (TWR) Handbook  

Science Conference Proceedings (OSTI)

Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

Cook, DR

2010-02-01T23:59:59.000Z

203

Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint  

SciTech Connect

Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

Wagner, M. J.; Blair, N.; Dobos, A.

2010-10-01T23:59:59.000Z

204

Worker health and safety in solar thermal power systems. IV. Routine failure hazards  

DOE Green Energy (OSTI)

Routine failure events in selected solar thermal power system designs are examined, and their rates of occurrence estimated. The results are used to compare and rank the systems considered. Modules of 1 to 100 MWe are developed based on reference or other near-term designs. Technologies used include parabolic trough, parabolic dish, and central tower focusing; central and distributed power generation; and proximate and independent siting of power modules. Component counts and failure rates estimated include heat transfer system leaks, sensor failures, and mechanical and electrical component failures, such as pumps, motors, and wire and cable. Depending on the technology chosen, leak rates can approach 1000 per year per 100 MWe system capacity, while component failure rates can be several times that level. Within categories of failures, the various technologies can have rates differing by a factor of 1000 or more. A uniform weighting for the consequences of the various failure types is proposed. Under this weighting, central tower systems are most favored, followed by parabolic trough, parabolic dishes with dispersed power generation, and parabolic dishes with central power generation. This weighting does not account for possible variations in the technologies. A sensitivity analysis is used to bound the relative hazards of the various failure events required to invert one or more of the system rankings.

Ullman, A.Z.; Sokolow, B.B.; Hill, J.; Meunier, G.; Busick, H. III

1979-09-01T23:59:59.000Z

205

Trough Receiver Heat Loss Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

2006-02-01T23:59:59.000Z

206

Lite Trough LLC | Open Energy Information  

Open Energy Info (EERE)

Lite Trough LLC Lite Trough LLC Jump to: navigation, search Name Lite Trough LLC Place Milford, Connecticut Zip 6460 Sector Solar Product Developing a parabolic trough system for Solar Thermal Electricity Generation (STEG). Coordinates 38.026545°, -77.371139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.026545,"lon":-77.371139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Oriented spray-assisted cooling tower  

Science Conference Proceedings (OSTI)

Apparatus useful for heat exchange by evaporative cooling when employed in conjunction with a conventional cooling tower. The arrangement includes a header pipe which is used to divert a portion of the water in the cooling tower supply conduit up stream of the cooling tower to a multiplicity of vertical pipes and spray nozzles which are evenly spaced external to the cooling tower so as to produce a uniform spray pattern oriented toward the central axis of the cooling tower and thereby induce an air flow into the cooling tower which is greater than otherwise achieved. By spraying the water to be cooled towards the cooling tower in a region external to the cooling tower in a manner such that the spray falls just short of the cooling tower basin, the spray does not interfere with the operation of the cooling tower, proper, and the-maximum increase in air velocity is achieved just above the cooling tower basin where it is most effective. The sprayed water lands on a concrete or asphalt apron which extends from the header pipe to the cooling tower basin and is gently sloped towards the cooling tower basin such that the sprayed water drains into the basin. By diverting a portion of the water to be cooled to a multiplicity of sprays external to the cooling tower, thermal performance is improved. 4 figs.

Bowman, C.F.

1995-04-18T23:59:59.000Z

208

FILES- COOLING TOWER PLUME MODELING  

E-Print Network (OSTI)

Ladies and Gentlemen:? In the referenced letter, Progress Energy Carolinas, Inc. (PEC) noted that the input and output' files for the modeling analysis for cooling tower plumes would be provided under a separate cover. due to the requirements for native file submittal (see NRC RAI # 5.3.3.1-1 and PGN RAI # H-295). The purpose of this letter is to submit these calculation native files. The supplemental information contained in the files on the attached CD is provided to support the NRC's review of the Shearon Harris Nuclear Power Plant Units 2 and 3 (HAR) Environmental Report (ER), but does not comply with the requirements for electronic submission in the NRC Guidance Document. The NRC staff requested the files be submitted in their native formats, required for utilization in the software employed to support the ER development. As discussed with the NRC's environmental project manager responsible for review of the HAR ER, the data provided on the attached CD are of a nature that is not easily convertible to PDF output files. Furthermore, PEC understands that converting the information to PDF output files; would not serve the underlying purpose of the submittal; i.e., to provide the raw, unprocessed data to enable reviewers to evaluate software used in the HAR application. Enclosure 1 provides a list of folders with the requested data files that are included on the attached CD (Attachment 5.3.3.1-1 SACTI Native Files). If you have any further questions, or need additional information, please contact Bob Kitchen at

Garry D. Mi Er

2009-01-01T23:59:59.000Z

209

October 2012 Approved Resource Management Plan  

E-Print Network (OSTI)

(clockwise from upper left): Solar Parabolic Trough (Source: Hosoya et al. 2008), Solar Power Tower). Reference citations are available in Chapter 1. Background photo: Parabolic trough facility from

Argonne National Laboratory

210

Mechanism of Hydrogen Formation in Solar Parabolic Trough Receivers  

SciTech Connect

Solar parabolic trough systems for electricity production are receiving renewed attention, and new solar plants are under construction to help meet the growing demands of the power market in the Western United States. The growing solar trough industry will rely on operating experience it has gained over the last two decades. Recently, researchers found that trough plants that use organic heat transfer fluids (HTF) such as Therminol VP-1 are experiencing significant heat losses in the receiver tubes. The cause has been traced back to the accumulation of excess hydrogen gas in the vacuum annulus that surrounds the steel receiver tube, thus compromising the thermal insulation of the receiver. The hydrogen gas is formed during the thermal decomposition of the organic HTF that circulates inside the receiver loop, and the installation of hydrogen getters inside the annulus has proven to be insufficient for controlling the hydrogen build-up over the lifetime of the receivers. This paper will provide an overview of the chemical literature dealing with the thermal decomposition of diphenyl oxide and biphenyl, the two constituents of Therminol VP-1.

Moens, L.; Blake, D. M.

2008-03-01T23:59:59.000Z

211

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Natural-Draft Dry-Cooling TowerPower-Generation SubsystemSubsystem Costs Cost a, b, Dry-Cooling Tower Costs c, II.Steam Wet-Cooling Tower Costs Turbine~Generator STORAGE UNIT

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

212

ARM - Campaign Instrument - aerosol-tower-eml  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaerosol-tower-eml Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : EML Tower based Aerosol...

213

Sorting in Patrick Geddes' Outlook Tower  

E-Print Network (OSTI)

i n g in P a t r i c k Outlook Tower Geddes' JÈ Joyce Barleythree months at the Outlook 'lower in Edinburgh, sorting theand services. • The Outlook Tower was a disused observatory

Earley, Joyce

1991-01-01T23:59:59.000Z

214

GreenTower | Open Energy Information  

Open Energy Info (EERE)

GreenTower Jump to: navigation, search Name GreenTower Place Haiger 6, Germany Zip 35708 Sector Solar Product Developer of a solar chimney technology, with greenhouses for food...

215

NREL: TroughNet - Parabolic Trough Solar Field Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

of these collectors-made from galvanized steel-makes them suitable for commercial power plant applications. And they have proven to be highly reliable. For example, most of the...

216

NREL: TroughNet - Parabolic Trough Technology Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

single-tank thermocline storage system, concrete thermal energy storage, or phase-change thermal energy storage. Power Plant Technologies R&D activities have focused on the best...

217

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro-drive eliminates these items from the drive train and puts the same electric motor HP at ground level close coupled to a hydraulic pump, filters, and oil reservoir. Hydraulic lines bring oil pressure to the hydraulic motor, which is more than 75% less weight than comparable gear boxes and presents a smooth practically trouble free performance. In this three cell installation, the original 75 horsepower motors and 18’ diameter fans were cooling a total of 14,000 GPM which were CTI tested and 74.7% of capability. The upgrading and retrofit consisted of installing at ground level 100 horse power motors, 22’ diameter fans, 14’ high velocity recovery fan cylinders, “V” PVC splash bars, and high efficiency cellular drift eliminators. Testing after completion indicated a 92% tower now circulating 21,000 GPM instead of the original 14,000.

Dickerson, J. A.

1987-09-01T23:59:59.000Z

218

Some Turbulence and Diffusion Parameter Estimates within Cooling Tower Plumes Derived from Sodar Data  

Science Conference Proceedings (OSTI)

Temperature and velocity fluctuations within a cooling tower plume in stable conditions at the Keystone power plant in Pennsylvania have been measured by use of a calibrated sodar. Monostatic and bistatic systems probed the plume at several ...

R. L. Coulter; K. H. Underwood

1980-12-01T23:59:59.000Z

219

Hydrogen Storage in Wind Turbine Towers  

DOE Green Energy (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

220

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

molten salt storage for parabolic trough solar power plants.Future Costs for Parabolic Trough and Power Tower Systems inoften based on solar trough or parabolic dish technology) to

Mills, Andrew

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cooling Tower Inspection with Scuba  

E-Print Network (OSTI)

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling tower pump suction basin was accomplished by diving into the basin using SCUBA gear. It was possible to see a build-up of debris on the pump suction basket strainers and on the floor of the sumps. Also, it was discovered that one of the four baskets had been installed incorrectly. Photographs of the basket strainers were taken to aid in describing their exact condition. With the aid of SCUBA it was possible to sufficiently clean the pump sumps so that costly downtime was avoided. Likewise, using this technique, steps were taken to greatly reduce the chance for further contamination of the circulating cooling water system.

Brenner, W.

1982-01-01T23:59:59.000Z

222

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parabolic-trough solar water heating is Parabolic-trough solar water heating is a well-proven technology that directly sub- stitutes renewable energy for conventional energy in water heating. Parabolic-trough collectors can also drive absorption cooling systems or other equipment that runs off a thermal load. There is considerable potential for using these technologies at Federal facil- ities in the Southwestern United States or other areas with high direct-beam solar radi- ation. Facilities such as jails, hospitals, and barracks that consistently use large volumes of hot water are particularly good candi- dates. Use of parabolic-trough systems helps Federal facilities comply with Executive Order 12902's directive to reduce energy use by 30% by 2005 and advance other efforts to get the Federal government to set a good

223

hal-00177601,version2-30Oct2007 A closed parabolic trough solar collector  

E-Print Network (OSTI)

issues that must be dealt with. The most important one is the receiver tube that absorbs the solar energy partially evacuated tube that is filled by a low-conductivity gas. While reducing the cost, this design also of parabolic trough for solar power plants is the one developed by the now defunct Luz during 1980s. The common

Paris-Sud XI, Université de

224

Studies on Mathematical Models for Characterizing Plume and Drift Behavior from Cooling Towers, Volume 2: Mathematical Model for Sin gle Source (Single Tower) Cooling Tower Plume Dispersion  

Science Conference Proceedings (OSTI)

Presents an improved model for plumes from single natural-draft cooling towers. This model is expanded to treat multiple tower plumes in Volume 4.

1981-01-01T23:59:59.000Z

225

Failure of Cooling Tower West Virginia 1978  

Science Conference Proceedings (OSTI)

... The Willow Island disaster was the collapse of a cooling tower under ... In response to this request, NBS carried out field, laboratory and analytical ...

2011-08-12T23:59:59.000Z

226

Upcoming Funding Opportunity for Tower Manufacturing and ...  

... and Lower Cost of Energy" intends to support partnerships leading to innovative designs and processes for wind turbine tower manufacturing and ...

227

Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market  

Open Energy Info (EERE)

Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Focus Area: Solar Topics: Market Analysis Website: www.leonardo-energy.org/webinar-drivers-and-barriers-current-csp-marke Equivalent URI: cleanenergysolutions.org/content/drivers-and-barriers-current-concentr Language: English Policies: Regulations Regulations: Mandates/Targets This video teaches users about the four major types of concentrating solar power technologies (CSP): parabolic trough, tower concentrators, linear Fresnel lenses and dish engine systems. It also provides an overview of the trends in the market and research that should be performed in order to make

228

NREL: TroughNet - Email Updates - Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Updates - Subscribe Email Updates - Subscribe Subscribe to receive email updates about parabolic trough technology, including: Status on R&D and deployment projects Workshops and other events New publications New data and resources. Please provide and submit the following information. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

229

Experimental parabolic trough collector performance characterization  

DOE Green Energy (OSTI)

Experimental data from the Collector Module Test Facility (CMTF) at Sandia National Laboratories, Albuquerque, are used to develop a collector performance model and characterize three parabolic trough solar collectors. The independent variables used in the model are selected and fitted to the experimental data using a multiple linear regression technique. The collector model developed accounts for optical performance, including incident angle effects and thermal losses, both linear and non-linear.

Lukens, L.L.

1981-05-01T23:59:59.000Z

230

Siting Utility-Scale Concentrating Solar Power Projects  

DOE Green Energy (OSTI)

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

231

NREL: Concentrating Solar Power Research - Collector R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Collector R&D Collector R&D Featured Resource Learn more about NREL's capabilities in collector/receiver characterization. Collector research at NREL focuses on developing and testing the next generation of concentrating solar power (CSP) collectors that reduce delivered electricity costs by 50%. NREL's work involves improved reflector development, optical model development, optical measurement techniques, testing standards, and reliability assessments. NREL also works to upgrade and adapt optical tools to enhance laboratory testing capabilities. CSP collectors capture the sun's energy with mirrors that reflect and focus the sunlight onto a receiver, creating the heat that is used to generate electricity. Opportunities and Potential Impact Collectors-whether for parabolic trough, power tower, or dish

232

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Tower Road Site in Aurora, Colorado. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Tower Road site in Aurora, Colorado, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

Van Geet, O.; Mosey, G.

2013-03-01T23:59:59.000Z

233

Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data  

DOE Green Energy (OSTI)

During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

Gay, G.T.

1982-03-01T23:59:59.000Z

234

Current and Future Economics of Parabolic Trough Technology  

Science Conference Proceedings (OSTI)

Solar energy is the largest energy resource on the planet. Unfortunately, it is largely untapped at present, in part because sunlight is a very diffuse energy source. Concentrating solar power (CSP) systems use low cost reflectors to concentrate the sun's energy to allow it to be used more effectively. Concentrating solar power systems are also well suited for large solar power plants that can be connected into the existing utility infrastructure. These two facts mean that CSP systems can be used to make a meaningful difference in energy supply in a relatively short period. CSP plants are best suited for the arid climates in the Southwestern United States, Northern Mexico, and many desert regions around the globe. A recent Western Governors' Association siting study [1] found that the solar potential in the U.S. Southwest is at least 4 times the total U.S. electric demand even after eliminating urban areas, environmentally sensitive areas, and all regions with a ground slope greater than 1%.While it is currently not practical to power the whole county from the desert southwest, only a small portion of this area is needed to make a substantial contribution to future U.S. electric needs. Many of the best sites are near existing high-voltage transmission lines and close to major power load centers in the Southwest (Los Angeles, Las Vegas, and Phoenix). In addition, the power provided by CSP technologies has strong coincidence with peak electric demand, especially in the Southwest where peak demand corresponds in large part to air conditioning loads. Parabolic troughs currently represent the most cost-effective CSP technology for developing large utility-scale solar electric power systems. These systems are also one of the most mature solar technologies, with commercial utility-scale plants that have been operating for over 20 years. In addition, substantial improvements have been made to the technology in recent years including improved efficiency and the addition of thermal energy storage. The main issue for parabolic trough technology is that the cost of electricity is still higher than the cost of electricity from conventional natural gas-fired power plants. Although higher natural gas prices are helping to substantially reduce the difference between the cost of electricity from solar and natural gas plants, in the near-term increased incentives such as the 30% Investment Tax Credit (ITC) are needed to make CSP technology approach competitiveness with natural gas power on a financial basis. In the longer term, additional reductions in the cost of the technology will be necessary. This paper looks at the near-term potential for parabolic trough technology to compete with conventional fossil power resources in the firm, intermediate load power market and at the longer term potential to compete in the baseload power market. The paper will consider the potential impact of a reduced carbon emissions future.

Price, H.; Mehos, M.; Kutscher, C.; Blair, N.

2007-01-01T23:59:59.000Z

235

WIND DATA REPORT WBZ Tower, Hull, MA  

E-Print Network (OSTI)

WIND DATA REPORT WBZ Tower, Hull, MA 9/1/06-11/30/06 Prepared for Department of Energy (DOE) Golden the closest tower leg The data from the SecondWind Nomad2 logger is emailed to the Renewable Energy Research Energy Research Laboratory Page 10 University of Massachusetts, Amherst Amherst, MA 01003 #12;Wind Speed

Massachusetts at Amherst, University of

236

SunShot Initiative: CSP Tower Air Brayton Combustor  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Tower Air Brayton Combustor to someone by E-mail Share SunShot Initiative: CSP Tower Air Brayton Combustor on Facebook Tweet about SunShot Initiative: CSP Tower Air Brayton...

237

Wind turbine tower for storing hydrogen and energy  

DOE Patents (OSTI)

A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

Fingersh, Lee Jay (Westminster, CO)

2008-12-30T23:59:59.000Z

238

Composite Tower Solutions | Open Energy Information  

Open Energy Info (EERE)

Solutions Solutions Jump to: navigation, search Name Composite Tower Solutions Place Provo, Utah Zip 84604 Sector Wind energy Product Composite Tower Solutions manufactures equipment for wind resource assessment needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates 40.233765°, -111.668509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.233765,"lon":-111.668509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Cooling Tower Report, October 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 More Documents & Publications...

240

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building a Better Transmission Tower | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

software that helped them build cheaper but sturdier towers for new high-voltage transmission lines. Their new towers are stronger but use less steel. They better...

242

Microsoft Word - Final_NineCanyon_CommunicationTowerInstall_CX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Kelly Gardner, PMP Project Manager, TEP-TPP-1 Proposed Action: Nine Canyon Substation Communication Tower Addition: 331800 McNary Sub Bus Tie Relay Replacements and 310427 McNary-Badger Canyon Transfer Trip Install Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 - Additions and modifications to transmission facilities Location: Kennewick, Benton County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install a 60-foot communications tower and associated communication equipment at the Benton County Public Utility District's Nine Canyon Substation in Benton County, Washington. The upgrade would involve replacing the

243

BREN Tower comes tumbling down as world record is set | National Nuclear  

National Nuclear Security Administration (NNSA)

BREN Tower comes tumbling down as world record is set | National Nuclear BREN Tower comes tumbling down as world record is set | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > BREN Tower comes tumbling down as world ... BREN Tower comes tumbling down as world record is set Posted By Office of Public Affairs NNSA Blog Some 345 tons of steel came tumbling down yesterday as a world

244

BREN Tower comes tumbling down as world record is set | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

BREN Tower comes tumbling down as world record is set | National Nuclear BREN Tower comes tumbling down as world record is set | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > BREN Tower comes tumbling down as world ... BREN Tower comes tumbling down as world record is set Posted By Office of Public Affairs NNSA Blog Some 345 tons of steel came tumbling down yesterday as a world

245

Alignment method for parabolic trough solar concentrators  

DOE Patents (OSTI)

A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

Diver, Richard B. (Albuquerque, NM)

2010-02-23T23:59:59.000Z

246

Best Management Practice: Cooling Tower Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management October 8, 2013 - 9:39am Addthis Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower primarily through evaporation. Therefore, by design, cooling towers consume significant amounts of water. Overview The thermal efficiency and longevity of the cooling tower and equipment used to cool depend on the proper management of water recirculated through the tower. Water leaves a cooling tower system in any one of four ways: Evaporation: This is the primary function of the tower and is the method that transfers heat from the cooling tower system to the

247

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

248

Geophysical Study of the Salton Trough of Southern California...  

Open Energy Info (EERE)

1964 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geophysical Study of the Salton Trough of Southern California Citation Shawn...

249

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis quantifies the relative merit of various technological advancements in improving the long-term average performance of parabolic trough concentrating collectors and presents them graphically as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. Substantial annual energy gains (exceeding 50% at 350/sup 0/C) are shown to be attainable with improved parabolic troughs.

Gee, R.; Gaul, H.; Kearney, D.; Rabl, A.

1979-10-01T23:59:59.000Z

250

The Tower Shielding Facility: Its glorious past  

Science Conference Proceedings (OSTI)

The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

Muckenthaler, F.J.

1997-05-07T23:59:59.000Z

251

Projective preservation : reframing Rudolph's Tower for Boston  

E-Print Network (OSTI)

By 2012, the fate of Paul Rudolph's tower in downtown Boston has been in question for years while a vision of a denser city calls for its demolition. Projected development on the site currently argues that to move forward, ...

Turner, Jessica K

2012-01-01T23:59:59.000Z

252

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

253

Cooling Towers--Energy Conservation Strategies  

E-Print Network (OSTI)

A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers, and other associates heat rejection equipment.

Matson, J.

1991-06-01T23:59:59.000Z

254

Parabolic-Trough Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Parabolic-Trough Technology Roadmap Parabolic-Trough Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Parabolic-Trough Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/csp/troughnet/pdfs/24748.pdf References: Parabolic-Trough Technology Roadmap[1] Overview "The working group reviewed the status of today's trough technologies, evaluated existing markets, identified potential future market opportunities, and developed a roadmap toward its vision of the industry's potential-including critical advancements needed over the long term to significantly reduce costs while further increasing

255

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network (OSTI)

Dry-Cooling TowerPower-Generation Subsystem Summary AnGas-Circulation Subsystem The Power-Generation Subsystem Theinsulating plant piping. power-generation heat exchangers.

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

256

Concentrating Solar Power: Energy from Mirrors  

DOE Green Energy (OSTI)

This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

Poole, L.

2001-02-27T23:59:59.000Z

257

Advanced Supercritical Carbon Dioxide Power Cycle Configurations for Use in Concentrating Solar Power Systems: Preprint  

DOE Green Energy (OSTI)

The research will characterize and evaluate advanced S-CO2 Brayton cycle power generation with a modular power tower CSP system.

Ma, Z.; Turchi, C. S.

2011-03-01T23:59:59.000Z

258

Energy Basics: Power Tower Systems for Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200...

259

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Cleanrooms: Cooling Tower and Condenser Water OptimizationCleanrooms: Cooling tower and condenser water optimization2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

260

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE))

Case study that summarizes the Wind Tower Systems and its Space Frame tower. Describes their new wind tower design and explains how DOE funding made this possible.

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

Efficient Cleanrooms: Cooling Tower and Condenser WaterEfficient Cleanrooms: Cooling tower and condenser water2 Cooling tower and condenser water

Xu, Tengfang

2005-01-01T23:59:59.000Z

262

Radio Towers Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Radio Towers Geothermal Area Radio Towers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Radio Towers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.03666667,"lon":-115.4566667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

New Environmental Science Division Report Provides Comprehensive...  

NLE Websites -- All DOE Office Websites (Extended Search)

There are several different types of solar energy technologies, including concentrating solar power (CSP) technologies, which include parabolic trough, power tower, and dish...

264

Program on Technology Innovation: Review of Advanced Cooling Tower Technologies with Reduced Cooled Water Temperature and Evaporatio  

Science Conference Proceedings (OSTI)

This report reviews current technologies and solutions for advanced cooling towers with reduced cooled water temperature and evaporation losses. This is the first report for the dew-point cooling tower fill development project, funded by the Electric Power Research Institute (EPRI) Program on Technology Innovation, Water Conservation program. It is prepared by the Gas Technology Institute (GTI).This review is based on a literature and patent survey; it summarizes advancements in cooling ...

2013-03-29T23:59:59.000Z

265

Parabolic Trough Receiver Heat Loss Testing (Poster)  

DOE Green Energy (OSTI)

Parabolic trough receivers, or heat collection elements (HCEs), absorb sunlight focused by the mirrors and transfer that thermal energy to a fluid flowing within them. Thje absorbing tube of these receivers typically operates around 400 C (752 F). HCE manufacturers prevent thermal loss from the absorbing tube to the environment by using sputtered selective Cermet coatings on the absorber and by surrounding the absorber with a glass-enclosed evacuated annulus. This work quantifies the heat loss of the Solel UVAC2 and Schott PTR70 HCEs. At 400 C, the HCEs perform similarly, losing about 400 W/m of HCE length. To put this in perspective, the incident beam radiation on a 5 m mirror aperture is about 4500 W/m, with about 75% of that energy ({approx} 3400 W/m) reaching the absorber surface. Of the 3400 W/m on the absorber, about 3000 W/m is absorbed into the working fluid while 400 W/m is lost to the environment.

Price, H.; Netter, J.; Bingham, C.; Kutscher, C.; Burkholder, F.; Brandemuehl, M.

2007-03-01T23:59:59.000Z

266

The West Coast Thermal Trough: Climatology and Synoptic Evolution  

Science Conference Proceedings (OSTI)

Although the West Coast thermal trough (WCTT) is the most important mesoscale feature over the U.S. west coast during the warm season, its initiation, evolution, and structure are not well understood. Originating in the southwest United States, ...

Matthew C. Brewer; Clifford F. Mass; Brian E. Potter

2012-12-01T23:59:59.000Z

267

Life History of Mobile Troughs in the Upper Westerlies  

Science Conference Proceedings (OSTI)

Increasing evidence indicates that surface cyclogenesis is predominantly a response to the approach of a preexisting trough at upper levels. A question then arises about the origin of the upper-level predecessor. As an initial approach to this ...

Frederick Sanders

1988-12-01T23:59:59.000Z

268

Composite Trough Evolution of Selected West Pacific Extratropical Cyclones  

Science Conference Proceedings (OSTI)

The observed vertical structures of the trough axes for 27 extratropical cyclones are presented. This study is motivated by results from a simple theoretical model. Two observing times during the cyclone life cycle are shown: prior to development ...

Richard Grotjahn

1996-07-01T23:59:59.000Z

269

New Ozone Measurement Systems for Autonomous Operation on Ocean Buoys and Towers  

Science Conference Proceedings (OSTI)

Two autonomous ozone measurement systems for use on ocean buoys and towers have been built and are discussed herein. They are based on low-power atmospheric ozone sensors from Physical Sciences Inc. (PSI) and 2B Technologies. The PSI sensor ...

E. J. Hintsa; G. P. Allsup; C. F. Eck; D. S. Hosom; M. J. Purcell; A. A. Roberts; D. R. Scott; E. R. Sholkovitz; W. T. Rawlins; P. A. Mulhall; K. Lightner; W. W. McMillan; J. Song; M. J. Newchurch

2004-07-01T23:59:59.000Z

270

Broadwind Energy Formerly Tower Tech Holdings | Open Energy Information  

Open Energy Info (EERE)

Broadwind Energy Formerly Tower Tech Holdings Broadwind Energy Formerly Tower Tech Holdings Jump to: navigation, search Name Broadwind Energy (Formerly Tower Tech Holdings) Place Manitowoc, Wisconsin Zip 54221-1957 Sector Wind energy Product US-based manufacturer of wind turbine towers, turbine assemblies such as nacelles, and monopiles. References Broadwind Energy (Formerly Tower Tech Holdings)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Broadwind Energy (Formerly Tower Tech Holdings) is a company located in Manitowoc, Wisconsin . References ↑ "Broadwind Energy (Formerly Tower Tech Holdings)" Retrieved from "http://en.openei.org/w/index.php?title=Broadwind_Energy_Formerly_Tower_Tech_Holdings&oldid=343059"

271

Wind Turbine Towers Establish New Height Standards and Reduce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy Case study that...

272

BOREAS SSA-YJP Tower Flux Data Revised  

NLE Websites -- All DOE Office Websites (Extended Search)

Tower Flux Data Revised A revised version of the BOREAS TF04 tower flux data is now available from the ORNL DAAC. Data providers have revised the data set entitled "BOREAS TF-04...

273

Untapped Energy Savings from Cooling Towers  

E-Print Network (OSTI)

A cooling tower is often an overlooked source of easy energy savings. As long as it's running not much thought is usually given to it, but when numbers are applied to how much a degree of colder water is worth it can become a valuable and ready source of energy and monetary savings. Many of these savings can come from simple maintenance or by changing the way the tower is operated. The more dramatic savings can come from changing to advanced fill concepts. Over our 40 years of working in the cooling tower industry we have measured the effects of doing simple maintenance, the effects of blocking air flow with seemingly good ideas like maintenance walkways, the effects of nearby heat sources, and what fill changes are likely to get. We have put numbers to what a degree is worth to a large petrochemical company so you can get an idea of the magnitude of what these sometimes simple changes are actually worth. Also, we've included a way to monitor your tower for changes in performance.

Phelps Jr., P.

2011-01-01T23:59:59.000Z

274

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2012 November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1 Transmission Tower Relocation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Multnomah County, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to relocate one transmission tower, located on private agricultural land, which has been damaged by farm equipment. Currently, tower 29/3 on BPA's Spring Creek - Wine Country No. 1 transmission line, resides on an agricultural access road that is bordered on both sides by active agricultural fields. This

275

Microsoft Word - CX-Marion and Sand Springs Substation Towers Revised.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KEC-4 KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Tripp Project Manager - TEP-CSB-1 Proposed Action: Marion and Sand Springs Substations Radio Tower Projects Budget Information: Work Orders 00243411 and 00243190; Task 3 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: Marion and Deschutes counties, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install new radio towers at the Marion Substation and Sand Springs Substation communication sites in Oregon. BPA must vacate radio frequencies in the 1710-1755MHz band to comply with a Federal law mandating reallocation of

276

Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study  

DOE Green Energy (OSTI)

As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

2011-01-01T23:59:59.000Z

277

PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

SciTech Connect

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2009-02-10T23:59:59.000Z

278

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar power (CSP) troughs in the central valley of California (Pricesolar combined heat and power with desalination Figure 2.7: Comparison of desalination plants; price

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

279

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

280

Wind Turbine Towers Establish New Height Standards and Reduce Cost of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Tower Systems to develop the Wind Tower Systems to develop the Space Frame tower, a new concept for wind turbine towers. Instead of a solid steel tube, the Space Frame tower consists of a highly optimized design of five custom-shaped legs and interlaced steel struts. With this design, Space Frame towers can support turbines at greater heights, yet weigh and cost less than traditional steel tube towers. Wind Tower Systems LLC (now

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Zoning for Small Wind: The Importance of Tower Height  

Wind Powering America (EERE)

1 1 Zoning for Small Wind: The Importance of Tower Height An ASES Small Wind Webinar Mick Sagrillo-Wisconsin's Focus on Energy © 2008 by Mick Sagrillo 2 Definitions: rotor L&S Tech. Assoc., Inc. Rotor = "collector" for a wind system 3 Definitions: wind * Wind = the 'fuel' * Wind has two 'components' - Quantity = wind speed (velocity or V) - Quality = 'clean' flowing wind 4 Quantity * = average annual wind speed * Climate, not weather * Akin to annual average sun hours for PV or head and flow for hydro * Wind speed increases with height above ground... * ...Due to diminished ground drag (friction) 5 Power in the wind V³ * Wind speed = V * Power available is proportional to wind speed x wind speed x wind speed - or P ~ V x V x V - or P ~ V ³ * Therefore, 10% V = 33% P * Lesson !

282

A Regenerative High-Rise Tower in Shreveport, Louisiana  

E-Print Network (OSTI)

Zero Net Energy Buildings are increasingly being designed and constructed in response to the demand for sustainable buildings. But, we must now go beyond merely sustaining our environment for future generations we must provide regenerative designs that restore our natural environment. This paper will document the design of a regenerative high-rise tower in Shreveport, Louisiana, which will serve as a facility to train individuals in a non-profit organization’s renewal strategies and demonstrate by example the pedagogy of regenerative design. The 16-story structure — built in the 1950s and named the Petroleum Tower, reflecting the commodity that then ruled the local economy — was vacant and asbestos-laden when given to the non-profit Community Renewal International (CRI) in 2001. In 2006, funded by a grant from the U.S. Environmental Protection Agency, workers removed the asbestos. Through a follow up grant from the U.S. Department of Energy to support the design process of a new CRI headquarters building, the University of Texas at Austin School of Architecture completed architectural design studies for the building renewal. The principles of this new design include: day lighting, envelope configuration, building integrated photovoltaic systems, green surfaces, ventilation strategies, advanced mechanical cooling systems, regenerative elevator systems, energy management systems, water harvesting, grey water systems, trigeneration systems and a combined heating, hot water and power biodiesel plant.

Garrison, M.

2010-08-01T23:59:59.000Z

283

Coagulation chemistries for silica removal from cooling tower water.  

SciTech Connect

The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

2010-02-01T23:59:59.000Z

284

Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006  

SciTech Connect

The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

MT Ritsche

2006-01-30T23:59:59.000Z

285

NREL: Learning - Student Resources on Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

and College Level NREL Concentrating Solar Power Research Features information about parabolic troughs, systems-driven modeling and analysis, and other advanced components and...

286

Long-term average performance benefits of parabolic trough improvements  

DOE Green Energy (OSTI)

Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

1980-03-01T23:59:59.000Z

287

Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Side Stream Filtration Side Stream Filtration for Cooling Towers Prepared for the U.S. Department of Energy Federal Energy Management Program By Pacific Northwest National Laboratory X. Duan, J.L. Williamson, K.L McMordie Stoughton and B.K. Boyd October 2012 FEDERAL ENERGY MANAGEMENT PROGRAM i Contact Will Lintner, PE Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585-0121 Phone: (202) 586-3120 E-mail: william.lintner@ee.doe.gov Cover photo: Cooling Towers. Photo from Pacific Northwest National Laboratory ii Acknowledgements The authors of the report would like to thank the following individuals that provided support to

288

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

289

A new trough solar concentrator and its performance analysis  

SciTech Connect

The operation principle and design method of a new trough solar concentrator is presented in this paper. Some important design parameters about the concentrator are analyzed and optimized. Their magnitude ranges are given. Some characteristic parameters about the concentrator are compared with that of the conventional parabolic trough solar concentrator. The factors having influence on the performance of the unit are discussed. It is indicated through the analysis that the new trough solar concentrator can actualize reflection focusing for the sun light using multiple curved surface compound method. It also has the advantages of improving the work performance and environment of high-temperature solar absorber and enhancing the configuration intensity of the reflection surface. (author)

Tao, Tao; Hongfei, Zheng [School of Mechanical and Vehicular, Beijing Institute of Technology, Beijing 100081 (China); Kaiyan, He [School of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Mayere, Abdulkarim [Institute of Sustainable Energy Technology, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

2011-01-15T23:59:59.000Z

290

Federal technology alert. Parabolic-trough solar water heating  

DOE Green Energy (OSTI)

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

291

EIA Energy Kids - Solar - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Wind; Electricity. Science of Electricity; Electricity in the U.S. ... Power towers are in the early stages of development compared with parabolic trough technology.

292

Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield  

Science Conference Proceedings (OSTI)

September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement of explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are occurring on the Sellafield site as it moves forward towards a decommissioning future. Although in itself the demolition was both straightforward and standard, the various complexities posed by the towers situation at Sellafield introduced an entirely new element to the project, with a number of complex challenges which had to be overcome or resolved before the demolition could take place. It is a testament to the skill and dedication of the project team and its associated contractors that the project was delivered safely and successfully without a single accident, injury or event throughout the entire four years, and with minimal impact on both site operations and the local community. (authors)

Williamson, E.J. [Nuclear Decommissioning and Major Projects Group, Sellafield Ltd, Seascale, Cumbria (United Kingdom)

2008-07-01T23:59:59.000Z

293

SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough...  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP to someone by E-mail Share SunShot Initiative: High-Concentration, Low-Cost Parabolic Trough System for...

294

Northern Hemisphere 500-hPa Trough Merger and Fracture: A Climatology and Case Study  

Science Conference Proceedings (OSTI)

The results of an objective climatology of 500hPa trough merger (defined as the amalgamation of two initially separate vorticity maxima) and trough fracture (defined as the splitting of a single vorticity center into two separate vorticity ...

Devin B. Dean; Lance F. Bosart

1996-12-01T23:59:59.000Z

295

Dynamical and Physical Processes Leading to Tropical Cyclone Intensification under Upper-Level Trough Forcing  

Science Conference Proceedings (OSTI)

The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The ...

Marie-Dominique Leroux; Matthieu Plu; David Barbary; Frank Roux; Philippe Arbogast

2013-08-01T23:59:59.000Z

296

Prefrontal Troughs over Southern Australia. Part II: A Case Study of Frontogenesis  

Science Conference Proceedings (OSTI)

A case study of frontogenesis within a surface prefrontal trough over southern Australia is presented. The trough developed ahead of a surface cold front and, over a period of approximately 24 h, intensified into a mature summertime frontal ...

B. N. Hanstrum; K. J. Wilson; S. L. Barrell

1990-03-01T23:59:59.000Z

297

Observational Analysis of an Upper-Level Inverted Trough during the 2004 North American Monsoon Experiment  

Science Conference Proceedings (OSTI)

Upper-level inverted troughs (IVs) associated with midlatitude breaking Rossby waves or tropical upper-troposphere troughs (TUTTs) have been identified as important contributors to the variability of rainfall in the North American monsoon (NAM) ...

Zachary O. Finch; Richard H. Johnson

2010-09-01T23:59:59.000Z

298

Oak Ridge's EM Program Demolishes North America's Tallest Water Tower |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolishes North America's Tallest Water Demolishes North America's Tallest Water Tower Oak Ridge's EM Program Demolishes North America's Tallest Water Tower August 27, 2013 - 12:00pm Addthis Oak Ridge’s K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. Oak Ridge's K-1206 F Fire Water Tower falls into an empty field during a recent demolition project. OAK RIDGE, Tenn. - Oak Ridge's EM program recently demolished one of the most iconic structures at the East Tennessee Technology Park (ETTP). The 382-foot checkerboard water tower - the tallest in North America - dominated the site's skyline since its construction in 1958. The K-1206 F Fire Water Tower operated as part of the site's fire protection system, but it was drained, disconnected and permanently taken

299

A Microcomputer Model of Crossflow Cooling Tower Performance  

E-Print Network (OSTI)

The energy use characteristics of evaporative cooling towers are of interest because, although such towers are widely used in industry, they do require a substantial amount of energy. Evaporative cooling towers are basically large heat exchangers that use both sensible heat transfer and mass transfer to cool. The heat and mass transfer process for a crossflow cooling tower has been modeled on an Apple II microcomputer. Various heat loads or weather conditions can be imposed on a given tower to evaluate its response; moreover, a subprogram can evaluate pressure drop and motor/fan characteristics. Determination of the energy required to operate the tower enables its performance to be compared against energy-saving operations such as variable speed drive or changes in fill height or type.

Reichelt, G. E; Jones, J. W.

1984-01-01T23:59:59.000Z

300

Measurement of Hydrogen Purge Rates in Parabolic Trough Receiver Tubes: Preprint  

SciTech Connect

The purpose of this research is to investigate and develop methods to remove hydrogen centrally from commercial parabolic trough power plants. A mathematical model was developed that tracks the generation and transport of hydrogen within an operating plant. Modeling results predicted the steady-state partial pressure of hydrogen within the receiver annuli to be ~1 torr. This result agrees with measured values for the hydrogen partial pressure. The model also predicted the rate at which hydrogen must be actively removed from the expansion tank to reduce the partial pressure of hydrogen within the receiver annuli to less than 0.001 torr. Based on these results, mitigation strategies implemented at operating parabolic trough power plants can reduce hydrogen partial pressure to acceptable levels. Transient modeling predicted the time required to reduce the hydrogen partial pressures within receiver annuli to acceptable levels. The times were estimated as a function of bellows temperature, getter quantity, and getter temperature. This work also includes an experimental effort that will determine the time required to purge hydrogen from a receiver annulus with no getter.

Glatzmaier, G. C.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Competitive Landscape of Mobile Telecommunications Tower Companies in India  

Science Conference Proceedings (OSTI)

With the entry of 3G and WiMAX players, the Indian mobile subscriber base is expected to reach 1110 million by the end of 2015. To meet mobile infrastructure demand, India will require approximately 350,000 to 400,000 mobile telecommunications towers ... Keywords: Business Models, Infrastructure Sharing, Joint Venture Companies, Mobile Network Operators MNO, Mobile Telecommunication Tower Valuation, Mobile Telecommunications Towers, Telecommunication Circles

N.P. Singh

2010-01-01T23:59:59.000Z

302

NREL Develops New Optical Evaluation Approach for Parabolic Trough Collectors (Fact Sheet)  

DOE Green Energy (OSTI)

New analytical method makes it possible to carry out fast evaluation of trough collectors for design purposes.

Not Available

2012-08-01T23:59:59.000Z

303

Modular Solar Electric Power (MSEP) Systems (Presentation)  

SciTech Connect

This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

Hassani, V.

2000-06-18T23:59:59.000Z

304

Application of upspray type water distribution systems in cooling towers  

SciTech Connect

The efficient and uniform distribution of the warm circulating water on to the filling of cooling towers has been the continuing goal of the tower designer. The final element in the water distribution system, the sprayer, plays an important role in achieving this objective. This paper discusses the performance and operational characteristics of a sprayer utilized in counterflow towers that directs the water leaving the sprayer nozzle in an upward direction and briefly compares its performance with that of downward sprayers. The discussion also covers relative tower economics and application data of the sprayer.

Fay, H.P.; Hesse, G.

1985-01-01T23:59:59.000Z

305

Spray tower: the workhorse of flue-gas desulfurization  

Science Conference Proceedings (OSTI)

A recently developed spray tower system for use in a utility flue gas desulfurization system is simple, durable, and capable of achieving very high sulfur dioxide removal efficiencies, possibly approaching 100%. The principles behind the design and operation of the spray tower are discussed. The quality of water used for washing, tower size limitations, construction materials liquid distribution, gas-inlet design, gas distribution, mass transfer, and operating characteristics are examined. Procedures to maintain the reliability and high performance of the spray tower are described. (5 diagrams, 5 photos, 12 references, 1 table)

Saleem, A.

1980-10-01T23:59:59.000Z

306

THE STEEL TOWER: A 21st CENTURY TALL BUILDING.  

E-Print Network (OSTI)

?? This paper outlines the need for a new mixed use high-rise project for the commercial business district of Pittsburgh, Pennsylvania. The proposed tower combines… (more)

Duke, Peter Guldenshuh

2013-01-01T23:59:59.000Z

307

Out of Ashes and Rubble: The Pirelli Tower  

E-Print Network (OSTI)

tower was novel, experimental architecture because it was the first skyscraper to be built in Italy; it was an extremely tall

Ziegler, Claudia J.

2009-01-01T23:59:59.000Z

308

Performance evaluation of natural draught cooling towers with anisotropic fills.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: In the design of a modern natural draught wet-cooling tower (NDWCT), structural and performance characteristics must be considered. Air flow distortions and resistances… (more)

Reuter, Hanno Carl Rudolf

2010-01-01T23:59:59.000Z

309

Evaluation and performance enhancement of cooling tower spray zones.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: The performance of wet cooling towers can be improved by installing spray nozzles that distribute the cooling water uniformly onto the fill whilst… (more)

Roux, Daniel

2012-01-01T23:59:59.000Z

310

Evaluation and performance prediction of cooling tower spray zones.  

E-Print Network (OSTI)

??Cooling tower spray nozzle performance characteristics such as the water distribution onto the fill material, air side pressure drop, pump head, drop size distribution and… (more)

Viljoen, D. J.

2006-01-01T23:59:59.000Z

311

Evaluation and performance prediction of cooling tower rain zones.  

E-Print Network (OSTI)

??Cooling tower rain zone performance characteristics such as the loss coefficient and the Merkel number are evaluated and simulated. To this end the influence of… (more)

Pierce, Darren John

2007-01-01T23:59:59.000Z

312

Lattice Tower Design of Offshore Wind Turbine Support Structures.  

E-Print Network (OSTI)

??Optimal design of support structure including foundation and turbine tower is among the most critical challenges for offshore wind turbine. With development of offshore wind… (more)

Gong, W.

2011-01-01T23:59:59.000Z

313

California Code of Regulations, Title 8, Section 1646. Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subchapter 4. Construction Safety Orders Article 22. Scaffolds--Various Types New query 1646. Tower Scaffolds and Rolling Scaffolds, Wood or Metal. (a) The minimum...

314

Comparative evaluation of cooling tower drift eliminator performance  

E-Print Network (OSTI)

The performance of standard industrial evaporative cooling tower drift eliminators is analyzed using experiments and numerical simulations. The experiments measure the

Chan, Joseph Kwok-Kwong

315

POTTY ET AL. Simulation of Boundary Layer Structure over the Indian Summer Monsoon Trough  

E-Print Network (OSTI)

POTTY ET AL. Simulation of Boundary Layer Structure over the Indian Summer Monsoon Trough during The planetary boundary layer (PBL) structure over the Indian summer monsoon trough region has been simulated using a regional numerical model during the passage of a monsoon depression along the monsoon trough

Raman, Sethu

316

Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes  

E-Print Network (OSTI)

Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes Chih-An Huh,1 of the southern Okinawa Trough and its vicinity were dated by 210 Pb and further constrained by 137 Cs and inter.-T. Liang, and C.-Y. Ling (2004), Linkages between turbidites in the southern Okinawa Trough and submarine

Huh, Chih-An

317

Flux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver  

E-Print Network (OSTI)

Flux Distribution of a Single-Axis Tracking Parabolic Trough Array with Photovoltaic Receiver G 0200 Australia E-mail: gregory.burgess@anu.edu.au Abstract Single-axis tracking parabolic troughs Long arrays of single-axis tracking parabolic troughs with a fluid filled absorber are a well

318

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

319

A study of mobile trough genesis over the Yellow Sea - East China Sea region  

E-Print Network (OSTI)

The purpose of this study was to understand the mechanisms responsible for the formation of mobile troughs over a prolific source region in the Yellow Sea and East China Sea. Two mobile troughs which intensified significantly after formation were analyzed. The troughs were selected from the objective climatology of mobile troughs by Lefevre and Nielsen-Gammon (1995). A quasigeostrophic potential vorticity (QGPV) and associated piecewise tendency diagnosis (PTD) technique developed by NielsenGammon and Lefevre (1995) was used to quantitatively analyze the dynamics of mobile trough formation. The PTD technique involves the inversion of QGPV and QGPV advection. A qualitative approach using dynamical tropopause maps of constant Ertel's potential vorticity (EPV) was utilized in conjunction with the QGPV method. It was determined that downstream development was the primary mechanism in initiating both mobile troughs. Type A cyclogenesis was not evident in either trough genesis event. A surface cyclone aided the development of one of the mobile troughs, but the cyclone had developed prior to the formation of the mobile trough. Baroclinic processes and large-scale interactions played lesser roles in one trough, but were not important in the other trough. Barotropic deformation modulated the strength of the second mobile trough by changing the shape of the associated QGPV anomaly. Vertical superposition was important in strengthening the latter stages of the life of the mobile trough, due to two jets superimposing over the mobile trough. Subjective analysis of tropopause maps of both trough genesis events showed the downstream development process as the growth of a new wave by cross-contour advection of potential temperature due to a pre-existing upstream disturbance.

Komar, Keith Nickolas

1997-01-01T23:59:59.000Z

320

Taking the ANU Big Dish to commercialization K Lovegrove A Zawadski* and J Coventy*  

E-Print Network (OSTI)

the standard turbine generator technology. Trough concentrators use parabolic trough mirrors to produce a linear focus on a receiver that moves with the trough as it tracks the sun, Linear Fresnel systems use towers. Solar thermal power systems via trough systems, have a strong track record, with 354MWe

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The cyclic multi-peg Tower of Hanoi  

Science Conference Proceedings (OSTI)

Variants of the classical Tower of Hanoi problem evolved in various directions. Allowing more than 3 pegs, and imposing limitations on the possible moves among the pegs, are two of these. Here, we deal with the case of h?3 pegs arranged on ... Keywords: Multi-peg tower of Hanoi

Daniel Berend; Amir Sapir

2006-07-01T23:59:59.000Z

322

Modification of the Colony Tower for the RIO BLANCO detonation  

SciTech Connect

The tower is a 180-ft tall steel-frame experimental oil shale processing retort structure with heavy process equipment on various levels. The structural response of the tower to the ground motion from Project Rio Blanco is analyzed and the necessary structural modifications described. (TFD)

Blume, J.A.; Lee, L.A.; Freeman, S.A.; Honda, K.K.

1974-04-30T23:59:59.000Z

323

Experiment Study on Tower Cooling Energy-Saving Technology  

Science Conference Proceedings (OSTI)

During the transition season periods the technology of tower cooling is used to cool the internal heat source region in the buildings, which is energy saving and environment friendly technology. To aim at climatic conditions of the transition season ... Keywords: towers cooling, experiments, fluence factors, energy saving

Ji Amin; He Li; Yue Zhiqiang; Jie Li; Gang Yin; Zhang Qinggang

2011-02-01T23:59:59.000Z

324

Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Optimization  

E-Print Network (OSTI)

LBNL-58634 Best Practices for Energy Efficient Cleanrooms: Cooling Tower and Condenser Water Efficient Cleanrooms: Cooling tower and condenser water optimization Tengfang Xu Contents HVAC WATER SYSTEMS.............................................................................................. 2 Cooling tower and condenser water optimization

325

An optimized model and test of the China's first high temperature parabolic trough solar receiver  

SciTech Connect

The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong [Southeast University, Nanjing (China)

2010-12-15T23:59:59.000Z

326

Hydrogen Storage in Wind Turbine Towers: Design Considerations; Preprint  

DOE Green Energy (OSTI)

The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research and experimentation, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are technically feasible. We discovered that hydrogen towers have a''crossover pressure'' at which their critical mode of failure crosses over from fatigue to bursting. The crossover pressure for many turbine towers is between 10 and 15 atm. The cost of hydrogen storage per unit of storage capacity is lowest near the crossover pressure. Above the crossover pressure, however, storage costs rise quickly.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

327

Optimization of a SEGS solar field for cost effective power output.  

E-Print Network (OSTI)

??This thesis presents and demonstrates procedures to model and optimize the collector field of a parabolic trough solar thermal power plant. The collector field of… (more)

Bialobrzeski, Robert Wetherill

2007-01-01T23:59:59.000Z

328

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Environmental impact study: CSP vs. CdTe thin filmsolar · CHP · Rankine · CSP · concentrating · distributed ·the concentrating solar power (CSP) troughs in the central

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

329

Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint  

DOE Green Energy (OSTI)

As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

Stynes, J. K.; Ihas, B.

2012-04-01T23:59:59.000Z

330

Mean wind forces on parabolic-trough solar collectors  

DOE Green Energy (OSTI)

The purpose of this study was to investigate characteristics of mean wind loads produced by airflow in and around several configurations of parabolic trough solar collectors with and without a wind fence. Four basic parabolic shapes were investigated as single units and one shape was studied as part of several array fields. One 1:25 scale model of each parabolic shape was constructed for mounting on a force balance to measure two forces and three moments. The effects of several dominant variables were investigated in this study: wind-azimuth (or yaw), trough elevation (or pitch) angle, array field configuration, and protective wind fence characteristics. All measurements were made in a boundary-layer flow developed by the meteorological wind tunnel at the Fluid Dynamics and Diffusion Laboratory of Colorado State University. Results are presented and discussed. (WHK)

Peterka, J.A.; Sinau, J.M.; Cermak, J.E.

1980-05-01T23:59:59.000Z

331

A Linear Parabolic Trough Solar Collector Performance Model  

E-Print Network (OSTI)

A performance model has been programmed for solar thermal collector based on a linear, tracking parabolic trough reflector focused on a surface-treated metallic pipe receiver enclosed in an evacuated transparent tube: a Parabolic Trough Solar Collector (PTSC). This steady state, single dimensional model comprises the fundamental radiative and convective heat transfer and mass and energy balance relations programmed in the Engineering Equation Solver, EES. It considers the effects of solar intensity and incident angle, collector dimensions, material properties, fluid properties, ambient conditions, and operating conditions on the performance of the collector: the PTSC. Typical performance calculations show that when hot-water at 165C flows through a 6m by 2.3m PTSC with 900 w/m^2 solar insulation and 0 incident angle, the estimated collector efficiency is about 55% The model predictions will be confirmed by the operation of PTSCs now being installed at Carnegie Mellon.

Qu, M.; Archer, D.; Masson, S.

2006-01-01T23:59:59.000Z

332

Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

Not Available

2009-04-01T23:59:59.000Z

333

Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators  

DOE Green Energy (OSTI)

For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

Bennett, C

2007-11-15T23:59:59.000Z

334

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

Nguyen, Q.A.

1999-03-30T23:59:59.000Z

335

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

Nguyen, Q.A.

1998-03-31T23:59:59.000Z

336

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

1998-01-01T23:59:59.000Z

337

Tower reactors for bioconversion of lignocellulosic material  

DOE Patents (OSTI)

An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

Nguyen, Quang A. (16458 W. 1st Ave., Golden, CO 80401)

1999-01-01T23:59:59.000Z

338

Development effort of sheet molding compound (SMC) parabolic trough panels  

SciTech Connect

The objectives of the development effort are to: investigate the problems of molding parabolic trough solar reflector panels of sheet molding compound (SMC); develop molding techniques and processes by which silvered glass reflector sheets can be integrally molded into SMC trough panels; provide representative prototype panels for evaluation; and provide information regarding the technical feasibility of molding SMC panels in high volume production. The approach taken to meet the objectives was to design the parabolic panel, fabricate a prototype die, choose an SMC formulation and mold the glass and SMC together into a vertex to rim mirrored panel. The main thrust of the program was to successfully co-mold a mirrored glass sheet with the SMC. Results indicate that mirrored glass sheets, if properly strengthened to withstand the temperature and pressure of the molding process, can be successfully molded with SMC in a single press stroke using standard compression molding techniques. The finalized design of the trough panel is given. The SMC formulation chosen is a low shrink, low profile SMC using 40% by weight one inch chopped glass fibers in a uv stabilized polyester resin matrix. A program to test for the adhesion between mirrored glass sheets and the SMC is discussed briefly. (LEW)

Kirsch, P.A.; Champion, R.L.

1982-01-01T23:59:59.000Z

339

Microsoft Word - CX-Pearl-Marion-Tower-6-2-Replace_FY12_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2012 3, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Pearl-Marion No.1 Tower 6/2 replacement project PP&A Project No.: PP&A 2147, WO# 00296634, Task 3 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Canby, Clackamas County, Oregon Township 3 South, Range 1 East, Section 19 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace a single tower (6/2) on the existing Pearl-Marion No. 1 500-kilovolt (kV) transmission line. Tower 6/2 is located along the Molalla River where natural river channel movement and continued stream bank erosion

340

Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information  

Open Energy Info (EERE)

search Property Name CoolingTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:...

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

342

Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information  

Open Energy Info (EERE)

Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

343

Property:CoolingTowerWaterUseSummerGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

344

Performance evaluation of wet-cooling tower fills with computational fluid dynamics.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to… (more)

Gudmundsson, Yngvi

2012-01-01T23:59:59.000Z

345

Purification of water from cooling towers and other heat exchange systems  

SciTech Connect

The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

2012-08-07T23:59:59.000Z

346

Dynamic analysis of guyed towers subjected to wind loads incorporating nonlinearity of the guys.  

E-Print Network (OSTI)

??Guyed masts are unique civil engineering structures, structurally efficient, selfsupporting lattice towers. High structural efficiency of guyed towers is achieved by the use of pre-tensioned… (more)

Kaul, Rohit

1999-01-01T23:59:59.000Z

347

Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Johnston-Knight Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance, requires an annual two percent reduction of water use intensity (water use per square foot of building space) for agency potable water consumption as well as a two percent reduction of water use for industrial, landscaping, and agricultural applica- tions. Cooling towers can be a significant

348

Cooling Towers--Energy Conservation Strategies Preservative Spray Treatment Maintains Cooling Tower  

E-Print Network (OSTI)

Several problems common to most industrial wood framed cooling towers can be easily controlled with annual preservative spray treatment applications to the plenum area framework and drift eliminators. It eliminates the expensive periodic repairs due to wood decay which sooner or later will occur without preservative protection. Preventing or minimizing the destructive effect of internal wood decay of the framework also avoids unexpected down time due to emergency maintenance or unexpected collapse of the main supporting framework.

Reidenback, R.

1991-06-01T23:59:59.000Z

349

Jilin Tianhe Wind Power Equipment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Baicheng, Jilin Province, China Sector Wind energy Product Baicheng-based wind turbine tower producer. References Jilin Tianhe Wind Power Equipment Co Ltd1 LinkedIn Connections...

350

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

in Cooling Towers GE Global Research will develop treatment technologies to enable power plant use of non-traditional waters. Using effective treatment methods to make...

351

H-FACET: Alignment Tool for Power Tower Heliostats  

Optimally concentrated solar flux Increased energy production and efficiency Reduced light spillage and operating cost ...

352

Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

Kearney, D.

2011-05-01T23:59:59.000Z

353

LINSOL: a model for predicting the optical performance of parabolic trough solar thermal systems  

DOE Green Energy (OSTI)

A detailed model has been developed to predict the optical performance of parabolic trough solar energy systems. The model is one to two orders of magnitude faster than previous, less complete calculations and makes tractable investigation of a wide range of design and application alternatives for trough systems. Representative results are presented that show the dependence of the trough optical performance on field orientation and site latitude.

Dellin, T.A.

1981-01-01T23:59:59.000Z

354

American Tower Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name American Tower Company Address P.O. Box 29 Place Shelby, Ohio Zip 44875 Sector Wind energy Product Agriculture;Business and legal services; Energy audits/weatherization; Engineering/architectural/design; Manufacturing; Retail product sales and distribution Phone number 419-347-1185 Website http://www.amertower.com Coordinates 40.8814452°, -82.6618424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8814452,"lon":-82.6618424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Meteorological Tower Measurements of a Surface Cold Front  

Science Conference Proceedings (OSTI)

measurements from the Boulder Atmospheric Observatory meteorological research tower are used to describe the structure and physical processes of a strong surface cold front. Analysis reveals that the horizontal gradients in temperature and wind ...

M. A. Shapiro

1984-08-01T23:59:59.000Z

356

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Dragan...

357

Offshore Tower Shading Effects on In-Water Optical Measurements  

Science Conference Proceedings (OSTI)

A field campaign was performed to estimate the shading effect induced on in-water irradiance and radiance measurements taken in the immediate vicinity of the Acqua Alta Oceanographic Tower (AAOT), located in the northern Adriatic Sea, which is ...

Giuseppe Zibordi; John Piero Doyle; Stanford B. Hooker

1999-11-01T23:59:59.000Z

358

Introducing an Online Cooling Tower Performance Analysis Tool  

E-Print Network (OSTI)

Cooling towers are used extensively for numerous industrial, residential, and commercial applications. Yet despite how common their uses, operators often do not know how to properly evaluate and optimize their performance. This is due to the complex and variable nature of all of the factors that can influence performance; fan speed, wind speed, sump temperature, heat load, ambient temperature, relative humidity, etc. This can be overwhelming for a regular operator resulting in many cooling towers being set to a default operating condition and forgotten. This paper will introduce a web-based cooling tower analysis tool being developed to help users understand and optimize operational efficiency. The calculations, evaluations, and models will be discussed in detail to highlight important design considerations and issues. This will include how the Merkel Theory, psychometric properties, tower types, and historical weather data are incorporated into the analysis.

Muller, M.R.; Muller, M.B.; Rao, P.

2012-01-01T23:59:59.000Z

359

User's Manual: Cooling-Tower-Plume Prediction Code  

Science Conference Proceedings (OSTI)

Utilities planning to build generating plants that use evaporative cooling are required to estimate potential seasonal and annual environmental effects of cooling-tower plumes. An easy-to-use computerized method is now available for making such estimates.

1984-04-01T23:59:59.000Z

360

DRIFT : a numerical simulation solution for cooling tower drift eliminator performance  

E-Print Network (OSTI)

A method for the analysis of the performance of standard industrial evaporative cooling tower drift

Chan, Joseph Kwok-Kwong

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization  

E-Print Network (OSTI)

condenser water optimization Tengfang Xu Contents HVAC WATERHVAC Water Systems Cooling tower and condenser water optimization

Xu, Tengfang

2005-01-01T23:59:59.000Z

362

NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)  

DOE Data Explorer (OSTI)

The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

Jager, D.; Andreas, A.

363

The Worlds First Ever Cooling Tower Acceptance Test Using Process Data Reconciliation  

Science Conference Proceedings (OSTI)

The cooling capacity of cooling towers is influenced by multiple constructive and atmospheric parameters in a very complex way. This leads to strong variations of the measured cold-water temperature and causes unacceptable unreliability of conventional acceptance tests, which are based on single point measurements. In order to overcome this lack of accuracy a new approach to acceptance test based on process data reconciliation has been developed by BTB Jansky and applied at a nuclear power plant. This approach uses process data reconciliation according to VDI 2048 to evaluate datasets over a long period covering different operating conditions of the cooling tower. Data reconciliation is a statistical method to determine the true process parameters with a statistical probability of 95% by considering closed material-, mass-and energy balances. Datasets which are not suitable for the evaluation due to strong transient gradients are excluded beforehand, according to well-defined criteria. The reconciled cold-water temperature is then compared, within a wet bulb temperature range of 5 deg. C to 20 deg. C to the manufacturer's guaranteed temperature. Finally, if the average deviation between reconciled and guaranteed value over the evaluated period is below zero, the cooling tower guarantee is fulfilled. (authors)

Magnus Langenstein; Jan Hansen-Schmidt [BTB-Jansky GmbH, Gerlingerstrasse 151, D-71229 Leonberg (Germany)

2006-07-01T23:59:59.000Z

364

Parabolic trough collector systems for thermal enhanced oil recovery  

SciTech Connect

Enhanced Oil Recovery (EOR) techniques offer a means of increasing US oil production by recovering oil otherwise unavailable when using primary or secondary production methods. The use of parabolic trough collector solar energy systems can expand the production of oil recovered by the most prevalent of these techniques, thermal EOR, by improving the economics and lessening the environmental impacts. These collector systems, their state of development, their application to EOR, and their capacity for expanding oil production are reviewed. An economic analysis which shows that these systems will meet investment hurdle rates today is also presented.

Niemeyer, W.A.; Youngblood, S.B.; Price, A.L.

1981-01-01T23:59:59.000Z

365

Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

1999-06-01T23:59:59.000Z

366

2010sr27[cooling_tower_complete].doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Friday, September 17, 2010 Friday, September 17, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 952-6938 paivi.nettamo@srs.gov K Cooling Tower Project Reaches Completion Aiken, S.C. - One of the most visual milestones of cleanup projects underway within the Department of Energy's Office of Environmental Management was the demolition of the K-Reactor Cooling Tower at the Savannah River Site (SRS). Now, this American Recovery and Reinvestment Act project has been

367

International cooling-tower and spray pond symposium  

Science Conference Proceedings (OSTI)

This document contains the manuscripts of sixty-one papers that were presented at the 7th Cooling Tower and Spray Pond Symposium of the International Association for Hydraulic Research, organized by the B.E. Vedeneev Institute (VNIIG) and held in Leningrad, USSR, in June 1990. This report represents a worldwide state-of-the-art survey of recent work on cooling towers and spray ponds. Individual papers are indexed separately on the energy database.

Not Available

1990-09-01T23:59:59.000Z

368

Environmental Impacts from the Operation of Cooling Towers at SRP  

SciTech Connect

An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

Smith, F.G. III

2001-06-26T23:59:59.000Z

369

Cooling Tower Optimization Study Technical Update for 2012  

Science Conference Proceedings (OSTI)

This report is a technical update on the progress of testing three different configurations of cooling tower fan drives. The particular focus is upon the gear box where most disabling failures are occurring. It will describe the configurations and instrumentation used to track the ongoing operational conditions being monitored.The standard mode of operation for a cooling tower fan motor is either on or off, as it may be cost-effective to take some cells out of service under certain ...

2012-12-20T23:59:59.000Z

370

Video Scanning Hartmann Optical Testing of State-of-the-Art Parabolic Trough Concentrators: Preprint  

DOE Green Energy (OSTI)

This paper describes the Video Scanning Hartmann Optical Test System (VSHOT) used to optically test parabolic trough designs by both Solargenix and Industrial Solar Technology.

Wendelin, T.; May, K.; Gee, R.

2006-06-01T23:59:59.000Z

371

Mechanical development of the actuation system of a parabolic solar trough.  

E-Print Network (OSTI)

??This thesis documents my personal contribution to the engineering and design of an actuation system with the purpose of rotating a parabolic solar trough to… (more)

O'Rourke, Conor R. (Conor Rakis)

2011-01-01T23:59:59.000Z

372

Error analysis of motion transmission mechanisms : design of a parabolic solar trough.  

E-Print Network (OSTI)

??This thesis presents the error analysis pertaining to the design of an innovative solar trough for use in solar thermal energy generation fields. The research… (more)

Koniski, Cyril (Cyril A.)

2009-01-01T23:59:59.000Z

373

Parabolic Trough Solar System Piping Model: Final Report, 13 May 2002 ? 31 December 2004  

DOE Green Energy (OSTI)

Subcontract report by Nexant, Inc., and Kearny and Associates regarding a study of a piping model for a solar parabolic trough system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

374

Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)  

DOE Green Energy (OSTI)

The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

Michael McDowell; Alan Schwartz

2010-03-31T23:59:59.000Z

375

Cooling-tower rebuild, treatment overhaul halt fouling  

SciTech Connect

Partial fixes over a period of time were insufficient to meet cooling requirements at this four-tower powerplant. The eventual remedy involved complete fill replacement and chemistry-program revision. Cooling-tower performance hinges on many factors. Assuming the proper water and air distribution and unhindered operation of spray nozzles, pumps, valves, etc, fill design is the key element. However, a decade of experience at Keystone station (operated by Pennsylvania Electric Co for a consortium of East Coast utilities) showed that more than just changing to a fouling-resistant fill was required to provide and maintain design performance. As described in this article, careful analysis, revision, and continuous monitoring of the chemical water-treatment program were needed as well. At each of Keystone's two units, two natural-draft, hyperbolic towers provide cooling for main-condenser circulating water and service water. The 325-ft-tall towers are counter-current flow, and measure 247 ft across the basin. Film-type fill originally installed in the towers consisted of assemblies of fiber-cement board, 9 ft deep in the center and 7 ft in the peripheral regions. Fiber-cement was also the construction material used in the drift eliminators, and in the piping connected to concrete distribution flumes within the towers.

Gall, G.P.

1993-02-01T23:59:59.000Z

376

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

377

Wind Shear Characteristics at Central Plains Tall Towers  

Science Conference Proceedings (OSTI)

The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional organizations. Most of the data are available to the public, though data from one tower in Colorado are proprietary. We have begun to analyze important wind climate parameters, including wind shear from the tall towers. A total of 13 tall towers were used for this study. Eleven of the towers had the highest anemometer level between 100 m and 113 m. Two towers had the highest measurement level between 70 m and 85 m above ground. The distribution of the towers among the states is: two sites in Texas and Oklahoma; six sites in Kansas; and one site each in Colorado, South Dakota, and North Dakota. Figure 1 shows the locations and names of the thirteen towers. The wind resource at these sites can be classified as ranging from good-to-excellent. Eight tall tower sites have Class 3 resource, four sites have Class 4 resource, and one has Class 5 resource at 50 m.

Schwartz, M.; Elliott, D.

2006-01-01T23:59:59.000Z

378

Case study of a central-station grid-intertie photovoltaic system with V-trough concentration  

SciTech Connect

This presentation is a cast study of an installed, central-station (no storage), utility-intertie photovoltaic (PV) system in Sede Boqer, Israel (latitude 30.9{degree}N). The nominally 12 kW peak PV system is comprised of 189 polycrystalline silicon modules mounted on inexpensive, one-axis north-south horizontal trackers with V-trough mirrors for optical boost. The power conditioning unit operates at a fixed voltage rather than at maximum power point (MPP). The primary task in analyzing the installed system was to investigate the cause of measured power output significantly below the design predictions of the installers, and to recommend system design modifications. Subsequent tasks included the quantitative assessment of fixed-voltage operation and of the energetic value of V-trough concentration and one-axis tracking for this system. Sample results show: (1) fixed-voltage operation at the best fixed voltage (BFV) can achieve around 96% of the yearly energy of MPP operation; (2) the sensitivity of the yearly energy delivery to the selection of fixed voltage and its marked asymmetry about the BFV; (3) the influences of inverter current constraints on yearly energy delivery and BFV; and (4) how the separate effects of tracking and optical concentration increase yearly energy delivery.

Freilich, J.; Gordon, J.M. (Ben-Gurion Univ. of the Negev, Sede Boqer (Israel))

1991-01-01T23:59:59.000Z

379

Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

Kearney, D.; Mehos, M.

2010-12-01T23:59:59.000Z

380

What Percentage of Western North Pacific Tropical Cyclones Form within the Monsoon Trough?  

Science Conference Proceedings (OSTI)

It is frequently stated that 70%–80% of western North Pacific tropical cyclones form “within the monsoon trough,” but without an objective definition of the term. Several definitions are tested here. When the monsoon trough (MT) is defined as the ...

John Molinari; David Vollaro

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Deep-Sea Research I 51 (2004) 17691780 Sedimentation in the Southern Okinawa Trough: enhanced  

E-Print Network (OSTI)

Deep-Sea Research I 51 (2004) 1769­1780 Sedimentation in the Southern Okinawa Trough: enhanced and hydrodynamic conditions, the southernmost part of the Southern Okinawa Trough (SOT) acts like an efficient to differentiate the subsurface peak of 239, 240 Pu resulting from the global fallout maximum in AD 1963

Huh, Chih-An

382

Inverted Troughs and Cyclogenesis over Interior North America: A Limited Regional Climatology and Case Studies  

Science Conference Proceedings (OSTI)

A limited regional climatology of cyclones with and without inverted troughs that form in the Colorado region is presented along with case study results from two major cyclone events in which an inverted trough plays a prominent role in the life ...

Len G. Keshishian; Lance F. Bosart; W. Edward Bracken

1994-04-01T23:59:59.000Z

383

Analysis of mass transfer performance in an air stripping tower  

Science Conference Proceedings (OSTI)

The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

Chung, T.W.; Lai, C.H.; Wu, H.

1999-10-01T23:59:59.000Z

384

Integrated reactor-containment hyperbolic-cooling-tower system  

Science Conference Proceedings (OSTI)

A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

Patel, A.R.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

385

Simulation of Boundary Layer Structure over the Indian Summer Monsoon Trough during the Passage of a Depression  

Science Conference Proceedings (OSTI)

The planetary boundary layer (PBL) structure over the Indian summer monsoon trough region has been simulated using a regional numerical model during the passage of a monsoon depression along the monsoon trough. Monin–Obukhov similarity theory for ...

K. V. J. Potty; U. C. Mohanty; S. Raman

2001-07-01T23:59:59.000Z

386

Test results, Industrial Solar Technology parabolic trough solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

387

Top 9 Things You Didn't Know About Concentrating Solar Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fresnel systems focus sunlight onto a linear receiver. The other two technologies -- dishengine and power tower -- focus sunlight to a point. All of these technologies...

388

Program on Technology Innovation: Feasibility Study of Using a Thermosyphon Cooler Hybrid System to Reduce Cooling Tower Water Consu mption  

Science Conference Proceedings (OSTI)

This Technical Update describes the initial work accomplished by a feasibility study for using a newly developed Thermosyphon Cooler (TSC) Hybrid System to reduce cooling-tower water consumption at steam power plants. The report outlines the overall project and then details the applicable codes and standards that would apply to this technology. It also briefly touches on the literature and patents relating to this field. It describes the rationale and constraints involved in setting up the ...

2012-11-19T23:59:59.000Z

389

CSP Tower Air Brayton Combustor (Fact Sheet)  

SciTech Connect

Southwest Research Institute is one of the 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

Not Available

2012-09-01T23:59:59.000Z

390

Energy Efficiency Evaluation of Guangzhou West Tower Façade System  

E-Print Network (OSTI)

Guangzhou West Tower is an extremely tall public building. The energy efficiency evaluation of its façade should be different than that of ordinary public buildings. Based on the national code GB50189-2005, “Design Standard for Energy efficiency of Public Buildings”, typical meteorological yearly data for Guangzhou were used and revised according to architectural character of Guangzhou West Tower. The energy efficiency design of a single skin façade and active airflow curtain wall was analyzed by a dynamic energy simulation tool and modified weather data. The payback period of initial investment in the façade system was evaluated based on simulation results. In addition, the results confirm the façade system scheme of Guangzhou West Tower.

Meng, Q.; Zhang, L.

2006-01-01T23:59:59.000Z

391

Cooling Towers - Energy Conservation and Money Making Mechanisms  

E-Print Network (OSTI)

The utilization of colder water conserves energy, creates profits, increases product output. In an effort to obtain greater efficiencies and conserve both energy and dollars, all too many engineers neglect the potential of the cooling tower. Many cooling towers in operation are performing at levels as low as 50% of capability. This is energy wasteful and financially foolish. There are many reasons for this deficiency, among them the present service is greater than the original requirements, slippage due to age and deterioration, or the installation could have been originally installed undersized. This paper will investigate the various elements, their functions and methods of upgrading their performance by retrofit with the use of modern technology. Case histories will be examined in three major industries, chemicals, refrigeration and petrochemical illustrating how intelligent rebuilding can produce profits and conserve energy. Actual statistics will be cited showing that the return of investment (ROI) can be quite rapid by optimizing the performance of the cooling tower.

Burger, R.

1981-01-01T23:59:59.000Z

392

Technical Evaluation of Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Towers (photo from Pacific Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower efficiency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating film on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity refers to microorganisms that live and grow in the cooling system that can contribute

393

Technical Evaluation of Side Stream Filtration for Cooling Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Towers (photo from Pacific Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower efficiency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating film on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity refers to microorganisms that live and grow in the cooling system that can contribute

394

Dry cooling tower operating experience in the LOFT reactor  

SciTech Connect

A dry cooling tower has been uniquely utilized to dissipate heat generated in a small experimental pressurized water nuclear reactor. Operational experience revealed that dry cooling towers can be intermittently operated with minimal wind susceptibility and water hammer occurrences by cooling potential steam sources after a reactor scram, by isolating idle tubes from the external atmosphere, and by operating at relatively high pressures. Operating experience has also revealed that tube freezing can be minimized by incorporating the proper heating and heat loss prevention features.

Hunter, J.A.

1980-01-01T23:59:59.000Z

395

Comparison of Second Wind Triton Data with Meteorological Tower Measurements  

DOE Green Energy (OSTI)

With the increased interest in remote sensing of wind information in recent years, it is important to determine the reliability and accuracy of new wind measurement technologies if they are to replace or supplement conventional tower-based measurements. In this study, we present the results of an analysis characterizing the measurement performance of a state-of-the-art SOund Detection And Ranging (sodar) device when compared to a high-quality tower measurement program. Second Wind Inc. (Somerville, MA, USA) provided NREL with more than six months of data from a measurement program conducted near an operating wind farm in western Texas.

Scott, G.; Elliott, D.; Schwartz, M.

2010-02-01T23:59:59.000Z

396

Modeling, loading, and preliminary design considerations for tall guyed towers  

Science Conference Proceedings (OSTI)

In this paper, the authors first summarize the results of an investigation they carried out on the collapse of a 1900 ft tall guyed tower under ice and wind loads. Based on this investigation, they then proceed to present some structural analysis recommendations relating to loading and modeling concerns. Special emphasis is placed on the importance of ice loading, and on the level of accuracy required in modeling the nonlinear response behavior. Finally, the conclusions drawn from this study are used to formulate preliminary design guidelines. This facilitates a systematic approach for the design of tall guyed towers. 23 refs.

Gantes, C.; Khoury, R.; Connors, J.J.; Pouangare, C. [Engg Information Technology, Cambridge, MA (United States)

1993-12-01T23:59:59.000Z

397

On Why Disks Generate Magnetic Towers and Collimate Jets  

E-Print Network (OSTI)

We show that accretion disks with magnetic fields in them ought to make jets provided that their electrical conductivity prevents slippage and there is an ambient pressure in their surroundings. We study equilibria of highly wound magnetic structures. General Energy theorems demonstrate that they form tall magnetic towers whose height grows with every turn at a velocity related to the circular velocity in the accretion disk. The pinch effect amplifies the magnetic pressures toward the axis of the towers whose stability is briefly considered.

D Lynden-Bell

2002-08-21T23:59:59.000Z

398

On Why Disks Generate Magnetic Towers and Collimate Jets  

E-Print Network (OSTI)

We show that accretion disks with magnetic fields in them ought to make jets provided that their electrical conductivity prevents slippage and there is an ambient pressure in their surroundings. We study equilibria of highly wound magnetic structures. General Energy theorems demonstrate that they form tall magnetic towers whose height grows with every turn at a velocity related to the circular velocity in the accretion disk. The pinch effect amplifies the magnetic pressures toward the axis of the towers whose stability is briefly considered.

Lynden-Bell, Donald

2002-01-01T23:59:59.000Z

399

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

72 Figure 3.20. Generic parabolic trough CSP costwhich is dominated by parabolic trough technology, troughsMarket (GW) Share Parabolic trough Tower Dish-engine Total

Price, S.

2010-01-01T23:59:59.000Z

400

Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information  

Open Energy Info (EERE)

Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microphysical Measurements from an Aircraft Ascending with a Growing Isolated Maritime Cumulus Tower  

Science Conference Proceedings (OSTI)

The development of precipitation in the top of an isolated maritime cumulus tower is traced by four rapid penetrations with an instrumented aircraft between 400 and 1000 m below the visible top of the growing tower. The hydrometeor distribution ...

Paul T. Willis; John Hallett

1991-01-01T23:59:59.000Z

402

On How Hot Towers Fuel the Hadley Cell: An Observational and Modeling Study of Line-Organized Convection in the Equatorial Trough from TOGA COARE  

Science Conference Proceedings (OSTI)

An airflow trajectory analysis was carried out based on an idealized numerical simulation of the nocturnal 9 February 1993 equatorial oceanic squall line observed over the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response ...

Alexandre O. Fierro; Joanne Simpson; Margaret A. LeMone; Jerry M. Straka; Bradley F. Smull

2009-09-01T23:59:59.000Z

403

A New Tall-Tower Meteorological Monitoring System  

SciTech Connect

The Atmospheric Technologies Group of the Savannah River Technology Center operates an extensive meteorological monitoring network of 13 tower in and near the Savannah River Site near Aiken, South Carolina. The data from this system are available in ''real-time'' for emergency response atmospheric release modeling and operational weather forecasting.

Parker, M.J.

2003-01-14T23:59:59.000Z

404

800mm luxury : pencil tower phenomenon in Hong Kong, China  

E-Print Network (OSTI)

150m2 - 40m2 - 60m3. Pencil Towers are slender pencil-like apartment buildings. They are commonly found in high-dense Asian cities such as Hong Kong, Tokyo and Singapore. Focusing on Hong Kong as the context of research, ...

Yam, Hiu Lan

2012-01-01T23:59:59.000Z

405

Wind Shear Characteristics at Central Plains Tall Towers (presentation)  

SciTech Connect

The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

Schwartz, M.; Elliott, D.

2006-06-05T23:59:59.000Z

406

NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Measurement and Instrumentation Data Center collects Irradiance and Meterological data from the National Wind Technology Center M2 Tower....

407

A New Optical Evaluation Approach for Parabolic Trough ...  

solar power (CSP) technologies used in commercial utility-scale power generation plants [1]. As a means to collect solar energy, the optical ...

408

Atmospheric considerations for central receiver power plants  

DOE Green Energy (OSTI)

This report documents the results of a study of the effects of atmospheric attenuation, turbulent scattering, and the use of cooling towers on the performance of solar thermal central receiver power plants.

Henderson, R.G.; Pitter, R.L.

1979-06-01T23:59:59.000Z

409

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature  

E-Print Network (OSTI)

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction CENTER FOR IMAGING SCIENCE Title of Dissertation: Radiometric Modeling of Mechanical Draft Cooling Towers of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal

Salvaggio, Carl

410

Model and Seismic Analysis of Large-scale Wind Turbine Tower Structure  

Science Conference Proceedings (OSTI)

The working condition of wind turbine tower structure with a massive engine room and revolving wind wheels is very complex. The paper simplify the wind turbine tower model with finite element analysis software --ANSYS, completed modal analysis firstly, ... Keywords: wind turbine tower, model analysis, resonance, time-history analysis, dynamic

Xiang Liu; Jiangtao Kong

2012-05-01T23:59:59.000Z

411

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor  

E-Print Network (OSTI)

Ilchmann, Achim; Pahl, M. : Adaptive Multivariable pH Regulation of a Biogas Tower Reactor Zuerst. The adaptive controller was successlullytesteclover il pcriod of tu'o nonths at a biogas tower reuetoriu pilot are not applicable to the biogas tower reüctor.since a dontinatingf-eatureof the new reactol' prir-rciplc-is its

Knobloch,Jürgen

412

Hybrid Wet/Dry Cooling for Power Plants (Presentation)  

DOE Green Energy (OSTI)

This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

Kutscher, C.; Buys, A.; Gladden, C.

2006-02-01T23:59:59.000Z

413

NREL: Concentrating Solar Power Research - Receiver R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

used to analyze the steady-state, off-sun thermal losses of receivers used in solar parabolic trough power plants; helps to reduce collector optical losses and reduce receiver...

414

Load on Trough Bellows Following an Argon Spill  

SciTech Connect

In the case of a gross argon spill from the DO detector, the liquid argon is caught in three plenums. These plenums are to be connected by bellows to make a horizontal trough open at one end for removing the argon. The design of these bellows is dependent on the maximum argon load they must carry. Bellows to connect the three argon-catching plenums in the DO detector must be able to carry at least 92 lbs of argon when closed and 231 lbs when open, plus the load due to argon in the convolutions. Examples of such loads and the method for their calculations are contained in the Discussion. It should be noted that a set of assumptions was used in these calculations. First, we considered a uniform channel and uniform flow. Second, we used a value for Manning's n meant for a similar, but not exactly the same, case. Finally, we were forced to define an average depth, d, to be used to state the hydraulic radius, R, and area of flow, A. These facts may warrant consideration in future calculations.

Chess, K.; /Fermilab

1988-07-12T23:59:59.000Z

415

Numerical Prediction of the Summertime Ridge–Trough System over Northeastern Australia  

Science Conference Proceedings (OSTI)

The synoptic pattern over northeastern Australia is dominated in the warmer months by a ridge–trough system. Accurate prediction of the location of the system is a significant forecasting problem for regional and global operational models. The ...

Terence C. L. Skinner; Lance M. Leslie

1999-06-01T23:59:59.000Z

416

Heat-Loss Testing of Solel's UVAC3 Parabolic Trough Receiver  

DOE Green Energy (OSTI)

For heat-loss testing on two Solel UVAC3 parabolic trough receivers, a correlation developed predicts receiver heat loss as a function of the difference between avg absorber and ambient temperatures.

Burkholder, F.; Kutscher, C.

2008-01-01T23:59:59.000Z

417

Satellite Observations of Variations in Tropical Cyclone Convection Caused by Upper-Tropospheric Troughs  

Science Conference Proceedings (OSTI)

The mutual adjustment between upper-tropospheric troughs and the structure of western Atlantic Tropical Cyclones Florence (1988) and Irene (1981) are analyzed using satellite and in situ data. Satellite-observed tracers (e.g., cirrus clouds, ...

Edward B. Rodgers; Simon W. Chang; John Stout; Joseph Steranka; Jainn-Jong Shi

1991-08-01T23:59:59.000Z

418

Real-Time Forecasting of the Western Australian Summertime Trough: Evaluation of a New Regional Model  

Science Conference Proceedings (OSTI)

The real-time prediction of the location, strength, and structure of the summertime heat trough is a major forecasting problem over Western Australia. Maximum temperatures, wind strength and direction along the west coast, low-level coastal cloud,...

Lance M. Leslie; Terry C. L. Skinner

1994-09-01T23:59:59.000Z

419

A Composite Study of the Interactions between Tropical Cyclones and Upper-Tropospheric Troughs  

Science Conference Proceedings (OSTI)

The objective of this study is to understand how interactions with upper-tropospheric troughs affect the intensity of tropical cyclones. The study includes all named Atlantic tropical cyclones between 1985 and 1996. To minimize other factors ...

Deborah Hanley; John Molinari; Daniel Keyser

2001-10-01T23:59:59.000Z

420

Overview on Use of a Molten Salt HTF in a Trough Solar Field (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the utilization of molten salt as the heat transfer fluid in a parabolic trough solar field to improve system performance and to reduce the levelized electricity.

Kearney, D.; Kelly, B.; Cable, R.; Potrovitza, N.; Herrmann, U.; Nava, P.; Mahoney, R.; Pacheco, J.; Blake, D.; Price, H.

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Piecewise Tendency Diagnosis of Dynamical Processes Governing the Development of an Upper-Tropospheric Mobile Trough  

Science Conference Proceedings (OSTI)

The intensification and evolution of midlatitude upper-tropospheric mobile troughs may be viewed in terms of the isentropic advection and deformation of the tropopause potential vorticity gradient. The potential vorticity viewpoint allows one to ...

John W. Nielsen-Gammon; Randy J. Lefevre

1996-11-01T23:59:59.000Z

422

The Structure and Evolution of a Simulated Rocky Mountain Lee Trough  

Science Conference Proceedings (OSTI)

This paper describes the life cycle of a lee trough associated with the passage of a baroclinic wave over the Rocky Mountains based on two overlapping simulations by the Pennsylvania State University-National Center for Atmospheric Research ...

W. James Steenburgh; Clifford F. Mass

1994-12-01T23:59:59.000Z

423

Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003  

DOE Green Energy (OSTI)

Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

2008-05-01T23:59:59.000Z

424

Mechanical development of an actuation system for a parabolic solar trough collector  

E-Print Network (OSTI)

This thesis documents my personal contribution to the development of a hydraulic-based actuation system for a solar trough collector. The goal of this project was to design the actuation system using hydraulic actuators ...

Carrillo, Juan Felipe (Carrillo Salazar)

2013-01-01T23:59:59.000Z

425

Analysis of the influence of geography and weather on parabolic trough solar collector design  

DOE Green Energy (OSTI)

The potential performance of single-axis tracking parabolic trough solar collectors as a function of optical energy distribution and receiver size has been calculated for eleven sites using typical meteorological year input data. A simulation based on the SOLTES code was developed which includes the three-dimensional features of a parabolic trough and calculates the thermooptical tradeoffs. The capability of the thermooptical model has been confirmed by the comparison of calculated results with the experimental results from an all-day test of a parabolic trough. The results from this eleven-site analysis indicate a potential performance superiority of a north-south horizontal axis trough and, in addition, a high quality (optical error, sigma/sub system/ less than or equal to 0.007 radian) collector should be of the same geometric design for all of the sites investigated and probably for all regions of the country.

Treadwell, G.W.; Grandjean, N.R.; Biggs, F.

1980-03-01T23:59:59.000Z

426

Mechanical development of the actuation system of a parabolic solar trough  

E-Print Network (OSTI)

This thesis documents my personal contribution to the engineering and design of an actuation system with the purpose of rotating a parabolic solar trough to track the sun throughout the day. The primary focus of the design ...

O'Rourke, Conor R. (Conor Rakis)

2011-01-01T23:59:59.000Z

427

Design and analysis of hydraulically driven actuation system For a parabolic solar trough  

E-Print Network (OSTI)

This thesis documents Katarina Popovic's contribution to the design of hydraulic cylinder actuation system for day to day solar trough sun tracking, a semester long project within 2.752 Development of Mechanical Products ...

Popovi?, Katarina, S.B. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

428

Moist Dynamical Linkage between the Equatorial Indian Ocean and the South Asian Monsoon Trough  

Science Conference Proceedings (OSTI)

During boreal summer, both the monsoon trough and the equatorial Indian Ocean (EIO) receive intense climatological precipitation. At various time scales, EIO sea surface temperature (SST) and/or precipitation variations interact with rainfall ...

H. Annamalai

2010-03-01T23:59:59.000Z

429

The temperature field around a spherical ridge or trough in a plane  

SciTech Connect

An analytical solution, which describes the temperature field around a single spherical particle partly embedded in a plane or around a trough making an arbitrary contact angle with a plane, is presented here. The temperature distributions for three cases are studied: the temperature distribution around a conducting bowl or trough, the temperature distribution around a non-conducting bowl or trough present in a conducting plane, and the temperature profile around a conducting bowl or trough conducting heat toward a sink at infinity. The normalized heat flux distribution on the plane and particle is presented. The various incremental resistances caused by a single and a dilute planar random array of truncated spherical particles are also derived.

Fransaer, J.; Roos, J.R. (Katholieke Univ. Leuven, Heverlee (Belgium))

1992-05-01T23:59:59.000Z

430

Error analysis of motion transmission mechanisms : design of a parabolic solar trough  

E-Print Network (OSTI)

This thesis presents the error analysis pertaining to the design of an innovative solar trough for use in solar thermal energy generation fields. The research was a collaborative effort between Stacy Figueredo from Prof. ...

Koniski, Cyril (Cyril A.)

2009-01-01T23:59:59.000Z

431

ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 1, 1-6 Identifying Global Monsoon Troughs and Global Atmospheric Centers of  

E-Print Network (OSTI)

ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2010, VOL. 3, NO. 1, 1-6 Identifying Global Monsoon identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale. The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs

Qian, Weihong

432

Optical analysis and optimization of parabolic-trough collectors: a user's guide  

DOE Green Energy (OSTI)

The results of a detailed optical analysis of parabolic trough solar collectors are summarized by a few universal graphs and curve fits. These graphs enable the designer of parabolic trough collectors to calculate the performance and to optimize the design with a simple hand calculator. The method is illustrated by specific examples that are typical of practical applications. The sensitivity of the optimization to changes in collector parameters and operating conditions is evaluated.

Bendt, P.; Rabl, A.; Gaul, H.W.

1981-07-01T23:59:59.000Z

433

Solar thermal power today and tomorrow  

DOE Green Energy (OSTI)

This article is a look at the status of solar thermal power plant design and application. The topics of the article include US DOE involvement, trough-electric systems as a current alternative to conventional electric power production, and central receiver systems and dish/Stirling systems as alternatives to fossil-fuel power plants within the next five years.

Mancini, T.R.; Chavez, J.M.; Kolb, G.J. (Sandia National Labs., Albuquerque, NM (United States). Solar Thermal Technology Dept.)

1994-08-01T23:59:59.000Z

434

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network (OSTI)

Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical equipment. A simple computer program was developed to simulate airflow through a wind tower based on tower dimensions and air temperature. The program was compared to experimental results with reasonable agreement. Parametric analysis indicates that interior air temperature approaches outdoor air temperature asymptotically as tower height and cross-sectional area are increased, and that it may be more cost effective to increase the tower?s height than its cross sectional area. The program was then used to simulate hour-by-hour indoor air temperatures of an occupied auditorium in Dayton, OH. The results indicate that a large wind tower was able to keep the temperature of an occupied auditorium at a comfortable level year round.

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

435

NREL Confirms Large Potential for Grid Integration of Wind, Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

data to carry out the study. The types of solar power represented in SAM include such CSP technologies as parabolic troughs, dish-Stirling systems, and power towers, as well as...

436

Tower City, North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tower City, North Dakota: Energy Resources Tower City, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9227548°, -97.6739889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9227548,"lon":-97.6739889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Advanced Lighting Controls - My Venture from the Ivory Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Lighting Controls - My Venture from the Ivory Tower Advanced Lighting Controls - My Venture from the Ivory Tower Speaker(s): Charlie Huizenga Date: June 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Lighting energy represents 30-40% of commercial building electricity consumption, yet very few buildings have advanced lighting controls. The potential energy savings are tremendous as is the opportunity to reduce demand on the grid during critical peak use periods. Charlie will describe how low-cost wireless radio technology developed at UC Berkeley and commercialized by Adura Technologies is creating a paradigm shift in the way we think about controlling lighting. Beyond deep energy savings and demand response, the technology offers personal control for occupants and

438

No Chemical, Zero Bleed Cooling Tower Water Treatment Process  

E-Print Network (OSTI)

This paper describes a process to treat cooling tower water by means of a fully automated and chemical free mechanical water treatment process. This is an alternative to conventional chemical treatment. Beginning with a suction pump to draw water out of the tower sump, water goes through a permanent magnetic descaler to increase the water solubility and begin the scale inhibition process. This also descales existing scale build-up in the system. Ozone is manufactured from ambient air and injected into the bypass system through a venturi type injector. This kills algae, slime and bacteria and enhances the magnetic descaling process. The final stage filter separates solids from the water to prevent corrosion from impingement. These solids are automatically purged to the sanitary drain. Clarified water is returned to the sump where the process repeats on a 10%-20% by volume side stream basis.

Coke, A. L.

1992-04-01T23:59:59.000Z

439

High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle  

SciTech Connect

A new two-stage optical design is proposed for parabolic trough solar collectors with tubular absorbers. It can boost the concentration ratio by a factor of 2.5 relative to the conventional design, while maintaining the large rim angles (i.e., low nominal f-numbers) that are desirable for practical and economical reasons. The second state involves asymmetric nonimaging concentrators of the CPC type, facing segments of the parabolic first stage. The second stage can be accommodated inside an evacuated receiver, allowing the use of first-surface silvered reflectors. The low heat loss of this design opens the possibility of producing steam at temperatures and pressures of conventional power plants, using only one-axis tracking. The improvement in conversion efficiency would be substantial.

Collares-Pereira, M. (Centro para a Conservacao de Energia, Amadora (Portugal)); Gordon, J.M. (Ben Gurion Univ. of the Negev, Beersheva (Israel)); Rabl, A. (Centre d'Energetique, Paris (France)); Winston, R. (Univ. of Chicago, IL (United States))

1991-01-01T23:59:59.000Z

440

CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER  

Science Conference Proceedings (OSTI)

Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.

Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

2008-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

442

The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant  

SciTech Connect

The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

Kolb, G.J.

1991-01-01T23:59:59.000Z

443

The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant  

DOE Green Energy (OSTI)

The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

Kolb, G.J.

1991-01-01T23:59:59.000Z

444

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

445

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power "on demand time ever, a utility-scale solar power plant can supply elec- tricity when the utility needs it most achievement. The design is based on lessons learned at Solar One, this country's first power tower. Solar One

Laughlin, Robert B.

446

Freeze-thaw tests of trough receivers employing a molten salt working fluid.  

SciTech Connect

Several studies predict an economic benefit of using nitrate-based salts instead of the current synthetic oil within a solar parabolic trough field. However, the expected economic benefit can only be realized if the reliability and optical performance of the salt trough system is comparable to today's oil trough. Of primary concern is whether a salt-freeze accident and subsequent thaw will lead to damage of the heat collection elements (HCEs). This topic was investigated by experiments and analytical analysis. Results to date suggest that damage will not occur if the HCEs are not completely filled with salt. However, if the HCE is completely filled at the time of the freeze, the subsequent thaw can lead to plastic deformation and significant bending of the absorber tube.

Moss, Timothy A.; Iverson, Brian D.; Siegel, Nathan Phillip; Kolb, Gregory J.; Ho, Clifford Kuofei

2010-05-01T23:59:59.000Z

447

Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) Handbook  

SciTech Connect

The Atqasuk meteorology station (AMET) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point, and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility and precipitation data from sensors at or near the base of the tower. In addition, a chilled mirror hygrometer (CMH) is located at 1 m for comparison purposes. Temperature and relative humidity (RH) probes are mounted at 2 m and 5 m on the tower.

Ritsche, MT

2006-01-01T23:59:59.000Z

448

Analytical Approach Treating Three-Dimensional Geometrical Effects of Parabolic Trough Collectors: Preprint  

DOE Green Energy (OSTI)

An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.

Binotti, M.; Zhu, G.; Gray, A.; Manzollini, G.

2012-04-01T23:59:59.000Z

449

Determination of freeze-protection heat loss from a parabolic trough solar system  

DOE Green Energy (OSTI)

A small-scale experiment was undertaken to determine practical control temperatures for a parabolic trough, pulsed-flow water freeze-protection scheme. Measurements were also taken of heat loss from stagnant water in the absorber tube under freezing ambient conditions. Using the experimental data and data available from the literature, manipulation of long-term weather data provided estimates of annual thermal losses to prevent freezing. In a cold climate such as Denver, Colorado's, which typically has 155 freezing days per year, such losses should be less than 0.7% of the annual energy delivered by an efficient parabolic trough system.

May, E.K.

1983-08-01T23:59:59.000Z

450

Waste-heat vertical tube foam evaporation for cooling tower blowdown renovation/recycle. Project summary report  

SciTech Connect

A prototype waste-heat vertical tube foam evaporation (WH-VTFE) plant was designed, constructed, and field-tested for reducing power plant cooling tower blowdown to a small residual volume of solids slurried in brine, while producing distilled water for reuse. Facility design was based on previously-developed pilot plant test data. The WH-VTFE facility was constructed for initial parametric testing in upflow/downflow evaporation modes with boiler steam. The field test/demonstration phase was conducted at a power plant site using turbine exhaust steam for the up to 50-fold cooling tower blowdown concentration in a foamy-flow seed-slurried mode of downflow vertical tube evaporation. The VTFE heat transfer coefficient ranged between 5600 to 9000 W/sq m/degree, over 4-fold the level considered as acceptable in another study. Further, a sufficient temperature difference is available within a typical power plant heat rejection system to operate a WH-VTFE when the plant load is above 50% of its design capacity. Scale formed from inadequate brine recycle rates was readily removed by recycling fresh water through the evaporator to restore the high heat transfer performance of the WH-VTFE. It was concluded that WH-VTFE was demonstrated as feasible and commercially viable.

Sephton, H.H.; Someahsaraii, K.

1982-02-01T23:59:59.000Z

451

Design of Light Weight Structure for Wind Turbine Tower by Using ...  

Science Conference Proceedings (OSTI)

This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nano-structured ...

452

An investigation of design alternatives for 328-ft (100-m) tall wind turbine towers.  

E-Print Network (OSTI)

??As wind turbines are continued to be placed at higher elevations, the need for taller wind turbine towers becomes necessary. However, there are multiple challenges… (more)

Lewin, Thomas James

2010-01-01T23:59:59.000Z

453

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity...

454

Flux Measurements of Volatile Organic Compounds from an Urban Tower Platform.  

E-Print Network (OSTI)

??A tall tower flux measurement setup was established in metropolitan Houston, Texas, to measure trace gas fluxes from both anthropogenic and biogenic emission sources in… (more)

Park, Chang Hyoun

2011-01-01T23:59:59.000Z

455

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

456

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically,… (more)

Williamson, Nicholas J

2007-01-01T23:59:59.000Z

457

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

458

SunLab: Concentrating Solar Power Program Overview  

DOE Green Energy (OSTI)

DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

NONE

1998-11-24T23:59:59.000Z

459

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

would otherwise be evaporated from the stack. This water would then be available for power plant operations such as cooling tower or flue gas desulfurization make-up water. An...

460

FLUX MEASUREMENTS FROM A TALL TOWER IN A COMPLEX LANDSCAPE  

Science Conference Proceedings (OSTI)

The accuracy and representativeness of flux measurements from a tall tower in a complex landscape was assessed by examining the vertical and sector variability of the ratio of wind speed to momentum flux and the ratio of vertical advective to eddy flux of heat. The 30-60 m ratios were consistent with theoretical predictions which indicate well mixed flux footprints. Some variation with sector was observed that were consistent with upstream roughness. Vertical advection was negligible compared with vertical flux except for a few sectors at night. This implies minor influence from internal boundary layers. Flux accuracy is a function of sector and stability but 30-60 m fluxes were found to be generally representative of the surrounding landscape. This paper will study flux data from a 300 m tower, with 4 levels of instruments, in a complex landscape. The surrounding landscape will be characterized in terms of the variation in the ratio of mean wind speed to momentum flux as a function of height and wind direction. The importance of local advection will be assessed by comparing vertical advection with eddy fluxes for momentum and heat.

Kurzeja, R.; Weber, A.; Chiswell, S.; Parker, M.

2010-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

462

Steam-Electric Power-Plant-Cooling Handbook  

SciTech Connect

The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

1982-02-01T23:59:59.000Z

463

Drilling investigations of crustal rifting processes in the Salton Trough, California  

DOE Green Energy (OSTI)

The paper describes the results of CSDP activities in the Salton Sea Geothermal Field (SSGF), concentrating on a shallow heat-flow survey, but also considering preliminary results from the Salton Sea Scientific Drilling Program (SSSDP). Whether the heat input rate to localized systems is high enough to account for the overall thermal budget of the Salton Trough is examined. (ACR)

Kasameyer, P.W.; Younker, L.W.; Newmark, R.L.; Duba, A.G.

1986-01-01T23:59:59.000Z

464

Hydrocarbon prospectivity assessment of the Southern Pattani Trough, Gulf of Thailand  

SciTech Connect

The Pattani Trough is an elongate north to south basin in the Gulf of Thailand offshore area that developed from Oligocene times onward. Numerous hydrocarbon discoveries, mainly gas, have been made within the Tertiary stratigraphic section in areas adjacent to the depocenter of the basin, but only dry holes have been drilled on the extreme basin margins and flanking platform areas. The southern Pattani Trough represents a [open quotes]transition zone[close quotes] in terms of potential hydrocarbon prospectivity between the low potential/high exploration risk basin marginal areas, and the high potential/low exploration risk basin marginal area. The development of hydrocarbon accumulation potential within the southern Pattani Trough can be related to a number of major controlling factors. These include structure, which on a regional scale shows a marked influence of tectonic regime on depositional system development, and on a more local scale determines trap development; stratigraphy, which determines reservoir geometry and potential hydrocarbon source rock facies distribution; petrology, which exerts a major control on depth related reservoir quality; overpressure development, which controls local migration pathways for generated hydrocarbons, and locally provides very efficient trap seals; geochemical factors, related to potential source facies distribution, hydrocarbon type; and thermal maturation of the section. The above factors have been combined to define low-, medium-, and high-risk exploration [open quotes]play fairways[close quotes] within the prospectivity transition zone of the southern Pattani Trough.

Mountford, N. (Unocal Thailand Ltd., Bangkok (Thailand))

1994-07-01T23:59:59.000Z

465

Topographically Controlled Flow Around a Deep Trough Transecting the Shelf off Kodiak Island, Alaska  

Science Conference Proceedings (OSTI)

Current measurements core the axis of a deep trough normal to the coast and from the adjacent shelf show that the mean flow is barotropic and follows depth contours, conserving potential vorticity, to form a cyclonic vortex or meander over the ...

Gary Lagerloef

1983-01-01T23:59:59.000Z

466

Systematic rotation and receiver-location error effects on parabolic-trough annual performance  

DOE Green Energy (OSTI)

The effects of certain systematic errors on performance and, therefore, their influence on the design of troughs are studied. The technique for calculating the influence of systematic errors on performance is outlined and methods for identifying and minimizing these errors are suggested.

Treadwell, G.W.; Grandjean, N.R.

1981-04-01T23:59:59.000Z

467

Material and process screening as applied to a reinforced plastic parabolic trough concentrator module  

DOE Green Energy (OSTI)

Existing parabolic trough solar collectors are basically sheet metal designs utilizing aluminum or steel as the major structural materials. The relatively high labor content associated with these sheet metal designs has generated an interest in investigating the cost effectiveness of using reinforced plastics as a major structural material for trough solar collectors. This interest is bolstered by a growing desire on the part of industry to identify new material-process combinations which save weight, use less energy, and require less capital equipment and assembly costs. The use of reinforced plastics as the basic material for a line-focus parabolic trough concentrator module is studied. This module constitutes a basic building block with which longer trough rows can be built. The basic part analysis is described including the quantification of key material and part-function relationships. In addition candidate materials and processes are reviewed and, the costs associated with the most attractive combinations defined. Finally, the major conclusions and recommendations are summarized.

Hodge, R. (ed.)

1980-08-01T23:59:59.000Z

468

CANDLE BURNING IN AN INVERTED JAR OVER WATER IN A TROUGH EXPERIMENT: SCIENCE TEACHERS' CONCEPTIONS  

E-Print Network (OSTI)

CANDLE BURNING IN AN INVERTED JAR OVER WATER IN A TROUGH EXPERIMENT: SCIENCE TEACHERS' CONCEPTIONS contains about 20% oxygen despite our knowledge that burning in a closed environment does not consume during burning of carbon in oxygen (air) and the solubility rate of carbon dioxide in water

Knill, Oliver

469

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation  

DOE Green Energy (OSTI)

Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants.

Not Available

2010-12-01T23:59:59.000Z

470

Research for the Crane Boom Length Coefficient Considering the Tower Head Flexibility in Rotary Plane  

Science Conference Proceedings (OSTI)

When the crane boom length in rotary plane is determined, the traditional methods only consider support condition, non-uniform, boom end lateral displacement constraint effect of amplitude dragline and hoist rope tensile forces. Ignoring tower head elastic ... Keywords: Equivalent elastic support method, Rotary plane, Tower head flexibility, Non-conservative loading, Length coefficient

Zhang Guangyun; Lan Peng; Lu Nianli

2011-01-01T23:59:59.000Z

471

Nuclear Maintenance Applications Center: Guideline for Cooling Tower Inspection and Maintenance  

Science Conference Proceedings (OSTI)

Cooling tower structural failures have recently become a focus area for the nuclear industry based on events that have resulted in lost generation as well as high repair costs. Environmental concerns regarding thermal pollution and water usage have also recently increased the need for guidance for cooling tower inspection and maintenance.

2011-06-06T23:59:59.000Z

472

UT tower goes dark to conserve energy by KVUE.com  

E-Print Network (OSTI)

UT tower goes dark to conserve energy by KVUE.com Posted on November 22, 2013 at 5:12 PM Updated, but the first time the tower turned off its lights for the initiative. In previous initiatives, the UT Energy) assisted with turning off lights and electronics across campus to conserve energy. While the clock faces

473

Method and system for simulating heat and mass transfer in cooling towers  

DOE Patents (OSTI)

The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

1997-01-01T23:59:59.000Z

474

Cooling-Tower Performance Prediction and Improvement: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

New data and methods enable engineers to predict and improve the thermal performance of evaporative cooling towers. Current EPRI research focuses on analytic tools that will help utilities avoid costly operating penalties associated with cooling towers that do not meet thermal performance specifications.

1989-12-01T23:59:59.000Z

475

Bull. Disas. Prey. Res. Inst., Kyoto Univ., Vol. 45, Part 2, 3 No. 389, February, 1996 27 Active Rift System in the Okinawa Trough and Its Northeastern  

E-Print Network (OSTI)

Active Rift System in the Okinawa Trough and Its Northeastern Continuation By Masaaki KIMURA (Manuscript investigations have revealed that the present central rift system of the Okinawa Trough which is an active Okinawa Trough can be distinguished. The crustal thinning and thus eastward drifting of the Ryukyu Arc may

Takada, Shoji

476

Verification of BModes: Rotary Beam and Tower Modal Analysis Code; Preprint  

DOE Green Energy (OSTI)

This paper describes verification of BModes, a finite-element code developed to provide coupled modes for the blades and tower of a wind turbine. The blades, which may be rotating or non-rotating, and the towers, whether onshore or offshore, are modeled using specialized 15-dof beam finite elements. Both blade and tower models allow a tip attachment, which is assumed to be rigid body with six moments of inertia, and a mass centroid that may be offset from the blade or tower axis. Examples of tip attachments are aerodynamic brakes for blades and nacelle-rotor subassembly for towers. BModes modeling allows for tower supports including tension wires, floating platforms, and monopiles on elastic foundations. Coupled modes (implying coupling of flap, lag, axial, and torsional motions) are required for modeling major flexible components in a modal-based, aeroelastic code such as FAST1. These are also required for validation of turbine models using experimental data, modal-based fatigue analysis, controls design, and understanding aeroelastic-stability behavior of turbines. Verification studies began with uniform tower models, with and without tip inertia, and progressed to realistic towers. For the floating turbine, we accounted for the effects of hydrodynamic inertia, hydrostatic restoring, and mooring lines stiffness. For the monopole-supported tower, we accounted for distributed hydrodynamic mass on the submerged part of the tower and for distributed foundation stiffness. Finally, we verified a model of a blade carrying tip mass and rotating at different speeds (verifications of other blade models, rotating or non-rotating, have been reported in another paper.) Verifications were performed by comparing BModes-generated modes with analytical results, if available, or with MSC.ADAMS results. All results in general show excellent agreement.

Bir, G.

2010-04-01T23:59:59.000Z

477

Analysis of Parabolic Trough Solar Energy Integration into Different Geothermal Power Generation Concepts.  

E-Print Network (OSTI)

?? The change in climate as a consequence of anthropogenic activities is a subject ofmajor concerns. In order to reduce the amount of greenhouse gas… (more)

Vahland, Sören

2013-01-01T23:59:59.000Z

478

High thermal energy storage density molten salts for parabolic trough solar power generation.  

E-Print Network (OSTI)

??New alkali nitrate-nitrite systems were developed by using thermodynamic modeling and the eutectic points were predicted based on the change of Gibbs energy of fusion.… (more)

Wang, Tao

2011-01-01T23:59:59.000Z

479

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants  

DOE Green Energy (OSTI)

kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

Gawlik, Keith

2013-06-25T23:59:59.000Z

480

Cooling Tower Energy Conservation Through Hydraulic Fan Drives  

E-Print Network (OSTI)

Many companies offer gearboxes, shafts, and couplings for cooling tower fan drives, with little or no innovation. These companies have traditionally been purchased with an emphasis on cost and not "Return on Investment!" In the past, when energy conservation or "Return on Investment" was emphasized, the only alternative was to add an expensive frequency inverter for variable speed control. This meant expensive rewiring, placing additional controls in an already crowded control room, or constructing a special building for them. However, with H.E.M.'s patented Hydraulic Fan Drive, one receives variable speed control and more efficiency for approximately the price of a mechanical drive. The new, more efficient Hydraulic Drive allows for a variable speed control and the ability to sense water temperature to control fan speed.

Dickerson, J.

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough power tower" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy (Cost) Savings by Zero Discharge in Cooling Towers  

E-Print Network (OSTI)

Maximum reuse of cooling tower blowdown by the incorporation of a sidestream softening system to recycle water can allow for significant savings in energy costs for industry. The system design parameters described in this paper are based upon calcium sulfate, calcium carbonate, and silica solubility equations for the resultant high ionic strength of a zero blowdown system. Operational aspects are highlighted in terms of deposition, corrosion, and biofouling potentials as well as currently-practiced, successful treatment procedures. The effects and history of corrosion and scale inhibitors, as well as other treatment chemicals, have been evaluated for numerous plants utilizing zero blowdown, and a summation of this knowledge is presented here. The cost analysis of conventional systems versus recycle systems is based upon a computer model's predictions for makeup waters of various qualities and costs.

Matson, J. V.; Gardiner, W. M.; Harris, T. G.; Puckorius, P. R.

1982-01-01T23:59:59.000Z

482

The evolution of magnetic tower jets in the laboratory  

E-Print Network (OSTI)

The evolution of laboratory produced magnetic jets is followed numerically through three-dimensional, non-ideal magnetohydrodynamic simulations. The experiments are designed to study the interaction of a purely toroidal field with an extended plasma background medium. The system is observed to evolve into a structure consisting of an approximately cylindrical magnetic cavity with an embedded magnetically confined jet on its axis. The supersonic expansion produces a shell of swept-up shocked plasma which surrounds and partially confines the magnetic tower. Currents initially flow along the walls of the cavity and in the jet but the development of current-driven instabilities leads to the disruption of the jet and a re-arrangement of the field and currents. The top of the cavity breaks-up and a well collimated, radiatively cooled, 'clumpy' jet emerges from the system.

A. Ciardi; S. V. Lebedev; A. Frank; E. G. Blackman; J. P. Chittenden; C. J. Jennings; D. J. Ampleford; S. N. Bland; S. C. Bott; J. Rapley; G. N. Hall; F. A. Suzuki-Vidal; A. Marocchino; T. Lery; C. Stehle

2006-11-14T23:59:59.000Z

483

Adjudication of a Contract for the Construction of the Cooling Tower Complex for the North Experimental Area  

E-Print Network (OSTI)

Adjudication of a Contract for the Construction of the Cooling Tower Complex for the North Experimental Area

1976-01-01T23:59:59.000Z

484

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from  

E-Print Network (OSTI)

Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction108, Aiken, SC, USA ABSTRACT Determining the internal temperature of a mechanical draft cooling tower is to estimate the temperature of the air exiting a mechanical draft cooling tower (MDCT) through the use

Salvaggio, Carl

485

A case history of a coal gasification wastewater cooling tower at the Great Plains coal gasification project  

SciTech Connect

This paper describes the conceptual process design of the Great Plains cooling water system, the fouling history of the cooling tower, and the results of the design modifications. In addition, general design guidelines for future wastewater reuse cooling towers are recommended. By following these guidelines, design engineers can minimize the risk of fouling that could impair a wastewater cooling tower's thermal performance.

Crocker, B.R.; Bromel, M.C.; Pontbriand, M.W.

1987-01-01T23:59:59.000Z

486

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

Cycle Assessment of a Parabolic Trough Concentrating Solarhave started using parabolic troughs and Australia haveas solar towers and parabolic troughs. Thus far, China has

Zheng, Nina

2012-01-01T23:59:59.000Z

487

Near-term improvements in parabolic troughs: an economic and performance assessment  

DOE Green Energy (OSTI)

Improved parabolic-trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. This analysis qualifies the performance potential of various parabolic-trough component improvements from a systems viewpoint and uses these performance data to determine the worth of each improvement on an economic basis. The improvements considered are evacuated receivers, silvered-glass reflectors, improved receiver, selective coatings, higher optical accuracy concentrations, and higher transmittance receiver glazings. Upper-bound costs for each improvement are provided as well as estimates of the increased solar system rates of return that are made possible by these improvements. The performance and economic potential of some of these improvements are shown to be substantial, especially at higher collector operating temperatures.

Gee, R.; Murphy, L.M.

1981-08-01T23:59:59.000Z

488

Concentrating Solar Power Program overview  

DOE Green Energy (OSTI)

Over the last decade, the US solar thermal industry has established a track record in the power industry by building and operating utility-scale power plants with a combined rated capacity of 354 megawatts (MW). The technology used in these power plants is based on years of research and development (R and D), much of it sponsored by the US Department of Energy (DOE). DOE`s Concentrating Solar Power (CSP) Program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power.

NONE

1998-04-01T23:59:59.000Z

489

Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver  

DOE Green Energy (OSTI)

This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Forristall, R.

2003-10-01T23:59:59.000Z

490

Improvement of risk estimate on wind turbine tower buckled by hurricane  

E-Print Network (OSTI)

Wind is one of the important reasonable resources. However, wind turbine towers are sure to be threatened by hurricanes. In this paper, method to estimate the number of wind turbine towers that would be buckled by hurricanes is discussed. Monte Carlo simulations show that our method is much better than the previous one. Since in our method, the probability density function of the buckling probability of a single turbine tower in a single hurricane is obtained accurately but not from one approximated expression. The result in this paper may be useful to the design and maintenance of wind farms.

Li, Jingwei

2013-01-01T23:59:59.000Z

491

A Two-Layer Quasi-Geostrophic Model of Summer Trough Formation in the Australian Subtropical Easterlies  

Science Conference Proceedings (OSTI)

A dominant feature of the low-level easterly wind flow in the Australian subtropics during summer is the trough development that occurs on both the western and eastern sides of the continent. This phenomenon is investigated analytically with a ...

C. B. Fandry; L. M. Leslie

1984-03-01T23:59:59.000Z

492

Precipitation Regimes during Cold-Season Central U.S. Inverted Trough Cases. Part I: Synoptic Climatology and Composite Study  

Science Conference Proceedings (OSTI)

This paper is the first of two papers that examines the organization of the precipitation field in central U.S. cold-season cyclones involving inverted troughs. The first portion of the study examines the varying precipitation distribution that ...

Robert A. Weisman; Keith G. McGregor; David R. Novak; Jason L. Selzler; Michael L. Spinar; Blaine C. Thomas; Philip N. Schumacher

2002-12-01T23:59:59.000Z

493

Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss  

SciTech Connect

The thermal efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The thermal efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain the thermal efficiency curve. This paper describes this approach and also makes the case that there are advantages to plotting collector efficiency versus the difference between the operating temperature and the ambient temperature at which the receiver heat loss was measured divided by radiation to a fractional power (on the order of 1/3 but obtained via data regression) - as opposed to the difference between operating and ambient temperatures divided by the radiation. The results are shown to be robust over wide ranges of ambient temperature, sky temperature, and wind speed.

Kutscher, C.; Burkholder, F.; Stynes, J. K.

2012-02-01T23:59:59.000Z

494

Solar-MHD energy conversion system. [tower focus collector with closed-cycle MHD generator  

SciTech Connect

A solar energy conversion system includes a centrally positioned tower supporting a solar receiver, and an array of pivotally mounted reflectors disposed circumferentially therearound which reflect earth incident solar radiation onto the receiver which thermally excites and photo-ionizes a working fluid to form a plasma. The plasma is accelerated and further heated through a ceramic turbo-compressor into a magnetohydrodynamic (MHD) generator to produce direct current. The working fluid is then passed through a heat exchanger channel where the waste heat is removed by another working fluid which drives a vapor turbine connected to the ceramic turbo-compressor and an AC generator. Seed may then be removed and the working fluid is recycled in the closed cycle MHD system. The electrical power is distributed, part of it being used to electrolyze water into hydrogen and oxygen which are stored and allowed to exothermally recombine to drive the system during low solar radiation intervals. In a further embodiment the MHD working fluid receives its velocity from an external turbo-compressor drivem by the second working fluid, and an alternative thermal and photo-ionization chamber is employed. 16 claims, 10 figures.