Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Study Of a Solar Trough Concentrating System for Application of Solar Energy Refrigeration  

Science Journals Connector (OSTI)

A solar concentrating trough device has been constructed for further application of solar heating and power system or solar refrigeration. A model for both evacuated tube and copper tube heated by solar trough co...

Li Ming; Wang Liuling; Zhou Xizheng…

2009-01-01T23:59:59.000Z

2

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators  

E-Print Network (OSTI)

Baseload Solar Power for California? Ammonia-based Solar Energy Storage Using Trough Concentrators to eventually optimise the reactor geometry for ammonia-based solar energy storage with troughs, which.1. Storing Solar Energy with Ammonia H2 / N2 gas liquid NH3 Heat Exchangers Power Generation (Steam Cycle

3

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

SciTech Connect

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

4

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

SciTech Connect

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

5

An Air-Based Cavity-Receiver for Solar Trough Concentrators Roman Bader  

E-Print Network (OSTI)

that uses air as the heat transfer fluid is proposed for a novel solar trough concentrator design, when the heat transfer fluid (HTF) has low volumetric heat capacity and thermal conductivity for a heat exchanger between HTF and thermal storage medium; and 4) costs for the heat transfer fluid

6

OPTICAL DESIGN OF A NOVEL 2-STAGE SOLAR TROUGH CONCENTRATOR BASED ON PNEUMATIC POLYMERIC  

E-Print Network (OSTI)

of a solar thermal power plant [1,2]. An innovative concept for fabricating trough concentrators based concrete frame of rectangular shape. The advantages are five- folded: Fig. 1. Scheme of conceptual design;1) the concrete structure is more rigid and stronger than a conventional metallic frame; 2) wind induced

7

Solar trough concentration for fresh water production and waste water treatment  

Science Journals Connector (OSTI)

The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond heat and refrigeration. At the present stage, a number of possibilities have been identified; the main ones which will be considered here are related to clean water production by processes such as solar distillation, atmospheric condensation, and waste processing. Although the technical feasibility of the proposed applications is not in discussion, before attempting to put such applications into practice, we’ll discuss their potential economical and environmental benefits in comparison to existing solutions.

A. Scrivani; T. El Asmar; U. Bardi

2007-01-01T23:59:59.000Z

8

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150–500°C at industrial s...

Dr.-Ing. Eckhard Lüpfert

2013-01-01T23:59:59.000Z

9

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150–500°C at industrial s...

Dr.-Ing. Eckhard Lüpfert

2012-01-01T23:59:59.000Z

10

Studies on performance characteristics of a solar parabolic trough concentrator with a variable area absorber  

Science Journals Connector (OSTI)

The design of a suitable absorber that incorporates an efficient heat transfer augmentation technique is one of the vital parameters that affect the performance of a solar parabolic trough concentrator (PTC). The variable area absorber discussed in this paper provides appreciable augmentation in heat transfer without increasing the pressure drop materially and thus helps in enhancing the performance efficiency of PTC significantly. A computer aided parametric study of this phenomena has been dealt in this paper. The performance of PTC of proposed design has been analysed mathematically and a rigorous simulation model has been developed. The mathematical analysis has been substantiated by elaborate experimental data.

C.M. Narayanan

2014-01-01T23:59:59.000Z

11

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

SciTech Connect

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

12

Feasibility Study on the Use of a Solar Thermoelectric Cogenerator Comprising a Thermoelectric Module and Evacuated Tubular Collector with Parabolic Trough Concentrator  

Science Journals Connector (OSTI)

We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply ...

L. Miao; M. Zhang; S. Tanemura; T. Tanaka; Y. P. Kang…

2012-06-01T23:59:59.000Z

13

Effect of Angle of Incidence of Sun Rays on the Bending of Absorber Tube of Solar Parabolic Trough Concentrator  

Science Journals Connector (OSTI)

Abstract In a parabolic trough system, the solar flux distribution on the surface of absorber tube is non-uniform which results in circumferential temperature gradient. Thus, bending moment is induced and leads to the deflection in absorber tube from the focal line of trough. It is concluded that during zero angle of incidence of sun rays (angle made by sun rays with trough's aperture normal), absorber tube will not deflect from the focal line. However, during non-zero angle of incidence, the absorber tube will deflect. It is because of the fact that during non-zero angle of incidence, the absorber tube does not receive any concentrated flux near the end facing the sun. In the current work, an analytical expression is derived for finding the deflection in the central axis of absorber tube from the focal line of trough. Results for deflection are plotted for different values of angle of incidence taking the dimensions of LS3 parabolic trough with Schott 2008 PTR70 receiver.

Sourav Khanna; Suneet Singh; Shireesh B. Kedare

2014-01-01T23:59:59.000Z

14

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

15

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives  

Science Journals Connector (OSTI)

To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). ... Power plant system: components typically associated with the power block (e.g., turbine generator set), in addition to other balance-of-plant components, such as buildings, roads, and parking lots. ... The majority of the remaining water consumption is attributed to water consumed during the manufacturing phase (10% of LC or 0.47 L/kWh). ...

John J. Burkhardt; III; Garvin A. Heath; Craig S. Turchi

2011-02-23T23:59:59.000Z

16

Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint  

SciTech Connect

Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

2011-09-01T23:59:59.000Z

17

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

18

3-D Numerical Simulation of Heat Transfer and Turbulent Flow in a Receiver Tube of Solar Parabolic Trough Concentrator with Louvered Twisted-tape Inserts  

Science Journals Connector (OSTI)

Abstract High temperature and higher-thermal efficiency for CSP cycles are main goals to improve trough collector's technologies. For a parabolic trough collector the major factor for optimum heat transfer from sun to the heat transfer fluid passing in the absorber tube is to have high convection heat transfer coefficient. Literature shows that absorber tubes with various tape inserts are used and recommended to produce high convection coefficient. Typical twisted-tape (TT) enhances heat exchange between tube surface and working fluid by generating turbulent swirling flow. In this study, enhancement of convection coefficient in the receiver tube of a solar parabolic trough concentrator that the absorber tube is equipped with a new perforated louvered twisted- tape (LTT) is studied numerically. For numerical simulations three different twist ratios (TR), TR=y/W= 2.67, 4, 5.33 (y is the length required for one twist and W is the width of the tape) are used in an experimental laboratory trough collector. Flow is assumed turbulent due to louvered perforated surface and rotational shape of the tape. For thermal boundary condition, non- uniform wall solar heat flux is determined by Soltrace code on the outer surface of the absorber tube. Heat transfer rate and pressure drop are determined for fully developed condition for several Reynolds numbers based on the tube diameter and flow mean velocity. Results show that the heat transfer coefficient and pressure drop increase significantly in comparison with a typical plain twisted-tape in the tube and a plain tube.

Sh. Ghadirijafarbeigloo; A.H. Zamzamian; M. Yaghoubi

2014-01-01T23:59:59.000Z

19

Analytical expression for circumferential and axial distribution of absorbed flux on a bent absorber tube of solar parabolic trough concentrator  

Science Journals Connector (OSTI)

Abstract A parabolic trough has a property to concentrate the incident rays at its focal line, when tracked appropriately. The flux distribution on the absorber tube is non-uniform. Part of the absorber’s periphery facing the sun receives direct incident rays where as part of the other side receives concentrated rays resulting in circumferential non-uniform flux distribution. The intensity of flux also varies along the length of the absorber tube, especially at the sun facing end, depending upon the incidence angle of the sun rays and rim angle of the parabolic cylinder. Such non-uniformity in the flux distribution on the absorber tube leads to non-uniform temperature distribution. Thus the absorber experiences thermal stresses which may lead to bending of the tube thereby creating risk of glass cover damage. In order to estimate the extent of bending, study of the flux distribution is needed. In the present work, expression for the absorbed flux on a bent absorber tube accounting circumferential and axial variations is analytically derived. Optical errors and Gaussian sun shape have also been incorporated. Results have been plotted to study the effect of bending, optical errors and rim angle of the trough on flux distribution.

Sourav Khanna; Shireesh B. Kedare; Suneet Singh

2013-01-01T23:59:59.000Z

20

Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant  

Science Journals Connector (OSTI)

Abstract Parabolic-trough (PT) concentrated solar power (CSP) plants are very vulnerable to daily fluctuations in solar radiation. This dependence can be mitigated through a hybridization of solar energy with natural gas based heaters that supply thermal energy during the night or whenever solar irradiance level is dimmed. However, there is more sustainable way for CSP plants to avoid power-generation-outages caused by transient weather conditions, i.e. installation of thermal energy storage (TES). Such a system stores surplus thermal energy provided by solar field during sunny hours and discharges it when the sun is not available. Shams-1 PT plant in Madinat-Zayed, United-Arab-Emirates (UAE) has two natural gas based components, i.e. steam-booster heater and heat transfer fluid (HTF) heater. In the current study, model of Shams-1 was developed and analyzed in the System Advisor Model (SAM) software. It has been attempted to replace the HTF heater with TES. A parametric study has been conducted to determine the size of the TES as well as the solar field such that the specified power target demand would be satisfied. The results of the parametric analysis showed that TES can't completely replace the HTF heater, within reasonable sizes. Nevertheless, consequent simulations depicts that TES increases the capacity factor on one hand and decreases fuel consumption on the other hand.

V. Poghosyan; Mohamed I. Hassan

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators  

SciTech Connect

For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

Bennett, C

2007-11-15T23:59:59.000Z

22

Parabolic trough solar power for competitive U.S. markets  

SciTech Connect

Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 190. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a results of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive US power market.

Price, H.W.; Kistner, R.

1999-07-01T23:59:59.000Z

23

The cost of balancing a parabolic trough concentrated solar power plant in the Spanish electricity spot markets  

Science Journals Connector (OSTI)

Abstract This study presents a new dispatch model (SCSP) for a CSP plant based on a dynamic programing algorithm. The purpose is to investigate the cost of balancing a CSP plant in the Spanish electricity market. Results are presented for a parabolic plant in the Spanish market for years 2009, 2010 and 2011 using solar availability data at the Plataforma Solar, Andalucia, Spain. The variation of balancing cost with solar multiple (SM) and number of storage hours (Nh) is analysed and results for two different optimisation cases presented. The first uses day-ahead forecasts for both solar availability and market prices. The second uses day-ahead solar availability and within-day market price forecasts. Both cases are settled in the balancing market. Key results include that the balancing cost decreases with increased SM and Nh and that balancing costs can be 2.2% to 9.5% of the plants gross income. For all SM and Nh, balancing costs are a function of season, being lower in summer than winter driven by increased load-factor in summer. During the year Quarter 3 has a lower balancing cost than Quarter 2 due to a closer match between forecast and actual solar availability. Optimising against within-day prices costs more than with day-ahead prices resulting from more balancing energy traded at a less favourable price than day-ahead. It is envisaged that the numbers presented in this study will provide an aid to policy makers when constructing tariffs to support future CSP development.

S.W. Channon; P.C. Eames

2014-01-01T23:59:59.000Z

24

Concentrating Solar Power: Energy from Mirrors  

SciTech Connect

This fact sheet explains how concentrating solar power technology works and the three types of systems in development today: trough, dish, and central receiver.

Poole, L.

2001-02-27T23:59:59.000Z

25

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

26

Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

27

Energy 101: Concentrating Solar Power  

SciTech Connect

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

28

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

29

Parabolic-Trough Solar Water Heating--FTA, 022798m FTA trough  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parabolic-trough solar water heating is Parabolic-trough solar water heating is a well-proven technology that directly sub- stitutes renewable energy for conventional energy in water heating. Parabolic-trough collectors can also drive absorption cooling systems or other equipment that runs off a thermal load. There is considerable potential for using these technologies at Federal facil- ities in the Southwestern United States or other areas with high direct-beam solar radi- ation. Facilities such as jails, hospitals, and barracks that consistently use large volumes of hot water are particularly good candi- dates. Use of parabolic-trough systems helps Federal facilities comply with Executive Order 12902's directive to reduce energy use by 30% by 2005 and advance other efforts to get the Federal government to set a good

30

Energy 101: Concentrating Solar Power | Department of Energy  

Energy Savers (EERE)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP...

31

NREL: TroughNet - Parabolic Trough Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Workshops Parabolic Trough Workshops Here you'll find information about workshops and forums concerning parabolic trough technology and concentrating solar power. Also, see upcoming events on concentrating solar power. Past Workshops and Forums 2007 Parabolic Trough Technology Workshop March 8-9, 2007 Golden, CO 2007 Solar Power Tower, Dish Stirling and Linear Fresnel Technologies Workshop March 7, 2007 Golden, CO 2006 Parabolic Trough Technology Workshop February 14-16, 2006 Incline Village, NV 2004 Solar Thermal Electric International Project Development Forum July 13, 2004 Portland, OR 2003 Parabolic Trough Thermal Energy Storage Workshop February 20-21, 2003 Golden, CO 2001 Solar Energy Forum: The Power to Choose April 21-25, 2001 Washington, D.C. 2000 Parabolic Trough Technology Workshop

32

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

33

Linear Concentrator System Basics for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic trough collectors that track the sun. The cooling towers can be seen with the water plume rising into the air, and white water tanks are in the background. Credit: Sandia National Laboratory / PIX 14955 Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and focus the sunlight onto a linear

34

A Linear Parabolic Trough Solar Collector Performance Model  

E-Print Network (OSTI)

: 1 bar (winter) Pressure in solar collection loop: 10 bar (Summer), 5 bar (winter) Pressure in main chilled water loop : 1 bar (summer) TIC TIC TIC TIC Space Thermostat May 18,06 Parabolic Solar Trough Collector: 52.44 m^2 / 4 modules... & winter) Chilled/Heat Water Storage Current Existing Future Installation Current Installation TIC TIC EIC Temperature indicator controller Energy indicator controller Fig. 1 IW solar heating and cooling system 1.3 EES Model In order to understand...

Qu, M.; Archer, D.; Masson, S.

2006-01-01T23:59:59.000Z

35

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

36

NREL: Concentrating Solar Power Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL develops publications, including technical reports and papers, about its R&D activities in concentrating solar power, as well as related information. Below you'll find a list of selected NREL publications concerning these activities. Also see TroughNet's publications on parabolic trough technology, and market and economic assessment. For other NREL concentrating solar power publications, you can search NREL's Publications Database. Selected Publications These publications are available as Adobe Acrobat PDFs. Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines NREL Subcontract Report Author: David Kearney - Kearney & Associates Publication Date: March 2013 Simulating the Value of Concentrating Solar Power with Thermal Energy

37

Performance contracting for parabolic trough solar thermal systems  

SciTech Connect

Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

1997-12-31T23:59:59.000Z

38

Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint  

SciTech Connect

As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

Stynes, J. K.; Ihas, B.

2012-04-01T23:59:59.000Z

39

Research on the compensation of the end loss effect for parabolic trough solar collectors  

Science Journals Connector (OSTI)

Abstract In this paper, an optical analysis on the end loss effect of parabolic trough solar collector (PTC) with horizontal north–south axis (PTC-HNSA) is performed, and a method to compensate its end loss effect is presented. The calculation formulae for the optical end loss ratio and the increased optical efficiency (the optical collection efficiency increment of PTC system after this compensation method is used) are derived; the daily optical end loss ratio, yearly optical end loss ratio, daily increased optical efficiency and yearly increased optical efficiency in different latitudes are calculated; the variation of optical end loss ratio and increased optical efficiency with trough’s length and latitude angles are analyzed and discussed. It is indicated through the analyses that this compensation method is very applicable for regions with the latitude over 25° (especially over 30°) and short trough collectors. In order to verify the feasibility of the compensation method, a five-meter PTC-HNSA experimental system was built. The increased thermal efficiency of the experimental system is measured, and the result that the experimental value (increased thermal efficiency) substantially agreed with the theoretical value (increased optical efficiency) is gained. All these works can offer some valuable references to the further study on high-efficiency trough solar concentrating systems.

Chengmu Xu; Zhiping Chen; Ming Li; Peng Zhang; Xu Ji; Xi Luo; Jiangtao Liu

2014-01-01T23:59:59.000Z

40

Video Scanning Hartmann Optical Testing of State-of-the-Art Parabolic Trough Concentrators: Preprint  

SciTech Connect

This paper describes the Video Scanning Hartmann Optical Test System (VSHOT) used to optically test parabolic trough designs by both Solargenix and Industrial Solar Technology.

Wendelin, T.; May, K.; Gee, R.

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Program Concentrating Solar Power Program Office of Solar Energy Technologies operate for 80% of the summer mid-peak hours and 66% of the winter mid-peak hours. A natural gas backup system supplements the solar capacity and contributes 25% of the plants' annual output. The SEGS plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. In the SEGS design, the curved solar collectors focus sunlight onto a receiver pipe. Mechanical controls slowly rotate the collectors during the day, keeping them aimed at the sun as it travels across the sky. Synthetic oil flowing through the receiver pipe serves as the heat transfer medium. The collectors concentrate sunlight 30 to 60 times the normal intensity on the receiver, heating the oil as high as 735°F (390°C).

42

Project Profile: Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

43

Parabolic Trough Solar Power Plant Simulation Model: Preprint  

SciTech Connect

As interest for clean renewable electric power technologies grows, a number of parabolic trough power plants of various configurations are being considered for deployment around the globe. It is essential that plant designs be optimized for each specific application. The optimum design must consider the capital cost, operations and maintenance cost, annual generation, financial requirements, and time-of-use value of the power generated. Developers require the tools for evaluating tradeoffs between these various project elements. This paper provides an overview of a computer model that is being used by scientists and developers to evaluate the tradeoff between cost, performance, and economic parameters for parabolic trough solar power plant technologies. An example is included that shows how this model has been used for a thermal storage design optimization.

Price, H.

2003-01-01T23:59:59.000Z

44

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

"This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

45

NREL: Concentrating Solar Power Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. A collage of Concentrating Solar Power photographs. The first photo shows a dish-engine solar system. The second is of a SAIC Stirling dish collector. And the third photo shows a SkyTrough solar concentrator located on a mesa top. NREL collaborates with industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus on components R&D and systems analysis related to power tower and parabolic trough technologies: Collectors Receivers Power block Thermal energy storage Analysis. In addition, NREL has received funding through the following competitively awarded projects: 10-megawatt supercritical carbon dioxide (s-CO2) turbine test Near-blackbody, enclosed-particle receiver integrated with a

46

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network (OSTI)

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

47

Solar Concentration in Space  

Science Journals Connector (OSTI)

Solar concentrators go space. Lens and mirror-based solar concentrators have recently begun to boost photovoltaic power supplies for satellites in space. In 1998, the first mission carrying solar concentrators...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

48

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22 kg/s m2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000 m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100 kW.

R. Silva; M. Pérez; A. Fernández-Garcia

2013-01-01T23:59:59.000Z

49

NREL: TroughNet - Parabolic Trough Technology Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Overview Technology Overview Parabolic trough solar power technology offers an environmentally sound and increasingly cost-effective energy source. Here you'll find overviews about the following parabolic trough power plant technologies: Solar Field Collector balance of system Concentrator structure Mirrors Receivers Thermal Energy Storage Molten-salt heat transfer fluid Storage media Storage systems Power Plant Systems Direct steam generation Fossil-fired hybrid backup Power cycles Wet and dry cooling Operation and maintenance For more detailed, technical information, see our publications on parabolic trough power plant technology. Printable Version TroughNet Home Technologies Solar Field Thermal Energy Storage Power Plant Systems Market & Economic Assessment Research & Development

50

Design and analysis of hydraulically driven actuation system For a parabolic solar trough  

E-Print Network (OSTI)

This thesis documents Katarina Popovic's contribution to the design of hydraulic cylinder actuation system for day to day solar trough sun tracking, a semester long project within 2.752 Development of Mechanical Products ...

Popovi?, Katarina, S.B. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

51

NREL: Concentrating Solar Power Research - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Data and Resources Data and Resources For concentrating solar power technologies, NREL features the following online solar radiation resource data and solar resource maps, as well as data for renewable energy power plants. Also see TroughNet's data and resources specifically for parabolic trough technology. Concentrating Solar Power Projects around the World NREL, in conjunction with SolarPACES (Solar Power and Chemical Energy Systems), maintains a database of CSP projects around the world with plants that are either operational, under construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine systems. Each project profile includes background information, a listing of project participants, and data on the power-plant

52

Guidelines for reporting parabolic trough solar electric system performance  

SciTech Connect

The purpose of this activity is to develop a generic methodology which can be used to track and compare the performance of parabolic trough power plants. The approach needs to be general enough to work for all existing and future parabolic trough plant designs, provide meaningful comparisons of year to year performance, and allow for comparisons between dissimilar plant designs. The approach presented here uses the net annual system efficiency as the primary metric for evaluating the performance of parabolic trough power plants. However, given the complex nature of large parabolic trough plants, the net annual system efficiency by itself does not adequately characterize the performance of the plant. The approach taken here is to define a number of additional performance metrics which enable a more comprehensive understanding of overall plant performance.

Price, H.W.

1997-06-01T23:59:59.000Z

53

Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

54

Photovoltaic solar concentrator  

DOE Patents (OSTI)

A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

2012-12-11T23:59:59.000Z

55

Photovoltaic solar concentrator module  

SciTech Connect

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

56

Solar Trough Organic Rankine Electricity System (STORES) Stage 1: Power Plant Optimization and Economics; November 2000 -- May 2005  

SciTech Connect

Report regarding a Stage 1 Study to further develop the concept of the Solar Trough Organic Rankine Cycle Electricity Systems (STORES).

Prabhu, E.

2006-03-01T23:59:59.000Z

57

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Low-Cost Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This presentation was delivered at the SunShot Concentrating Solar Power (CSP)...

58

Project Profile: High-Concentration, Low-Cost Parabolic Trough...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

aperture, while incorporating additional advancements that substantially lower installed solar field costs. For example, the reflective film surfaces are being upgraded to improve...

59

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights...

60

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 3: Multiple Plants at a Common Location, 20 January 2005 - 31 December 2005  

SciTech Connect

Subcontract report by Nexant, Inc., regarding a system analysis of multiple solar parabolic trough plants at a common location.

Kelly, B.

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy 101: Concentrating Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Concentrating Solar Power Energy 101: Concentrating Solar Power Addthis Below is the text version for the Energy 101: Concentrating Solar Power video. The video opens with the words "Energy 101: Concentrating Solar Power." OK. Take the natural heat from the sun, reflect it against a mirror, focus all of that heat on one area, send it through a power system, and you've got a renewable way of making electricity. It's called concentrating solar power, or CSP. Caption: Concentrating Solar Power (CSP): Focuses the sun's heat to make steam and electricity. Now, there are many types of CSP technologies. Towers, dishes, linear mirrors, and troughs. The video goes through a quick panorama of several different types, and several different views, of all of the different types of CSP. Finally, it

62

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

63

Reducing the Cost of Energy from Parabolic Trough Solar Power Plants: Preprint  

SciTech Connect

Parabolic trough solar technology is the most proven and lowest cost large-scale solar power technology available today, primarily because of the nine large commercial-scale solar power plants that are operating in the California Mojave Desert. However, no new plants have been built during the past ten years because the cost of power from these plants is more expensive than power from conventional fossil fuel power plants. This paper reviews the current cost of energy and the potential for reducing the cost of energy from parabolic trough solar power plant technology based on the latest technological advancements and projected improvements from industry and sponsored R&D. The paper also looks at the impact of project financing and incentives on the cost of energy.

Price, H.; Kearney, D.

2003-01-01T23:59:59.000Z

64

Concentrating photovoltaic solar panel  

DOE Patents (OSTI)

The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

2014-04-15T23:59:59.000Z

65

NREL: TroughNet - Parabolic Trough System and Component Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

System and Component Testing System and Component Testing Here you'll find information about parabolic trough system and components testing, as well facilities and laboratories used for testing. Tests include those for: Concentrator thermal efficiency Receiver thermal performance Mirror contour and collector alignment Mirror reflectivity and durability Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Concentrator Thermal Efficiency Testing Researchers and industry use the following facilities for testing parabolic trough collectors. AZTRAK Rotating Platform At Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF), the AZTRAK rotating platform has been used to test several parabolic trough modules and receivers. Initially, researchers tested a

66

Linear Concentrator System Basics for Concentrating Solar Power...  

Office of Environmental Management (EM)

towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in...

67

NREL: Concentrating Solar Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's concentrating solar power (CSP) projects focus on components R&D and systems analysis related to power tower and parabolic trough technologies. We support the U.S. Department of Energy (DOE) in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar power research projects. Through a competitive process, NREL was selected to lead the following projects: Novel Components to Overcome Existing Barriers-Particle Receiver Integrated with a Fluidized Bed Thermodynamic Cycle to Revolutionize CSP Systems-10-Megawatt Supercritical Carbon Dioxide (s-CO2) Turbine Test Nanomaterials for thermal energy storage in CSP plants In addition to these efforts, NREL is also a key partner on two other

68

A new parabolic trough solar collector P. Kohlenbach1  

E-Print Network (OSTI)

oil is circulated inside the absorber tube, and transfers the heat to a ORC FP6 unit sourced from of this facility, to develop efficient new methods of capturing and harnessing solar heat for combined heat) and remote power and energy. The array is designed to drive a small Organic Rankine Cycle unit with a power

69

Concentrating Solar Power  

Science Journals Connector (OSTI)

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives CSP is approaching competiveness with conventional gas?fired systems during peak?demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50% and that U.S. capacity could be 120 GW by 2050.

Mark Mehos

2008-01-01T23:59:59.000Z

70

Sandia National Laboratories: multiscale concentrated solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

71

NREL: Concentrating Solar Power Research - Southwest Concentrating Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwest Concentrating Solar Power 1000-MW Initiative Southwest Concentrating Solar Power 1000-MW Initiative Photos of various concentrating solar power systems. NREL, working through SunLab, supports the U.S. Department of Energy's goal to install 1,000 megawatts (MW) of new concentrating solar power systems in the southwestern United States by 2010. This level of deployment, combined with research and development to reduce technology component costs, could help reduce concentrating solar power electricity costs to $0.07/kilowatt-hour. At this cost, concentrating solar power can compete effectively in the Southwest's energy markets. To achieve the Initiative's goal, the U.S. Department of Energy is partnering with the Western Governors' Association to encourage concentrating solar power installations in Arizona, California, Colorado,

72

Concentrating Solar Power Facilities and Solar Potential | Department...  

Office of Environmental Management (EM)

Facilities and Solar Potential Concentrating Solar Power Facilities and Solar Potential Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to filter...

73

Potential of Concentrating Solar Power in Canada  

Science Journals Connector (OSTI)

Abstract In this paper, results of an analysis to assess the potential of concentrating solar thermal power applications in Canada are presented. First, a direct normal solar resource (DNI) resource map for Canada is introduced. This map indicates the locations where the DNI is the highest in Canada and is derived from the most recent Perez's SUNY satellite-based solar resource model Version number 3. Second, the methodology and results of a GIS analysis to identify the locations of the most suitable lands for concentrating solar thermal power (CSP) applications in Canada are discussed. The total areas of the CSP-suitable lands are presented in a tabulated and a map formats for each of the Canadian provinces where there is a maximum DNI solar resource. Third and finally, results of a technical economical analysis for two CSP system designs are discussed. The two CSP systems considered include parabolic trough with synthetic oil heat transfer fluid with and without storage, molten salt power tower with and without storage.

R. Djebbar; D. Belanger; D. Boutin; E. Weterings; M. Poirier

2014-01-01T23:59:59.000Z

74

Energy 101: Concentrating Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power Energy 101: Concentrating Solar Power August 6, 2010 - 12:58pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs How does it work? Concentrating solar power technologies use mirrors to reflect sunshine, turning it into an intense beam that's collected as heat. Some of the heat is used to produce electricity immediately. The rest is stored so that the generators can provide power for homes and businesses long after the sun has set Whether capturing the sun's heat from towers, dishes, or troughs, concentrating solar power (CSP) technology is making exciting advances. So exciting, in fact, that the federal government is looking at more than 25 square miles in Nevada to demonstrate new CSP technology research.

75

Linear concentrating solar collector  

SciTech Connect

The present invention relates to a segment of a linear concentrating solar collector which includes two plates distanced from each other and extending parallel to each other; a member connects the plates to each other and holes are bored in each of the plates in a parallel manner along a parabolic curve. A member passes through the holes each holding a small strip made of a reflecting material all strips together forming a parabolic surface. The invention relates also to a collector comprising at least two of each segments and an absorber extending along the focus line of the entire collector. The collector is advantageously provided with horizontal and/or vertical members which ascertains that the collector can follow the position of the sun.

Aharon, N. B.

1985-08-06T23:59:59.000Z

76

An optimized model and test of the China's first high temperature parabolic trough solar receiver  

SciTech Connect

The vacuum solar receiver is the key component of a parabolic trough solar plant, which plays a prominent role in the gross system efficiency. Recently, China's first high temperature vacuum receiver, Sanle-3 HCE, has been developed and produced by Southeast University and Sanle Electronic Group. Before being utilized in China's first parabolic trough solar plant, accurately estimating the thermal properties of this new receiver is important. This paper first establishes and optimizes a 1-D theoretical model at Matlab program to compute the receiver's major heat loss through glass envelope, and then systematically analyzes the major influence factors of heat loss. With the laboratorial steady state test stand, the heat losses of both good vacuum and non-vacuum Sanle-3 receivers were surveyed. Comparison shows the original 1-D model agrees with the ends covered test while remarkably deviating from end exposed test. For the purpose of identifying the influence of receiver's end to total heat loss, an additional 3-D model is built by CFD software to further investigate the different heat transfer processes of receiver's end components. The 3-D end model is verified by heating power and IR temperature distribution images in the test. Combining the optimized 1-D model with the new 3-D end model, the comparison with test data shows a good accordance. At the same time the heat loss curve and emittance curve of this new receiver are given and compared with those of several other existing receivers as references. (author)

Gong, Guangjie; Huang, Xinyan; Wang, Jun; Hao, Menglong [Southeast University, Nanjing (China)

2010-12-15T23:59:59.000Z

77

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, 20 January 2005 - 31 December 2005  

SciTech Connect

Subcontract report by Nexant, Inc., regarding a system analysis comparing solar parabolic trough plants with wet and dry rankine cycle heat rejection.

Kelly, B.

2006-07-01T23:59:59.000Z

78

Concentrated solar power on demand .  

E-Print Network (OSTI)

??This thesis describes a new concentrating solar power central receiver system with integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption molten… (more)

Codd, Daniel Shawn

2011-01-01T23:59:59.000Z

79

NREL: Concentrating Solar Power Research - Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Resource Maps Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands available for deploying of large-scale concentrating solar power plants in the southwestern United States. Each of the following seven states, as well as the southwestern U.S. region, has two maps: the left and right maps represent analyses excluding land with slopes >1% and >3%, respectively. Lower-resolution jpg versions are available below; much higher-resolution pdf files, suitable for plotting large-scale posters, can be requested. You can also access an unfiltered direct-normal solar radiation map of the southwestern United States. Download Adobe Reader. Southwestern U.S.

80

Concentrated Solar Thermoelectric Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOLAR POWER PROGRAM REVIEW 2013 Receiver Cavity * Receiver cavity can reduce heat loss from black surface or selective surface 18 With blackbody absorber: With 20%...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

82

Cleaning strategies for parabolic-trough solar-collector fields; guidelines for decisions  

SciTech Connect

This report is intended to assist the owner or operator of a parabolic trough solar collector system to decide on a cleaning strategy (equipment, materials, procedures, and schedules). The guidelines are based on information obtained in past research studies, as well as interviews with vendors and users of cleaning and water treatment equipment. The basic procedure recommended utilizes high pressure portable washing equipment. However, since the cleaning problem is so site-specific, no single, detailed approach can be specified. A systematic procedure for evaluating the particular requirements of a site is therefore given. This will allow the solar energy system operator to develop a cleaning strategy which is cost-effective because it is suited to local conditions.

Bergeron, K.D.; Freese, J.M.

1981-06-01T23:59:59.000Z

83

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

edge of ‘disruptive’ solar technology that could replace thewe develop a new solar technology and a suite of analysisin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

84

Approach to designing a solar concentrator for small-scale remote power application  

Science Journals Connector (OSTI)

A small-scale concentrated solar power (CSP) unit was designed to provide electricity and hot water using an organic Rankine cycle (ORC) for Egypt as part of an undergraduate capstone project. The system was designed for a target power output of 3 kW. It uses parabolic troughs to heat ethylene glycol used as the heat transfer fluid which absorbs heat in the trough collector and transfers it to the working fluid through a heat exchanger. The system consists of 9 parabolic troughs and a total aperture area of 67 m2 providing the required 3 kW of energy to the ORC. One parabolic trough was manufactured to test its thermal efficiency according to ASHRAE standard 93-2003 [Methods of Testing to Determine the Thermal Performance of Solar Collectors (ASHRAE Inc. 1791 Tullie Circle NE Atlanta GA 30329 2003)] and compared it to its calculated value. A simple microcontroller-based system was used to track the sun.

Khaled Metwally; Ahmed Makhlouf; Lamyaa El-Gabry

2011-01-01T23:59:59.000Z

85

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

86

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

87

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Partnership,...

88

NREL: TroughNet - Parabolic Trough FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough FAQs Parabolic Trough FAQs Find answers to frequently asked questions about parabolic trough solar technology. Question topics include: Central station solar benefits Economic and environmental benefits Electricity cost Installation and operation Land use Large-scale vs. distributed power Past construction decline Photovoltaics comparison Power plant cost Power plant siting Technology potential Water use Some of the following documents are available as Adobe Acrobat PDFs. How much does a parabolic trough power plant cost? The cost of a parabolic trough power plant depends on many factors such as plant size, whether thermal energy storage is included, and whether the solar field has been enlarged to increase the annual plant capacity factor. Based on these considerations the current capital cost for large

89

Siting Utility-Scale Concentrating Solar Power Projects  

SciTech Connect

In 2002, Congress asked the U.S. Department of Energy to develop and scope out an initiative to fulfill the goal of having 1,000 megawatts (MW) of new parabolic trough, power tower, and dish engine solar capacity supplying the southwestern United States. In this paper, we present a review of the solar resource for Arizona, California, Nevada, and New Mexico. These four states have the greatest number of ''premium'' solar sites in the country and each has a renewable portfolio standard (RPS). We present information on the generation potential of the solar resources in these states. We also present regions within New Mexico that may be ideally suited for developing large-scale concentrating solar power (CSP) plants because of their proximity to load and their access to unconstrained transmission.

Mehos, M.; Owens, B.

2005-01-01T23:59:59.000Z

90

Simulation of solar lithium bromide–water absorption cooling system with parabolic trough collector  

Science Journals Connector (OSTI)

Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide–water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N–S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy.

M. Mazloumi; M. Naghashzadegan; K. Javaherdeh

2008-01-01T23:59:59.000Z

91

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power ANNOUNCEMENT: Sandia's...

92

Optical performance of an azimuth tracking linear Fresnel solar concentrator  

Science Journals Connector (OSTI)

Abstracts In this paper, a linear Fresnel solar concentrator installed on a solar azimuth tracker is studied. Based on the integration of the effective source distribution for a reflection point and the whole reflector area, we develop an analytical model to calculate the intercept factor of the concentrator and analyze its performance over a year. The prediction of our analytical optical model agrees pretty well with that of the ray tracing program SolTRACE. Then we study the effects of the main design parameters on the performance of the system. The results show that annual mean total efficiency of 61% can be obtained in optimized design when the operational temperature of the receiver is 400 °C. The performance of the azimuth tracking linear Fresnel solar concentrator (ATLFSC) is compared with that of the parabolic trough collector. It is found that the cosine factor, intercept factor and total efficiency of the ATLFSC are better than those of parabolic trough collector, showing that the ATLFSC may have great potential for solar energy utilization.

Farong Huang; Longlong Li; Weidong Huang

2014-01-01T23:59:59.000Z

93

SunShot Initiative: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power to Concentrating Solar Power to someone by E-mail Share SunShot Initiative: Concentrating Solar Power on Facebook Tweet about SunShot Initiative: Concentrating Solar Power on Twitter Bookmark SunShot Initiative: Concentrating Solar Power on Google Bookmark SunShot Initiative: Concentrating Solar Power on Delicious Rank SunShot Initiative: Concentrating Solar Power on Digg Find More places to share SunShot Initiative: Concentrating Solar Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Concentrating Solar Power SunShot CSP Team Learn more about the SunShot concentrating solar power program staff by visiting the team's profile pages. Argonne National Laboratory Argonne National Laboratory

94

Engineering, Financial and Net Energy Performance, and Risk Analysis for Parabolic Trough Solar Power Plants  

E-Print Network (OSTI)

concentrating solar power plant. A set of engineering performance, financial and net energy models were developed as tools to predict a plant’s engineering performance, cost and energy payback. The models were validated by comparing the predicted results...

Luo, Jun

2014-08-08T23:59:59.000Z

95

A New Generation of Parabolic Trough Technology  

Office of Environmental Management (EM)

Trough Technology Innovat ive t echnology solut ions f or su st a in a b ilit y ABENGOA SOLAR Parabolic Trough Collector Technology Abengoa Solar Cont ent 2 Solana Solar Power...

96

Development of concentrator solar cells  

SciTech Connect

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

97

A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology  

Science Journals Connector (OSTI)

Abstract The huge amount of solar energy available on Earth?s surface has heightened awareness in Concentrating Solar Power, and more particularly in hybrid concepts. The integrated solar combined cycle system (ISCCS) is one of the more promising hybrid configurations for converting solar energy into electricity and it might become the technology of choice in the near future. This article reviews the R&D activities and published studies since the introduction of such a concept in the 1990s. The review includes the current status and describes different hybridizations of solar energy with natural gas, coal and other renewable energy sources. Furthermore, it provides in-depth analysis of real and expected R&D finding.

Omar Behar; Abdallah Khellaf; Kamal Mohammedi; Sabrina Ait-Kaci

2014-01-01T23:59:59.000Z

98

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

99

TOPCAT Solar Cell Alignment & Energy Concentration Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This...

100

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Concentrating Solar Power (Revised) (Fact Sheet)  

SciTech Connect

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2010-11-01T23:59:59.000Z

102

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

103

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

104

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

105

Project Profile: Concentrated Solar Thermoelectric Power | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Power Project Profile: Concentrated Solar Thermoelectric Power MIT logo The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of...

106

Sandia National Laboratories: Concentrating Solar Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events,...

107

Concentrating Solar Power SunShot Research and Development |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Assembly Solar Technology Jet Propulsion Laboratory: Low-Cost, Lightweight Solar Concentrators Massachusetts Institute of Technology: Concentrated Solar...

108

Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric co-generators (STECGs) are an attractive means of supplying electric power and heat simultaneously and economically. Here we examine the effects of environmental factors on the conversion efficiencies of a new type of STECG comprising parabolic trough concentrators and thermoelectric modules (TEMs). Each TEM array was bonded with a solar selective absorber plate and directly positioned on the focal axis of the parabolic concentrator. Glass tubular collectors were not used to encase the TEMs. Although this makes the overall system simpler, the environmental effects become significant. Simulations show that the performance of such a system strongly depends on ambient conditions such as solar insolation, atmospheric temperature and wind velocity. As each of these factors increases, the thermal losses of the STECG system also increase, resulting in reduced solar conversion efficiency, despite the increased radiation absorption. However, the impact of these factors is relatively complicated. Although the electrical efficiency of the system increases with increasing solar insolation, it decreases with increasing ambient temperature and wind velocity. These results serve as a useful guide to the selection and installation of STECGs, particularly in Guangzhou or similar climate region.

Chao Li; Ming Zhang; Lei Miao; Jianhua Zhou; Yi Pu Kang; C.A.J. Fisher; Kaoru Ohno; Yang Shen; Hong Lin

2014-01-01T23:59:59.000Z

109

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

110

NREL: TroughNet - Parabolic Trough Power Plant Market, Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

factors for current parabolic trough systems under development range from 25% for solar only plants to greater than 40% for plants with thermal storage. Such plants provide...

111

NREL: TroughNet - Parabolic Trough Power Plant System Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Parabolic Trough Power Plant System Technology Parabolic Trough Power Plant System Technology A parabolic trough solar power plant uses a large field of collectors to supply thermal energy to a conventional power plant. Because they use conventional power cycles, parabolic trough power plants can be hybridized-other fuels can be used to back up the solar power. Like all power cycles, trough power plants also need a cooling system to transfer waste heat to the environment. Parabolic trough power plant technologies include: Direct steam generation Fossil-fired (hybrid) backup Operation and maintenance Power cycles Steam Rankine Organic Rankine Combined Wet and dry cooling Power Cycles A photo of an aerial view of a power plant in the middle of a solar field with rows and rows of parabolic troughs tracking. The cooling towers can be seen with the water plume rising into the air. The white water tanks can be seen in the background.

112

Concentrating Solar Power: Technology Overview  

SciTech Connect

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

113

Arontis Solar Concentrator AB | Open Energy Information  

Open Energy Info (EERE)

Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating, one axis sun tracking PV system that also produces hot water. References: Arontis Solar Concentrator...

114

Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market  

Open Energy Info (EERE)

Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Drivers and Barriers in the Current Concentrated Solar Power (CSP) Market (Webinar) Focus Area: Solar Topics: Market Analysis Website: www.leonardo-energy.org/webinar-drivers-and-barriers-current-csp-marke Equivalent URI: cleanenergysolutions.org/content/drivers-and-barriers-current-concentr Language: English Policies: Regulations Regulations: Mandates/Targets This video teaches users about the four major types of concentrating solar power technologies (CSP): parabolic trough, tower concentrators, linear Fresnel lenses and dish engine systems. It also provides an overview of the trends in the market and research that should be performed in order to make

115

NREL: TroughNet - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Market and economic assessment Solar data Models and tools Also see presentations and posters from past parabolic trough technology workshops. For more publications on parabolic...

116

Solar Junction Develops World Record Setting Concentrated Photovoltaic Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Solar Junction's concentrated photovoltaic technology that set a world record for conversion efficiency.

117

Tracking heat flux sensors for concentrating solar applications  

DOE Patents (OSTI)

Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

Andraka, Charles E; Diver, Jr., Richard B

2013-06-11T23:59:59.000Z

118

2014 Concentrating Solar Power Report | Department of Energy  

Energy Savers (EERE)

2014 Concentrating Solar Power Report 2014 Concentrating Solar Power Report Concentrating solar power (CSP) is a technology that harnesses the sun's energy potential and has the...

119

Cross Linear Solar Concentration System for CSP and CPV  

Science Journals Connector (OSTI)

Abstract The novel concentration system, Cross Linear (CL) system has been newly invented by Tokyo Institute of Technology. From a simulation study on how cosine effect varies with latitude, declination angle, hour angle, and tan ? (the ratio of the receiver height and the distance from mirror position to the receiver position for the receiver/mirror configuration of the CL system), it was found that the cosine factor of CL system increases with an increase in the latitude. The higher cosine factor with around 0.95 in winter months is obtained by CL system even at high latitudes. The CL system can eliminate the end loss and increase the optical efficiency compared to Trough and LFR (Linear Fresnel Reflector system). This seems to solve the problems in the concentration systems of Trough and LFR; the lower concentration efficiency (lower cosine factor) in the winter months. In addition, a higher temperature around 650 °C can be obtained with the CL system, due to the high concentration degree of CL solar reflection method. Thus, the CL system can achieve both high concentration temperature and high collection efficiency in both winter and summer seasons, even at high latitudes. Therefore the CL system seems to be the only CSP system suitable for the CSP-sites at high latitudes such as Mongolia (outer and inner), southern areas of Spain and Australia, and northern area of India. Due to the promising CL system, a joint collaboration between Japanese and Indian industries, institutes and universities has been launched to build solar plant based on CL technology. Also, the CL system also seems to be applicable for the CPV, because the coma tic aberration is very small during 9am to 3pm during the sunlight duration.

Y. Tamaura; S. Shigeta; Q.-L. Meng; T. Aiba; H. Kikura

2014-01-01T23:59:59.000Z

120

A Path to High-Concentration Luminescent Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells, and our work predicts unprecendented levels of...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)  

SciTech Connect

This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

Kurtz, S.

2008-05-06T23:59:59.000Z

122

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

123

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating solar power Concentrating solar power (Redirected from - Concentrating Solar Power) Jump to: navigation, search Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower

124

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

125

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

126

Solar Tracing Sensors for Maximum Solar Concentrator Efficiency  

Concentrating Solar Power (CSP) relies on thermodynamic processes to convert concentrated light into useful forms of energy. Accurate sun tracking enables higher concentration ratios and improved efficiency through higher temperature processes and lower losses...

2013-03-12T23:59:59.000Z

127

Definition: Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Concentrating solar power Technologies that use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator.[1][2] View on Wikipedia Wikipedia Definition . ]] File:El-v-01 ubt. jpeg Sustainable energy Renewable energy Anaerobic digestion Hydroelectricity · Geothermal Microgeneration · Solar Tidal · Wave · Wind Energy conservation Cogeneration · Energy efficiency Geothermal heat pump Green building · Passive Solar Sustainable transport Plug-in hybrids · Electric vehicles File:Terra- edge blur. png Environment Portal v · d · e Concentrated solar power (also called concentrating solar power, concentrated solar thermal, and CSP) systems use

128

National Laboratory Concentrating Solar Power Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated with Fludized Bed Scattering Solar Thermal Concentrators...

129

concentrating solar power | OpenEI  

Open Energy Info (EERE)

concentrating solar power concentrating solar power Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (7 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

130

Concentrating Solar Power | Department of Energy  

Office of Environmental Management (EM)

technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. Thermal energy can then be used to produce...

131

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

132

Concentrating Solar Power Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

133

A solar concentrating photovoltaic/thermal collector .  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

134

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

and Transportation R&D Activities View all EC Publications Related Topics Concentrating Solar Power CSP EFRC Energy Energy Efficiency Energy Security Infrastructure...

135

Microtracking and Self-Adaptive Solar Concentration  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

136

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Components Makeover Gives Components Makeover Gives Concentrating Solar Power a Boost Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants. Space Frames for Lower Costs To maximize the overall efficiency of the conventional glass-mirror trough system, NREL worked with Acciona Solar Power-then known as Solargenix Energy-to improve vari- ous system components. A key focus was the structural framework that holds the mirrors

137

Concentrating Solar Power Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to produce electricity via a steam turbine or heat engine that drives a generator. Concentrating solar power offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for

138

NREL: Concentrating Solar Power Research - Collector R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Collector R&D Collector R&D Featured Resource Learn more about NREL's capabilities in collector/receiver characterization. Collector research at NREL focuses on developing and testing the next generation of concentrating solar power (CSP) collectors that reduce delivered electricity costs by 50%. NREL's work involves improved reflector development, optical model development, optical measurement techniques, testing standards, and reliability assessments. NREL also works to upgrade and adapt optical tools to enhance laboratory testing capabilities. CSP collectors capture the sun's energy with mirrors that reflect and focus the sunlight onto a receiver, creating the heat that is used to generate electricity. Opportunities and Potential Impact Collectors-whether for parabolic trough, power tower, or dish

139

Parabolic-Dish Solar Concentrators of Film on Foam  

E-Print Network (OSTI)

Parabolic and spherical mirrors are constructed of aluminized PET polyester film on urethane foam. During construction, the chosen shape of the mirror is created by manipulating the elastic/plastic behavior of the film with air pressure. Foam is then applied to the film and, once hardened, air pressure is removed. At an f-number of 0.68, preliminary models have an optical angular spread of less than 0.25 degrees, a factor of 3.3 smaller than that for a perfectly spherical mirror. The possibility exists for creating large-lightweight mirrors with excellent shape and stiffness. These "film-on-foam" construction techniques may also be applicable to parabolic-trough solar concentrators but do not appear to be suitable for optical imaging applications because of irregularities in the film.

Barton, Sean A

2009-01-01T23:59:59.000Z

140

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Performance analysis of Azimuth Tracking Fixed Mirror Solar Concentrator  

Science Journals Connector (OSTI)

Abstract The fixed mirror solar collector (FMSC) fixes reflector and mobiles receiver to collect solar energy. However, this type of concentrator has a low efficiency and short operating duration in practical applications. In this paper, we propose to install the FMSC on an azimuth tracking device (ATFMSC) and the reflectors are arranged by intermission to avoid the shading of neighbor reflector for incidence angle of less than 10° to improve its optical performance. Through the integration of the reflected solar radiation distribution function over any reflection point, and then the whole collector aperture, we develop the analytical expressions of various system efficiencies to numerically simulate the performance of ATFMSC with evacuated tube receiver in different design parameters. It is validated by the ray tracing results. The result shows that the mean annual net heat efficiency of the whole system would be up to 61% with the operating temperature of 400 °C, which is higher than parabolic trough collector and traditional FMSC. This is because the longitudinal incidence angle of ATFMSC always remains zero by tracking the sun azimuth, so the end loss of the concentrator can be avoided and enables it to operate with high efficiency continually.

Longlong Li; Huairui Li; Qian Xu; Weidong Huang

2015-01-01T23:59:59.000Z

142

Light shield for solar concentrators  

DOE Patents (OSTI)

A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

Plesniak, Adam P.; Martins, Guy L.

2014-08-26T23:59:59.000Z

143

Production of fullerenes using concentrated solar flux  

DOE Patents (OSTI)

A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

Fields, Clark L. (Greeley, CO); Pitts, John Roland (Lakewood, CO); King, David E. (Lakewood, CO); Hale, Mary Jane (Golden, CO); Bingham, Carl E. (Denver, CO); Lewandowski, Allan A. (Evergreen, CO)

2000-01-01T23:59:59.000Z

144

Si concentrator solar cell development. [Final report  

SciTech Connect

This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

1994-10-01T23:59:59.000Z

145

NREL: Concentrating Solar Power Research - Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships Partnerships NREL maintains partnerships to advance concentrating solar power research, development, and deployment efforts. Currently, NREL works with Sandia National Laboratories in Albuquerque, New Mexico, through SunLab-a partnership developed by the U.S. Department of Energy to administer its concentrating solar power R&D and analysis activities. SolarPACES Solar Power and Chemical Energy Systems (SolarPACES), an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of CSP plants. NREL represents the U.S. activities and serves on various committees in SolarPACES, which now has 13 members: Algeria, Australia, Egypt, the European Commission, France, Germany, Israel, Mexico, South Africa, South Korea, Spain, Switzerland, and

146

Optical design and efficiency improvement for organic luminescent solar concentrators  

E-Print Network (OSTI)

Optical design and efficiency improvement for organic luminescent solar concentrators Chunhua Wanga and efficiency improvement method. Keywords: Organic luminescent solar concentrators, Photovoltaic, solar energy, efficiency, multi-layer, solar cells, liquid crystal, molecular alignment 1. INTRODUCTION By using

Hirst, Linda

147

World's Largest Concentrating Solar Power Plant Opens in California  

Energy.gov (U.S. Department of Energy (DOE))

The Ivanpah Solar Electric Generating System, the world’s largest concentrating solar power plant, officially opened on February 13.

148

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Resources On September 26, 2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words,...

149

Low-Cost, Lightweight Solar Concentrator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sunshot DOEGO-102012-3663 * September 2012 MOTIVATION Solar concentrators currently cost 150-250m 2 , which represents as much as half of the total installed cost for a...

150

Advancing Concentrating Solar Power Research (Fact Sheet)  

SciTech Connect

Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

Not Available

2014-02-01T23:59:59.000Z

151

SunShot Concentrating Solar Power Program  

Energy.gov (U.S. Department of Energy (DOE))

This poster, originally presented at the Concentrating Solar Power program review, summarizes the DOE SunShot Initiative's goals as well as the strategy for CSP funding opportunity announcements.

152

SunShot Initiative: National Laboratory Concentrating Solar Power Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Concentrating National Laboratory Concentrating Solar Power Research to someone by E-mail Share SunShot Initiative: National Laboratory Concentrating Solar Power Research on Facebook Tweet about SunShot Initiative: National Laboratory Concentrating Solar Power Research on Twitter Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Google Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Delicious Rank SunShot Initiative: National Laboratory Concentrating Solar Power Research on Digg Find More places to share SunShot Initiative: National Laboratory Concentrating Solar Power Research on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage

153

NREL: Concentrating Solar Power Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories related to NREL Concentrating Solar Power research. Subscribe to the RSS feed RSS . Learn about RSS. November 5, 2013 Solar Working Group Releases Standard Contracts A working group representing solar industry stakeholders has developed standard contracts that should help lower transaction costs and make it easier to access low-cost financing for residential and commercial solar power projects. October 24, 2013 NREL Researcher Honored with Hispanic STEM Award A national organization devoted to getting more Hispanics into the fields of science, technology, engineering, and math (STEM), has honored a scientist at the Energy Department's National Renewable Energy Laboratory (NREL) with its annual Outstanding Technical Achievement Award.

154

Low-Cost, Lightweight Solar Concentrator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications Low-Cost, Lightweight Solar Concentrators - FY13 Q1 Low-Cost Light Weigh Thin Film Solar Concentrators Low-Cost, Lightweight Solar Concentrators FY13...

155

Parabolic Trough Organic Rankine Cycle Power Plant  

SciTech Connect

Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

2005-01-01T23:59:59.000Z

156

SunShot Initiative: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power SunShot CSP Team Learn more about the SunShot concentrating solar power program staff by visiting the team's profile pages. Argonne National Laboratory Argonne National Laboratory High-Efficiency Thermal Energy Storage System for CSP University of California Los Angeles University of California Los Angeles High Operating Temperature Liquid Metal Heat Transfer Fluids Jet Propulsion Laborator Jet Propulsion Laboratory Low-Cost, Lightweight Solar Concentrators Abengoa Solar Abengoa Solar Advanced Nitrate Salt Central Receiver Power Plant HiTek Services HiTek Services Low-Cost Heliostat Development The Department of Energy (DOE) supports research and development of concentrating solar power (CSP) technologies as a unique path to achieve SunShot Initiative cost targets with systems that can supply solar power on demand through the use of thermal storage. CSP technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. Thermal energy can then be used to produce electricity via a turbine or heat engine driving a generator.

157

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

SciTech Connect

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

158

Project Profile: Low-Cost, Lightweight Solar Concentrators |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost, Lightweight Solar Concentrators Project Profile: Low-Cost, Lightweight Solar Concentrators JPL logo The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot...

159

World's Largest Concentrating Solar Power Plant Opens in California...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

World's Largest Concentrating Solar Power Plant Opens in California World's Largest Concentrating Solar Power Plant Opens in California February 19, 2014 - 12:00am Addthis Ivanpah,...

160

Siemens Concentrated Solar Power Ltd previously Solel Solar Systems | Open  

Open Energy Info (EERE)

Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Siemens Concentrated Solar Power Ltd previously Solel Solar Systems Jump to: navigation, search Name Siemens Concentrated Solar Power Ltd (previously Solel Solar Systems) Place Beit-Shemesh, Israel Zip 99107 Sector Solar Product Israel-based subsidiary manufacturing solar thermal electricity generation (STEG) components for power plants, also develops some of its own STEG projects. Coordinates 31.75°, 35° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.75,"lon":35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Concentrating Solar Power (Fact Sheet), Electricity, Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

of parabolic trough modules. * At the Receiver Test Laboratory, we can measure heat loss as a function of temperature to establish the thermal per- formance of receiver...

162

Solar refractive secondary concentrator technology overview  

Science Journals Connector (OSTI)

Refractive secondary concentrators coupled with advanced primary concentrators can efficiently convert solar energy to heat for a wide variety of space applications including power generation thermal propulsion and furnaces. These applications typically require very high temperatures (as high as 2000 K) and high concentration ratios (10 000 to 1). To enable concentration systems that meet these requirements the NASA Glenn Research Center is developing the refractive secondary concentrator which uses refraction and total internal reflection to concentrate and direct solar energy. Presented is an overview of the refractive secondary concentrator technology development effort including a description of benefits past accomplishments and future plans. Highlighted is a recent proof-of-concept test of a prototype sapphire refractive secondary concentrator performed in a solar vacuum environment that demonstrated throughput efficiency of 87%. It is anticipated that the application of an optical coating to the inlet surface of the refractive secondary to reduce the reflection losses at this surface can improve the throughput efficiency to 93%. Plans to conduct additional solar thermal vacuum tests to demonstrate high temperatures and high throughput power are also presented (up to 2000 K and 5 kW).

Wayne A. Wong

2001-01-01T23:59:59.000Z

163

Concentrating solar power | Open Energy Information  

Open Energy Info (EERE)

Concentrating Solar Power Basics (The following text is derived from NREL's concentrating solar power information page.)[1] Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce power by first using mirrors to focus sunlight to heat a working fluid. Ultimately, this high-temperature fluid is used to spin a turbine or power an engine that drives a generator. And the final product is electricity. Smaller CSP systems can be located directly where the power is needed. Larger, utility-scale CSP applications provide hundreds of megawatts of electricity for the power grid. Both linear concentrator and power tower systems can be easily integrated with thermal storage, helping to generate

164

Concentrating Solar Power: Energy from Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Mirror mirror on the wall, what's the Mirror mirror on the wall, what's the greatest energy source of all? The sun. Enough energy from the sun falls on the Earth everyday to power our homes and businesses for almost 30 years. Yet we've only just begun to tap its potential. You may have heard about solar electric power to light homes or solar thermal power used to heat water, but did you know there is such a thing as solar thermal-electric power? Electric utility companies are using mirrors to concentrate heat from the sun to produce environmentally friendly electricity for cities, especially in the southwestern United States. The southwestern United States is focus- ing on concentrating solar energy because it's one of the world's best areas for sun- light. The Southwest receives up to twice the sunlight as other regions in the coun-

165

Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005  

SciTech Connect

The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model. (5) Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

Kelly, B.

2006-07-01T23:59:59.000Z

166

Silicon point contact concentrator solar cells  

SciTech Connect

Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

1985-08-01T23:59:59.000Z

167

Performance model and annual yield comparison of parabolic-trough solar thermal power plants with either nitrogen or synthetic oil as heat transfer fluid  

Science Journals Connector (OSTI)

Abstract The majority of commercial parabolic-trough plants in the world operate with synthetic oil as heat transfer fluid in the solar field. However, the synthetic oils that are available at affordable cost present some challenges such as their flammability, environmental toxicity and a temperature limitation of around 400 °C. As alternative, this work proposes the use of pressurized nitrogen as heat transfer fluid. In order to analyze the feasibility of this technology, a comparison between a plant with nitrogen and a conventional plant with synthetic oil has been carried out. In both cases, 50 MWe parabolic-trough plants with 6 h of thermal storage are used as reference. A performance model including the solar field, the thermal storage system and the power block has been developed for each plant in the TRNSYS simulation software. This paper also describes the specifications, design and sizing of the solar field and explains the basic operation strategy applied in each model. Both annual simulations have been performed considering the same location, Almería (Spain), and meteorological data. In summary, the results show that similar net annual electricity productions can be attained for parabolic-trough plants with the same collection area using either nitrogen or synthetic oil as heat transfer fluid.

Mario Biencinto; Lourdes González; Eduardo Zarza; Luis E. Díez; Javier Muñoz-Antón

2014-01-01T23:59:59.000Z

168

Resonance-shifting luminescent solar concentrators  

DOE Patents (OSTI)

An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R

2014-09-23T23:59:59.000Z

169

On characterization and measurement of average solar field mirror reflectance in utility-scale concentrating solar power plants  

Science Journals Connector (OSTI)

Abstract Due to the emerging need for the development of acceptance test codes for commercial concentrating solar power (CSP) plants, an effort is made here to develop a mirror reflectance model suitable for CSP applications as well as a general procedure to measure the average mirror reflectance of a solar field. Typically, a utility-scale solar field includes hundreds of thousands of mirror panels (if not more), and their reflectance is subject to many factors, such as weather and planned washing schedule. The newly developed mirror reflectance model can be used to characterize different types of mirror materials and can be directly used to perform optical performance evaluation of solar collectors. The newly proposed procedure for average solar field reflectance measurements includes a baseline comprehensive measurement and an individual factor measurement: the former allows a comprehensive survey of mirror reflectance across the whole solar field, and the latter can provide correcting factors for selected individual factors to further improve the accuracy of the baseline measurements. A detailed test case implementing the general procedure is applied to a state-of-the-art commercial parabolic trough plant and validates the proposed mirror reflectance model and average reflectance measurement procedure. In the test case, the plant-wide reflectance measurements at a commercial utility-scale solar plant were conducted and can shed light on relevant analysis of CSP applications. The work can also be naturally applied to other types of solar plants, such as power towers and linear Fresnel plants.

Guangdong Zhu; David Kearney; Mark Mehos

2014-01-01T23:59:59.000Z

170

SunShot Initiative: Concentrating Solar Power Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Staff Concentrating Solar Power Staff to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Staff on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Staff on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Staff on Google Bookmark SunShot Initiative: Concentrating Solar Power Staff on Delicious Rank SunShot Initiative: Concentrating Solar Power Staff on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Staff on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts Staff Concentrating Solar Power Staff The SunShot Initiative concentrating solar power (CSP) program competitively funds and actively manages the efforts of industry, national laboratories, and universities working to make large-scale dispatchable

171

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network (OSTI)

investment metric for solar technologies is discussed as afresnel concentrator solar technology in 2005 [13], one ofone installed to the grid; solar technology installed at the

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

172

NREL: TroughNet - 2007 Parabolic Trough Technology Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Parabolic Trough Technology Workshop 2007 Parabolic Trough Technology Workshop NREL hosted a parabolic trough technology workshop on March 8-9, 2007, in Golden, Colorado. It had three goals: Exchanging technical information Collaborating on SolarPaces projects: receiver testing and dry cooling Gathering industry input on laboratory R&D directions. The workshop featured presentations on the following parabolic trough power plant topics: Current and future market vision Project developments Solar resource assessment Technology trends Molten-salt heat transfer fluids Direct steam generation Advanced tools and testing capabilities Researchers also presented a poster session on laboratory capabilities. Note: if a presentation or poster isn't listed below, NREL hasn't yet received permission or approval to post it.

173

Status of APS 1-Mwe Parabolic Trough Project  

SciTech Connect

Arizona Public Service (APS) is currently installing new power facilities to generate a portion of its electricity from solar resources that will satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). During FY04, APS began construction on a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. Site preparation and construction activities continued throughout much of FY05, and startup activities are planned for Fall 2005 (with completion early in FY06). The plant will be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory. The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than the conventional steam Rankine cycle plant and allows unattended operation of the facility.

Canada, S.; Brosseau, D.; Kolb, G.; Moore, L.; Cable, R.; Price, H.

2005-11-01T23:59:59.000Z

174

Concentrating Solar Power Commercial Application Study  

E-Print Network (OSTI)

Towers....................................................................... 9 Dish/Engine Systems, and dish/engine. Parabolic troughs are the most commercially available technology. Linear Fresnel and power Rankine steam cycles, similar to those used for coal and nuclear plants. Steam cycle power plants require

Laughlin, Robert B.

175

Sensitized energy transfer for organic solar cells, optical solar concentrators, and solar pumped lasers  

E-Print Network (OSTI)

The separation of chromophore absorption and excitonic processes, such as singlet exciton fission and photoluminescence, offers several advantages to the design of organic solar cells and luminescent solar concentrators ...

Reusswig, Philip David

2014-01-01T23:59:59.000Z

176

SunShot Initiative: Concentrating Solar Power Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to SunShot Initiative: Concentrating Solar Power Newsletter to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Newsletter on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Newsletter on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Google Bookmark SunShot Initiative: Concentrating Solar Power Newsletter on Delicious Rank SunShot Initiative: Concentrating Solar Power Newsletter on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Newsletter on AddThis.com... Publications Newsletter Resource Center Multimedia Meetings & Workshops Solar Innovation Timeline Solar Career Map Glossary Concentrating Solar Power Newsletter

177

Thermochemical Production of Fuels with Concentrated Solar Energy  

Science Journals Connector (OSTI)

This review article develops some of the underlying science for converting concentrated solar energy into chemical fuels and presents examples of solar thermochemical processes and...

Steinfeld, Aldo; Weimer, Alan W

2010-01-01T23:59:59.000Z

178

National Laboratory Concentrating Solar Power Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

179

SunShot Concentrating Solar Power Program Review 2013 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Films and Panels for Next Generation Solar Collectors, Attila Molnar, 3M Company Low-Cost Light Weight Thin Film Solar Concentrators, Gani Ganapathi, Jet Propulsion Laboratory...

180

Solar aided power generation of a 300 MW lignite fired power plant combined with line-focus parabolic trough collectors field  

Science Journals Connector (OSTI)

Abstract Nowadays, conventional coal or gas fired power plants are the dominant way to generate electricity in the world. In recent years there is a growth in the field of renewable energy sources in order to avoid the threat of climate change from fossil fuel combustion. Solar energy, as an environmental friendly energy source, may be the answer to the reduction of global CO2 emissions. This paper presents the concept of Solar Aided Power Generation (SAPG), a combination of renewable and conventional energy sources technologies. The operation of the 300 MW lignite fired power plant of Ptolemais integrated with a solar field of parabolic trough collectors was simulated using TRNSYS software in both power boosting and fuel saving modes. The power plant performance, power output variation, fuel consumption and CO2 emissions were calculated. Furthermore, an economic analysis was carried out for both power boosting and fuel saving modes of operation and optimum solar contribution was estimated.

G.C. Bakos; Ch. Tsechelidou

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Planar micro-optic solar concentration  

E-Print Network (OSTI)

designs. 1.2. Solar Cell Technologies Solar technologiesinstallations [5]. A new solar cell technology layers III-Va 1cm 2 multijunction solar cell (Cyrium Technologies). The

Karp, Jason Harris

2010-01-01T23:59:59.000Z

182

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

183

SunShot Initiative: Concentrating Solar Power Competitive Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Concentrating Solar Power Competitive Awards to someone by E-mail Share SunShot Initiative: Concentrating Solar Power Competitive Awards on Facebook Tweet about SunShot Initiative: Concentrating Solar Power Competitive Awards on Twitter Bookmark SunShot Initiative: Concentrating Solar Power Competitive Awards on Google Bookmark SunShot Initiative: Concentrating Solar Power Competitive Awards on Delicious Rank SunShot Initiative: Concentrating Solar Power Competitive Awards on Digg Find More places to share SunShot Initiative: Concentrating Solar Power Competitive Awards on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

184

SunShot Initiative: Concentrated Solar Thermoelectric Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrated Solar Thermoelectric Concentrated Solar Thermoelectric Power to someone by E-mail Share SunShot Initiative: Concentrated Solar Thermoelectric Power on Facebook Tweet about SunShot Initiative: Concentrated Solar Thermoelectric Power on Twitter Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Google Bookmark SunShot Initiative: Concentrated Solar Thermoelectric Power on Delicious Rank SunShot Initiative: Concentrated Solar Thermoelectric Power on Digg Find More places to share SunShot Initiative: Concentrated Solar Thermoelectric Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

185

Optical Durability of Candidate Solar Reflectors for Concentrating Solar Power  

SciTech Connect

Concentrating solar power (CSP) technologies use large mirrors to collect sunlight to convert thermal energy to electricity. The viability of CSP systems requires the development of advanced reflector materials that are low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. The long-standing goals for a solar reflector are specular reflectance above 90% into a 4 mrad half-cone angle for at least 10 years outdoors with a cost of less than $13.8/m{sup 2} (the 1992 $10.8/m{sup 2} goal corrected for inflation to 2002 dollars) when manufactured in large volumes. Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the CSP Program at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Test results to date for several candidate solar reflector materials will be presented. These include the optical durability of thin glass, thick glass, aluminized reflectors, front-surface mirrors, and silvered polymer mirrors. The development, performance, and durability of these materials will be discussed. Based on accelerated exposure testing the glass, silvered polymer, and front-surface mirrors may meet the 10 year lifetime goals, but at this time because of significant process changes none of the commercially available solar reflectors and advanced solar reflectors have demonstrated the 10 year or more aggressive 20 year lifetime goal.

Kennedy, C. E.; Terwilliger, K.

2007-01-01T23:59:59.000Z

186

Trough to trough The Colorado River  

E-Print Network (OSTI)

Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor Trough to trough....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts geological excursions and observations of the Colorado Desert region by William Phipps Blake, 1853 and 1906

de Lijser, Peter

187

SunShot Initiative: Scattering Solar Thermal Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Solar Thermal Scattering Solar Thermal Concentrators to someone by E-mail Share SunShot Initiative: Scattering Solar Thermal Concentrators on Facebook Tweet about SunShot Initiative: Scattering Solar Thermal Concentrators on Twitter Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Google Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Delicious Rank SunShot Initiative: Scattering Solar Thermal Concentrators on Digg Find More places to share SunShot Initiative: Scattering Solar Thermal Concentrators on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

188

Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation  

Science Journals Connector (OSTI)

Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kW h/m2 a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kW h for solar thermal systems and about 12 Eurocents/kW h for PV can be expected in 10 years in North Africa.

Volker Quaschning

2004-01-01T23:59:59.000Z

189

Material for a luminescent solar concentrator  

DOE Patents (OSTI)

A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

Andrews, L.J.

1984-01-01T23:59:59.000Z

190

Concentrating Solar Power Services CSP Services | Open Energy Information  

Open Energy Info (EERE)

Concentrating Solar Power Services CSP Services Concentrating Solar Power Services CSP Services Jump to: navigation, search Name Concentrating Solar Power Services (CSP Services) Place Cologne, Germany Zip D-51143 Sector Solar Product A spin-out of the DLR Institute of Technical Thermodynamics, providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References Concentrating Solar Power Services (CSP Services)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Concentrating Solar Power Services (CSP Services) is a company located in Cologne, Germany . References ↑ "Concentrating Solar Power Services (CSP Services)" Retrieved from "http://en.openei.org/w/index.php?title=Concentrating_Solar_Power_Services_CSP_Services&oldid=343830

191

SunLab: Concentrating Solar Power Program Overview  

SciTech Connect

DOE's Concentrating Solar Power (CSP) program is collaborating with its partners in the private sector to develop two new solar technologies -- power towers and dish/engines -- to meet the huge commercial potential for solar power. Concentrating solar power plants produce electric power by first converting the sun's energy into heat, and then to electricity in a conventional generator.

NONE

1998-11-24T23:59:59.000Z

192

SunShot Concentrating Solar Power Program | Department of Energy  

Office of Environmental Management (EM)

Program SunShot Concentrating Solar Power Program This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program," was originally presented by Ranga Pitchumani at...

193

SunShot Concentrating Solar Power Program Update | Department...  

Office of Environmental Management (EM)

Program Update SunShot Concentrating Solar Power Program Update This PowerPoint slide deck, entitled "SunShot Concentrating Solar Power Program Update," was originally presented by...

194

Concentrating Solar Power Program Review 2013 (Book) (Revised)  

SciTech Connect

This U.S. Department of Energy (DOE) Concentrating Solar Power Program Review Meeting booklet will be provided to attendees at the Concentrating Solar Power Review Meeting in Phoenix, Arizona on April 23-25, 2013.

Not Available

2013-06-01T23:59:59.000Z

195

High-efficiency concentrator silicon solar cells  

SciTech Connect

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

196

Concentrating Solar Power: Best Practices Handbook for the Collection and  

Open Energy Info (EERE)

Concentrating Solar Power: Best Practices Handbook for the Collection and Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Resource assessment, Technology characterizations Resource Type: Dataset, Guide/manual, Lessons learned/best practices Website: www.nrel.gov/docs/fy10osti/47465.pdf Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data Screenshot References: CSP Guide[1] Logo: Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data

197

27. 5-percent silicon concentrator solar cells  

SciTech Connect

Recent advances in silicon solar cells using the backside point-contact configuration have been extended resulting in 27.5-percent efficiencies at 10 W/sq cm (100 suns, 24 C), making these the most efficient solar cells reported to date. The one-sun efficiencies under an AM1.5 spectrum normalized to 100 mW/sq cm are 22 percent at 24 C based on the design area of the concentrator cell. The improvements reported here are largely due to the incorportation of optical light trapping to enhance the absorption of weakly absorbed near bandgap light. These results approach the projected efficiencies for a mature technology which are 23-24 percent at one sun and 29 percent in the 100-350-sun (10-35 W/sq cm) range. 10 references.

Sinton, R.A.; Kwark, Y.; Gan, J.Y.; Swanson, R.M.

1986-10-01T23:59:59.000Z

198

NREL: Concentrating Solar Power Research - Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Featured Resource Learn more about NREL's capabilities in modeling and analysis of CSP Systems. NREL and other national laboratories support U.S. Department of Energy (DOE) systems analysis activities to evaluate and validate the cost, performance, durability, and grid penetration impacts for concentrating solar power (CSP) technologies. DOE's systems analysis program focuses on the greatest opportunities for impact, based on estimates of the current and future costs of CSP plants, subsystems, and components. Opportunities and Potential Impact The DOE SunShot Initiative to reduce the installed cost of solar energy systems by 75% by the end of the decade will require low-cost configurations that are easy to integrate into the electric grid. Systems

199

Category:Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

This is the Concentrating Solar Power category. This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:ConcentratingSo...

200

Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios  

Science Journals Connector (OSTI)

Abstract In this paper, Monte Carlo ray-tracing and computational fluid dynamics are used to numerically investigate the minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver. The analysis was carried out for rim angles in the range 40°–120°, concentration ratios in the range 57–143, Reynolds numbers in the range 1.02 × 104–1.36 × 106 and fluid temperatures in the range 350–650 K. Results show existence of an optimal Reynolds number at any given combination of fluid temperature, concentration ratio and rim angle for which the total entropy generation is a minimum. The total entropy generation was found to increase as the rim angle reduced, concentration ratio increased and fluid temperature reduced. The high entropy generation rates at low rim angles are mainly due to high peak temperatures in the absorber tube at these low rim angles.

Aggrey Mwesigye; Tunde Bello-Ochende; Josua P. Meyer

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

202

NREL: Energy Analysis - Concentrating Solar Power Results - Life Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Results - Life Cycle Assessment Harmonization Concentrating Solar Power Results - Life Cycle Assessment Harmonization Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Download the Factsheet Flowchart that shows the life cycle stages for concentrating solar power systems. For help reading this chart, please contact the webmaster. Figure 1. Process flow diagram illustrating the life cycle stages for concentrating solar power (CSP) systems. The yellow box defined by the grey line shows the systems boundaries assumed in harmonization. Enlarge image NREL developed and applied a systematic approach to review literature on life cycle assessments of concentrating solar power (CSP) systems, identify

203

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

204

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

205

Low-Cost, Lightweight Solar Concentrators - FY13 Q1 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Low-Cost, Lightweight Solar Concentrators FY13 Q2 Low-Cost, Lightweight Solar Concentrator Low-Cost Light Weigh Thin Film Solar Concentrators...

206

Shape-Adaptive Ultra-Lightweight Solar Concentrators  

E-Print Network (OSTI)

-Lightweight Solar Concentrators Global Significance Solar energy offers a number of benefits such as reducing sources, etc. Despite these benefits, solar energy currently supplies only a small fraction of global energy needs, mainly because its costs are much higher than conventional energy sources. Concentrating

207

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network (OSTI)

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban of both photovoltaic and solar thermal power generation. Some of the recent projects in Australia

208

Sandia National Laboratories: Concentrating Solar Power (CSP...  

NLE Websites -- All DOE Office Websites (Extended Search)

to, (1) novel research, development, and demonstration in reflector systems for efficient solar energy collection; (2) large-scale metrology; (3) receivers for solar-to-thermal...

209

Planar micro-optic solar concentration  

E-Print Network (OSTI)

22nd European Photovoltaic Solar Energy Conference, Milan,the photovoltaic effect requires specific photon energiesphotovoltaic designs based on miniature parabolic dishes,” Solar Energy,

Karp, Jason Harris

2010-01-01T23:59:59.000Z

210

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

211

$60 Million to Fund Projects Advancing Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power $60 Million to Fund Projects Advancing Concentrating Solar Power November 8, 2011 - 10:34am Addthis A 101 video on concentrating solar panel systems. | Courtesy of the Energy Department Jesse Gary Solar Energy Technologies Program On Tuesday, October 25, the Energy Department's SunShot initiative announced a $60 million funding opportunity (FOA) to advance concentrating solar power in the United States. The SunShot program seeks to support research into technologies with potential to dramatically increase efficiency, lower costs, and deliver more reliable performance than existing commercial and near-commercial concentrating solar power (CSP) systems. The Department expects to fund 20 to 22 projects, and we encourage

212

City of Medicine Hat Concentrating Solar Thermal Demonstration Project, Alberta, Canada  

Science Journals Connector (OSTI)

Abstract Following a 2007 conceptual feasibility study on a demonstration project to use renewable energy to supplement the production of electricity in their municipal utility, the city council of Medicine Hat approved and identified funding sources to design and construct a commercially Integrated Solar Combined Cycle demonstration with a capacity of 1 MWe. The demonstration project was undertaken as a step to reduce green house gas emissions, explore the viability of concentrating solar thermal technology under local conditions, and introduce concentrated solar power electricity generation in Alberta, which enjoys the highest solar resource of direct normal irradiance (DNI) in the country. The 203 \\{MWe\\} municipal power plant consists of four combustion turbine (CT)/heat recovery steam generator (HRSG) units feeding superheated steam to two steam turbines. The project is located at a latitude of 50° N. Based on recent satellite evaluations of the DNI resource in Canada, a Typical Meteorological Year was established for project design. The solar field consists of eight SkyTrough® (SkyFuel, Arvada, CO) collector assemblies located approximately 400m south of the power plant at a slightly lower elevation. Hot HTF exiting from the solar field is piped down to the power plant, where a solar steam generator (SSG) produces saturated steam for injection into the superheater section of the HRSG of a single CT unit. Permitting, preliminary and detailed design, and procurement tasks are complete. The short construction period started in April 2013 to be completed early Fall 2013 or Spring 2014, followed by commissioning, solar field acceptance testing, and initial operation.

K. MacKenzie; R. Bowers; D. Wacker; R. Drever; A. Jyoti; D. Kearney

2014-01-01T23:59:59.000Z

213

Enclosed, off-axis solar concentrator  

DOE Patents (OSTI)

A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

2013-11-26T23:59:59.000Z

214

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

215

Definition: Parabolic trough | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Parabolic trough Jump to: navigation, search Dictionary.png Parabolic trough A solar energy conversion device that uses a trough covered with a highly reflective surface to focus sunlight onto a linear absorber containing a working fluid that can be used to spin a turbine for electricity generation; with a single-axis sun-tracking system, the configuration of a parabolic trough can track the sun from east to west during the day.[1][2][3] View on Wikipedia Wikipedia Definition A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The energy of sunlight which enters the

216

Concentrating On California Solar Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating On California Solar Power Concentrating On California Solar Power Concentrating On California Solar Power June 14, 2011 - 4:22pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? Combined, the projects are estimated to create nearly 1,800 jobs and enough energy to power more than 100,000 homes. Today, Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. The projects are estimated to create nearly 1,800 jobs and will utilize advanced technologies which can help drive down the cost of solar power. The two plants, the Mojave Solar Project in San Bernardino County, California and the Genesis Solar Project in Riverside County, California,

217

Dielectric microconcentrators for efficiency enhancement in concentrator solar cells  

Science Journals Connector (OSTI)

Metal fingers typically cover more than 10% of the active area of concentrator solar cells. Microfabricated dielectric optical designs that can completely eliminate front contact...

Korech, Omer; Gordon, Jeffrey M; Katz, Eugene A; Feuermann, Daniel; Eisenberg, Naftali

2007-01-01T23:59:59.000Z

218

National Laboratory Concentrating Solar Power Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

219

Energy collection efficiency of holographic planar solar concentrators  

Science Journals Connector (OSTI)

We analyze the energy collection properties of holographic planar concentrator systems. The effects of solar variation on daily and annual energy collection are evaluated. Hologram...

Castro, Jose M; Zhang, Deming; Myer, Brian; Kostuk, Raymond K

2010-01-01T23:59:59.000Z

220

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concentrating reflectors. The laboratories also perform resource assessment of accurate weather and solar insolation data captured through improved satellite imaging, additional...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

222

Low-Cost Light Weigh Thin Film Solar Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

223

Low-Cost Light Weigh Thin Film Solar Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

224

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy,… (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

225

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network (OSTI)

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

226

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

227

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

228

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

229

SOLAR-BLIND PYROMETRIC TEMPERATURE MEASUREMENT UNDER CONCENTRATED SOLAR  

E-Print Network (OSTI)

solar thermal applications. As contact thermometry is often not appropriate in the presence of high;Introduction In high temperature solar thermal applications, where key components are driven near reflections1,2 . The distinction between the emitted thermal and the reflected solar radiation becomes

230

Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance  

SciTech Connect

This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL's Solar Advisor Model (SAM).

Wagner, M. J.; Kutscher, C.

2010-01-01T23:59:59.000Z

231

Heat Storage for Vapour Based Solar Concentrators.  

E-Print Network (OSTI)

?? In a world where energy demand, population, and environmental concern are increasing by the day, the use of solar energy and other renewable energy… (more)

Hoff, Catharina

2012-01-01T23:59:59.000Z

232

Solar Concentrators: Using Optics to Boost Photovoltaics  

Science Journals Connector (OSTI)

The use of solar energy requires optimizing each part of a photovoltaic system: collection optics, the photovoltaic array, switches, controllers, current inverters, storage devices...

Coffey, Valerie C

2011-01-01T23:59:59.000Z

233

Funding Opportunity Announcement: Concentrating Solar Power:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power...

234

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network (OSTI)

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more than 100 life cycle assessments (LCAs) have been conducted and published for a variety of utility-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

235

Mini-Optics Solar Energy Concentrator  

E-Print Network (OSTI)

This invention deals with the broad general concept for focussing light. A mini-optics tracking and focussing system is presented for solar power conversion that ranges from an individual's portable system to solar conversion of electrical power that can be used in large scale power plants for environmentally clean energy. It can be rolled up, transported, and attached to existing man-made, or natural structures. It allows the solar energy conversion system to be low in capital cost and inexpensive to install as it can be attached to existing structures since it does not require the construction of a superstructure of its own. This novel system is uniquely distinct and different from other solar tracking and focussing processes allowing it to be more economical and practical. Furthermore, in its capacity as a power producer, it can be utilized with far greater safety, simplicity, economy, and efficiency in the conversion of solar energy.

Mark Davidson; Mario Rabinowitz

2003-09-12T23:59:59.000Z

236

Concentrated solar energy applications using Fresnel lenses: A review  

Science Journals Connector (OSTI)

Solar energy concentration technology using Fresnel lens is an effective way to make full use of sunlight. This paper makes a review about the recent development of the concentrated solar energy applications using Fresnel lenses. The ongoing research and development involves imaging systems and non-imaging systems. Compared with imaging systems, non-imaging systems have the merits of larger accept angles, higher concentration ratios with less volume and shorter focal length, higher optical efficiency, etc. Concentrated photovoltaics is a major application and the highest solar-to-electric conversion efficiency based on imaging Fresnel lens and non-imaging Fresnel lens are reported as over 30% and 31.5 ± 1.7%, respectively. Moreover, both kinds of systems are widely used in other fields such as hydrogen generation, photo-bio reactors as well as photochemical reactions, surface modification of metallic materials, solar lighting and solar-pumped laser. During the recent two decades, such applications have been built and tested successfully to validate the practicality of Fresnel lens solar concentration systems. Although the present application scale is small, the ongoing research and development works suggest that Fresnel lens solar concentrators, especially non-imaging Fresnel lenses, will bring a breakthrough of commercial solar energy concentration application technology in the near future. Finally, the advantages and disadvantages of two systems are also summarized.

W.T. Xie; Y.J. Dai; R.Z. Wang; K. Sumathy

2011-01-01T23:59:59.000Z

237

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

238

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

239

SunShot Initiative: Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Lightweight Solar Concentrators Cost, Lightweight Solar Concentrators JPL logo Graphic of two dishes, mounted to the ground, that are side-by-side. This graphic shows the JPL/L'Garde lightweight concentrator facets, which are deployed for different configurations. The Jet Propulsion Laboratory (JPL), with funding from the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing an optimized solar thermal collector structure using a lightweight collector structure capable of lowering structural costs, simplifying installation, and leading to mass-manufacturability. Approach The JPL project seeks to achieve the SunShot Initiative installed cost target of $75/m2 for a solar thermal collector system, as well as SunShot performance targets for optical errors, operations during windy conditions, and lifetime.

240

Energy Department Announces New Concentrating Solar Power Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector  

Science Journals Connector (OSTI)

Abstract In the present study, a V-cavity absorber with rectangular fins that can be used in the linear parabolic trough collector (PTC) system was proposed and investigated both theoretically and experimentally. The optical performance of the absorber was studied by means of Monte-Carlo ray-tracing (MCRT) method. An energy balance model and a more detailed three-dimensional numerical model were developed to analyze the flow and heat transfer characteristics. Moreover, an experimental setup was built to validate the theoretical analysis. A reasonable agreement between the theoretical and experimental results was achieved, which proves the feasibility and reliability of the models. The results show that the sunlight could be reflected repeatedly by the triangle shape and nearly no sunlight escapes. The absorber with rectangular fins has a better heat transfer performance with higher outlet temperature of heat transfer fluid (HTF), lower temperature of heating surface and lower heat loss than those of absorber without fins. The effects of heat flux distribution, mass flow rate and direct normal irradiance on the heat transfer performance were further discussed. In addition, the variations of the heat transfer coefficient along z axial direction with different mass flow rates were also calculated based on the numerical results.

X. Xiao; P. Zhang; D.D. Shao; M. Li

2014-01-01T23:59:59.000Z

242

Lite Trough LLC | Open Energy Information  

Open Energy Info (EERE)

Lite Trough LLC Lite Trough LLC Jump to: navigation, search Name Lite Trough LLC Place Milford, Connecticut Zip 6460 Sector Solar Product Developing a parabolic trough system for Solar Thermal Electricity Generation (STEG). Coordinates 38.026545°, -77.371139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.026545,"lon":-77.371139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6,...

244

SunShot Concentrating Solar Power Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0.05 0.04 0.09 2010 Cost Reductions 0.07 Solar Field 0.02 Power Block 0.02 ReceiverHeat Transfer 0.04 Thermal Storage 0.01 0.02 0.02 6kWh SunShot Target (2020) 0.01...

245

Ivanpah: World's Largest Concentrating Solar Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Department’s Loan Programs Office (LPO).

246

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network (OSTI)

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

247

Luminescent solar concentrators: effects of shape on efficiency  

Science Journals Connector (OSTI)

The effects of shape and photovoltaic cell placement on efficiency are studied for luminescent solar concentrators. The mean path length of light rays is found to be a poor measure of...

Loh, Eugene; Scalapino, Douglas J

1986-01-01T23:59:59.000Z

248

Particle-Assisted Light Concentration for Solar Photovoltaics  

Science Journals Connector (OSTI)

We describe how wavelength-sized particles can be used to couple sunlight into a planar solar-concentrator. Simulations are presented that study the influence a particle’s form...

Berg, Matthew J

249

Optimal Heliostat Layout for Concentrating Solar Tower Systems  

Science Journals Connector (OSTI)

A methodology to give an optimal layout of a group of heliostats has been developed for concentrating solar tower ... the method determines an optimal configuration of a heliostat field around a tower where refle...

Motoaki Utamura; Yutaka Tamaura…

2007-01-01T23:59:59.000Z

250

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

251

Sandia National Laboratories: Concentrating Solar Power: Efficiently...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equilibrium Mechanisms for Engineering New Thermochemical Storage Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

252

Design and Study of Portable Solar Dish Concentrator  

E-Print Network (OSTI)

Abstract ? The fixed focus concentrator are successfully used for medium temperature application in different parts of the world. There are few procedures reported in literatures for test and evaluating solar concentrator performance which are base on sensible heating of few working fluids. One of limitation of these procedures is requirement of precise operation condition during test. In this research the design and fabrication of solar dish concentration with diameters (1.6) meters for water heating application and solar steam was achieved.The dish was fabricated using metal of galvanized steel, and its interior surface is covered by a reflecting layer with reflectivity up to (76 %), and equipped with a receiver (boiler) located in the focal position. The dish equipped with tracking system and measurement of the temperature and solar power.Water temperature increased up to 80 C o, and the system efficiency increased by30 % at midnoon time.

Fareed M. Mohamed; Auatf. S. Jassim; Yaseen H. Mahmood; Mohamad A. K. Ahmed

253

NREL: TroughNet - Parabolic Trough Technology Models and Software Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Models and Software Tools Technology Models and Software Tools Here you'll find information about models and software tools used to analyze parabolic trough power plant technology. They include: Annual Simulation Solar Advisor Model TRNSYS Other Analysis SolTRACE Receiver Model DView JEDI Annual Simulation Software Because solar power plants rely on an intermittent fuel supply-the sun-it is necessary to model the plant's performance on an hourly (or finer resolution) basis to understand and predict its annual performance. A number of performance and economics models are available for evaluating parabolic trough solar technologies. Industry also has developed a number of proprietary models for evaluating parabolic trough plants. Solar Advisor Model NREL, partnering with the U.S. Department of Energy's Solar Energy

254

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | April 18, 2013 | Ganapathi * Mirror module development has been approached with the goal of being applicable to all types of CSP systems * Several heliostat design options being considered to address driving requirements: * Facets that are compliant to winds > 35 mph * Deep structures for optimizing structural efficiency * Pointing accuracy achieved with mechanism design * Simple precision components * Easy on-site assembly with pre-fab components * Structural foam properties and strengthening trades being conducted to reduce overall costs with FEM models Goal: Typical costs for a concentrator (heliostat or parabolic dish) can range between 40-50% of the total costs. To meet SunShot

255

Mobile-mirror concentrators for solar thermal power plants  

SciTech Connect

Seven central-receiver, solar-thermal power plants with heliostat concentrators have been built around the world in the last two decades. This technology has proven to be much too expensive for commercial power plants and efforts to reduce the cost have reached an impasse. It is the nature of the solar concentrators which makes it so expensive. There are two types of concentrators: those, called heliostats, with mirrors on stationary supports, and those with mirrors on mobile supports. Mobile mirrors are potentially much cheaper than heliostats.

Ratliff, G. [Ratliff (George), Pittsburgh, PA (United States)

1999-11-01T23:59:59.000Z

256

Rinse trough with improved flow  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.

O`Hern, T.J.; Grasser, T.W.

1998-08-11T23:59:59.000Z

257

Low-Cost, Lightweight Solar Concentrators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or parabolic dish) can range between 40-50% of the total costs. To meet SunShot cost target of 6ckWh, the concentrator costs need to reduced from 150-200m 2 to 75m 2...

258

Low-Cost, Lightweight Solar Concentrators  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrators Concentrators California Institute of Technology/Jet Propulsion Laboratory Award Number:0595-1612 | January 15, 2013 | Ganapathi Thin Film mirror is ~40-50% cheaper and 60% lighter than SOA * Project leverages extensive space experience by JPL and L'Garde to develop a low-cost parabolic dish capable of providing 4 kW thermal. Key features: * Metallized reflective thin film material with high reflectivity (>93%) with polyurethane foam backing * Single mold polyurethane backing fabrication enables low cost high production manufacturing * Ease of panel installation and removal enables repairs and results in a low total life cycle cost * Deployment of multiple dishes enhances system level optimizations by simulating larger fields which addresses issues like shared resources

259

NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Triple-Junction Terrestrial Concentrator Solar Cell Triple-Junction Terrestrial Concentrator Solar Cell Developers: Dr. Jerry Olson, Dr. Sarah Kurtz, Dr. Daniel Friedman, Alan Kibbler, and Charlene Karmer, National Renewable Energy Laboratory; Dr. Richard King, Jim Ermer, Dmitri D. Krut, Hector Cotal, Peter Colter, Hojun Yoon, Nassar Karam, and Gregory S. Glenn, Spectrolab, Inc. The triple-junction solar cell - or TJ solar cell - generates a lot of energy from just a very little amount of material. How much energy? A 1-cm2 cell can generate as much as 35 W of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity to power the typical American household. This cell can do this, first, because it

260

Planting the Seed: Greening the Grid with Concentrating Solar Power  

SciTech Connect

In the United States and around the world, interest in concentrating solar power (CSP) is growing rapidly and its use is increasing. This solar thermal technology can meet a significant share of our electricity demand. Yet, while CSP's market share rises, concerns about the potential impact of CSP-generated electricity on the stability and operation of the U.S. power grid might create barriers to its future expansion in America.

Mehos, M.; Kabel, D.; Smithers, P.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design and Analysis of a High-Efficiency, Cost-Effective Solar Concentrator John H. Reif  

E-Print Network (OSTI)

that concentrate solar energy for conversion into usable energy. Ideally, a solar concentrating system should have, wind and sand loading, and abrasion. Many arid and desert areas, best suited for solar energy advantages of our solar concentrating system: are low cost and durability. Unlike most prior solar

Reif, John H.

262

NREL: Concentrating Solar Power Research - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us NREL's interaction with industrial, university, and government partners is the key to moving advanced concentrating solar power technologies into the marketplace and the U.S. economy. We provide opportunities to develop technology partnerships, license our technology, and use our facilities. Developing Technology Partnerships NREL offers a variety of technology partnership agreements to help you gain access to our research expertise in concentrating solar power, including our laboratory and modeling and analysis capabilities. You can: Work collaboratively with us on a concentrating solar power research project through a Cooperative Research and Development Agreement Pay NREL to conduct research without your collaboration through a Work-for-Others agreement.

263

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

264

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

265

NREL: TroughNet - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Data and Resources Data and Resources This site features data and resources about parabolic trough power plant technology, including: Industry partners U.S. power plant data Solar data Models and tools System and component testing Also see our publications on parabolic trough power plants. Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources Industry Partners Power Plant Data Solar Data Models & Tools System & Component Testing FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

266

Solar Energy Concentrators and their Optimization and Analysis with the OptisWorks Solar Package  

Science Journals Connector (OSTI)

Optis has developed tools put together in the OptisWorks Solar Package which can change the sun position by macros calculating and optimizing the efficiency of such concentrators based...

Hasna, Günther

267

NREL: Concentrating Solar Power Research - Become Part of SOLRMAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Become Part of SOLRMAP Become Part of SOLRMAP The National Renewable Energy Laboratory (NREL) is inviting additional participation in SOLRMAP-the Solar Resource and Meteorological Assessment Project. In late 2008, we established this effort through a pilot project with a limited number of participants. The 2009 deadline for participation has passed, but we may expand the program in the future. SOLRMAP establishes high-quality solar measurements at targeted locations to enable deployment of concentrating solar thermal projects in the United States. The measurements also provide NREL with critical data for model development and other research that advances techniques in solar resource assessment. At the present time, NREL does not have funding to support SOLRMAP for photovoltaic projects.

268

Concentrating Solar Power Thermal Storage System Basics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

269

Potential of Concentrated Solar Power (CSP) in Zimbabwe  

Science Journals Connector (OSTI)

Abstract This study seeks to assess the potential of utilizing Concentrated Solar Power for electricity generation in Zimbabwe. Data from 26 meteorological stations which are widely distributed around the country was used to map the distribution of solar radiation. Geographic information systems were employed to locate sites with potential for installing concentrating solar power plants. Areas with good potential were identified by using the following assessment factors: direct normal irradiance (DNI), proximity to transmission lines and water bodies, flatness of the area and the vulnerability of vegetation and wild life. After considering all the assessment factors, a total area of 250 000 km2 was found to be suitable. If only 10% of the suitable land area is used and the technology with the least efficiency (8–10%) is adopted, about 71.4 GW can be generated. The projected power generation is about thirty times the current power demand of the country.

S. Ziuku; L. Seyitini; B. Mapurisa; D. Chikodzi; Koen van Kuijk

2014-01-01T23:59:59.000Z

270

Concentrating Solar Power Tower System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity. Some power towers use water/steam as the heat-transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. Individual commercial plants can be sized to produce up to 200 megawatts of electricity. Illustration of a power tower power plant. Sunlight is shown reflecting off a series of heliostats surrounding the tower and onto the receiver at the top of the tower. The hot heat-transfer fluid exiting from the receiver flows down the tower, into a feedwater reheater, and then into a turbine, which generates electricity that is fed into the power grid. The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver.

271

Conversion of Concentrated Solar Thermal Energy into Chemical Energy  

Science Journals Connector (OSTI)

When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state ...

Yutaka Tamaura

2012-03-01T23:59:59.000Z

272

A NEW 500 m PARABOLOIDAL DISH SOLAR CONCENTRATOR K Lovegrove  

E-Print Network (OSTI)

and maximising reliability, being attractive to investors, ease of operator training and applicability to a range.lovegrove@anu.edu.au 2 Department of Engineering, Australian National University 3 Wizard Power Pty Ltd,. GPO Box 3002 worked for many years on paraboloidal dish solar concentrators and demonstrated a 400m2 system in 1994

273

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network (OSTI)

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

274

Advanced photovoltaic-trough development  

SciTech Connect

The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

Spencer, R.; Yasuda, K.; Merson, B.

1982-04-01T23:59:59.000Z

275

Experimenting with concentrated sunlight using the DLR solar furnace  

SciTech Connect

The high flux solar furnace that is operated by the Deutsche Forschungsanstalt fuer Luft- und Raumfahrt (DLR) at Cologne was inaugurated in June 1994 and we are now able to look back onto one year of successful operation. The solar furnace project was founded by the government of the State Northrhine Westfalia within the Study Group AG Solar. The optical design is a two-stage off-axis configuration which uses a flat 52 m{sup 2} heliostat and a concentrator composed of 147 spherical mirror facets. The heliostat redirects the solar light onto the concentrator which focuses the beam out of the optical axis of the system into the laboratory building. At high insolation levels (>800W/m{sup 2}) it is possible to collect a total power of 20 kW with peak flux densities of 4 MW/m{sup 2}. Sixteen different experiment campaigns were carried out during this first year of operation. The main research fields for these experiments were material science, component development and solar chemistry. The furnace also has its own research program leading to develop sophisticated measurement techniques like remote infrared temperature sensing and flux mapping. Another future goal to be realized within the next five years is the improvement of the performance of the furnace itself. 6 refs., 9 figs., 1 tab.

Neumann, A.; Groer, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)] [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt Linder Hoehe, Koeln (Germany)

1996-10-01T23:59:59.000Z

276

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

277

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

278

Passive cooling of concentrated solar cells using phase change material thermal storage.  

E-Print Network (OSTI)

??High solar cell temperature has always been a major concern when designing a concentrated solar power (CSP) system. Exceeding the operational cell temperature can result… (more)

Tan, L

2013-01-01T23:59:59.000Z

279

Energy Secretary Moniz Dedicates World’s Largest Concentrating Solar Power Project  

Energy.gov (U.S. Department of Energy (DOE))

Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world’s largest concentrating solar power (CSP) plant.

280

SunShot Initiative: Concentrating Solar Power SunShot Research and  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power SunShot Concentrating Solar Power SunShot Research and Development to someone by E-mail Share SunShot Initiative: Concentrating Solar Power SunShot Research and Development on Facebook Tweet about SunShot Initiative: Concentrating Solar Power SunShot Research and Development on Twitter Bookmark SunShot Initiative: Concentrating Solar Power SunShot Research and Development on Google Bookmark SunShot Initiative: Concentrating Solar Power SunShot Research and Development on Delicious Rank SunShot Initiative: Concentrating Solar Power SunShot Research and Development on Digg Find More places to share SunShot Initiative: Concentrating Solar Power SunShot Research and Development on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review  

Science Journals Connector (OSTI)

Abstract The conventional ways for generating electricity around the world face two main problems, which are gradual increase in the earth?s average surface temperature (global warming) and depleting fossil fuel reserves. So switching to renewable energy technologies is an urgent need. Concentrating solar power (CSP) technologies are one of renewable technologies that are able to solve the present and future electricity problems. In this paper the historical evolution for the cornerstone plants of CSP technologies to generate clean electricity was reviewed and the current projects worldwide of CSP technologies were presented to show that the CSP technologies are technically and commercially proven and have the possibility for hybridization with fossil fuel or integration with storage systems to sustain continuous operation similar to conventional plants. Among all solar thermal technologies parabolic trough is the most technically and commercially proven. It also has the possibility for hybridization since it is proven by operating in several commercial projects for more than 28 years. It has a high maturity level and able to provide the required operating heat energy either as a stand-alone or in hybrid systems at the lowest cost and lower economic risks. For this reason, this technology is dominant in the operational and under-construction projects. However, currently there is a trend toward employing the other CSP technologies in the future projects as a result of the improvement in their performance. The use of PTC technology in the operational CSP projects is 95.7% and has decreased to 73.4% for the under-construction projects. Meanwhile, the uses of Fresnel collector (LFC), Tower power (TSP) and Stirling dish (SDC) technologies in the operational projects are 2.07%, 2.24%, and 0% respectively and have increased to 5.74%, 20.82% and 0.052% respectively for the under-construction projects. For the development projects, the use of TSP technology has reached to 71.43%, compared to 28.57% for PTC.

Dhyia Aidroos Baharoon; Hasimah Abdul Rahman; Wan Zaidi Wan Omar; Saeed Obaid Fadhl

2015-01-01T23:59:59.000Z

282

NREL: News - NREL Quantifies Significant Value in Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

413 413 NREL Quantifies Significant Value in Concentrating Solar Power CSP with thermal energy storage boosts California electric grid April 24, 2013 Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have quantified the significant value that concentrating solar power (CSP) plants can add to an electric grid. The NREL researchers evaluated the operational impacts of CSP systems with thermal energy storage within the California electric grid managed by the California Independent System Operator (CAISO). NREL used a commercial production cost model called PLEXOS to help plan system expansion, to evaluate aspects of system reliability, and to estimate fuel cost, emissions, and other operational factors within the CAISO system. The

283

SunShot Initiative: Concentrating Solar Power Competitive Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Competitive Awards Competitive Awards Graphic showing five color blocks in a circular formation that represent the technical goals and cost targets for each component in the CSP system along with the associated competitive funding opportunity. Enlarge image DOE funds concentrating solar power (CSP) research and development (R&D) projects through competitive solicitations, which are released for public response as financial opportunity announcements. The following projects represent recent and ongoing research efforts: Concentrating Solar Power R&D (2007) Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP (2008) CSP ARRA (2009) Baseload (2010) CSP SunShot R&D (2012) MURI HOT Fluids (2012) CSP Heat Integration for Baseload Renewable Energy Deployment (2013)

284

Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP) Applications November 1, 2011 Tweet EmailPrint The current levelized cost of energy (LCOE) from concentrated solar power (CSP) is ~ $0.11/kWh. The U.S. Department of Energy has set goals to reduce this cost to ~$0.07/kWh with 6 hours of storage by 2015 and to ~$0.05/kWh with 16 hours of storage by 2020. To help meet these goals, scientists at Argonne National Laboratory are working to improve the overall CSP plant efficiency by enhancing the thermophysical properties of heat transfer

285

Advanced solar concentrator development in the United States  

SciTech Connect

Sandia National Laboratories is the lead laboratory for the United States Department of Energy's program to develop, build, and test advanced solar concentrators that are low in cost, have high performance, and demonstrate a long lifetime. The principal focus of DOE's concentrator program is on the development of heliostats for central receiver power plants and point focus parabolic dishes for use with a 25-kWe Stirling engine. The status and future plans of DOE's program in each area are reviewed. 29 refs., 7 figs.

Alpert, D.J.

1990-01-01T23:59:59.000Z

286

Determination of heliostat and concentrator size for solar furnace facilities  

SciTech Connect

There are basically two types of solar furnaces -- a vertical-beam or a horizontal-beam facility. A vertical-beam facility uses movable heliostats to redirect the incoming solar energy vertically upward to a stationary parabolid. A horizontal-beam furnace uses the heliostat to redirect the incoming energy horizontally to the paraboloid. This paper presents a method to determine the optimum size of the heliostat and/or concentrator to meet predetermined design criteria. Usually the concentrator size is fixed by the temperature and flux-density required at the test plane and the problem is to size the heliostat so the facility can be used for a certain length of time each day during the entire year. However, the method can also be used when the heliostat size is fixed and the concentrator size must be determined. The analysis considers energy incident from the sun being reflected from a flat spectral surface (heliostat) onto a concentrating surface (concentrator), which then redirects the energy to a focal spot that can then be used as a high temperature, high-flux density source. The analysis uses the basic relations of geometric optics and considers only the central ray of the incoming cone of energy from the sun. Errors involved with this assumption will be minimal for most cases, but if deemed necessary, the reflected cone can be accounted for in the reflected ray from the heliostat.

Mulholland, G.P.

1983-08-01T23:59:59.000Z

287

Photovoltaic concentrator technology development project. Sixth project integration meeting  

SciTech Connect

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

288

Pilot demonstration of concentrated solar-powered desalination of subsurface agricultural drainage water and other brackish groundwater sources  

Science Journals Connector (OSTI)

Abstract The energy–water nexus is addressed with the experimental demonstration of a solar-powered desalination process system. This system was designed for high-recovery treatment of subsurface agricultural drainage water as a reuse strategy as well as other brackish groundwater sources. These water sources may exhibit wide fluctuations in salinity and makeup and pose a high risk for operational troubles due to high scaling potential. A first-of-its-kind open-cycle vapor-absorption heat pump is coupled with a multiple-effect distillation train and a large parabolic trough solar thermal concentrator. Without the heat pump, the distillation operation showed a minimum thermal energy consumption of 261.87 kWhth/m3. With the heat pump, the thermal energy consumption was reduced by more than 49% to 133.2 kWhth/m3. This reduction in thermal energy requirement directly translates into a 49% reduction in solar array area required to power a process with the same freshwater production rate as a system without an integrated heat pump. An optimized design was modeled and the thermal energy performance of a commercial system is projected at 34.9 kWhth/m3 using a 10-effect MED operating at 85% recovery.

Matthew D. Stuber; Christopher Sullivan; Spencer A. Kirk; Jennifer A. Farrand; Philip V. Schillaci; Brian D. Fojtasek; Aaron H. Mandell

2015-01-01T23:59:59.000Z

289

3X compound parabolic concentrating (CPC) solar energy collector. Final technical report  

SciTech Connect

Chamberlain engineers designed a 3X compound parabolic concentrating (CPC) collector for the subject contract. The collector is a completely housed, 105.75 x 44.75 x 10.23-inch, 240-pound unit with six each evacuated receiver assemblies, a center manifold and a one-piece glass cover. A truncated version of a CPC trough reflector system and the General Electric Company tubular evacuated receiver have been integrated with a mass producible collector design suitable for operation at 250 to 450/sup 0/F. The key criterion for optimization of the design was minimization of the cost per Btu collected annually at an operating temperature of 400/sup 0/F. The reflector is a 4.1X design truncated to a total height of 8.0 inches with a resulting actual concentration ratio of 2.6 to 1. The manifold is an insulated area housing the fluid lines which connect the six receivers in series with inlet and outlet tubes extending from one side of the collector at the center. The reflectors are polished, anodized aluminum which are shaped by the roll form process. The housing is painted, galvanized steel, and the cover glass is 3/16-inch thick tempered, low iron glass. The collector requires four slope adjustments per year for optimum effectiveness. Chamberlain produced ten 3X CPC collectors for the subject contract. Two collectors were used to evaluate assembly procedures, six were sent to the project officer in Albuquerque, New Mexico, one was sent to Argonne National Laboratory for performance testing and one remained with the Company. A manufacturing cost study was conducted to estimate limited mass production costs, explore cost reduction ideas and define tooling requirements. The final effort discussed shows the preliminary design for application of a 3X CPC solar collector system for use in the Iowa State Capitol complex.

Ballheim, R.W.

1980-04-25T23:59:59.000Z

290

Engineering the optical properties of luminescent solar concentrators at the molecular scale  

E-Print Network (OSTI)

Luminescent Solar Concentrators (LSCs) concentrate solar radiation onto photovoltaic (PV) cells using an inexpensive collector plate to absorb incoming photons and waveguide fluorescently re-emitted photons to PVs at the ...

Mulder, Carlijn Lucinde

2012-01-01T23:59:59.000Z

291

NREL: TroughNet - Parabolic Trough Technology Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and its R&D history. R&D History Since Luz built the first commercial parabolic trough power plant in 1984 (SEGS I), parabolic trough technology has been constantly evolving and...

292

NREL GIS Data: Alaska Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Alaska Low Resolution Concentrating Solar Power Resource Alaska Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in watt hours.

293

NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Low Resolution Concentrating Solar Power Resource Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Hawaii. Purpose: Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

294

Design criteria for Si point-contact concentrator solar cells  

SciTech Connect

Design criteria for concentrator solar cells are presented for the highly three-dimensional case of backside point-contact solar cells. A recent new experimental result, a 28-percent efficient cell (25/sup 0/C, 15-Wcm/sup 2/ incident power) is used as a case study of the dependences of the recombination components and the carrier density gradients on the geometrical design parameters. The optimum geometry is found to depend upon the intended design power density as well as the attainable physical parameters allowed by the fabrication techniques utilized. Modeling projections indicate that an ultimate efficiency of 30.6 percent (36 Wcm/sup 2/, 300 K) is achievable using the diffused emitters presently employed on these cells. Incorporation of results from the study pf polycrystalline emitters could improve these efficiencies toward 31.7 percent.

Sinton, R.A.; Swanson, R.M.

1987-10-01T23:59:59.000Z

295

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

296

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

297

Parabolic-Trough Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Parabolic-Trough Technology Roadmap Parabolic-Trough Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Parabolic-Trough Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/csp/troughnet/pdfs/24748.pdf References: Parabolic-Trough Technology Roadmap[1] Overview "The working group reviewed the status of today's trough technologies, evaluated existing markets, identified potential future market opportunities, and developed a roadmap toward its vision of the industry's potential-including critical advancements needed over the long term to significantly reduce costs while further increasing

298

2014 SunShot Initiative Portfolio Book: Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014. This section includes a letter from Program Manager Dr. Ranga Pitchumani providing an overview of SunShot’s work in the concentrating solar power (CSP) subprogram, as well as a description of every active CSP project in the portfolio.

299

Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators  

Science Journals Connector (OSTI)

Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. ... (31) Depending on the semiconductor, they can be made from low cost, nontoxic, Earth-abundant starting materials, and they are compatible with a variety of economical solution-based synthesis and processing techniques advantageous for integration into polymer or glass waveguides. ... These nanocrystals are unique among colloidal doped semiconductor nanocrystals reported to date in that quantum confinement allows tuning of the CdSe bandgap energy across the Mn2+ excited-state energies. ...

Christian S. Erickson; Liam R. Bradshaw; Stephen McDowall; John D. Gilbertson; Daniel R. Gamelin; David L. Patrick

2014-03-12T23:59:59.000Z

300

Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.  

SciTech Connect

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

2010-09-01T23:59:59.000Z

302

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

vacuum technology that is required in crystalline solar cellTechnologies, Inc. “SolarWindow” Quantum Dot Solar Cells

Leow, Shin Woei

2014-01-01T23:59:59.000Z

303

High concentration low wattage solar arrays and their applications  

SciTech Connect

Midway Labs currently produces a 335x concentrator module that has reached as high as 19{percent} active area efficiency in production. The current production module uses the single crystal silicon back contact SunPower cell. The National Renewable Energy Lab has developed a multi junction cell using GalnP/GaAs technologies. The high efficiency ({gt}30{percent}) and high cell voltage offer an opportunity for Midway Labs to develop a tracking concentrator module that will provide 24 volts in the 140 to 160 watt range. This voltage and wattage range is applicable to a range of small scale water pumping applications that make up the bulk of water pumping solar panel sales. {copyright} {ital 1997 American Institute of Physics.}

Hoffmann, R. [Midway Labs, Inc., 350 N. Ogden Avenue, Chicago, Illinois 60607 (United States); OGallagher, J.; Winston, R. [University of Chicago (United States)

1997-02-01T23:59:59.000Z

304

Multi-Criteria Decision Analysis of Concentrated Solar Power with Thermal Energy Storage and Dry Cooling  

Science Journals Connector (OSTI)

For comparison, the ratio of life cycle GHG emissions to LCOE for pulverized coal (PC), integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), PC with carbon capture and storage (CCS), IGCC with CCS, and NGCC with CCS are 31, 19, 12, 3, 2, and 2 kgCO2eq/$, respectively (Supporting Information Table S4, p S10). ... Poullikkas, A.Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—A case study for the island of Cyprus Renewable Sustainable Energy Rev. 2009, 13 ( 9) 2474– 2484 ...

Sharon J. W. Klein

2013-11-18T23:59:59.000Z

305

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network (OSTI)

of times onto smaller solar cells." -- Mark O'Neill, Chief Technology Officer, Entech Solar, Inc. "The SLA Offers Unparalleled Efficiency and Performance Affordable Green Energy Technology from NASA/Entech Solar Fresnel lenses for optical concentration, minimizing solar cell area, mass, and cost. The SLA has been

306

Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)  

E-Print Network (OSTI)

W solar furnace of Solar Energy Laboratory in Odeillo (France). Revue Phys. Appl. 15 (1980) 423-426 MARS423 Theoretical study of gas heated in a porous material subjected to a concentrated solar exposed to the solar radiation. These quantities may be expressed in any set consistent units. 1

Paris-Sud XI, Université de

307

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

308

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

glass. . . 18 Figure 2.4: IV curve of a solar cell. . . . .+ 05, Ric06]. IV curve The IV curve of a solar cell is thesuperposition of the IV curve of the solar cell diode in the

Wang, Chunhua

2011-01-01T23:59:59.000Z

309

Concentrating Solar Power Dish/Engine System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Dish/Engine System Basics Concentrating Solar Power Dish/Engine System Basics Concentrating Solar Power Dish/Engine System Basics August 20, 2013 - 5:02pm Addthis The dish/engine system is a concentrating solar power (CSP) technology that produces relatively small amounts of electricity compared to other CSP technologies-typically in the range of 3 to 25 kilowatts. Dish/engine systems use a parabolic dish of mirrors to direct and concentrate sunlight onto a central engine that produces electricity. The two major parts of the system are the solar concentrator and the power conversion unit. Solar Concentrator Illustration of a dish/engine power plant. Sunlight is shown reflecting off the large dish-shaped concentrator and onto the mounted power conversion unit to generate electricity that is fed into the power grid. The system looks similar to a large satellite television receiver dish.

310

Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)  

SciTech Connect

As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

2010-09-01T23:59:59.000Z

311

1 Copyright 2011 by ASME MATERIAL OPTIMIZATION FOR CONCENTRATED SOLAR PHOTOVOLTAIC AND  

E-Print Network (OSTI)

photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35-40% efficiency is moderate [3] in comparison to the concentrated solar photovoltaic, for which multi-junction cells

312

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

313

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

314

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

Diaz, Chair Solar energy is a prominent renewable source ofalternative energy sources [Abb11]. Solar energy, radiantsolar energy will become a very prominent renewable source

Wang, Chunhua

2011-01-01T23:59:59.000Z

315

NREL: Concentrating Solar Power Research - Collector R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage R&D Thermal Energy Storage R&D Featured Resource Learn more about NREL's capabilities in thermal storage and advanced heat transfer fluids. Thermal energy storage (TES) research at NREL focuses on reducing the costs of thermal storage and electricity from concentrating solar power (CSP) plants. NREL's TES effort contributes to these goals through materials and systems development, analysis, and modeling. CSP systems may include TES-a means of storing thermal energy for later use-to generate electricity any time when it is most needed and valuable, whether during the day, night, or cloudy intervals. Opportunities and Potential Impact TES usually reduces the levelized cost of electricity (LCOE) compared to a system without storage because of better utilization of the power block.

316

Concentrating Solar Power (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE))

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

317

Influence of organic salt concentration on the performance of bulk heterojunction organic solar cell  

Science Journals Connector (OSTI)

The effect of organic salt on the performance of bulk heterojunction organic solar cell was investigated by varying the concentration of...6). Organic solar cells based on TBAPF6-blended poly[2-methoxy-5-(2-ethyl...

Nasehah Syamin Sabri; Chi Chin Yap…

2013-07-01T23:59:59.000Z

318

Advancing State-of-the-Art Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

New solar receiver for CSP system leads to higher efficiency, increased durability, and reduced cost.

319

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

320

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network (OSTI)

of solar-thermal electricity gen- eration,” Solar Energy,Solar Thermal Wind Coal CC Gas Turbine Nuclear Reference EnergyEnergy pay- back time - a key number for the assessment of thermal solar

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

photon harvesting in organic solar cells with luminescentfor low-energy gap organic solar cells,” Sol. Energy Mater.

Leow, Shin Woei

2014-01-01T23:59:59.000Z

322

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network (OSTI)

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

323

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

324

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network (OSTI)

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated… (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

325

The Year of Concentrating Solar Power: Five New Plants to Power America with Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn about a new report that explains why 2014 is the year for concentrating solar power in the U.S.

326

Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

327

Energy Department Announces $25 Million to Lower Cost of Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on the Obama Administration’s Climate Action Plan, the Energy Department today announced $25 million in funding to advance concentrating solar power (CSP) system technologies.

328

Micro-scale concentrated photovoltaics: A technologically disruptive approach to flat-panel solar cells?  

Science Journals Connector (OSTI)

The potential benefits of solar cell architectures that exploit integrated micro-optical concentration are examined. An associated new development thrust at the US Department of...

Haney, Michael W

329

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network (OSTI)

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also,… (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

330

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies. The projects will develop...

331

Energy Department Announces Projects to Advance Cost-Effective Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $10 million for six new research and development projects that will advance innovative concentrating solar power (CSP) technologies.

332

Multijunction solar cells for conversion of concentrated sunlight to electricity  

Science Journals Connector (OSTI)

Solar-cell efficiencies have exceeded 40% in recent years. The keys to achieving these high efficiencies include: 1) use of multiple materials that span the solar spectrum, 2) growth...

Kurtz, Sarah; Geisz, John

2010-01-01T23:59:59.000Z

333

CHINA'S DUST AFFECTS SOLAR RESOURCE IN THE U.S.: A CASE STUDY Christian A. Gueymard Nels S. Laulainen  

E-Print Network (OSTI)

a significant im- pact. Concentrating systems such as parabolic troughs and solar tower plants utilize onlyCHINA'S DUST AFFECTS SOLAR RESOURCE IN THE U.S.: A CASE STUDY Christian A. Gueymard Nels S of how long- range aerosol transport may temporarily affect the U.S. solar resource. Broadband

Oregon, University of

334

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents (OSTI)

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

335

Top 10 Things You Didn't Know About Concentrating Solar Power | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Concentrating Solar Power Top 10 Things You Didn't Know About Concentrating Solar Power Top 10 Things You Didn't Know About Concentrating Solar Power October 31, 2013 - 12:03pm Addthis Florida Hawaii Southwest U.S. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs LEARN MORE Visit energy.gov/solar. Listen to a SunShot podcast on CSP and thermal energy storage. Watch our Energy 101: Concentrating Solar Power video for information on CSP technology basics. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Concentrating solar power (CSP) technology involves using mirrors, sometimes in the hundreds of thousands, to reflect sunlight and collect

336

Tarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems  

E-Print Network (OSTI)

. This is because the cost of solar panels compared to the amount of power they produce makes their purchaseTarn Yates, Senior Thesis, Physics Department UCSC Summer 2003 Solar Cells in Concentrating Systems Introduction 2 Theory i. The p-n junction. 6 ii. The p-n junction under an applied bias. 7 iii. Solar cell

337

Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove and A. Luzzi  

E-Print Network (OSTI)

Economic Mass Producible Mirror Panels for Solar Concentrators G Johnston, G. Burgess, K. Lovegrove to the success of all solar concentrators of this nature are cost effective and durable mirror panel components World Solar Congress 743 #12;Economic Mass Producible Mirror Panels for Solar Concentrators Johnston

338

Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ........  

E-Print Network (OSTI)

Energy Organic Solar Cells with Graded Exciton-dissociation Interfaces.................................................................................................................EN.1 Luminescent Solar Concentrators for Energy-harvesting in Displays ...................................................................................EN.3 Nano-engineered Organic Solar-energy-harvesting System

Reif, Rafael

339

Concentrator Solar Cell Modules and Systems Developed in Japan  

Science Journals Connector (OSTI)

Dissemination of photovoltaic (PV) systems has advanced, and solar cell module production has also significantly increased in ... Japan organized by the New Energy and Industrial Technology Development Organizati...

2007-01-01T23:59:59.000Z

340

NREL: Concentrating Solar Power Research - NREL Forges Foundation...  

NLE Websites -- All DOE Office Websites (Extended Search)

targets with systems that can supply solar power on demand through the use of thermal energy storage. The thermal energy from the receiver can be stored and subsequently...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Material and Chemical Processing (Concentrated Solar) (4 Activities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STANDARD B: Physical Science Properties and change of Properties in matter Transfer of energy CONTENT STANDARD D: Earth and Space Science Earth in the solar system CONTENT...

342

Solar Junction Develops World Record Setting Concentrated Photovoltaic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office focuses on achieving the goals of...

343

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network (OSTI)

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

344

Overview and comparison of global concentrating solar power incentives schemes by means of computational models  

Science Journals Connector (OSTI)

The present paper gives an updated picture of concentrating solar power incentives schemes in the World. It resumes the main figures of the incentives schemes per Country such as plant size limit, feed-in tariff value, duration, inflation recovery and ... Keywords: concentrating solar power, feed-in-tariff

M. Villarini; M. Limiti; R. Impero Abenavoli

2007-06-01T23:59:59.000Z

345

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

346

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

347

Community Response to Concentrating Solar Power in the San Luis Valley |  

Open Energy Info (EERE)

Response to Concentrating Solar Power in the San Luis Valley Response to Concentrating Solar Power in the San Luis Valley Jump to: navigation, search Name Community Response to Concentrating Solar Power in the San Luis Valley Agency/Company /Organization National Renewable Energy Laboratory, University of Colorado Partner B.C. Farhar, L.M. Hunter, T.M. Kirkland, and K.J. Tierney Focus Area Solar Phase Bring the Right People Together, Evaluate Options, Get Feedback Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2010/06/01 Website http://www.nrel.gov/docs/fy10o Locality San Luis Valley, Colorado References Community Response to Concentrating Solar Power in the San Luis Valley[1] Contents 1 Overview 2 Highlights 3 Related Tools 4 References Overview This report is about the social acceptance of utility-scale concentrating

348

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

the 20th European Photovoltaic Solar Energy Conference andin 23rd European Photovoltaic Solar Energy Conference andfor photovoltaic application,” Nano Energy, vol. 1, no. 1,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

349

Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light  

DOE Patents (OSTI)

According to the proposed invention, this technical result is achieved so that many-facet concentrator of a solar setup for exposure of objects, placed in a target plane, to the action of solar radiation containing a supporting frame and facets differing by that the facets of the concentrator are chosen with spherical focusing reflective surfaces of equal focal lengths and with selective coatings reflecting a desired spectral fraction of solar radiation, and are arranged on the supporting frame symmetrically with respect to the common axis of the concentrator, their optical axes being directed to the single point on the optical axis of the concentrator located before the nominal focus point of the concentrator and determining the position of arranging the target plane.

Lewandowski, Allan A. (Evergreen, CO); Yampolskiy, Vladislav (Moscow, RU); Alekseev, Valerie (Moscow, RU); Son, Valentin (Moscow, RU)

2001-01-01T23:59:59.000Z

350

DOE Announces up to $52.5 Million for Concentrating Solar Power Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52.5 Million for Concentrating Solar Power 52.5 Million for Concentrating Solar Power Research and Development DOE Announces up to $52.5 Million for Concentrating Solar Power Research and Development July 15, 2009 - 12:00am Addthis WASHINGTON, D.C. - The U.S. Department of Energy today announced plans to provide up to $52.5 million to research, develop, and demonstrate Concentrating Solar Power systems capable of providing low-cost electrical power both day and night. Today's announcement underscores the Obama Administration's commitment to creating jobs and saving money, making electricity generated from solar energy competitive with conventional grid electricity. "Low-cost renewable energy generation that includes energy storage is one key to our efforts to diversify domestic energy sources and create new

351

DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks to Invest up to $60 Million for Advanced Concentrating DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies April 30, 2008 - 11:31am Addthis WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years (Fiscal Years 2008-2012), which includes $10 million in FY 2008 appropriations and $10 million in the FY 2009 Budget request, to support the development of low-cost Concentrating Solar Power (CSP) technology. Increasing the use of solar energy is an important component of the Administration's efforts to diversify our nation's energy sources in an

352

DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 Million for Advanced Concentrating 60 Million for Advanced Concentrating Solar Power Technologies DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies April 30, 2008 - 11:31am Addthis WASHINGTON - U.S. Under Secretary of Energy Clarence "Bud" Albright today announced the issuance of the Solar Funding Opportunity Announcement (FOA) for up to $60 million in funding over five years (Fiscal Years 2008-2012), which includes $10 million in FY 2008 appropriations and $10 million in the FY 2009 Budget request, to support the development of low-cost Concentrating Solar Power (CSP) technology. Increasing the use of solar energy is an important component of the Administration's efforts to diversify our nation's energy sources in an effort to reduce greenhouse gas emissions and enhance our energy security.

353

Concentrating Solar Deployment System (CSDS) -- A New Model for...  

NLE Websites -- All DOE Office Websites (Extended Search)

solar resource or are close to large electric-load growth (such as in southern California). Fig. 6: CSP Capacity deployment by region in 2050 4. SENSITIVITY CASES FOR FEDERAL...

354

Thermal Analysis of Compound—Parabolic Concentrating Solar Energy Collectors  

Science Journals Connector (OSTI)

Despite the vast attention devoted recently to the design and development of effective collectors for harnessing solar energy at medium and high temperatures (>100° ... in the design of the compound parabolic con...

B. Norton; D. E. Prapas

1987-01-01T23:59:59.000Z

355

High-Efficiency, Self-Concentrating Nanoscale Solar Cell - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

provided the right combination of high-efficiency and low-cost. For example, conventional solar cells are designed to absorb light through an antireflective layer, and through a...

356

Management and exploitation of direct normal irradiance resources for concentrating solar collectors: Algeria as a case study  

Science Journals Connector (OSTI)

The use of concentrating solar collectors which are used in solar thermal power plant and concentrated photovoltaic systems implies that these systems only work with the direct normal irradiance (DNI). Unfortu...

Mohamed Salah Mecibah; Taqiy Eddine Boukelia…

2014-11-01T23:59:59.000Z

357

A novel procedure for the optical characterization of solar concentrators  

E-Print Network (OSTI)

characterization of heliostats is particularly simple and at very low cost. Results on first tests carried out with a heliostat of the CESA-I field at the Plataforma Solar de Almeria have shown the feasibility are not practical for the qualifi- cation of mirrors with a very large focal length, e.g. heliostats of a central

358

The Potential for Low-Cost Concentrating Solar Power Systems  

SciTech Connect

Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.

Price, H. W. (National Renewable Energy Laboratory); Carpenter, S. (Enermodal Engineering Limited)

1999-07-08T23:59:59.000Z

359

Secretary Chu Announces up to $62 Million for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $62 Million for Concentrating Solar up to $62 Million for Concentrating Solar Power Research and Development Secretary Chu Announces up to $62 Million for Concentrating Solar Power Research and Development May 7, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu today announced the selections of projects for investment of up to $62 million over five years to research, develop, and demonstrate Concentrating Solar Power (CSP) systems capable of providing low-cost electrical power. This funding will support improvements in CSP systems, components, and thermal energy storage to accelerate the market-readiness of this renewable energy technology. Accelerating breakthroughs in renewable energy technologies supports the Administration's strategy of diversifying the U.S. energy

360

DOE to Invest More than $5 Million for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Invest More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power November 29, 2007 - 4:45pm Addthis Additional $7.2 Million Available to Help National Labs Commercialize Proven Technologies WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced DOE will invest $5.2 million in funding to support the development of low-cost Concentrating Solar Power (CSP). As part of the Department's technology transfer efforts, DOE will also make available a Technology Commercialization Development Fund (TCDF) of up to $7.2 million to three of DOE's National Laboratories to support commercialization of clean energy technologies. Together, these projects will help advance President Bush's

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

362

Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY13 Q2 Low-Cost, Lightweight Solar Concentrators FY13 Q2 This document summarizes the progress of this Jet Propulsion Laboratory project, funded by SunShot, for the second quarter...

363

Optical efficiency of solar concentrators by a reverse optical path method  

Science Journals Connector (OSTI)

A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far...

Parretta, A; Antonini, A; Milan, E; Stefancich, M; Martinelli, G; Armani, M

2008-01-01T23:59:59.000Z

364

Project Profile: High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy's SunShot Initiative made an award to Colorado School of Mines (CSM) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

365

Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy’s SunShot Initiative awarded Southern Research Institute (SRI) through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program.

366

Design of a compact, lightweight, and low-cost solar concentrator  

E-Print Network (OSTI)

The objective of this mechanical design project was to improve the current design of large and heavy solar concentrators. The three main design goals were: making the system compact, making the system lightweight, and ...

González, Gabriel J. (Gabriel Joe), 1980-

2004-01-01T23:59:59.000Z

367

Overview and Comparison of Global Concentrating Solar Power Incentives Schemes by Means of Computational Models  

Science Journals Connector (OSTI)

The present paper gives an updated picture of concentrating solar power incentives schemes in the World. It resumes the main figures of the incentives schemes per Country such as plant size limit, feed-in tariff ...

M. Villarini; M. Limiti; R. Impero Abenavoli

2011-01-01T23:59:59.000Z

368

Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy  

Science Journals Connector (OSTI)

Using concentrated solar radiation as the energy source of high-temperature process heat, the carbothermal reduction of silica to silicon was examined thermodynamically and demonstrated experimentally at vacuu...

Peter G. Loutzenhiser; Ozan Tuerk; Aldo Steinfeld

2010-09-01T23:59:59.000Z

369

Modeling the Impact of State and Federal Incentives on Concentrating Solar Power Market Penetration  

SciTech Connect

This paper presents methodology and results from the Regional Energy Deployment System Model (ReEDS) examining the ability of concentrating solar power (CSP), other renewables, and electricity storage to contribute to the U.S. electric sector.

Blair, N.; Short, W.; Mehos, M.

2008-03-01T23:59:59.000Z

370

Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States  

SciTech Connect

This work describes the analysis of concentrating solar power (CSP) in two studies -- The SunShot Vision Study and the Renewable Electricity Futures Study -- and the potential role of CSP in a future energy mix.

Denholm, P.; Hand, M.; Mai, T.; Margolis, R.; Brinkman, G.; Drury, E.; Mowers, M.; Turchi, C.

2012-10-01T23:59:59.000Z

371

Optical and thermodynamic analysis and optimization of a novel solar concentrating system for distributed power generation.  

E-Print Network (OSTI)

??A novel central receiver power system utilizing linked-tracking heliostats is analyzed for distributed-scale concentrated solar power. Smaller linkage groupings are typically found to have a… (more)

Dunham, Marc Tyler Deo

2012-01-01T23:59:59.000Z

372

DOE to Invest More than $5 Million for Concentrating Solar Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $5 Million for Concentrating Solar Power More than $5 Million for Concentrating Solar Power DOE to Invest More than $5 Million for Concentrating Solar Power November 29, 2007 - 4:45pm Addthis Additional $7.2 Million Available to Help National Labs Commercialize Proven Technologies WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced DOE will invest $5.2 million in funding to support the development of low-cost Concentrating Solar Power (CSP). As part of the Department's technology transfer efforts, DOE will also make available a Technology Commercialization Development Fund (TCDF) of up to $7.2 million to three of DOE's National Laboratories to support commercialization of clean energy technologies. Together, these projects will help advance President Bush's

373

Material and Chemical Processing (Concentrated Solar) (4 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to detoxify hazardous wastes, to drive chemical reactions, and to treat materials for increased hardness and resistance to corrosion.

374

Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

The SunShot Initiative's Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities (CSP: APOLLO) funding opportunity announcement (FOA) seeks transformative projects targeting all components of a concentrating solar power (CSP) plant. Projects should seek to meet the targets set out in the SunShot Vision Study , enabling CSP to become fully cost-competitive with traditional forms of electric power generation. Projects can address challenges in any technical system of the plant, including solar collectors, receivers and heat transfer fluids, thermal energy storage, power cycles, as well as operations and maintenance.

375

Advanced Low-Cost Receivers for Parabolic Troughs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receivers for Parabolic Troughs Advanced Low-Cost Receivers for Parabolic Troughs This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded...

376

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

a heat engine, such as a steam turbine or sterling enginethese concentrations, a steam turbine achieves roughly 25%ratio can run a steam turbine at 35-50% efficiency, with

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

377

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

378

An apparatus for observing electroluminescence in concentrator solar batteries  

SciTech Connect

This paper describes an apparatus for examining electroluminescence in solar cells over the range 0.4-1.2 um when current is flowing through the forward-bias p-n junction. The apparatus contains an optical microscope fitted with an electron-optical converter shose magnification is adjustable from 3 to 100 and whose linear field of vision is then 40-2.5 mm, together with a pulse generator producing a current of amplitude 30 A, length 30 usec, and repetition period adjustable from 250 usec to 3 msec.

Sidorov, S.V.; Avanesyan, V.P.; Blagosklonov, A.A.; Darevskii, A.S.

1985-10-01T23:59:59.000Z

379

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

LSE considered a solar chimney, and another LSE considered aTrough Trough Power tower Solar chimney Natural gas firingcredit for PV and a solar chimney. Capacity credit for APS

Mills, Andrew D.

2014-01-01T23:59:59.000Z

380

Maximally concentrating optics for photovoltaic solar energy conversion  

SciTech Connect

Use of a two-stage concentrator with a fresnel lens primary and a nonimaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. Some preliminary ray trace studies have shown that with planar lenses, an increase in angular acceptance for a given geometric concentration to about 2/3 of the maximum theoretical limit can be achieved. To demonstrate this, two preprototype concentrators, each having a geometric concentration of 248:1 for a 0.635cm (0.25 inch) diameter cell, have been designed, built, and tested. Measurements of the angular response show an acceptance of 8[degrees] (full angle) which is drastically better than the 1[degrees]--2[degrees] achievable without a secondary, and is in excellent agreement with the ray trace predictions. For these preprototypes, passive cooling was sufficient to prevent any thermal problems for both the cell and secondary. No problems associated with nouuniform cell illumination were found, as evidenced by the fill factor of 71%--73% measured under concentration. Initial measurements of the system electrical efficiency lie in the range 7.5%--9.9% for a variety of individual cells.

O'Gallagher, J.J.

1985-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar electricity prospects in Oman using GIS-based solar radiation maps  

Science Journals Connector (OSTI)

This paper discusses solar power prospects in Oman. First, the geographic and topographic information about Oman are presented. The methodology of producing solar radiation maps using GIS tools is then discussed. The results obtained show very high potential of solar radiation over all the lands of Oman during the whole year. A slope analysis has allowed calculating the yearly electricity generation potential for different Concentrated Solar Power (CSP) technologies such as the parabolic trough, parabolic dish, tower, and concentrated PV. For instance if only 10% of the land of Oman with a slope less than 1% is considered an exploitable land for the parabolic trough CSP technology, then the total calculated potential of yearly electricity generation would be about 7.6 million GWh, which is many multiples of (680 times) the current generation supply in Oman which was about 11,189 GWh in 2007.

Adel Gastli; Yassine Charabi

2010-01-01T23:59:59.000Z

382

High Efficiency Large Area AlGaAs/GaAs Concentrator Solar Cells  

Science Journals Connector (OSTI)

A 1-kWp ( peak at 100 mw/cm2 incident power dencity ) concentrating photovoltaic array with 180 square Presnel plastic lenses and AlGaAs/GaAs concentrator solar cells has been constructed. The AlGaAs/GaAs concetr...

S. Yoshida; K. Mitsui; T. Oda; Y. Yukimoto…

1981-01-01T23:59:59.000Z

383

Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations  

Science Journals Connector (OSTI)

Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500 °C) and high temperatures (about 1000 °C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: • to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; • to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of raw materials until their disposal, following the “from cradle to grave” perspective. The environmental impact of the two power plants was simulated by using the software SimaPro 7.1, elaborated by PRé Consultants and using the Eco-Indicator 99 methodology. Finally, the results of the analysis of the environmental impact are used to calculate the following parameters associated to the power plants: EPBT (Energy Pay-Back Time), CO2 emissions and GWP100 (Global Warming Potential over a 100 year time horizon).

U. Desideri; F. Zepparelli; V. Morettini; E. Garroni

2013-01-01T23:59:59.000Z

384

Gases as Working Fluid in Parabolic Trough CSP Plants  

Science Journals Connector (OSTI)

Abstract The energetic dimension of actual economy is massively oriented towards the use of fossil fuels: they cover a share of 87% of the energy needs and the trend of this share is increasing, in spite of the commitments adopted by almost all the Countries in the World. Most crucial concern is CO2 levels in the atmosphere and the positive feedback between Earth's temperature increase and carbon. Actual technologies which make use of renewable sources seem to be not fully suitable to invert this continuous increase of fossil fuels. Concentrated Solar Power plants (CSP) have had, recently, a huge attention as a technology able to give, in the mean future, a strong contribution to the electrical energy generation. CSP technology has an intrinsic superiority with respect to the other renewable plants but actual plants suffer of many drawbacks which slow down a massive diffusion: these aspects increase costs and do not insure the reliability levels required to make the investments profitable. Gas as heat transfer fluid inside solar receiver in a CSP Parabolic Trough (PT) type plant is discussed in this paper: this would simplify actual technology in the conversion section, downstream the solar energy collecting phase. The use of gases calls for a new conversion section discussed in this paper based on a direct expansion in gas turbine plants. The success of this concept is related to the possibility to increase the fluid (gas) temperature above the actual operating maximum values. The paper discusses the performances of a new gas cycle, the performances of actual receivers when fed with gas and introduces and discusses an optimization design parameter which allows a cost decrease and industrial reliability improvement.

Roberto Cipollone; Andrea Cinocca; Angelo Gualtieri

2013-01-01T23:59:59.000Z

385

Mirrors of dynamic curvature for linear solar concentrators  

E-Print Network (OSTI)

as heat absorber. The variation of the focus leads to a wide variation of the distribution of light 1 hal results in a non-negligeable intercept loss plus an increase in the thermal loss by the receiver. The limited concentration ratio, hence the large size of the receiver and the high thermal losses from it

Paris-Sud XI, Université de

386

Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA  

Science Journals Connector (OSTI)

Abstract Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12% of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.

G. San Miguel; B. Corona

2014-01-01T23:59:59.000Z

387

Solar Manufacturing Technology 2  

Energy.gov (U.S. Department of Energy (DOE))

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

388

A new solar radiation data manual for flat?plate and concentrating collectors  

Science Journals Connector (OSTI)

A new solar radiation data manual is nearing completion by the National Renewable Energy Laboratory’s (NREL’s) Analytic Studies Division under the Solar Radiation Resource Assessment Project and the Photovoltaic Solar Radiation Research Task. These tasks are funded and monitored by the Photovoltaics Branch of the Department of Energy’s Office of Energy Efficiency and Renewable Energy. The new manual is entitled Solar Radiation Data Manual for Flat?Plate and Concentrating Collectors. For designers and engineers of solar energy related systems it gives the solar resource available for various types of collectors for 239 stations in the United States and its territories. The data in the manual are modeled using diffuse horizontal and direct beam solar radiation values from the National Solar Radiation Data Base (NSRDB). The NSRDB contains modeled (93%) and measured (7%) global horizontal diffuse horizontal and direct beam solar radiation for 1961–1990. This paper describes what is contained in the new data manual and how it was developed.

W. Marion; S. Wilcox

1994-01-01T23:59:59.000Z

389

Advances in Concentrating Solar Power Collectors: Mirrors and Solar Selective Coatings  

SciTech Connect

The intention is to explore the feasibility of depositing the coating by lower-cost methods and to perform a rigorous cost analysis after a viable high-temperature solar-selective coating is demonstrated by e-beam.

Kenendy, C. E.

2007-10-10T23:59:59.000Z

390

Solar spectral variations and their influence on concentrator solar cell performance  

E-Print Network (OSTI)

A comparative study is performed to quantify the difference in efficiency and spectral sensitivity between a tandem junction and its spectrum splitting parallel junction counterpart. Direct normal solar spectra in a ...

Broderick, Lirong Z.

391

Transmission Benefits of Co-Locating Concentrating Solar Power and Wind  

SciTech Connect

In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

Sioshansi, R.; Denholm, P.

2012-03-01T23:59:59.000Z

392

Siting guidelines for concentrating solar power plants in the Sahel: Case study of Burkina Faso  

SciTech Connect

Selecting a site that meets the technical requirements for a concentrating solar power plant (CSP) is a very critical exercise. This paper points out crucial factors and provides guidelines regarding the selection of suitable sites. It especially focuses on Sahelian countries which have their own climatic peculiarities. These countries, characterized by low access to electricity, are well endowed in solar resources. They are potentially good locations for concentrating solar power plants since their mean daily solar radiation exceeds 5.5 kWh/m{sup 2}. CSP presents therefore, a good opportunity for them to increase in a sustainable manner, their energy supply. The guidelines developed in this paper are applied to Burkina Faso as a case study. (author)

Azoumah, Y.; Tapsoba, G.; Thiam, S. [Laboratoire Energie Solaire et Economie d'Energie (LESEE), Fondation 2iE (International Institute of Water an Environmental Engineering), 01 BP 594, Ouagadougou 01 (Burkina Faso); Ramde, E.W. [Solar Energy Application Laboratory (SEAL), KNUST, Kumasi (Ghana)

2010-08-15T23:59:59.000Z

393

Exergetic analysis of solar concentrator aided natural gas fired combined cycle power plant  

Science Journals Connector (OSTI)

This article deals with comparative energy and exergetic analysis for evaluation of natural gas fired combined cycle power plant and solar concentrator aided (feed water heating and low pressure steam generation options) natural gas fired combined cycle power plant. Heat Transfer analysis of Linear Fresnel reflecting solar concentrator (LFRSC) is used to predict the effect of focal distance and width of reflector upon the reflecting surface area. Performance analysis of LFRSC with energetic and exergetic methods and the effect, of concentration ratio and inlet temperature of the fluid is carried out to determine, overall heat loss coefficient of the circular evacuated tube absorber at different receiver temperatures. An instantaneous increase in power generation capacity of about 10% is observed by substituting solar thermal energy for feed water heater and low pressure steam generation. It is observed that the utilization of solar energy for feed water heating and low pressure steam generation is more effective based on exergetic analysis rather than energetic analysis. Furthermore, for a solar aided feed water heating and low pressure steam generation, it is found that the land area requirement is 7 ha/MW for large scale solar thermal storage system to run the plant for 24 h.

V. Siva Reddy; S.C. Kaushik; S.K. Tyagi

2012-01-01T23:59:59.000Z

394

Using Encapsulated Phase Change Salts for Concentrated Solar Power Plant  

Science Journals Connector (OSTI)

Abstract Storing thermal energy as latent heat of fusion in phase change material (PCM), such as inorganic salt mixtures, can improve the energy density by as much as 50% while reducing the cost by over 40%. However, to discharge stored energy from PCMs, which has low thermal conductivity, requires a large heat transfer area which drives up the cost. Fortunately, salts encapsulated into small capsules can provide high specific surface area thus alleviating this problem. However, a technical barrier with encapsulating salts is that when it is produced, a void must be created inside the shell to allow for expansion of salt when it is heated above its melting point to 550 °C. Terrafore's method to economically create this void consists of using a sacrificial polymer which is coated as the middle layer between the salt prill and the shell material. The polymer is selected such that it decomposes much below the melting point of salt to gas leaving a void in the capsule. Salts with different melting points are encapsulated using the same recipe and contained in a packed bed consisting of salts with progressively higher melting points from bottom to top of the tank. This container serves as a cascaded energy storage medium to store heat transferred from the sensible heat energy collected in solar collectors. Mathematical models indicate that over 90% of salt in the capsules undergo phase change improving energy density by over 50% from a sensible-only thermal storage. Another advantage of this method is that it requires only a single tank as opposed to the two-tanks used in a sensible heat storage, thereby reducing the cost from a nominal $27 per kWht to $16 per kWht and coming close to the SunShot goal for thermal storage of $15 per kWht.

A. Mathur; R. Kasetty; J Oxley; J Mendez; K. Nithyanandam

2014-01-01T23:59:59.000Z

395

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems  

Office of Scientific and Technical Information (OSTI)

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials,

396

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

Solar Rankine thermodynamics matches Californiaconsidered, using average California solar insolation dataelectricity. Solar Rankine thermodynamics matches California

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

397

Efficiency and concentration ratio measurements of fluorescent solar concentrators using a xenon measurement system  

Science Journals Connector (OSTI)

An indoor test stand for fluorescent planar concentrator–collectors (FPC) with a 1.6-kW xenon light source, irradiating a rectangular triangle (active area 400 cm2) with 82...

Heidler, K

1981-01-01T23:59:59.000Z

398

Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage  

Energy.gov (U.S. Department of Energy (DOE))

The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program supports the development of thermochemical energy storage (TCES) systems that can validate a cost of less than or equal to $15 per kilowatt-hour-thermal (kWht) and operate at temperatures greater than or equal to 650 degrees Celsius. TCES presents opportunities for storing the sun's energy at high densities in the form of chemical bonds for use in utility-scale concentrating solar power (CSP) electricity generation. The SunShot Initiative funds six awardees for $10 million total for ELEMENTS.

399

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

400

A case study of the feasibility of using solar concentrating technologies for manufacturing ceramics  

Science Journals Connector (OSTI)

Abstract The goal of this case study is to determine for the first time the feasibility of using concentrated solar radiation as the source of thermal energy for the various high-temperature thermal processes involved in the manufacturing of construction ceramics. A specific test device, consisting of a ‘volumetric-type’ solar receiver and a treatment chamber, has been designed and built for this purpose. This has been installed and operated in the 60 kWth solar furnace at the R&D Center ‘Plataforma Solar de Almería’. The methodology followed consisted of testing the device for the lowest temperature cycles first to go then for the higher ones successively. It has been concluded that the maximum temperature needed for thermal processes such as ‘drying of raw materials’, ‘third-firing’ or ‘double-firing’ is achievable with this solar technology (up to 1050 °C). Further development of this solar device has turned out to be necessary to meet the requirements of higher-temperature processes like the ‘single-firing’ one (1150 °C) and to improve other aspects like the achievable heating and cooling rates or the uniformity of the thermal treatment over the sample, as well. This project studies the energy transfer processes between a non-conventional, high-quality energy source (concentrated solar radiation), a thermal fluid and a solid matter piece in the search of very specific optical and mechanical properties which confer it a commercial value. Though it iswas considered some time ago for the production of the so-called ‘solar fuels’ (hydrogen, pure metals, etc..), this project explores for the first time the integration of very high-temperature solar energy technology into existing ceramics manufacturing industrial process.

Diego Martinez Plaza; Inmaculada Cañadas Martinez; Gustavo Mallol Gasch; Félix Téllez Sufrategui; José Rodríguez García

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low-Cost Heliostat for Modular Systems- Presentation from SunShot Concentrating Solar Power (CSP) Program Review 2013  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

402

Energy Department Announces New University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of the Energy Department’s SunShot Initiative, Secretary Steven Chu announced today new investments to advance innovative concentrating solar power (CSP) system technologies.

403

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

concentrators for building integrated photovoltaics,” 2013,the performance of building integrated photovoltaics,” Sol.evaluation of building-integrated photovoltaics,” Energy,

Leow, Shin Woei

2014-01-01T23:59:59.000Z

404

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

SciTech Connect

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

405

White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve  

E-Print Network (OSTI)

1 White Paper to California Energy Commission on Assessment of Concentrated Solar Power David Barlev, Ruxandra Vidu, Pieter Stroeve California Solar Energy Collaborative, University of California is put into the harvest and storage of solar energy for power generation. There are two mainstream

Islam, M. Saif

406

Chromium (III), Titanium (III), and Vanadium (IV) sensitization of rare earth complexes for luminescent solar concentrator applications  

E-Print Network (OSTI)

High optical concentrations without excess heating in a stationary system can be achieved with a luminescent solar concentrator (LSC). Neodymium (Nd) and ytterbium (Yb) are excellent infrared LSC materials: inexpensive, ...

Thompson, Nicholas John

2011-01-01T23:59:59.000Z

407

THE GENESIS SOLAR WIND CONCENTRATOR TARGET: MASS FRACTIONATION CHARACTERISED BY NE ISOTOPES  

SciTech Connect

The concentrator on Genesis provides samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition of the solar wind. The concentration process caused mass fractionation as function of the radial target position. They measured the fractionation using Ne released by UV laser ablation along two arms of the gold cross from the concentrator target to compare measured Ne with modeled Ne. The latter is based on simulations using actual conditions of the solar wind during Genesis operation. Measured Ne abundances and isotopic composition of both arms agree within uncertainties indicating a radial symmetric concentration process. Ne data reveal a maximum concentration factor of {approx} 30% at the target center and a target-wide fractionation of Ne isotopes of 3.8%/amu with monotonously decreasing {sup 20}Ne/{sup 22}Ne ratios towards the center. The experimentally determined data, in particular the isotopic fractionation, differ from the modeled data. They discuss potential reasons and propose future attempts to overcome these disagreements.

WIENS, ROGER C. [Los Alamos National Laboratory; OLINGER, C. [Los Alamos National Laboratory; HEBER, V.S. [Los Alamos National Laboratory; REISENFELD, D.B. [Los Alamos National Laboratory; BURNETT, D.S. [Los Alamos National Laboratory; ALLTON, J.H. [Los Alamos National Laboratory; BAUR, H. [Los Alamos National Laboratory; WIECHERT, U. [Los Alamos National Laboratory; WIELER, R. [Los Alamos National Laboratory

2007-01-02T23:59:59.000Z

408

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

409

Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Concentrating Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Technical Report NREL/TP-6A20-58186 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Prepared under Task No. CP08.8301

410

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

411

Solar Concentrators  

Science Journals Connector (OSTI)

The ability to provide near-firm power through the use of thermal energy storage is gaining prominence. This characteristic differentiates CSP from PV technology, as the utilities can tailor the use of CSP electr...

Dr. Anjaneyulu Krothapalli; Dr. Brenton Greska

2012-01-01T23:59:59.000Z

412

Concentrating Solar Power Hybrid System Study: Cooperative Research and Development Final Report, CRADA Number CRD-13-506  

SciTech Connect

The purpose of this PTS is to collaboratively leverage the collective resources at General Electric Global Research (GEGRC) and National Renewable Energy Laboratories (NREL) in the areas of concentrating solar power hybrid systems to advance state-of-the-art concentrating solar and conventional power generation system integration.

Turchi, C.

2014-09-01T23:59:59.000Z

413

Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells  

SciTech Connect

This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

2014-03-01T23:59:59.000Z

414

3D analysis of the performances degradation caused by series resistance in concentrator solar cells  

SciTech Connect

This paper deals with the modeling of series resistance components in silicon concentrator solar cells. The main components of the macroscopic series resistance are analyzed by means of one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) numerical simulations. It is shown that the contribution of the lateral current flux, flowing along the emitter region, and of the transverse current flux, flowing along the metal grid, cannot be neglected and, hence, the operation of solar cells subjected to high current densities cannot be described by simple one-dimensional models. The percentage weight of 2D and 3D components on the total value of the series resistance is evaluated and rules for the proper design of the cell geometries are given. An analysis of the effectiveness of the most popular methods for the extraction of the series resistance from the I-V curves of solar cells is also proposed. (author)

Daliento, Santolo [Department of Electronic Engineering and TLC, University of Naples ''Federico II'', Via Claudio 21, 80125 Napoli (Italy); Lancellotti, Laura [ENEA Research Center, Localita Granatello, 80055 Portici (Italy)

2010-01-15T23:59:59.000Z

415

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

416

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

417

High-temperature photochemical destruction of toxic organic wastes using concentrated solar radiation  

SciTech Connect

Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studies of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).

Dellinger, B.; Graham, J.L.; Berman, J.M.; Taylor, P.H. [Dayton Univ., OH (United States)

1994-05-01T23:59:59.000Z

418

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel  

Science Journals Connector (OSTI)

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel ... The first step was to develop process flow diagrams and to use these along with literature information and research results as well as the practical industry experience to build process simulation models. ... In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no C debt and can offer immediate, sustained GHG advantages. ...

Edgar G. Hertwich; Xiangping Zhang

2009-04-30T23:59:59.000Z

419

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

SciTech Connect

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

420

241-AZ-101 pump removal trough analysis  

SciTech Connect

As part of the current Hanford mission of environmental cleanup, various long length equipment must be removed from highly radioactive waste tanks. The removal of equipment will utilize portions of the Equipment Removal System for Project W320 (ERS-W320), specifically the 50 ton hydraulic trailer system. Because the ERS-W320 system was designed to accommodate much heavier equipment it is adequate to support the dead weight of the trough, carriage and related equipment for 241AZ101 pump removal project. However, the ERS-W320 components when combined with the trough and its` related components must also be analyzed for overturning due to wind loads. Two troughs were designed, one for the 20 in. diameter carriage and one for the 36 in. diameter carriage. A proposed 52 in. trough was not designed and, therefore is not included in this document. In order to fit in the ERS-W320 strongback the troughs were design with the same widths. Structurally, the only difference between the two troughs is that more material was removed from the stiffener plates on the 36 in trough. The reduction in stiffener plate material reduces the allowable load. Therefore, only the 36 in. trough was analyzed.

Coverdell, B.L.

1995-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D  

SciTech Connect

The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

2010-11-01T23:59:59.000Z

422

3D Thermal-structural Analysis of an Absorber Tube of a Parabolic Trough Collector and the Effect of Tube Deflection on Optical Efficiency  

Science Journals Connector (OSTI)

Abstract In this paper deformation rate of an absorber tube of a parabolic trough collector due to a 3D solar flux density distribution is studied theoretically. Three dimensional temperature distribution and tube thermal expansion due to non-uniform solar flux over the tube are determined numerically. The local concentration ratio for the parabolic trough collectors, which is a key boundary condition in the thermal analysis is computed by Monte Carlo Ray Tracing method for different conditions. The governing equations of thermo-elastic constitutive are solved in three dimensions for steady state thermal and static structural analysis with appropriate boundary condition using Finite Volume and Finite Element numerical codes. Thermal stresses and strain are determined for two types of collectors; first one is a constructed collector and second one is under construction at Shiraz (Iran) solar thermal power plant. Results of the local concentration ratio, flux density, temperature distribution and thermal expansions are determined for the designed conditions. Appropriate flow rate and convection coefficient for each season are found in order to decrease tube bending, prevent optical efficiency drop of collectors, keep high factor of safety, and reduce cyclic daily amplitude motion which lead to longer life time of absorber tube.

S.M. Akbarimoosavi; M. Yaghoubi

2014-01-01T23:59:59.000Z

423

Physical Properties of Solid Particle Thermal Energy Storage Media for Concentrating Solar Power Applications  

Science Journals Connector (OSTI)

Abstract Solid ceramic particles have proven to be an effective heat transfer and thermal storage media for central receiver power production for a heat input temperature up to 1000 °C. In the directly illuminated solid particle receiver, a cascade of ?0.1-1 mm diameter particles is directly heated within a receiver cavity by concentrated solar energy. The efficiency of this approach, with respect to the energy balance on the receiver itself, is dependent on the physical properties of the particles. In this work, the radiative properties, solar weighted absorptance and thermal emittance, have been measured for several commercially available particle candidates both in the as-received state and after thermal exposure to simulate extended operation at elevated temperature in air between 700?C-1000?C. Heating the particles is shown to significantly reduce the solar weighted absorptance of as-received particles within 24 hours of exposure to air at 1000 °C, while heating at 700 °C in air has relatively little effect. In the as-received state, solar weighted absorptance can be as high as 93%, dropping to 84% after 192 hours at 1000?C. Particle stability is better at 700?C, and the solar absorptance remains above 92% after 192 hours of exposure. Analysis using x-ray diffraction (XRD) shows evidence of multiple chemical transformations in the sintered bauxite particle materials, which contain oxides of aluminum, silicon, titanium, and iron, following heating in air. However, the XRD spectra show only small differences between as-received and heat treated particles leaving open the possibility that the observed change in radiative properties results from a change in oxidation state without a concomitant phase change. Regardless of the specific degradation mechanism, t he solar weighted absorptance of the particles can be increased beyond the as-received condition by chemically reducing the particles in forming gas (5%H2 in N2 or Ar) above 700 °C, providing a possible means of periodically rejuvenating degraded particles in situ.

N. Siegel; M. Gross; C. Ho; T. Phan; J. Yuan

2014-01-01T23:59:59.000Z

424

NREL GIS Data: Hawaii High Resolution Concentrating Solar Power | OpenEI  

Open Energy Info (EERE)

Concentrating Solar Power Concentrating Solar Power Dataset Summary Description Abstract - Monthly and annual average solar resource potential for the state of Hawaii. Purpose - Provide information on the solar resource potential for the state of Hawaii. The insolation values represent the average solar energy available to a concentrating collector on a 2-axis tracker, such as a dish or a power tower. Supplemental Info - This data provides monthly average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude, or about 10 km in size. This data was developed using the State University of New York/Albany satellite radiation model. This model was developed by Dr. Richard Perez and collaborators at the National Renewable Energy Laboratory and other universities for the U.S. Department of Energy. Specific information about this model can be found in Perez, et al. (2002). This model uses hourly radiance images from geostationary weather satellites, daily snow cover data, and monthly averages of atmospheric water vapor, trace gases, and the amount of aerosols in the atmosphere to calculate the hourly total insolation (sun and sky) falling on a horizontal surface. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. A modified Bird model is used to calculate clear sky direct normal (DNI). This is then adjusted as a function of the ratio of clear sky global horizontal (GHI) and the model predicted GHI. Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalable at a 10km resolution. As a result, it is believed that the modeled values are accurate to approximately 15% of a true measured value within the grid cell. Due to terrain effects and other microclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

425

Development of an Advanced, Low-Cost parabolic Trough Collector...  

Office of Environmental Management (EM)

Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

426

Project Profile: Next-Generation Parabolic Trough Collectors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trough Collectors and Components for CSP Applications Project Profile: Next-Generation Parabolic Trough Collectors and Components for CSP Applications Abengoa logo Abengoa...

427

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

thermal storage or natural gas augmentation with CSP plants, one study considered PV coupled with a lead- acid battery,battery Trough Trough Trough Trough Power tower Solar chimney Natural gas firing in boiler N/A N/A PV Integrated thermal

Mills, Andrew D.

2014-01-01T23:59:59.000Z

428

Dynamic simulation of integrated rock-bed thermocline storage for concentrated solar power  

Science Journals Connector (OSTI)

Abstract In contrast to wind and photovoltaic, concentrated solar power plants can be equipped with thermal energy storage in order to decouple intermittent energy supply and grid feed-in. The focus of this study is the technical evaluation of a cost-efficient storage concept for solar tower power plants. Consisting of a quartzite-rock bed that is charged with a hot air flow and discharged by cold air counter-flow, the storage essentially operates like a regenerator. For such systems, the discharge temperature typically declines with time. Furthermore, the use of a randomly packed bed results in considerable pressure loss. In order to describe the relevant flow and heat transfer mechanisms in rock beds used for thermal storage, a mathematical model written in the modelling language Modelica is developed and validated. Good agreement with experimental data from literature is obtained. With the aid of the validated model, a rock-bed thermal storage for application in a semi-industrial scale solar power plant (1.5 MWel) is designed and optimised with respect to electrical efficiency of the plant during the charge and discharge cycle. The storage capacity is equivalent to four hours of full-load operation. Results show that compressor work should be considered directly in the selection of packed-bed geometry in order to minimise the efficiency penalty of storage integration in the solar plant.

Nicolas Mertens; Falah Alobaid; Lorenz Frigge; Bernd Epple

2014-01-01T23:59:59.000Z

429

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

Roshandell, Melina

2013-01-01T23:59:59.000Z

430

Electronic film with embedded micro-mirrors for solar energy concentrator systems  

E-Print Network (OSTI)

A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

Mario Rabinowitz; Mark Davidson

2004-04-16T23:59:59.000Z

431

Electronic film with embedded micro-mirrors for solar energy concentrator systems  

E-Print Network (OSTI)

A novel electronic film solar energy concentrator with embedded micro-mirrors that track the sun is described. The potential viability of this new concept is presented. Due to miniaturization, the amount of material needed for the optical system is minimal. Because it is light-weight and flexible, it can easily be attached to the land or existing structures. This presents an economic advantage over conventional concentrators which require the construction of a separate structure to support them, and motors to orient them to intercept and properly reflect sunlight. Such separate structures must be able to survive gusts, windstorms, earthquakes, etc. This concentrator utilizes the ground or existing edifices which are already capable of withstanding such vicissitudes of nature.

Rabinowitz, M; Rabinowitz, Mario; Davidson, Mark

2004-01-01T23:59:59.000Z

432

Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors  

Office of Scientific and Technical Information (OSTI)

Solar Radiation Data Manual Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefuleness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply iots endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not

433

Future economic of concentrating solar power (CSP) for electricity generation in Egypt  

Science Journals Connector (OSTI)

Abstract Population growth and economic development are leading to a continuous increase in energy demand in Egypt. At the same time conventional energy sources are diminishing amid growing global concern for the environment. These factors underline the importance of increasing the use of Renewable Energy sources. Egypt has enormous potential in Solar energy (CSP). There is sufficient proof of Egypt?s potential for extracting energy from Concentrated Solar Power, especially power on demand generation. CSP represents a reliable and sustainable source of energy for Egypt with different outputs that can be used. In this paper, we present a road map strategy for the market introduction of CSP in Egypt, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply.

Enas R. Shouman; N.M. Khattab

2015-01-01T23:59:59.000Z

434

Report to Congress on Assessment of Potential Impact of Concentrating Solar Power for Electriicty Generation (EPACT 2005--Section 934(c))  

SciTech Connect

Summary of DOE's assessment of issues regarding EPAct 2005, which requires the Secretary of Energy to assess conflicting guidance on the economic potential of concentrating solar power for electricity production.

Wilkins, F.

2007-02-01T23:59:59.000Z

435

Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator  

Science Journals Connector (OSTI)

Abstract In this paper, thermal performance analysis of 20 m2 prototype fuzzy focal solar dish collector is presented. The focal image characteristics of the solar dish are determined to propose the suitable design of absorber/receiver. First, theoretical thermal performance analysis of the fuzzy focal solar parabolic dish concentrator with modified cavity receiver is carried out for different operating conditions. Based on the theoretical performance analysis, the total heat loss (conduction, convection and radiation heat losses) from the modified cavity receiver is estimated. It is observed that the maximum theoretical efficiencies of solar dish collector are found to be as 79.2% for no wind conditions and 78.2% and 77.8% for side-on and head-on winds speed of 5 m/s respectively. Latter, real time analysis of parabolic dish collector with modified cavity receiver is carried out in terms of stagnation test, time constant test and daily performance test. From stagnation test, the overall heat loss coefficient is found to be 356 W/m2 K. The time constant test is carried out to determine the influence of sudden change in solar radiation at steady state conditions. The daily performance tests are conducted for different flow rates. It is found that the efficiency of the collector increases with the increase of volume flow rates. The average thermal efficiencies of the parabolic dish collector for the volume flow rate of 100 L/h and 250 L/h are found to be 69% and 74% for the average beam radiation (Ibn) of 532 W/m2 and 641 W/m2 respectively.

K.S. Reddy; Sendhil Kumar Natarajan; G. Veershetty

2015-01-01T23:59:59.000Z

436

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

437

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network (OSTI)

for evening cooking in a solar cooker. Energy Convers Manageperformance of a solar cooker based on an evacuated tube

Roshandell, Melina

2013-01-01T23:59:59.000Z

438

SolarPaces International CSP Project Information | Open Energy Information  

Open Energy Info (EERE)

SolarPaces International CSP Project Information SolarPaces International CSP Project Information Jump to: navigation, search Tool Summary LAUNCH TOOL Name: SolarPaces International CSP Project Information Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Renewable Energy, Solar Topics: Implementation, Market analysis, Background analysis Resource Type: Dataset Website: www.nrel.gov/csp/solarpaces/ References: SolarPaces International CSP Project Information[1] Summary "Working with member countries, SolarPACES-Solar Power and Chemical Energy Systems-has compiled data on concentrating solar power (CSP) projects around the world that have plants that are either operational, under construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power tower, and dish/engine

439

Experimental review of series resistance determination methods for III–V concentrator solar cells  

Science Journals Connector (OSTI)

Abstract Fourteen solar cell series resistance determination methods are tested for their ability to experimentally determine the series resistance of a III–V concentrator solar cell. For this purpose the series resistance is determined for a range of concentration ratios, the precision is measured and the accuracy by which a known additional resistance can be determined is tested. Only five of the methods perform adequately, but even these should be applied with care since they are either very sensitive to changes in cell temperature or only perform well at relatively high concentration ratios. None of the best values obtained with these five methods deviates more than 3.0 m? from their weighted average of 26.0 m?. The methods of Wolf & Rauschenbach and Aberle et al. were found to perform the best. It would, therefore, be preferable if the International Electrotechnical Commission adopted one of these methods as its series resistance determination standard, instead of its current method which is that of Swanson. Several methods that require only a single IV -curve to determine the series resistance are suitable to determine relative series resistance values.

G.M.M.W. Bissels; M.A.H. Asselbergs; J.M. Dickhout; E.J. Haverkamp; P. Mulder; G.J. Bauhuis; E. Vlieg; J.J. Schermer

2014-01-01T23:59:59.000Z

440

History, current state, and future of linear Fresnel concentrating solar collectors  

Science Journals Connector (OSTI)

Abstract Linear Fresnel collectors are a type of concentrating solar power technology. In this paper, the technology’s technical features and aspects are first described via illustrations of various design concepts; then, the past low- and intermediate-temperature applications of linear Fresnel collectors are reviewed and their state-of-the-art applications in utility-scale electricity generation are presented; finally, the performance, technical challenges, and future outlook of linear Fresnel technology in the context of utility-scale power plants are summarized.

Guangdong Zhu; Tim Wendelin; Michael J. Wagner; Chuck Kutscher

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model  

SciTech Connect

Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

Denholm, P.; Hummon, M.

2012-11-01T23:59:59.000Z

442

Energetics of Winter Troughs Entering South America  

Science Journals Connector (OSTI)

The energetics and behavior of midtropospheric troughs over the Southern Hemisphere and their relationship with South America surface cyclogenesis were studied during the winters of 1999–2003. All surface cyclogenesis situations over Uruguay and ...

Everson Dal Piva; Manoel A. Gan; V. Brahmananda Rao

2010-04-01T23:59:59.000Z

443

Mobile trough genesis over the Mongolian Plateau  

E-Print Network (OSTI)

method developed by Lefevre and Nielsen-Gammon (1995) was used to track the mobile troughs-a quasigeostrophic potential vorticity (QGPV) and associated piecewise tendency diagnosis (PTD) technique developed by Lefevre (1995) was used to analyze...

McEver, Gregory David

2012-06-07T23:59:59.000Z

444

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

2013-10-01T23:59:59.000Z

445

Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

2013-10-01T23:59:59.000Z

446

Correlation Between Geographically Dispersed Concentrating Solar Power and Demand in the United States  

SciTech Connect

Correlations between the electricity generated by concentrating solar thermal power (CSP) plants, as well as cross-correlations between CSP, wind power and electricity demand, have significant impacts on decisions for how much and where to build utility-scale CSP capacity, the optimal amount of thermal storage in the CSP plants, reserve capacity needed to back-up the system, as well as the expected levels of curtailed renewable power. Accurately estimating these correlations is vital to performing detailed analyses of high renewable penetration scenarios. This study quantifies the degree of correlation between geographically dispersed CSP, as well as the correlation between CSP and wind power, and CSP and electricity demand in 356 discrete regions in the contiguous US. Correlations are calculated using hourly data on an annual basis. Maps of the correlations will be presented to illustrate the degree of correlation between solar power and the demand it is serving, as well as the synergies between the negatively-correlated wind power and solar power serving the same region.

Mowers, M.; Helm, C.; Blair, N.; Short, W.

2010-01-01T23:59:59.000Z

447

A New Heat Transfer Fluid for Concentrating Solar Systems: Particle Flow in Tubes  

Science Journals Connector (OSTI)

Abstract This paper demonstrates a new concept of heat transfer fluid (HTF) for CSP applications, developed in the frame of both a National and a European project (CSP2 FP7 project). It involves a dense suspension of small solid particles. This innovation is currently. The dense suspension of particles receiver (DSPR) consists in creating the upward circulation of a dense suspension of particles (solid fraction in the range 30%-40%) in vertical absorbing tubes submitted to concentrated solar energy. So the suspension acts as a heat transfer fluid with a heat capacity similar to a liquid HTF but only limited in temperature by the working temperature limit of the receiver tubes. Suspension temperatures up to 750 °C are expected for metallic tubes, thus opening new opportunities for high efficiency thermodynamic cycles such as supercritical steam and carbon dioxide. First experimental results were obtained during on-sun testing with CNRS solar facility of a single tube DSPR for an outlet temperature lower than 300 °C. In this lab-scale experimental setup, the solar absorber is a single opaque metallic tube, containing upward solid circulation, located inside a cylindrical cavity dug in a receiver made of refractory, and submitted to the concentrated solar radiation through a 0.10m x 0.50m slot. The absorber is a 42.4 mm o.d. stainless steel tube. SiC was used because of its thermal properties, availability and rather low cost. The 63.9 ?m particle mean diameter permits a good fluidization with almost no bubbles, for very low air velocities. Solar flux densities in the range 200-250 kW/m2 were tested resulting in solid temperature increase ranging between 50 and 150 °C. The mean wall-to-suspension heat transfer coefficient (h) was calculated from experimental data. It is very sensitive to the solid fraction of the solid suspension, which was varied from 27% to 36%. These latter values are one order of magnitude larger than the solid fraction in circulating fluidized beds operating at much higher air velocity. Heat transfer coefficients ranging from 140 to 500 W/m2.K have been obtained; i.e. 400 W/m2.K mean value for standard operating conditions at low temperature.

G. Flamant; D. Gauthier; H. Benoit; J.-L. Sans; B. Boissière; R. Ansart; M. Hemati

2014-01-01T23:59:59.000Z

448

Financing concentrating solar power in the Middle East and North Africa—Subsidy or investment?  

Science Journals Connector (OSTI)

The paper presents a strategy for the market introduction of concentrating solar power (CSP) plants in the Middle East and North Africa (MENA) that will not require considerable subsidization and will not constitute a significant burden for electricity consumers in the region. In the first section, the paper explains the need of MENA countries for sustainable supply of electricity and calculates the cost of electricity for a model case country. In the second part, the cost development of concentrating solar power plants is calculated on the basis of expectations for the expansion of CSP on a global level. After that, the challenges for the market introduction of CSP in MENA are explained. Finally, we present a strategy for the market introduction of CSP in MENA, removing the main barriers for financing and starting market introduction in the peak load and the medium load segment of power supply. The paper explains why long-term power purchase agreements (PPA) for CSP should be calculated on the basis of avoided costs, starting in the peak load segment. Such PPA are not yet available, the paper aims to convince policy makers to introduce them.

Franz Trieb; Hans Müller-Steinhagen; Jürgen Kern

2011-01-01T23:59:59.000Z

449

Presented at Solar World Congress, Beijing, September 18 22 2007 PARABOLOIDAL DISH SOLAR CONCENTRATORS FOR MULTI-MEGAWATT  

E-Print Network (OSTI)

MWe of installed capacity in California, operating continuously for 20 years. After a long periodPresented at Solar World Congress, Beijing, September 18 ­ 22 2007 PARABOLOIDAL DISH SOLAR ,AUSTRALIA AUSTRALIA keith.lovegrove@anu.edu.au ABSTRACT Large scale solar thermal electric power generation

450

EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

34: Hualapai Valley Solar Interconnection Project, Arizona 34: Hualapai Valley Solar Interconnection Project, Arizona EIS-0434: Hualapai Valley Solar Interconnection Project, Arizona Overview Hualapai Valley Solar, LLC, proposes to construct, operate and maintain a 340-megawatt, solar-powered generating facility in Mohave County, near Kingman, Ariz. The proposed project would use concentrating solar-power-trough technology to capture the sun's heat to make steam, which would power a traditional steam turbine generator. Proposed infrastructure would consist of a solar field, power block, thermal energy storage system, substation site, transmission line, temporary laydown areas and other ancillary facilities. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

451

Comparison and Simulation of Salt-Ceramic Composites for Use in High Temperature Concentrated Solar Power.  

E-Print Network (OSTI)

??Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy… (more)

Fossile, Lauren Michelle

2012-01-01T23:59:59.000Z

452

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

USDOE [39]) Solar desalination economics Thomas reviewed thefor the economics to favor solar desalination in the firsteconomics described in the last section, water desalination

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

453

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96 h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jöcker; B. Laumert

2014-01-01T23:59:59.000Z

454

Freeze-thaw tests of trough receivers employing a molten salt working fluid.  

SciTech Connect

Several studies predict an economic benefit of using nitrate-based salts instead of the current synthetic oil within a solar parabolic trough field. However, the expected economic benefit can only be realized if the reliability and optical performance of the salt trough system is comparable to today's oil trough. Of primary concern is whether a salt-freeze accident and subsequent thaw will lead to damage of the heat collection elements (HCEs). This topic was investigated by experiments and analytical analysis. Results to date suggest that damage will not occur if the HCEs are not completely filled with salt. However, if the HCE is completely filled at the time of the freeze, the subsequent thaw can lead to plastic deformation and significant bending of the absorber tube.

Moss, Timothy A.; Iverson, Brian D.; Siegel, Nathan Phillip; Kolb, Gregory J.; Ho, Clifford Kuofei

2010-05-01T23:59:59.000Z

455

Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage  

Science Journals Connector (OSTI)

Abstract Integrating TES (thermal energy storage) in a CSP (concentrating solar power) plant allows for continuous operation even during times when solar irradiation is not available, thus providing a reliable output to the grid. In the present study, the cost and performance models of an EPCM-TES (encapsulated phase change material thermal energy storage) system and HP-TES (latent thermal storage system with embedded heat pipes) are integrated with a CSP power tower system model utilizing Rankine and s-CO2 (supercritical carbon-dioxide) power conversion cycles, to investigate the dynamic TES-integrated plant performance. The influence of design parameters of the storage system on the performance of a 200 MWe capacity power tower CSP plant is studied to establish design envelopes that satisfy the U.S. Department of Energy SunShot Initiative requirements, which include a round-trip annualized exergetic efficiency greater than 95%, storage cost less than $15/kWht and LCE (levelized cost of electricity) less than 6 ¢/kWh. From the design windows, optimum designs of the storage system based on minimum LCE, maximum exergetic efficiency, and maximum capacity factor are reported and compared with the results of two-tank molten salt storage system. Overall, the study presents the first effort to construct and analyze LTES (latent thermal energy storage) integrated CSP plant performance that can help assess the impact, cost and performance of LTES systems on power generation from molten salt power tower CSP plant.

K. Nithyanandam; R. Pitchumani

2014-01-01T23:59:59.000Z

456

Optical performance of vertical heliostat fields integrated in building façades for concentrating solar energy uses  

Science Journals Connector (OSTI)

Abstract One way for integrating concentrating solar energy systems based on central receiver technology in metropolitan areas consists of using building façades as frame for installing a heliostat reflector field that reflects radiation coming from the sun towards a common area where receiver is located. This work analyzes the optical performance of vertical solar field concept. It provides the effect of several geometric parameters such as receiver height, separation between heliostat edges, and different building typologies on the hourly and annual optical efficiency along the year including the contribution of different optical efficiency factors such as shadowing, blocking, cosine, and spillage. The optical efficiency of a vertical heliostat field was found to be mainly controlled by shadowing, cosine and spillage factors. The field reaches the maximum overall optical efficiency during spring and winter at noon time and the minimum ones during the summer season mainly due to shadowing factor. Results obtained for best configurations are comparable to those ones reached by traditional horizontal field arrangements, what supports the feasibility of the vertical heliostats field concept as a CSP building integrated facility.

Aurelio González-Pardo; Sara Cesar Chapa; José Gonzalez-Aguilar; Manuel Romero

2013-01-01T23:59:59.000Z

457

Thermal energy storage technologies and systems for concentrating solar power plants  

Science Journals Connector (OSTI)

This paper presents a review of thermal energy storage system design methodologies and the factors to be considered at different hierarchical levels for concentrating solar power (CSP) plants. Thermal energy storage forms a key component of a power plant for improvement of its dispatchability. Though there have been many reviews of storage media, there are not many that focus on storage system design along with its integration into the power plant. This paper discusses the thermal energy storage system designs presented in the literature along with thermal and exergy efficiency analyses of various thermal energy storage systems integrated into the power plant. Economic aspects of these systems and the relevant publications in literature are also summarized in this effort.

Sarada Kuravi; Jamie Trahan; D. Yogi Goswami; Muhammad M. Rahman; Elias K. Stefanakos

2013-01-01T23:59:59.000Z

458

A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power  

Science Journals Connector (OSTI)

Abstract Linear Fresnel collector arrays present some relevant advantages in the domain of concentrating solar power because of their simplicity, robustness and low capital cost. However, they also present important drawbacks and limitations, notably their average concentration ratio, which seems to limit significantly the performance of these systems. First, the paper addresses the problem of characterizing the mirror field configuration assuming hourly data of a typical year, in reference to a configuration similar to that of Fresdemo. For a proper comparative study, it is necessary to define a comparison criterion. In that sense, a new variable is defined, the useful energy efficiency, which only accounts for the radiation that impinges on the receiver with intensities above a reference value. As a second step, a comparative study between central linear Fresnel reflectors and compact linear Fresnel reflectors is carried out. This analysis shows that compact linear Fresnel reflectors minimize blocking and shading losses compared to a central configuration. However this minimization is not enough to overcome other negative effects of the compact Fresnel collectors, as the greater dispersion of the rays reaching the receiver, caused by the fact that mirrors must be located farther from the receiver, which yields to lower efficiencies.

María J. Montes; Carlo Rubbia; Rubén Abbas; José M. Martínez-Val

2014-01-01T23:59:59.000Z

459

Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes  

Science Journals Connector (OSTI)

Concentrating solar thermal (CST) technology has been commercially proven in utility-scale power plants that have been in operation since the 1980’s. CST uses reflecting surfaces to focus solar energy onto collectors, generating extreme heat than can be used for a variety of purposes. The current focus of CST is large-scale electrical power generation. However, new applications, such as solar fuels, are quickly gaining momentum. One key shortcoming of CST technology is its sensitivity to disruptions in sunlight availability over time. CST systems require either thermal energy storage or backup systems to operate during heavy cloud periods or at night. On the other hand, fossil-based energy systems have high availability and reliability, but they generate substantial CO2 emissions compared to equivalent CST processes. A novel solution would combine the benefits of CST technology and of fossil-fueled energy systems. Such a solar-fossil hybrid system would guarantee energy availability in the absence of sunlight or stored solar energy. The addition of carbon capture to these systems could reduce their carbon intensity to almost zero. This paper introduces three important solar-fossil hybrid energy systems: (1) Integrated Solar Combined Cycle (ISCC), (2) Solar-assisted post-combustion capture (SAPCAP), and (3) Solar gasification with CO2 capture. These novel concepts have great potential to overcome the inherent limitations of their component technologies and to achieve superior greenhouse gas mitigation techno-economic performance in large-scale applications. The paper describes the features of the three solar-fossil hybrid systems described earlier, discusses its advantages and disadvantages, and provides examples of applications. The goal of this manuscript is to introduce experts in the CCS and CST fields to the opportunities of integration between these technologies and their potential benefits.

Guillermo Ordorica-Garcia; and Alfonso Vidal Delgado; Aranzazu Fernandez Garcia

2011-01-01T23:59:59.000Z

460

Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification  

Science Journals Connector (OSTI)

Abstract Dynamic simulation, design improvements and control issues in solar power plants might compete with special considerations on energy storing techniques. In order to provide the stability in production of power or chemical commodities in spite of discontinuity in the source of energy, i.e., sun, overall concerns in the details of solar power plant, competition and comparison of common storing technologies should be taken into account to ensure the effectiveness and continuity of the supply. This research activity is aimed at extending the study from the power generation purpose to the solar-supplied chemical commodities production, highlighting the limitations of certain well-established thermal energy storage techniques when concentrating solar is directly coupled with chemical processes. The (intrinsically dynamic and closed-loop) simulation of solar power plants and direct thermal energy storage technologies is performed for the direct thermal energy storage technologies and, only for the case of thermocline, it is coupled with computational fluid-dynamic (CFD) studies for the proper assessment of molten salt and steam temperature trends. To investigate benefits/restrictions of the storage technologies, the solar steam generation is integrated with the gasification of biomasses for syngas production. Also, first-principles dynamic model for the biomass gasifier is provided.

Flavio Manenti; Andres R. Leon-Garzon; Zohreh Ravaghi-Ardebili; Carlo Pirola

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Characterization and Performance Analysis of High Efficiency Solar Cells and Concentrating Photovoltaic Systems .  

E-Print Network (OSTI)

??As part of the SUNRISE project (Semiconductors Using Nanostructures for Record Increases in Solar-cell Efficiency), high efficiency, III-V semiconductor, quantum-dot-enhanced, triple-junction solar cells designed and… (more)

Yandt, Mark

2012-01-01T23:59:59.000Z

462

Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source  

Science Journals Connector (OSTI)

Abstract The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production.

Fuqiang Wang; Jianyu Tan; Yong Shuai; Liang Gong; Heping Tan

2014-01-01T23:59:59.000Z

463

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

464

A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna  

E-Print Network (OSTI)

, rods, dielectrics, and other structures can create reconfigurable periodic line sources. These trough waveguide antennas (TWA) are then capable of providing both fixedfrequency and frequency-dependent beam steering. This was originally performed using...

Loizou, Loizos

2012-02-14T23:59:59.000Z

465

Effect of directional dependency of wall reflectivity and incident concentrated solar flux on the efficiency of a cavity solar receiver  

Science Journals Connector (OSTI)

Abstract Managing the optical properties of a cavity solar receiver to create spectral and directional selectivities is a solution to improve receiver efficiencies. A reduction in the incident solar power lost by reflection and by emission in a solar receiver allows the absorption of the solar flux to be maximized. This report investigates the influence of the cavity walls directional reflectivity on the thermal radiative efficiency of a cubic cavity solar receiver. A Monte Carlo ray-tracing method is used to calculate the power lost by reflections and by emission with respect to the incident radiation angular distribution and the bidirectional reflectance distribution function of the cavity walls. To study the influence of the directional dependency of the incident flux on the radiative efficiency, four patterns are considered: collimated, diffuse, focused, and Themis incidences. The directional-hemispherical reflectivity for the bottom wall (face to aperture) and lateral walls are distinguished. For diffuse walls, the absorption efficiency is primarily affected by the lateral walls reflectivity because of the back reflection losses. For specular walls, the driving parameter is the bottom wall reflectivity. In addition, the radiative efficiency with thermal emission was studied for the Themis configuration and a slightly weakest dependency of the efficiency on the lateral walls reflectivity was found.

Florent Larrouturou; Cyril Caliot; Gilles Flamant

2014-01-01T23:59:59.000Z

466

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

467

Variation of carrier concentration and interface trap density in 8MeV electron irradiated c-Si solar cells  

SciTech Connect

The capacitance and conductance measurements were carried out for c-Si solar cells, irradiated with 8 MeV electrons with doses ranging from 5kGy – 100kGy in order to investigate the anomalous degradation of the cells in the radiation harsh environments. Capacitance – Voltage measurements indicate that there is a slight reduction in the carrier concentration upon electron irradiation due to the creation of radiation induced defects. The conductance measurement results reveal that the interface state densities and the trap time constant increases with electron dose due to displacement damages in c-Si solar cells.

Bhat, Sathyanarayana, E-mail: asharao76@gmail.com; Rao, Asha, E-mail: asharao76@gmail.com [Department of Physics, Mangalore Institute of Technology and Engineering, Moodabidri, Mangalore-574225 (India); Krishnan, Sheeja [Department of Physics, Sri Devi Institute of Technology, Kenjar, Mangalore-574142 (India); Sanjeev, Ganesh [Microtron Centre, Department of Physics, Mangalore University, Mangalagangothri-574199 (India); Suresh, E. P. [Solar Panel Division, ISRO Satellite Centre, Bangalore-560017 (India)

2014-04-24T23:59:59.000Z

468

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

469

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting .  

E-Print Network (OSTI)

??In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants… (more)

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

470

Power generation from thermoelectric cells by using solar parabolic concentration dish.  

E-Print Network (OSTI)

??Thermoelectric and solar-energy technologies are the focus of significant research, and can make a major contribution to the need to find alternative methods of power… (more)

Fan, H

2011-01-01T23:59:59.000Z

471

NREL: TroughNet - Email Updates - Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Updates - Subscribe Email Updates - Subscribe Subscribe to receive email updates about parabolic trough technology, including: Status on R&D and deployment projects Workshops and other events New publications New data and resources. Please provide and submit the following information. Name (first & last): Organization/Affiliation: Email Address: Submit Clear Form Unsubscribe Printable Version TroughNet Home Technologies Market & Economic Assessment Research & Development Data & Resources FAQs Workshops Publications Email Updates Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later.

472

Solar steam reforming of natural gas integrated with a gas turbine power plant  

Science Journals Connector (OSTI)

Abstract This paper shows a hybrid power plant wherein solar steam reforming of natural gas and a steam injected gas turbine power plant are integrated for solar syngas production and use. The gas turbine is fed by a mixture of natural gas and solar syngas (mainly composed of hydrogen and water steam) from mid-low temperature steam reforming reaction whose heat duty is supplied by a parabolic trough Concentrating Solar Power plant. A comparison is made between a traditional steam injected gas turbine and the proposed solution to underline the improvements introduced by the integration with solar steam reforming of the natural gas process. The paper also shows how solar syngas can be considered as an energy vector consequent to solar energy conversion effectiveness and the natural gas pipeline as a storage unit, thus accomplishing the idea of a smart energy grid.

Augusto Bianchini; Marco Pellegrini; Cesare Saccani

2013-01-01T23:59:59.000Z

473

Performance testing of the Acurex solar-collector Model 3001-03  

SciTech Connect

Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

Dudley, V.E.; Workhoven, R.M.

1982-03-01T23:59:59.000Z

474

Application of solar thermal energy to buildings and industry  

SciTech Connect

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

475

Chapter 3 - Solar Energy Collectors  

Science Journals Connector (OSTI)

Abstract Chapter 3 gives a review of solar collectors which are the main components of any solar system. The review includes various types of stationary and sun-tracking collectors. The stationary collectors include flat-plate collectors (FPCs), under which glazing materials, collector absorbing plates, and collector construction are presented; compound parabolic collectors (CPCs) and evacuated tube collectors (ETCs). The sun-tracking concentrating collectors section cover parabolic trough collectors (PTCs), which include parabola construction and tracking mechanisms; Fresnel collectors; parabolic dish reflector and heliostat field collector. This review is followed by the optical and thermal analysis of both \\{FPCs\\} and concentrating collectors. The analysis for \\{FPCs\\} includes both water and air type systems whereas the analysis for concentrating collectors includes the CPC and the PTC. The analysis of flat-plate water collectors starts with an analysis of the absorbed solar radiation followed by collector energy losses, temperature distribution between the tubes, collector efficiency factor, heat removal factor, flow factor, and thermal efficiency. This is followed by practical considerations concerning FPCs. Subsequently, concentrating collectors are considered which include optical and thermal analysis of a CPC and optical and thermal analysis of PTCs. The chapter includes also the second law analysis of solar thermal systems and includes minimum entropy generation rate, optimum collector temperature, and non-isothermal collector analysis.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

476

Dynamic simulation of the thermal and electrical behavior of a thermionic converter coupled to a solar concentrator  

SciTech Connect

A mathematical simulation for the dynamic thermal and electrical behavior of a thermionic converter coupled to a solar concentrator, is presented. The thermionic device is a Cesium-filled thermionic diode operating in the ignited mode. The emitter of the device is made of polycrystalline Rhenium and the collector of the device of Molybdenum. The solar concentrator is a parabolic dish. The designed emitter and collector temperatures are 1,850 K and 928 K, respectively. However, due to changes in ambient conditions, the collector efficiency varies and so does the system efficiency. This fact makes it necessary to evaluate the design of the system not just for one hour with constant conditions but also for a whole operating day. The paper presents plots for the emitter and collector thermionic device temperatures and power and voltage for a constant resistance load as a function of time.

Perez, G. [CUAP-UAP, Puebla (Mexico). Centro de Investigaciones en Dispositivos Semiconductores; Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

1995-12-31T23:59:59.000Z

477

Methodology to assess potential glint and glare hazards from concentrating solar power plants : analytical models and experimental validation.  

SciTech Connect

With growing numbers of concentrating solar power systems being designed and developed, glint and glare from concentrating solar collectors and receivers is receiving increased attention as a potential hazard or distraction for motorists, pilots, and pedestrians. This paper provides analytical methods to evaluate the irradiance originating from specularly and diffusely reflecting sources as a function of distance and characteristics of the source. Sample problems are provided for both specular and diffuse sources, and validation of the models is performed via testing. In addition, a summary of safety metrics is compiled from the literature to evaluate the potential hazards of calculated irradiances from glint and glare. Previous safety metrics have focused on prevention of permanent eye damage (e.g., retinal burn). New metrics used in this paper account for temporary flash blindness, which can occur at irradiance values several orders of magnitude lower than the irradiance values required for irreversible eye damage.

Diver, Richard B., Jr.; Ghanbari, Cheryl M.; Ho, Clifford Kuofei

2010-04-01T23:59:59.000Z

478

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

479

SJ Solar | Open Energy Information  

Open Energy Info (EERE)

SJ Solar Jump to: navigation, search Name: SJ Solar Place: San Jose, California Zip: 95131 Sector: Solar Product: Cell design firm for concentrated solar References: SJ Solar1...

480

Sandia National Laboratories: Solar Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights Photovoltaics (PV)...

Note: This page contains sample records for the topic "trough concentrating solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Estimating the Capacity Value of Concentrating Solar Power Plants: A Case Study of the Southwestern United States  

SciTech Connect

We estimate the capacity value of concentrating solar power (CSP) plants without thermal energy storage in the southwestern U.S. Our results show that CSP plants have capacity values that are between 45% and 95% of maximum capacity, depending on their location and configuration. We also examine the sensitivity of the capacity value of CSP to a number of factors and show that capacity factor-based methods can provide reasonable approximations of reliability-based estimates.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2012-05-01T23:59:59.000Z

482

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

and cost of solar water purification/desalination ($1.40/mand potential for water purification/desalination using DCS-to the feed-water of the desalination/purification system as

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

483

Single element spectral splitting solar concentrator for multiple cells CPV system  

E-Print Network (OSTI)

Shockley Read Hall equation poses a limit to the maximum conversion efficiency of broadband solar radiation attainable by means of a single bandgap converter. A possible approach to overcome such a limit is to convert ...

Stefancich, Marco

484

Computational and experimental investigations into cavity receiver heat loss for solar thermal concentrators  

E-Print Network (OSTI)

of the total, though the losses depend on solar elevation angle; at higher angles, and in low-wind conditions in inclination, temperature and cavity geometry on convective and radiative heat loss. Secondly, a water

485

Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment  

Science Journals Connector (OSTI)

The potential for transferring a larger share of our energy supply toward renewable energy is a widely discussed goal in society, economics, environment, and climate-related programs. For a larger share of electricity to come from fluctuating solar and ...

Marion Schroedter-Homscheidt; Armel Oumbe; Angela Benedetti; Jean-Jacques Morcrette

2013-06-01T23:59:59.000Z

486

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250 °C and 700 °C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

487

Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power  

Science Journals Connector (OSTI)

Abstract Photovoltaics (PV) has recently undergone impressive growth and substantial cost decreases, while deployment for concentrating solar power (CSP) has been much slower. As the share of PV rises, the challenge of system integration will increase. This favors CSP, which can be combined with thermal storage and co-firing to reduce variability. It is thus an open question how important solar power will be for achieving climate mitigation targets, and which solar technology will be dominant in the long-term. We address these questions with the state-of-the-art integrated energy-economy-climate model REMIND 1.5, which embodies an advanced representation of the most important drivers of solar deployment. We derive up-to-date values for current and future costs of solar technologies. We calculate a consistent global resource potential dataset for both CSP and PV, aggregated to country-level. We also present a simplified representation of system integration costs of variable renewable energies, suitable for large-scale energy-economy-models. Finally, we calculate a large number of scenarios and perform a sensitivity study to analyze how robust our results are towards future cost reductions of PV and CSP. The results show that solar power becomes the dominant electricity source in a scenario limiting global warming to 2 °C, with PV and CSP together supplying 48% of total 2010–2100 electricity. Solar technologies have a stabilizing effect on electricity price: if both solar technologies are excluded in a climate policy scenario, electricity prices rise much higher than in the case with full technology availability. We also analyze the competition between PV and CSP: PV is cheaper on a direct technology basis and is thus deployed earlier, but at high supply shares the PV integration costs become so high that CSP gains a competitive advantage and is rapidly developed, eventually overtaking PV. Even in the most pessimistic scenario of our sensitivity study with no further cost reductions, CSP and PV still supply 19% of 2010–2100 electricity. We conclude that if a stringent climate target of 2 °C is to be met cost-efficiently, solar power will play a paramount role in the long-term transformation of the electricity system.

Robert Carl Pietzcker; Daniel Stetter; Susanne Manger; Gunnar Luderer

2014-01-01T23:59:59.000Z

488

STA'IfEMENT OF CONSIDERATIONS REQUEST BY ABENGOA SOLAR INC. ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

under the above referenced cooperative agreement entitled , Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants." According to ASI's...

489

Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report  

SciTech Connect

ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

2013-02-01T23:59:59.000Z

490

Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300  

SciTech Connect

The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

Gray, M. H.

2014-01-01T23:59:59.000Z

491

Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.  

SciTech Connect

The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

Ehrhart, Brian David; Gill, David Dennis

2013-07-01T23:59:59.000Z

492

Concentration solar power optimization system and method of using the same  

DOE Patents (OSTI)

A system and method for optimizing at least one mirror of at least one CSP system is