National Library of Energy BETA

Sample records for tropical convection observed

  1. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties of tropical convection observed by ARM millimeter-radars Haynes, John Colorado State University Stephens, Graeme Colorado State University Category: Cloud Properties The results of an analysis of tropical cloud systems observed from a variety of vertically pointing radar systems are described. In particular, observations taken during five years of operation of the ARM millimeter wavelength radar system (MMCR) at Manus Island in the Tropical West Pacific region are characterized into

  2. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  3. ARM - Field Campaign - Year of Tropical Convection (YOTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsYear of Tropical Convection (YOTC) Campaign Links Year of Tropical Convection Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Year of Tropical Convection (YOTC) 2008.05.01 - 2010.04.30 Lead Scientist : Sally McFarlane Abstract Example of a sonde profile available from the ARM Archive The realistic representation of tropical convection in global atmospheric models is a long-standing challenge for weather and global

  4. Limiting Factors for Convective Cloud Top Height in the Tropics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Limiting Factors for Convective Cloud Top Height in the Tropics M. P. Jensen and A. D. Del Genio National Aeronautics and Space Administration Goddard Institute for Space Studies Columbia University New York, New York Introduction Populations of tropical convective clouds are mainly comprised of three types: shallow trade cumulus, mid-level cumulus congestus and deep convective clouds (Johnson et al. 1999). Each of these cloud types has different impacts on the local radiation and water budgets.

  5. Arctic Stratus and Tropical Deep Convection. Integrating Measurements and

    Office of Scientific and Technical Information (OSTI)

    Simulations (Technical Report) | SciTech Connect Technical Report: Arctic Stratus and Tropical Deep Convection. Integrating Measurements and Simulations Citation Details In-Document Search Title: Arctic Stratus and Tropical Deep Convection. Integrating Measurements and Simulations Final report summarizing published material. Authors: Ann, Fridlind [1] + Show Author Affiliations NASA Goddard Institute for Space Studies, Washington, DC (United States) Publication Date: 2015-05-18 OSTI

  6. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  7. An observational study of entrainment rate in deep convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  8. An observational study of entrainment rate in deep convection

    SciTech Connect (OSTI)

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

  9. Title: Radar-observed convective characteristics during TWP-ICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will describe the convective systems observed during the project by two scanning C-band Doppler radars, one of which will provide dual-polarization measurements, and ARM's...

  10. Mechanisms of Convective Cloud Organization by Cold Pools over Tropical Warm Ocean during the AMIE/DYNAMO Field Campaign

    SciTech Connect (OSTI)

    Feng, Zhe; Hagos, Samson M.; Rowe, Angela; Burleyson, Casey D.; Martini, Matus; de Szoeke, S.

    2015-06-01

    This paper investigates the mechanisms of convective cloud organization by precipitation-driven cold pools over the warm tropical Indian Ocean during the 2011 Atmospheric Radiation Measurement (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment / Dynamics of the MJO (AMIE/DYNAMO) field campaign. A high-resolution regional model simulation is performed using the Weather Research and Forecasting model during the transition from suppressed to active phases of the November 2011 MJO. The simulated cold pool lifetimes, spatial extent and thermodynamic properties agree well with the radar and ship-borne observations from the field campaign. The thermodynamic and dynamic structures of the outflow boundaries of isolated and intersecting cold pools in the simulation and the associated secondary cloud populations are examined. Intersecting cold pools last more than twice as long, are twice as large, 41% more intense (measured by buoyancy), and 62% deeper than isolated cold pools. Consequently, intersecting cold pools trigger 73% more convective clouds than isolated ones. This is possibly due to stronger outflows that enhance secondary updraft velocities by up to 45%. However, cold pool-triggered convective clouds grow into deep convection not because of the stronger secondary updrafts at cloud base, but rather due to closer spacing (aggregation) between clouds and larger cloud clusters that formed along the cold pool boundaries when they intersect. The close spacing of large clouds moistens the local environment and reduces entrainment drying, allowing the clouds to further develop into deep convection. Implications to the design of future convective parameterization with cold pool-modulated entrainment rates are discussed.

  11. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  12. Patterns of Convection in the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observations from Darwin, Australia. The shortwave data have been smoothed using a Gaussian filter with a half-width of 7 days. The time series is complex but after careful...

  13. Convection?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convergence Zone (ITCZ) - Monsoon - Ocean-Atmosphere System - Precipitation - Solar Energy - Tropical Cyclone - Tropical Disturbance Related Activity: Why is it Hotter...

  14. Thermodynamic properties of mesoscale convective systems observed during BAMEX

    SciTech Connect (OSTI)

    Correia, James; Arritt, R.

    2008-11-01

    Dropsonde observations from the Bow-echo and Mesoscale convective vortex EXperiment (BAMEX) are used to document the spatio-temporal variability of temperature, moisture and wind within mesoscale convective systems (MCSs). Onion type sounding structures are found throughout the stratiform region of MCSs but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each sub-region of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. We found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet bulb potential temperature profiles seem to indicate that air within the lowest several km comes from a variety of source regions. We also found that lapse rate transitions across the 0 C level were more common than isothermal, melting layers. We discuss the implications these findings have and how they can be used to validate future high resolution numerical simulations of MCSs.

  15. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width"16"> Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever...

  16. Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Guang J

    2013-07-29

    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

  17. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  18. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  19. Amazon Column CO2 and CO Observations to Elucidate Tropical Ecosystem

    Office of Scientific and Technical Information (OSTI)

    Processes (Conference) | SciTech Connect Conference: Amazon Column CO2 and CO Observations to Elucidate Tropical Ecosystem Processes Citation Details In-Document Search Title: Amazon Column CO2 and CO Observations to Elucidate Tropical Ecosystem Processes Authors: Dubey, Manvendra Krishna [1] ; Parker, Harrison Alexander [1] ; Myers, Katherine Elizabeth [1] ; Wennberg, P [2] ; Wunch, D [2] ; Allen, N [3] ; Blavier, J-F [4] ; Keppel-Aleks, G [5] ; O'Dell, C [6] ; Miller, J [7] ; Michalak, A

  20. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    SciTech Connect (OSTI)

    Niyogi, Devdutta S.

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  1. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    SciTech Connect (OSTI)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  2. Observations of tropical clouds from the upgraded MMCR at Darwin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the upgraded MMCR at Darwin and comparisons with C-Pol and satellite observations Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory...

  3. Observed Regimes of Mid-Latitude.and Tropical Cirrus Microphysical Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observed Regimes of Mid-Latitude and Tropical Cirrus Microphysical Behavior A. D. Del Genio and A. B. Wolf National Aeronautics Space Administration Goddard Institute for Space Studies New York, New York G. G. Mace University of Utah Salt Lake City, Utah L. M. Miloshevich National Center for Atmospheric Research Boulder, Colorado Introduction Little is known about the climatological microphysical properties of cirrus clouds. Thus, general circulation model (GCM) cirrus parameterizations often

  4. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  5. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  6. Observations and Modeling of Shallow Convective Clouds: Implications for the Indirect Aerosol Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Modeling of Shallow Convective Clouds: Implications for the Indirect Aerosol Effects Sylwester Arabas 1 , Joanna Slawinska 1 , Wojciech Grabowski 2 , Hugh Morrison 2 , Hanna Pawlowska 1 1 : Institute of Geophysics, University of Warsaw, Poland 2 : National Center for Atmospheric Research, Boulder, Colorado, USA 348 constants for reference state and lateral boundary conditions 349 ibcx=icyx 350 ibcy=icyy*j3 351 ibcz=icyz 352 irlx=irelx 353 irly=irely*j3 354 irdbc=0 355 fcr0=fcr0*icorio 356

  7. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Tao, Wei-Kuo; Houze, Robert, A., Jr.; Zeng, Xiping

    2013-03-14

    This three-year project, in cooperation with Professor Bob Houze at University of Washington, has been successfully finished as planned. Both ARM (the Atmospheric Radiation Measurement Program) data and cloud-resolving model (CRM) simulations were used to identify the water budgets of clouds observed in two international field campaigns. The research results achieved shed light on several key processes of clouds in climate change (or general circulation models), which are summarized below. 1. Revealed the effect of mineral dust on mesoscale convective systems (MCSs) Two international field campaigns near a desert and a tropical coast provided unique data to drive and evaluate CRM simulations, which are TWP-ICE (the Tropical Warm Pool International Cloud Experiment) and AMMA (the African Monsoon Multidisciplinary Analysis). Studies of the two campaign data were contrasted, revealing that much mineral dust can bring about large MCSs via ice nucleation and clouds. This result was reported as a PI presentation in the 3rd ASR Science Team meeting held in Arlington, Virginia in March 2012. A paper on the studies was published in the Journal of the Atmospheric Sciences (Zeng et al. 2013). 2. Identified the effect of convective downdrafts on ice crystal concentration Using the large-scale forcing data from TWP-ICE, ARM-SGP (the Southern Great Plains) and other field campaigns, Goddard CRM simulations were carried out in comparison with radar and satellite observations. The comparison between model and observations revealed that convective downdrafts could increase ice crystal concentration by up to three or four orders, which is a key to quantitatively represent the indirect effects of ice nuclei, a kind of aerosol, on clouds and radiation in the Tropics. This result was published in the Journal of the Atmospheric Sciences (Zeng et al. 2011) and summarized in the DOE/ASR Research Highlights Summaries (see http://www.arm.gov/science/highlights/RMjY5/view). 3. Used radar observations to evaluate model simulations In cooperation with Profs. Bob Houze at University of Washington and Steven Rutledge at Colorado State University, numerical model results were evaluated with observations from W- and C-band radars and CloudSat/TRMM satellites. These studies exhibited some shortcomings of current numerical models, such as too little of thin anvil clouds, directing the future improvement of cloud microphysics parameterization in CRMs. Two papers of Powell et al (2012) and Zeng et al. (2013), summarizing these studies, were published in the Journal of the Atmospheric Sciences. 4. Analyzed the water budgets of MCSs Using ARM data from TWP-ICE, ARM-SGP and other field campaigns, the Goddard CRM simulations were carried out to analyze the water budgets of clouds from TWP-ICE and AMMA. The simulations generated a set of datasets on clouds and radiation, which are available http://cloud.gsfc.nasa.gov/. The cloud datasets were available for modelers and other researchers aiming to improve the representation of cloud processes in multi-scale modeling frameworks, GCMs and climate models. Special datasets, such as 3D cloud distributions every six minutes for TWP-ICE, were requested and generated for ARM/ASR investigators. Data server records show that 86,206 datasets were downloaded by 120 users between April of 2010 and January of 2012. 5. MMF simulations The Goddard MMF (multi-scale modeling framework) has been improved by coupling with the Goddard Land Information System (LIS) and the Goddard Earth Observing System Model, Version 5 (GOES5). It has also been optimized on NASA HEC supercomputers and can be run over 4000 CPUs. The improved MMF with high horizontal resolution (1 x 1 degree) is currently being applied to cases covering 2005 and 2006. The results show that the spatial distribution pattern of precipitation rate is well simulated by the MMF through comparisons with satellite retrievals from the CMOPRH and GPCP data sets. In addition, the MMF results were compared with three reanalyses (MERRA, ERA-Interim and CFSR). Although the MMF tends to produce a higher precipitation rate over some topical regions, it actually well captures the variations in the zonal and meridional means. Among the three reanalyses, ERA-Interim seems to have values close to those of the satellite retrievals especially for GPCP. It is interesting to note that the MMF obtained the best results in the rain forest of Africa even better than those of CFSR and ERA-Interim, when compared to CMORPH. MERRA fails to capture the precipitation in this region. We are now collaborating with Steve Rutledge (CSU) to validate the model results for AMMA 6. MC3E and the diurnal variation of precipitation processes The Midlatitude Continental Convective Clouds Experiment (MC3E) was a joint field campaign between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the NASA Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. It took place in central Oklahoma during the period April 22 _ June 6, 2011. Some of its major objectives involve the use of CRMs in precipitation science such as: (1) testing the fidelity of CRM simulations via intensive statistical comparisons between simulated and observed cloud properties and latent heating fields for a variety of case types, (2) establishing the limits of CRM space-time integration capabilities for quantitative precipitation estimates, and (3) supporting the development and refinement of physically-based GMI, DPR, and DPR-GMI combined retrieval algorithms using ground-based GPM GV Ku-Ka band radar and CRM simulations. The NASA unified WRF model (nu-WRF) was used for real time forecasts during the field campaign, and ten precipitation events were selected for post mission simulations. These events include well-organized squall lines, scattered storms and quasi-linear storms. A paper focused on the diurnal variation of precipitation will be submitted in September 2012. The major highlights are as follows: a. The results indicate that NU-WRF model could capture observed diurnal variation of rainfall (composite not individual); b. NU-WRF model could simulate two different types (propagating and local type) of the diurnal variation of rainfall; c. NU-WRF model simulation show very good agreement with observation in terms of precipitation pattern (linear MCS), radar reflectivity (a second low peak – shallow convection); d. NU-WRF model simulation indicates that the cool-pool dynamic is the main physical process for MCS propagation speed; e. Surface heat fluxes (including land surface model and initial surface condition) do not play a major role in phase of diurnal variation (change rainfall amount slightly); f. Terrain effect is important for initial stage of MCS (rainfall is increased and close to observation by increasing the terrain height that is also close to observed); g. Diurnal variation of radiation is not important for the simulated variation of rainfall. Publications: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: A comparison of the water budgets between clouds from AMMA and TWP-ICE. J. Atmos. Sci., 70, 487-503. Powell, S. W., R. A. Houze, Jr., A. Kumar, and S. A. McFarlane, 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 2662-2681. Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li, 2011: Estimating the Ice Crystal Enhancement Factor in the Tropics. J. Atmos. Sci., 68, 1424-1434. Conferences: Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2012: Comparison of water budget between AMMA and TWP-ICE clouds. The 3rd Annual ASR Science Team Meeting. Arlington, Virginia, Mar. 12-16, 2012. Zeng, X., W.-K. Tao, S. Powell, R. A. Houze Jr., and P. Ciesielski, 2011: Comparing the water budgets between AMMA and TWP-ICE clouds. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011. Zeng, X. et al., 2011: Introducing ice nuclei into turbulence parameterizations in CRMs. Fall 2011 ASR Working Group Meeting. Annapolis, September 12-16, 2011.

  8. Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagrangian Diagnostics of Tropical Cirrus over TWP CART Sites Horvath, Akos University of Miami Soden, Brian UM/RSMAS Category: Cloud Properties Cirrus clouds associated with tropical deep convection play an important role in regulating Earth's climate by influencing the radiative and moisture budgets of the upper troposphere. In this study, we sought to better understand the evolution of such clouds using geostationary satellite observations coupled with ground-based radar and lidar

  9. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  10. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  11. Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesTropical Western Pacific TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection Visiting the Site TWP Fact Sheet Images Information for Guest Scientists Contacts Tropical Western Pacific-Inactive Manus, Papua New Guinea: 2° 3' 39.64" S, 147° 25' 31.43" E Nauru Island: 0° 31' 15.6" S, 166° 54' 57.60" E Darwin, Australia: 12° 25' 28.56" S,

  12. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  13. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  14. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L. (Los Alamos, NM)

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  15. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  16. Reactor Engineering: Experimental Investigation of Alpha Convection

    SciTech Connect (OSTI)

    Usman, Shoaib

    2012-10-12

    Natural convection, Rayleigh-Bernard convection, Transient convection and Conduction convection transition.

  17. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  18. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  19. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwins coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

  20. CONVECTION REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  1. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  2. Convective heater

    DOE Patents [OSTI]

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  3. Convective heater

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA)

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  4. Convective heater

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA)

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  5. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  6. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  7. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  8. ARM - PI Product - Convective Available Potential Energy (CAPE), Convective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inhibition (CIN) Product Products Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties. Data Details

  9. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  10. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  11. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    SciTech Connect (OSTI)

    Jensen, Michael

    2014-04-10

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  12. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect (OSTI)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W20E; 10N20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  13. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  14. ARM - Measurement - Convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsConvection ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Convection Vertical motion within the atmosphere due to thermal instability, with important impacts on the type cloud systems that can develop. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  15. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  16. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Hft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.moreThe same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.less

  17. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  18. Parameterizing deep convection using the assumed probability density function method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Storer, R. L.; Griffin, B. M.; Höft, J.; Weber, J. K.; Raut, E.; Larson, V. E.; Wang, M.; Rasch, P. J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  19. Arctic Stratus and Tropical Deep Convection. Integrating Measurements...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  20. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  1. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocity-Independent Electron Transport in the Reversed Field Pinch R. O'Connell, * D. J. Den Hartog, C. B. Forest, J. K. Anderson, T. M. Biewer, † B. E. Chapman, D. Craig, G. Fiksel, S. C. Prager, J. S. Sarff, and S. D. Terry ‡ Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA R.W. Harvey CompX, San Diego, California, USA (Received 16 December 2002; published 24 July 2003) Confinement of runaway electrons has been observed for the first time in a reversed

  2. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  3. Natural convection airflow and heat transport in buildings: experimental results

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.

    1985-01-01

    Observations of natural convection airflow in passive solar buildings are described. Particular results are given for two buildings supplementing other data already published. A number of generalizations based on the monitoring of the 15 buildings are presented. It is concluded that energy can be reasonably well distributed throughout a building by natural convection provided suitable openings are present and that the direction of heat transport is either horizontally across or upward.

  4. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  5. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, James C. (Albuquerque, NM); Hardee, Harry C. (Albuquerque, NM); Striker, Richard P. (Albuquerque, NM)

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  6. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  7. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  8. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  9. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  10. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  11. Natural convection airflow measurement and theory

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

    1984-01-01

    Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

  12. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  13. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  14. Ocean Barrier Layers Effect on Tropical Cyclone Intensification

    SciTech Connect (OSTI)

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  15. Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-00-005 RPT(TWP)-010.006 LA-UR-004434 Tropical Western Pacific Site Science Mission Plan July - December 2000 Prepared for the U.S. Department of Energy under Contract W-7405-ENG-36 Tropical Western Pacific Project Office Atmospheric and Climate Sciences Group (EES-8) Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 This report and previous versions are available electronically at the following web sites:

  16. NATURAL CONVECTION IN ROOM GEOMETRIES

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, Fred; Kammerud, R.; Ruberg, K.

    1980-06-01

    Computer programs have been developed to numerically simulate natural convection in room geometries in two and three dimensions. The programs have been validated using published data from the literature, results from a full-scale experiment performed at Massachusetts Institute of Technology, and results from a small-scale experiment reported here. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single thermal zone in a direct-gain passive solar building. The results indicate that the building heating loads calculated by standard building energy analysis methods may be in error by as much as 50% as a result of their use of common assumptions regarding the convection processes which occur in an enclosure. It is also found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface.

  17. Improving Convective Parameterization Using ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convective Parameterization Using ARM Data G. J. Zhang Center for Atmospheric Sciences Scripps Institution of Oceanography La Jolla, California Introduction Convective parameterization is one of the most challenging issues in global climate models (GCMs). Convection, as represented by convective parameterization schemes in GCMs, is controlled by the large- scale dynamic and thermodynamic fields through a closure condition. Such a closure condition is typically determined empirically by

  18. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earths energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical parameterizations that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

  19. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect (OSTI)

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (?) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a ? of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing ? to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  20. AMIE (ARM MJO Investigation Experiment): Observations of the Madden-Julian Oscillation for Modeling Studies Science Plan

    SciTech Connect (OSTI)

    Long, C; Del Genio, A; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Klein, S; Leung, L Ruby; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Wu, X; Xie, S

    2010-03-22

    Deep convection in the tropics plays an important role in driving global circulations and the transport of energy from the tropics to the mid-latitudes. Understanding the mechanisms that control tropical convection is a key to improving climate modeling simulations of the global energy balance. One of the dominant sources of tropical convective variability is the Madden-Julian Oscillation (MJO), which has a period of approximately 3060 days. There is no agreed-upon explanation for the underlying physics that maintain the MJO. Many climate models do not show well-defined MJO signals, and those that do have problems accurately simulating the amplitude, propagation speed, and/or seasonality of the MJO signal. Therefore, the MJO is a very important modeling target for the ARM modeling community geared specifically toward improving climate models. The ARM MJO Investigation Experiment (AMIE) period coincides with a large international MJO initiation field campaign called CINDY2011 (Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011) that will take place in and around the Indian Ocean from October 2011 to January 2012. AMIE, in conjunction with CINDY2011 efforts, will provide an unprecedented data set that will allow investigation of the evolution of convection within the framework of the MJO. AMIE observations will also complement the long-term MJO statistics produced using ARM Manus data and will allow testing of several of the current hypotheses related to the MJO phenomenon. Taking advantage of the expected deployment of a C-POL scanning precipitation radar and an ECOR surface flux tower at the ARM Manus site, we propose to increase the number of sonde launches to eight per day starting in about mid-October of the field experiment year, which is climatologically a period of generally suppressed conditions at Manus and just prior to the climatologically strongest MJO period. The field experiment will last until the end of the MJO season (typically March), affording the documentation of conditions before, during, and after the peak MJO season. The increased frequency of sonde launches throughout the experimental period will provide better diurnal understanding of the thermodynamic profiles, and thus a better representation within the variational analysis data set. Finally, a small surface radiation and ceilometer system will be deployed at the PNG Lombrum Naval Base about 6 km away from the ARM Manus site in order to provide some documentation of scale variability with respect to the representativeness of the ARM measurements.

  1. ARM - Evaluation Product - Convective Vertical Velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsConvective Vertical Velocity ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these

  2. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  3. Atmospheric Radiation Measurement Convective and Orographically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM ...

  4. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  5. Midlatitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-10

    The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrations (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available.

  6. Aerosol Radiative Effects in the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects in the Tropical Western Pacific A. M. Vogelmann Center for Atmospheric Sciences Scripps Institution of Oceanography University of California San Diego, California Introduction Atmospheric Radiation Measurement (ARM) Program observations are used to quantify the aerosol radiative effects in the climatically important Tropical Western Pacific (TWP). This quantification addresses two primary ARM objectives by (1) ascertaining the existing variability of the radiative forcing and its

  7. ARM - Kiosks - Tropical Wester Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Wester Pacific Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Kiosks - Tropical Wester Pacific A Manus High School teacher is interviewed for the TWP kiosks. A Manus High School teacher is interviewed for the TWP kiosks. In July 2003, ARM Education and Outreach set out to develop

  8. Tropical Western Pacific CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific (TWP) CART site, along the equator in the western Pacific Ocean. ... The two current island-based ARM Facilities Newsletter is published by Argonne National ...

  9. Transient Response of a Natural Convection System

    SciTech Connect (OSTI)

    Mohammad, B. S.; Usman, S.; Shoaib, L.; Abdallah, S.

    2006-07-01

    Transient response of a natural convection system is investigated by numerical simulation using FLUENT code. An Integrator Circuit analogy was recently proposed for natural convection system. The proposed analogy was further confirmed by these recent simulations. New simulation results also suggest that a natural convection system acts as a 'Low Pass' filter for transients. Transmission/attenuation characteristics of natural convection system were investigated using a sinusoidal temperature at the source side boundary. Transient transmission/ attenuation factor was found to be a function of both fluid properties and the flow characteristics. Transmission/attenuation factor was also found to be a strong function of fluctuation frequency. These results may prove a significant design tool for Gen IV natural convection system particularly for LFR. (authors)

  10. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma

    SciTech Connect (OSTI)

    Grierson, B. A.; Mauel, M. E.; Worstell, M. W.; Klassen, M.

    2010-11-12

    Convective structures characterized by ExB motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  11. ARM - Field Campaign - ARM Support for the Plains Elevated Convection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Support for the Plains Elevated Convection at Night Experiment: Doppler Lidar Operations Related Campaigns ARM Support for the Plains Elevated Convection at Night...

  12. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  13. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect (OSTI)

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  14. EVIDENCE FOR CONVECTION IN SUNSPOT PENUMBRAE

    SciTech Connect (OSTI)

    Bharti, L.; Solanki, S. K.; Hirzberger, J.

    2010-10-20

    We present an analysis of twisting motions in penumbral filaments in sunspots located at heliocentric angles from 30{sup 0} to 48{sup 0} using three time series of blue continuum images obtained by the Broadband Filter Imager (BFI) on board Hinode. The relations of the twisting motions to the filament brightness and the position within the filament and within the penumbra, respectively, are investigated. Only certain portions of the filaments show twisting motions. In a statistical sense, the part of the twisting portion of a filament located closest to the umbra is brightest and possesses the fastest twisting motion, with a mean twisting velocity of 2.1 km s{sup -1}. The middle and outer sections of the twisting portion of the filament (lying increasingly further from the umbra), which are less bright, have mean velocities of 1.7 km s{sup -1} and 1.35 km s{sup -1}, respectively. The observed reduction of brightness and twisting velocity toward the outer section of the filaments may be due to reducing upflow along the filament's long axis. No significant variation of twisting velocity as a function of viewing angles was found. The obtained correlation of brightness and velocity suggests that overturning convection causes the twisting motions observed in penumbral filament and may be the source of the energy needed to maintain the brightness of the filaments.

  15. Advection, Moistening, and Shallow-to-deep Convection Transitions During the Initiation and Propagation of Madden-Julian Oscillation

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Landu, Kiranmayi; Long, Charles N.

    2014-09-11

    Using observations from the 2011 AMIE/DYNAMO field campaign over the Indian Ocean and a high-resolution regional model simulation, the processes that lead to the rapid shallow-to-deep convection transitions associated with the initiation and eastward propagation of the Madden-Julian Oscillation (MJO) are examined. By tracking the evolution of the depth of several thousand individual model simulated precipitation features, the role of and the processes that control the observed midtropospheric moisture buildup ahead of the detection of deep convection are quantified at large and convection scales. The frequency of shallow-to-deep convection transitions is found to be sensitive to this midlevel moisture and large-scale uplift. This uplift along with the decline of large-scale drying by equator-ward advection causes the moisture buildup leading to the initiation of the MJO. Convection scale moisture variability and uplift, and large-scale zonal advection play secondary roles.

  16. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  17. Transient Mixed Convection Validation for NGNP

    SciTech Connect (OSTI)

    Smith, Barton; Schultz, Richard

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  18. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  19. Convective Cooling and Passive Stack Improvements in Motors (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-06-01

    This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

  20. UPDATE: Tropical Storm Isaac | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UPDATE: Tropical Storm Isaac UPDATE: Tropical Storm Isaac August 27, 2012 - 6:30pm Addthis Satellite image of Tropical Storm Isaac. | Courtesy of NOAA. Satellite image of Tropical Storm Isaac. | Courtesy of NOAA. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Tropical Storm Isaac has impacted Florida and is expected to make landfall along the Gulf Coast by early morning on August 29. As thousands of Gulf Coast residents are without power, the Energy

  1. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    SciTech Connect (OSTI)

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4? geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 1.48 10{sup 13} M {sub ?} s{sup 1}.

  2. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, M; Giangrande, S; Kollias, P

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administrations (NASAs) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  3. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael; Kollias, Pavlos; Giangrande, Scott

    2014-04-01

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  4. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect (OSTI)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  5. Low enthalpy convective system in Western Ohio

    SciTech Connect (OSTI)

    Cannon, M.S.; Tabet, C.A.; Eckstein, Y.

    1980-01-01

    A distinct positive anomaly in the temperatures of the shallow (Pleistocene) aquifers along the Cincinnati-Findlay Arch in Western Ohio coincides with a low geothermal gradient. A conceptual model of convective currents associated with a tensional fault and/or fracture system along the crest of the Arch is suggested as an explanation of the anomaly. Hydrochemical information indicates that various quantities of warmer ground water, with the composition characteristics of deep bedrock aquifers, is present as an admixture in the shallow aquifers. This confirms the conceptual model of convection in fractures.

  6. Tropical cyclone motion and recurvature in TCM-90. Master's thesis

    SciTech Connect (OSTI)

    Fitzpatrick, M.E.

    1992-01-01

    Rawinsonde and satellite data collected during the Tropical Cyclone Motion (TCM90) experiment, which was conducted during the summer of 1990 in the Western North pacific, is used to examine tropical cyclone steering motion and recurvature. TCM-90 composite results are compared with those found in a composite study using twenty-one years (1957-77) of Western North Pacific rawinsonde data during the same August-September period and also for all months during this same 21-year period. Both data sets indicate that the composite deep-layer-mean (850-300 mb) winds 5-7 deg from the cyclone center provide an important component of the steering flow for tropical cyclones. However, despite the rawinsonde data enhancements of the TCM-90 experiment, data limitations prevented an accurate observation of steering flow conditions at individual time periods or for the average of only 5-10 time periods when composited together.

  7. Convectively driven PCR thermal-cycling

    DOE Patents [OSTI]

    Benett, William J.; Richards, James B.; Milanovich, Fred P.

    2003-07-01

    A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.

  8. ARM - Lesson Plans: Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Tropical Western Pacific These lesson plans were developed using the two volumes of Climate Change and Sea Level from the curriculum development project for the Tropical Western Pacific schools in Nauru,

  9. Water Vapor Turbulence Profiles in Stationary Continental Convective Mixed Layers

    SciTech Connect (OSTI)

    Turner, D. D.; Wulfmeyer, Volker; Berg, Larry K.; Schween, Jan

    2014-10-08

    The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program’s Raman lidar at the ARM Southern Great Plains (SGP) site in north-central Oklahoma has collected water vapor mixing ratio (q) profile data more than 90% of the time since October 2004. Three hundred (300) cases were identified where the convective boundary layer was quasi-stationary and well-mixed for a 2-hour period, and q mean, variance, third order moment, and skewness profiles were derived from the 10-s, 75-m resolution data. These cases span the entire calendar year, and demonstrate that the q variance profiles at the mixed layer (ML) top changes seasonally, but is more related to the gradient of q across the interfacial layer. The q variance at the top of the ML shows only weak correlations (r < 0.3) with sensible heat flux, Deardorff convective velocity scale, and turbulence kinetic energy measured at the surface. The median q skewness profile is most negative at 0.85 zi, zero at approximately zi, and positive above zi, where zi is the depth of the convective ML. The spread in the q skewness profiles is smallest between 0.95 zi and zi. The q skewness at altitudes between 0.6 zi and 1.2 zi is correlated with the magnitude of the q variance at zi, with increasingly negative values of skewness observed lower down in the ML as the variance at zi increases, suggesting that in cases with larger variance at zi there is deeper penetration of the warm, dry free tropospheric air into the ML.

  10. Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition G. J. Zhang Center for Atmospheric Sciences Scripps Institution of Oceanography La Jolla, California Introduction Atmospheric convection undergoes strong diurnal variation over both land and oceans (Gray and Jacobson 1977; Dai 2001; Nesbitt and Zipser 2003). Because of the nature of the diurnal variation of solar radiation, the phasing of convection with solar radiation has a

  11. CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION

    SciTech Connect (OSTI)

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    2013-11-10

    Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longer could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.

  12. The Phenix ultimate natural convection test

    SciTech Connect (OSTI)

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all participants of this CRP in order to perform calculations (core, primary circuit, primary pumps, IHX, shutdown system, operating parameters, test scenario and real test conditions). Finally, main test results and analyses are presented including the evolution of the core and of the heat exchangers inlet and outlet temperatures, and some local temperature measurements. The natural convection has been easily set up in the pool type reactor Phenix with different boundary conditions at the secondary side, with or without heat sink. The data obtained during this unique test represent some very useful and precious results for the development of SFR in a wide range of thematic such as numerical methods dedicated to thermal-hydraulics safety analyses (system codes, CFD codes and coupling system and CFD codes) and instrumentation. (authors)

  13. Operating temperatures for a convectively cooled recessed incandescent light fixture

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.

    1980-12-01

    Test results are given for the operation of a recessed incandescent light fixture intended for residential use. The fixture is labeled for use in direct contact with attic thermal insulation. Temperature control of the powered fixture is provided by convective heat transfer from the ceiling side of the fixture. The fixture was operated at power levels up to two times the rated power of 75 watts and under thermal insulations up to R-40. In all operating configurations tested the fixture surface in contact with attic insulation was found to be less than 175/sup 0/C. The observed surface temperatures are judged to be safe for operation in contact with loose-fill or batt-type insulations. It was observed that the power leads inside one fixture configuration are exposed to temperatures as high as 168/sup 0/C. The electrical insulation could, therefore, have a limited life. The properties of the internal fixture wiring were not, however, studied in detail.

  14. Convection causes enhanced magnetic turbulence in accretion disks in outburst

    SciTech Connect (OSTI)

    Hirose, Shigenobu; Blaes, Omer; Coleman, Matthew S. B.; Krolik, Julian H.; Sano, Takayoshi

    2014-05-20

    We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio ?, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the ?-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.

  15. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  16. Tropical anvil cirrus evolution from observations and numerical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 hours. Their cloud properties such as IWC and particle size decrease with the cirrus ages. While the mean ambient air motion changes very subtle after 6 hours old. Most...

  17. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  18. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  19. Ecotoxicology of tropical marine ecosystems

    SciTech Connect (OSTI)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  20. STOIC: An Assessment of Coupled Model Climatology and Variability in Tropical Ocean Regions

    SciTech Connect (OSTI)

    Davey, M.K.; Sperber, K.R.; Huddleston, M

    2000-08-30

    The tropics are regions of strong ocean-atmosphere interaction on seasonal and interannual timescales, so a good representation of observed tropical behavior is a desirable objective for coupled ocean-atmosphere general circulation models (CGCMs). To broaden and update previous assessments (Mechoso et al. 1995, Neelin et al. 1992), two complementary projects were initiated by the CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP): the El Nino Simulation Intercomparison Project (ENSIP, by Mojib Latif) and STOIC (Study of Tropical Oceans In Coupled models). The aim was to compare models against observations to identify common weaknesses and strengths. Results from ENSIP concentrating on the equatorial Pacific have been described by Latif et al. (2000), hereafter ENSIP2000. A detailed report on STOIC is available via anonymous ftp at email.meto.gov.uk/pub/cr/ ''stoic'' and is summarized in Davey et al. (2000). The STOIC analyses extend beyond the equatorial Pacific, to examine behavior in all three tropical ocean regions.

  1. Interactions between cumulus convection and its environment as revealed by

    Office of Scientific and Technical Information (OSTI)

    the MC3E sounding array (Journal Article) | SciTech Connect Journal Article: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array Citation Details In-Document Search Title: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data

  2. CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION Citation Details In-Document Search Title: CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a

  3. ARM - Publications: Science Team Meeting Documents: Tropical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC One of...

  4. Tropical Forest Foundation | Open Energy Information

    Open Energy Info (EERE)

    Virginia. About "The Tropical Forest Foundation (TFF) is an international, non-profit, educational institution committed to advancing environmental stewardship, economic...

  5. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  6. Interactions between cumulus convection and its environment as...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Interactions between cumulus convection and its environment as revealed by the MC3E sounding array Citation Details In-Document Search Title: Interactions between ...

  7. TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS...

    Office of Scientific and Technical Information (OSTI)

    show that the rate of turbulent dissipation is comparable to the convective luminosity. ... LARGE-EDDY SIMULATION; LAYERS; LUMINOSITY; MEAN-FIELD THEORY; MIXING; ...

  8. Making Sense of Convective Updrafts: Mass Flux and Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model simulations contain a variety of complex dynamical structures that often do not map directly to the structural elements of convective parameterization. An example is...

  9. Using Cloud-Resolving Model Simulations of Deep Convection to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    so extending them to a global model with many different environments is not straightforward. For example, deep convection creates abundant cloudiness and yet little is known...

  10. The Role of the Tropics in Abrupt Climate Changes

    SciTech Connect (OSTI)

    Fedorov, Alexey

    2013-12-07

    Topics addressed include: abrupt climate changes and ocean circulation in the tropics; what controls the ocean thermal structure in the tropics; a permanent El Niño in paleoclimates; the energetics of the tropical ocean.

  11. A tropical influence on global climate

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1997-05-15

    A potential influence of tropical sea surface temperature on the global climate response to a doubling of the CO{sub 2} concentration is tested using an atmospheric general circulation model coupled to a slab mixed layer ocean. The warming is significantly reduced when sea surface temperatures in the eastern equatorial Pacific cold tongue region between latitudes 2.25{degrees}N and 2.25{degrees}S are held at the control simulation values. Warming of the global mean temperature outside of the cold tongue region is reduced from 2.4{degrees}C in the unconstrained case to 1.9{degrees}C when the sea surface temperature constraint is applied. The decrease in the warming results from a positive net heat flux into the ocean cold tongue region and implicit heat storage in the subsurface ocean, induced by horizontal atmospheric heat fluxes. The reduced surface temperature warming outside of the cold tongue region is due to reduction in the downward longwave radiative flux at the surface, caused in turn by reduced atmospheric temperature and moisture. The global mean surface temperature responds to the heat storage in the ocean as if the global mean radiative forcing due to the doubled CO{sub 2} (approximately 4 W m{sup {minus}2}) was reduced by the value of the global mean heat flux into the ocean. This mechanism also provides a possible explanation for the observed high correlation on interannual timescales between the global mean tropospheric temperature and sea surface temperature in the eastern tropical Pacific. The results emphasize the importance of correctly modeling the dynamical processes in the ocean and atmosphere that help determine the sea surface temperature in the equatorial eastern Pacific, in addition to the thermodynamical processes, in projecting global warming. 23 refs., 8 figs.

  12. Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Lunty Tropical Fish Aquaculture Low Temperature Geothermal Facility Facility...

  13. International Crops Research Institute for the Semi Arid Tropics...

    Open Energy Info (EERE)

    Crops Research Institute for the Semi Arid Tropics Jump to: navigation, search Name: International Crops Research Institute for the Semi-Arid Tropics Place: India Sector: Biofuels...

  14. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

  15. The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows

    SciTech Connect (OSTI)

    Lord, J. W.; Rast, M. P.; Cameron, R. H.; Rempel, M.; Roudier, T.

    2014-09-20

    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained through the bulk of the solar convection zone.

  16. Characterizing the convective velocity fields in massive stars

    SciTech Connect (OSTI)

    Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M.

    2014-11-01

    We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub ☉} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.

  17. Plains Elevated Convection at Night (PECAN) Experiment Science Plan

    SciTech Connect (OSTI)

    Turner, D; Parsons, D; Geerts, B

    2015-03-01

    The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fraction of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.

  18. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    SciTech Connect (OSTI)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapid intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.

  19. The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Wenyu

    2015-11-19

    Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χb, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χm, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χm not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less

  20. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube

    SciTech Connect (OSTI)

    Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-10-15

    In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

  1. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    SciTech Connect (OSTI)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance activity. This will allow (i) a direct comparison of future TC activity that could be expected for an active or inactive season in an altered climate regime, and (ii) a measure of the level of uncertainty and variability in TC activity resulting from different carbon emission scenarios.

  2. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; Mirin, Arthur A.; Romano, Raquel

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  3. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  4. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

    SciTech Connect (OSTI)

    Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

    2013-10-04

    This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

  5. NATURAL CONVECTION IN PASSIVE SOLAR BUILDINGS: EXPERIMENTS, ANALYSIS AND RESULTS

    SciTech Connect (OSTI)

    Gadgil, A.; Bauman, F.; Kammerud, R.

    1981-04-01

    Computer programs have been developed to numerically simulate natural convection in two- and three-dimensional room geometries. The programs have been validated using published data from the literature, results from a full-scale experiment performed at the Massachusetts Institute of Technology, and results from a small-scale experiment performed at LBL. One of the computer programs has been used to study the influence of natural convection on the thermal performance of a single zone in a direct-gain passive solar building. It is found that the convective heat transfer coefficients between the air and the enclosure surfaces can be substantially different from the values assumed in the standard building energy analysis methods, and can exhibit significant variations across a given surface. This study implies that the building heating loads calculated by standard building energy analysis methods may have substantial errors as a result of their use of common assumptions regarding the convection processes which occur in an enclosure.

  6. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  7. Radiative Energy Balance in the Tropical Tropopause Layer: An Investigation with ARM Data

    SciTech Connect (OSTI)

    Fu, Qiang

    2013-10-22

    The overall objective of this project is to use the ARM observational data to improve our understanding of cloud-radiation effects in the tropical tropopause layer (TTL), which is crucial for improving the simulation and prediction of climate and climate change. In last four and half years, we have been concentrating on (i) performing the comparison of the ice cloud properties from the ground-based lidar observations with those from the satellite CALIPSO lidar observations at the ARM TWP sites; (ii) analyzing TTL cirrus and its relation to the tropical planetary waves; (iii) calculating the radiative heating rates using retrieved cloud microphysical properties by combining the ground-based lidar and radar observations at the ARM TWP sites and comparing the results with those using cloud properties retrieved from CloudSat and CALIPSO observations; (iv) comparing macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidar observations; (v) improving the parameterization of optical properties of cirrus clouds with small effective ice particle sizes; and (vi) evaluating the enhanced maximum warming in the tropical upper troposphere simulated by the GCMs. The main results of our research efforts are reported in the 12 referred journal publications that acknowledge the DOE Grant No. DE-FG02-09ER64769.

  8. Convection feedbacks in a super-parameterization GCM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convection feedbacks in a super-parameterization GCM Luo, Zhengzhao (Johnny) Colorado State University Stephens, Graeme Colorado State University Category: Modeling Both the Colorado State University (CSU) and Goddard super-parameterization GCM (SP-GCM) simulate a super-active Asian summer monsoon with unrealistically enhanced levels of precipitation. The underlying physical mechanism for this monsoon bias in the CSU SP-GCM is shown to involve enhanced convection-wind-evaporation feedbacks. The

  9. Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models Citation Details In-Document Search Title: Simple Analysis of Flame Dynamics via Flexible Convected Disturbance Models Authors: Ranalli, Joseph A. ; Ferguson, Donald ; Martin, Christopher Publication Date: 2012-11-01 OSTI Identifier: 1160232 Report Number(s): A-NETL-PUB-020 Journal ID: ISSN 0748-4658 Resource Type: Journal Article Resource Relation: Journal Name:

  10. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect (OSTI)

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  11. Tropical BioEnergia SA | Open Energy Information

    Open Energy Info (EERE)

    BioEnergia SA Jump to: navigation, search Name: Tropical BioEnergia SA Place: Edeia, Goias, Brazil Product: Tropical BioEnergia SA is a joint venture which will build and operate...

  12. Benefits of Tropical Forest Management Under the New Climate...

    Open Energy Info (EERE)

    of Tropical Forest Management Under the New Climate Change Agreement-A Case Study in Cambodia Jump to: navigation, search Name Benefits of Tropical Forest Management Under the New...

  13. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-06

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  14. ARM - Midlatitude Continental Convective Clouds (comstock-hvps)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  15. A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux

    SciTech Connect (OSTI)

    Fan, Yuhong; Fang, Fang

    2014-07-01

    We report the results of a magnetohydrodynamic (MHD) simulation of a convective dynamo in a model solar convective envelope driven by the solar radiative diffusive heat flux. The convective dynamo produces a large-scale mean magnetic field that exhibits irregular cyclic behavior with oscillation time scales ranging from about 5 to 15 yr and undergoes irregular polarity reversals. The mean axisymmetric toroidal magnetic field is of opposite signs in the two hemispheres and is concentrated at the bottom of the convection zone. The presence of the magnetic fields is found to play an important role in the self-consistent maintenance of a solar-like differential rotation in the convective dynamo model. Without the magnetic fields, the convective flows drive a differential rotation with a faster rotating polar region. In the midst of magneto-convection, we found the emergence of strong super-equipartition flux bundles at the surface, exhibiting properties that are similar to emerging solar active regions.

  16. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  17. Climate Science: Tropical Expansion by Ocean Swing

    SciTech Connect (OSTI)

    Lu, Jian

    2014-04-01

    The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.

  18. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, B.A.; Siminovitch, M.

    1997-07-29

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

  19. ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS

    SciTech Connect (OSTI)

    Miyagoshi, Takehiro; Tachinami, Chihiro; Kameyama, Masanori; Ogawa, Masaki E-mail: ctchnm.geo@gmail.com E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp

    2014-01-01

    Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths tentimes the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.

  20. Convection venting lensed reflector-type compact fluorescent lamp system

    DOE Patents [OSTI]

    Pelton, Bruce A. (825 Manor Rd., El Sobrante, CA 94803); Siminovitch, Michael (829 Manor Rd., El Sobrante, CA 94803)

    1997-01-01

    Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

  1. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE...

    Office of Scientific and Technical Information (OSTI)

    the convective luminosity and turbulent dissipation scale with the driving neutrino power. ... INSTABILITY; KINETIC ENERGY; LUMINOSITY; NEUTRINOS; SCALING; SHOCK WAVES; ...

  2. Two-phase convective CO2 dissolution in saline aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  3. MAGNETIC ENERGY CASCADE IN SPHERICAL GEOMETRY. I. THE STELLAR CONVECTIVE DYNAMO CASE

    SciTech Connect (OSTI)

    Strugarek, A.; Brun, A. S.; Mathis, S.

    2013-02-20

    We present a method to characterize the spectral transfers of magnetic energy between scales in simulations of stellar convective dynamos. The full triadic transfer functions are computed thanks to analytical coupling relations of spherical harmonics based on the Clebsch-Gordan coefficients. The method is applied to mean field {alpha}{Omega} dynamo models as benchmark tests. From a physical standpoint, the decomposition of the dynamo field into primary and secondary dynamo families proves very instructive in the {alpha}{Omega} case. The same method is then applied to a fully turbulent dynamo in a solar convection zone, modeled with the three-dimensional MHD Anelastic Spherical Harmonics code. The initial growth of the magnetic energy spectrum is shown to be non-local. It mainly reproduces the kinetic energy spectrum of convection at intermediate scales. During the saturation phase, two kinds of direct magnetic energy cascades are observed in regions encompassing the smallest scales involved in the simulation. The first cascade is obtained through the shearing of the magnetic field by the large-scale differential rotation that effectively cascades magnetic energy. The second is a generalized cascade that involves a range of local magnetic and velocity scales. Non-local transfers appear to be significant, such that the net transfers cannot be reduced to the dynamics of a small set of modes. The saturation of the large-scale axisymmetric dipole and quadrupole is detailed. In particular, the dipole is saturated by a non-local interaction involving the most energetic scale of the magnetic energy spectrum, which points to the importance of the magnetic Prandtl number for large-scale dynamos.

  4. Influence of geometry on natural convection in buildings

    SciTech Connect (OSTI)

    White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.

    1985-01-01

    Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.

  5. Numerical study of thermoacoustic convection in a cavity

    SciTech Connect (OSTI)

    Fusegi, Toru; Farouk, B.; Oran, E.S.

    1995-12-31

    Thermoacoustic convection in a two-dimensional cavity is numerically studied. Part of a compressible fluid (Helium) near the center line of the cavity is suddenly energized to generate pressure waves. Numerical solutions are secured by employing a highly accurate explicit method termed LCPFCT algorithm for the convection terms of the full Navier-Stokes equations. Thermoacoustic waves, which decay in large time due to the viscosity of fluid, are of the oscillatory nature. Much higher heat transfer rate can be achieved in an initial stage of transient processes, compared to that due to conduction. When a partial length of the cavity center line is heated, resulting thermoacoustic waves exhibit remarkable two-dimensional patterns.

  6. FULLY CONVECTIVE MAGNETOROTATIONAL TURBULENCE IN STRATIFIED SHEARING BOXES

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2013-07-10

    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero magnetic flux. We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. We choose radiative boundary conditions at the vertical boundaries in which the heat flux is proportional to the fourth power of the temperature. We compare the results with the corresponding cases in which fixed temperature boundary conditions are applied. The most notable result is that the formation of a fully convective state in which the density is nearly constant as a function of height and the heat is transported to the upper and lower boundaries by overturning motions is robust and persists even in cases with radiative boundary conditions. Interestingly, in the convective regime, although the diffusive transport is negligible, the mean stratification does not relax to an adiabatic state.

  7. ARM - Field Campaign - COPS - Initiation of Convection and the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties of Clouds in Orographic Terrain govCampaignsCOPS - Initiation of Convection and the Microphysical Properties of Clouds in Orographic Terrain Campaign Links AMF Black Forest Deployment Related Campaigns COPS - AOS Intercomparison 2007.08.09, Jefferson, AMF COPS - ADMIRARI at Black Forest 2007.07.30, Battaglia, AMF COPS - University of Cologne Micromet Station 2007.07.23, Schween, AMF COPS - Cloud Microwave Validation Experiment in Support of CLOWD 2007.06.22,

  8. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Midlatitude Continental Convective Clouds Experiment (MC3E) Thanks

  9. Differences Between Tropical and Trade-Wind Shallow Cumuli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  10. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  11. Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal...

    Open Energy Info (EERE)

    Clarence Strait Tidal Energy Project, Tenax Energy Tropical Tidal Test Centre, Jump to: navigation, search 1 Retrieved from "http:en.openei.orgwindex.php?titleClarenceStrai...

  12. The impact of vertical shear on the sensitivity of tropical cyclogenes...

    Office of Scientific and Technical Information (OSTI)

    The impact of vertical shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state: TROPICAL CYCLOGENESIS AND SHEAR Citation Details ...

  13. ARM - Field Campaign - Co-ordinated Airborne Studies in the Tropics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and very low ozone concentrations in the tropical warm pool region permit short-lived halogenated compounds to be transported from the surface to the tropical tropopause layer,...

  14. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    SciTech Connect (OSTI)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jorgen

    2012-11-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  15. Comparisons Of Two- And Three-Dimensional Convection In Type I X-Ray Bursts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zingale, M.; Malone, C. M.; Nonaka, A.; Almgren, A. S.; Bell, J. B.

    2015-07-01

    We perform the first detailed three-dimensional simulation of low Mach number convection preceding runaway thermonuclear ignition in a mixed H/He X-ray burst. Our simulations include a moderate-sized, approximate network that captures hydrogen and helium burning up through rp-process breakout. We look at the difference between two- and three-dimensional convective fields, including the details of the turbulent convection.

  16. ARM - Midlatitude Continental Convective Clouds (jensen-sonde)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Comstock, Jennifer; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment.

  17. Hydra-TH Extensions for Multispecies and Thermosolutal Convection

    SciTech Connect (OSTI)

    Stagg, Alan K

    2015-09-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved for the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.

  18. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  19. The Energy Department Prepares for Tropical Storm Karen | Department of

    Energy Savers [EERE]

    Energy The Energy Department Prepares for Tropical Storm Karen The Energy Department Prepares for Tropical Storm Karen October 4, 2013 - 3:00pm Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications What does this mean for me? Follow the latest news on Tropical Storm Karen by visiting the FEMA blog. Stay up-to-date on energy delivery impacts by reading twice-daily situation reports from the Energy Department. Visit ready.gov for more information about

  20. ARM - Lesson Plans: Observing Wind Speed and Cloudiness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Wind Speed and Cloudiness Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Observing Wind Speed and Cloudiness Objective The objective is to demonstrate students' skills in observing the atmosphere, specifically in terms of wind speed and cloudiness. Materials Each

  1. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    SciTech Connect (OSTI)

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  2. ARM - Field Campaign - Tropical Warm Pool - International Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you...

  3. The structure and dynamics of patterns of Benard convection cells

    SciTech Connect (OSTI)

    Rivier, N. Imperial Coll. of Science and Technology, London . Blackett Lab. Lausanne Univ. . Inst. de Physique Experimentale)

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs.

  4. ARM - Publications: Science Team Meeting Documents: Tropical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of what the observed structures of clouds are and how they affect the radiative fields. Towards this goal, we analyze ARM observations of the vertical overlap characteristics of...

  5. ARM - PI Product - Tropical Cloud Properties and Radiative Heating Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsTropical Cloud Properties and Radiative Heating Profiles ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al.,

  6. ARM - Midlatitude Continental Convective Clouds Microwave Radiometer Profiler (jensen-mwr)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike

    2012-02-01

    A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  7. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  8. Energy-related pollution of semi-tropical and tropical nearshore ecosystems. Annual report, 1981-1982

    SciTech Connect (OSTI)

    Thorhaug, A.; Marcus, J.H.

    1982-01-01

    The major components of the nearshore marine ecosystems in the subtropics and tropics (seagrasses, mangroves, and corals) are examined and compound sublethal and lethal effects from extremes in some energy-related effects (temperature, salinity and light) are discussed.

  9. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  10. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  11. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  12. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; Jensen, Michael P.; McCoy, Renata; Zhang, Minghua

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  13. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    SciTech Connect (OSTI)

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; Jensen, Michael P.; McCoy, Renata; Zhang, Minghua

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during the morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.

  14. TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND

    Office of Scientific and Technical Information (OSTI)

    STRATIFICATION EFFECTS (Journal Article) | SciTech Connect TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND STRATIFICATION EFFECTS Citation Details In-Document Search Title: TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND STRATIFICATION EFFECTS We present three-dimensional implicit large eddy simulations of the turbulent convection in the envelope of a 5 M{sub Sun} red giant star and in the oxygen-burning shell of a 23 M{sub Sun} supernova

  15. Amazon Column CO2 and CO Observations to Elucidate Tropical Ecosystem...

    Office of Scientific and Technical Information (OSTI)

    A 7 ; Basu, S 7 + Show Author Affiliations Los Alamos National Laboratory Caltech Harvard NASA-JPL University of Michigan CSU NOAA-ESRL Stanford Publication Date: 2016-01-25 ...

  16. Radial convection of finite ion temperature, high amplitude plasma blobs

    SciTech Connect (OSTI)

    Wiesenberger, M. Kendl, A.; Madsen, J.

    2014-09-15

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  17. Convection in X-ray Bursts Michael Zingale Stony Brook University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Stony Brook, and NSF award AST-1211563. Computer time: National Energy Research Scientific Computing Center (Office of Science, DOE DE-AC02-05CH11231) Convection...

  18. Characteristics of tropical cyclones in high-resolution models in the present climate

    SciTech Connect (OSTI)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; Lim, Young -Kwon; Reed, Kevin A.; Roberts, Malcolm J.; Scoccimarro, Enrico; Vidale, Pier Luigi; Wang, Hui; Zhao, Ming; Henderson, Naomi

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  19. Characteristics of tropical cyclones in high-resolution models in the present climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young -Kwon; Murakami, Hiroyuki; Reed, Kevin A.; et al

    2014-12-05

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TCmore » frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.« less

  20. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE Citation Details In-Document Search Title: THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with

  1. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  2. Film condensation of saturated and superheated vapors along isothermal vertical surfaces in mixed convection

    SciTech Connect (OSTI)

    Winkler, C.M.; Chen, T.S.; Minkowycz, W.J.

    1999-09-01

    An analysis for condensation from an isothermal vertical flat plate in mixed convection is reported. The entire mixed convection regime is divided into two regions. One region covers the forced-convection-dominated regime, and the other covers the free-convection-dominated regime. The governing system of equations is first transformed into a dimensionless form by the nonsimilar transformation, separately for each regime, and then solved using the local nonsimilarity method along with a finite difference scheme. Two nonsimilarity parameters are introduced. The parameter {xi}{sub f} = Gr{sub x}/Re{sub x}{sup 2} characterizes the effect of buoyancy force on forced convection, while the parameter {xi}{sub n} = Re{sub x}/Gr{sub x}{sup 1/2} characterizes the effect of forced flow on free convection. Numerical results for pure steam and refrigerant R-134a are presented for both saturated and superheated cases. It is found that the buoyancy force significantly increases the wall shear stress and condensate mass flux. To a lesser degree, the buoyancy force also increases the wall heat flux. Superheating is found to have an insignificant effect on wall heat flux for a pure vapor.

  3. Multi-institutional project to study climate change's effect on tropical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forests Climate change's effect on tropical forests Multi-institutional project to study climate change's effect on tropical forests An expansive new project called Next Generation Ecosystem Experiments-Tropics aims to bring the future of tropical forests into much clearer focus April 1, 2015 Overhead view of Amazon forest, at risk from a warming climate. Photo credit: Hugo Glendinning Overhead view of Amazon forest, at risk from a warming climate. Photo credit: Hugo Glendinning Contact Los

  4. Multi-institutional project to study climate change's effect on tropical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forests Multi-institutional project to study climate change's effect on tropical forests Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Multi-institutional project to study climate change's effect on tropical forests An expansive new project called Next Generation Ecosystem Experiments-Tropics aims to bring the future of tropical forests into much clearer focus May 1, 2015 Overhead view of Amazon forest, at risk

  5. Experimental and numerical study of mixed convection with flow reversal in coaxial double-duct heat exchangers

    SciTech Connect (OSTI)

    Mare, Thierry; Voicu, Ionut; Miriel, Jacques [Laboratoire de Genie Civil et de Genie Mecanique (LGCGM), INSA de Rennes, IUT Saint Malo, 35043 Rennes (France); Galanis, Nicolas [Faculte de genie, Universite de Sherbrooke, Sherbrooke, QC (Canada); Sow, Ousmane [Laboratoire d'Energie Appliquee, Ecole superieure Polytechnique, Dakar (Senegal)

    2008-04-15

    Velocity vectors in a vertical coaxial double-duct heat exchanger for parallel ascending flow of water under conditions of laminar mixed convection have been determined experimentally using the particle image velocimetry technique. The measured velocity distributions for large annular flow rates, resulting in an essentially isothermal environment for the stream in the inner tube, are in very good agreement with corresponding numerical predictions. For flow rates of the same order of magnitude in the inner tube and the annulus, and corresponding temperature differences of about 20 C, experimental observations show that flow reversal occurs simultaneously in both streams over large axial distances for both heating and cooling of the flow in the inner tube. (author)

  6. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    SciTech Connect (OSTI)

    Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Brassard, P.; Steffen, M.

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  7. Mixed convection transport from an isolated heat source module on a horizontal plate

    SciTech Connect (OSTI)

    Kang, B.H.; Jaluria, Y.; Tewari, S.S. )

    1990-08-01

    An experimental study of the mixed convective heat transfer from an isolated source of finite thickness, located on a horizontal surface in an externally induced forced flow, has been carried out. This problem is of particular interest in the cooling of electronic components and also in the thermal transport associated with various manufacturing systems, such as ovens and furnaces. The temperature distribution in the flow as well as the surface temperature variation are studied in detail. The dependence of the heat transfer rate on the mixed convection parameter and on the thickness of the heated element or source, particularly in the vicinity of the source, is investigated. The results obtained indicate that the heat transfer rate and fluid flow characteristics vary strongly with the mixed convection variables. The transition from a natural convection dominated flow to a forced convection dominated flow is studied experimentally and the basic characteristics of the two regimes determined. This transition has a strong influence on the temperature of the surface and on the heat transfer rate. As expected, the forced convection dominated flow is seen to be significantly more effective in the cooling of a heat dissipating component than a natural convection dominated flow. The location of the maximum temperature on the module surface, which corresponds to the minimum local heat transfer coefficient, is determined and discussed in terms of the underlying physical mechanisms. The results obtained are also compared with these for an element of negligible thickness and the effect of a significant module thickness on the transport is determined. Several other important aspects of fundamental and applied interest are studied in this investigation.

  8. ARM - Publications: Science Team Meeting Documents: A new look at -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Middle-Troposphere Clouds A new look at - Tropical Middle-Troposphere Clouds Zuidema, Paquita RSMAS/MPO University of Miami Mapes, Brian University of Miami Lin, Jialin NOAA-CIRES Climate Diagnostics Center Fairall, Chris NOAA/Environmental Technology Laboratory Direct observations are made of the cloud vertical structure within the tropical convective atmosphere using cloud radar measurements from two ship-based tropical observational campaigns. These are interpreted with

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Association of the Cirrus Properties Over the Western Tropical Pacific with Tropical Deep Convection Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), Univesity of Utah (a), Geophysical Fluid Dynamics Laboratory (b) The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar measurements in the tropics show that upper tropospheric clouds are observed above 10 km as much as

  10. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    SciTech Connect (OSTI)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  11. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.

    2014-09-12

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the Central Plains. A major component of the campaign was a 6-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing datasets. Over the course of the 46 day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript describes the details of the instrumentationmore » used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings.« less

  12. The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Toto, T.; Troyan, D.; Ciesielski, P. E.; Holdridge, D.; Kyrouac, J.; Schatz, J.; Zhang, Y.; Xie, S.

    2015-01-27

    The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentationmore » used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.« less

  13. Stability and error analysis of nodal expansion method for convection-diffusion equation

    SciTech Connect (OSTI)

    Deng, Z.; Rizwan-Uddin; Li, F.; Sun, Y.

    2012-07-01

    The development, and stability and error analyses of nodal expansion method (NEM) for one dimensional steady-state convection diffusion equation is presented. Following the traditional procedure to develop NEM, the discrete formulation of the convection-diffusion equation, which is similar to the standard finite difference scheme, is derived. The method of discrete perturbation analysis is applied to this discrete form to study the stability of the NEM. The scheme based on the NEM is found to be stable for local Peclet number less than 4.644. A maximum principle is proved for the NEM scheme, followed by an error analysis carried out by applying the Maximum principle together with a carefully constructed comparison function. The scheme for the convection diffusion equation is of second-order. Numerical experiments are carried and the results agree with the conclusions of the stability and error analyses. (authors)

  14. On the reversibility of transitions between closed and open cellular convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feingold, G.; Koren, I.; Yamaguchi, T.; Kazil, J.

    2015-02-26

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud resolving modeling framework. A series of cloud resolving simulations shows that the transition between closed and open cellular states is asymmetrical, and characterized by a rapid ("runaway") transition from the closed- to the open-cell state, but slower recovery to the closed-cell state. Given that precipitation initiates the closed-open cell transition, and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even formore » very rapid drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling), and the stabilization of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the Sisyphusian task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. Recovery to the closed cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds, or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that a faster return to the closed-cell state requires that the drop concentration recovery be accompanied by significant dynamical forcing, e.g., via an increase in surface latent and sensible heat fluxes. This is supported by simulations with a simple predator-prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud-free.« less

  15. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  16. ARM - Field Campaign - ARM Support for the Plains Elevated Convection at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Night Experiment govCampaignsARM Support for the Plains Elevated Convection at Night Experiment Campaign Links PECAN Website Science Plan ARM PECAN Backgrounder News & Press ARM Data Discovery Browse Data Related Campaigns ARM Support for the Plains Elevated Convection at Night Experiment: Doppler Lidar Operations 2015.06.01, Turner, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Support for the Plains Elevated

  17. Comparison of CFD Natural Convection and Conduction-only Models for Heat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfer in the Yucca Mountain Project Drifts (Technical Report) | SciTech Connect Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts Citation Details In-Document Search Title: Comparison of CFD Natural Convection and Conduction-only Models for Heat Transfer in the Yucca Mountain Project Drifts × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  18. The ARM program in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Clements, W.E.; Barnes, F.J.; Ackerman, T.P.; Mather, J.H.

    1998-12-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) Program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains of the United States, the Tropical Western Pacific, and the North Slope of Alaska and Adjacent Arctic Ocean. This paper describes the ARM program in the Tropical Western Pacific locale.

  19. poster_2008.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    t t The deep stratiform mode is just as often mulitlayered - Stephens, G. L., and N. B. Wood, 2007: Properties of tropical convection observed by millimeter-radar systems. Mon. Wea. Rev., 135, 821-842

  20. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    SciTech Connect (OSTI)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  1. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael (El Sobrante, CA)

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  2. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  3. A scaling analysis of thermoacoustic convection in a zero-gravity environment

    SciTech Connect (OSTI)

    Krane, R.J.; Parang, M.

    1982-01-01

    This paper presents a scaling analysis of a one-dimensional thermoacoustic convection heat transfer process in a zero-gravity environment. The relative importance of the terms in the governing equations is discussed for different time scales without attempting to solve the equations. The scaling analysis suggests certain generalizations that can be made in this class of heat transfer problems.

  4. What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Jensen, Michael [BNL Environmental Sciences

    2014-02-19

    Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds updrafts and downdraftswhich resemble airflow in a convection ovenand many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earths climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earths climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

  5. New bounded skew central difference scheme. Part 2: Application to natural convection in an eccentric annulus

    SciTech Connect (OSTI)

    Moukalled, F.; Darwish, M.

    1997-01-01

    The bounded skew central difference scheme (NVF SCDS) is used to study numerically the combined effect of vertical ({epsilon}{sub y}) and horizontal ({epsilon}{sub x}) eccentricities on natural convection in an annulus between a heated horizontal cylinder and its square enclosure. Four Rayleigh numbers (Ra = 10{sup 3}, 10{sup 4}, 10{sup 5}, and 10{sup 6}), three aspect ratios (R/L = 0.1, 0.2, and 0.3), and eccentricity values ranging from {minus}0.3 to 0.3 are considered. At constant enclosure aspect ratio, the total heat transfer increases with increasing Rayleigh number. For constant Rayleigh-number values, convection contribution to total heat transfer decreases with increasing values of R/L. For conduction-dominated flows, heat transfer increases with increasing {vert_bar}{epsilon}{sub y}{vert_bar} and/or {vert_bar}{epsilon}{sub x}{vert_bar}. For convection-dominated flows, heat transfer increases with decreasing {epsilon}{sub y} for {epsilon}{sub y} < 0, decreases with increasing {epsilon}{sub y} for {epsilon}{sub y} > 0, and decreases with decreasing {epsilon}{sub x} for {epsilon}{sub x} < 0. For the case when conduction and convection are of equal importance, there is a critical {epsilon}{sub x} for which the total heat transfer is minimum.

  6. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  7. Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow

    SciTech Connect (OSTI)

    Bassem F. Armaly

    2007-10-31

    The measurements and the simulation of convective heat transfer in separated flow have been a challenge to researchers for many years. Measurements have been limited to two-dimensional flow and simulations failed to predict accurately turbulent heat transfer in the separated and reattached flow region (prediction are higher than measurements by more than 50%). A coordinated experimental and numerical effort has been initiated under this grant for examining the momentum and thermal transport in three-dimensional separated and reattached flow in an effort to provide new measurements that can be used for benchmarking and for improving the simulation capabilities of 3-D convection in separated/reattached flow regime. High-resolution and non-invasive measurements techniques are developed and employed in this study to quantify the magnitude and the behavior of the three velocity components and the resulting convective heat transfer. In addition, simulation capabilities are developed and employed for improving the simulation of 3-D convective separated/reattached flow. Such basic measurements and simulation capabilities are needed for improving the design and performance evaluation of complex (3-D) heat exchanging equipment. Three-dimensional (3-D) convective air flow adjacent to backward-facing step in rectangular channel is selected for the experimental component of this study. This geometry is simple but it exhibits all the complexities that appear in any other separated/reattached flow, thus making the results generated in this study applicable to any other separated and reattached flow. Boundary conditions, inflow, outflow, and wall thermal treatment in this geometry can be well measured and controlled. The geometry can be constructed with optical access for non-intrusive measurements of the flow and thermal fields. A three-component laser Doppler velocimeter (LDV) is employed to measure simultaneously the three-velocity components and their turbulent fluctuations. Infrared thermography is utilized to measure the wall temperature and that information is used to determine the local convective heat transfer coefficient. FLUENT CFD code is used as the platform in the simulation effort and User Defined Functions are developed for incorporating advanced turbulence models into this simulation code. Predictions of 3-D turbulent convection in separated flow, using the developed simulation capabilities under this grant, compared well with measured results. Results from the above research can be found in the seventeen refereed journal articles, and thirteen refereed publications and presentations in conference proceedings that have been published by the PI during the this grant period. The research effort is still going on and several publications are being prepared for reporting recent results.

  8. ARM - Publications: Science Team Meeting Documents: On the Association of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Cirrus in the 10-15 km Layer with Deep Convective Source Regions; an Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories On the Association of Tropical Cirrus in the 10-15 km Layer with Deep Convective Source Regions; an Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories Mace, Gerald University of Utah Deng, Min University of Utah Soden, Brian UM/RSMAS Zipser, Edward University of Utah In this paper, MMCR

  9. ARM Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific (TWP) Operations Management and Support: Securing ARM Data K. L. Nitschke South Pacific Regional Environment Programme Apia, Samoa L. Jones Los Alamos National Laboratory Los Alamos, New Mexico C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction The Tropical Western Pacific Office (TWPO) (a) has been tasked with providing operational management and support for three (b) climate station instrument facilities in the Tropical Western pacific

  10. FACT SHEET U.S. Department of Energy Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Western Pacific The Atmospheric Radiation Measurement (ARM) Climate Research Facility established its second research facility, the Tropical Western Pacific (TWP) field measurement site, in 1996. This site consists of three research facilities: Manus (established in 1996), Nauru (1998), and Darwin (2002). The data collected at these sites help scientists better understand the role of the tropics in modulating or controlling significant aspects of the global climate and improve models

  11. LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy

    SciTech Connect (OSTI)

    Gustafson Jr., WI; Vogelmann, AM

    2015-09-01

    This document illustrates the design of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) workflow to provide a routine, high-resolution modeling capability to augment the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s high-density observations. LASSO will create a powerful new capability for furthering ARM’s mission to advance understanding of cloud, radiation, aerosol, and land-surface processes. The combined observational and modeling elements will enable a new level of scientific inquiry by connecting processes and context to observations and providing needed statistics for details that cannot be measured. The result will be improved process understanding that facilitates concomitant improvements in climate model parameterizations. The initial LASSO implementation will be for ARM’s Southern Great Plains site in Oklahoma and will focus on shallow convection, which is poorly simulated by climate models due in part to clouds’ typically small spatial scale compared to model grid spacing, and because the convection involves complicated interactions of microphysical and boundary layer processes.

  12. Tropical Storm Frances Situation Report, September 7, 2004 (10:00 AM EDT)

    SciTech Connect (OSTI)

    2004-09-07

    The report provides highlights related to impacts of Tropical Storm Frances. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  13. Tropical Storm Frances Situation Report, September 6, 2004 (10:00 AM EDT)

    SciTech Connect (OSTI)

    none,

    2004-09-06

    The report provides highlights related to impacts of Tropical Storm Frances. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  14. Tropical Storm Frances Situation Report, September 6, 2004 (10:00 PM EDT)

    SciTech Connect (OSTI)

    none,

    2004-09-06

    The report provides highlights related to impacts of Tropical Storm Frances. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  15. Tropical Storm Frances Situation Report, September 6, 2004 (4:00 PM EDT)

    SciTech Connect (OSTI)

    none,

    2004-09-06

    The report provides highlights related to impacts of Tropical Storm Frances. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  16. Tropical Storm Frances Situation Report, September 7, 2004 (4:00 PM EDT)

    SciTech Connect (OSTI)

    none,

    2004-09-07

    The report provides highlights related to impacts of Tropical Storm Frances. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  17. Power Outages Update: Post-Tropical Cyclone Sandy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outages Update: Post-Tropical Cyclone Sandy Power Outages Update: Post-Tropical Cyclone Sandy October 29, 2012 - 9:37pm Addthis Sandy made landfall as a post-tropical cyclone on the southern coast of New Jersey near Atlantic City at 8 p.m. with top sustained winds of 80 mph. | Photo courtesy of NOAA Sandy made landfall as a post-tropical cyclone on the southern coast of New Jersey near Atlantic City at 8 p.m. with top sustained winds of 80 mph. | Photo courtesy of NOAA Dan Leistikow Dan

  18. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  19. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  20. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  1. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  2. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2015-03-05

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3?, and POx (representing the sum of PO43?, HPO42?, and H2PO4?)) and five potential competitors (plantmoreroots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos). The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive) followed this order: (1) for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2) for NO3?, denitrifiers ~ decomposing microbes > plant roots, (3) for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among different nutrient consumers. Although we used as many observations as we could obtain, more nutrient addition experiments in tropical systems would greatly benefit model testing and calibration. In summary, the N-COM model provides an ecologically consistent representation of nutrient competition appropriate for land BGC models integrated in Earth System Models.less

  3. On the reversibility of transitions between closed and open cellular convection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feingold, G.; Koren, I.; Yamaguchi, T.; Kazil, J.

    2015-07-08

    The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed- to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed–open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapidmore » drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator–prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud free.« less

  4. Tropical Africa: Land use, biomass, and carbon estimates for 1980

    SciTech Connect (OSTI)

    Brown, S.; Gaston, G.; Daniels, R.C.

    1996-06-01

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s land surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  5. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  6. A Model Evaluation Data Set for the Tropical ARM Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a number of sources at the tropical ARM sites at Manus and Nauru. It spans the years of 1999 and 2000. The data set contains information on downward surface radiation; surface meteorology, including precipitation; atmospheric water vapor and cloud liquid water content; hydrometeor cover as a function of height; and cloud cover, cloud optical thickness and cloud top pressure information provided by the International Satellite Cloud Climatology Project (ISCCP).

  7. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850˚C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys’ weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in two different diameter channels (0.083” and 0.370”). In the 0.083” channel, the experimental heat transfer coefficient was shown to agree with values obtained from heat transfer correlations used for water. In the 0.370” D channel, the experimental heat transfer coefficient data was predictable by either a correlation for mixed convection, or forced convection depending on the value of Gr*/Re. These experiments provided new insights into the construction and operation of molten salt flow systems. The selection of multi-component salts for molten salt flow systems requires knowledge of properties such as melting point, heat capacity, density, and viscosity of these salts. Theoretical models have been developed for the prediction of these properties of multi-component salts.

  8. The Conforming Virtual Element Method for the convection-diffusion-reaction equation with variable coeffcients.

    SciTech Connect (OSTI)

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document describes the conforming formulations for virtual element approximation of the convection-reaction-diffusion equation with variable coefficients. Emphasis is given to construction of the projection operators onto polynomial spaces of appropriate order. These projections make it possible the virtual formulation to achieve any order of accuracy. We present the construction of the internal and the external formulation. The difference between the two is in the way the projection operators act on the derivatives (laplacian, gradient) of the partial differential equation. For the diffusive regime we prove the well-posedness of the external formulation and we derive an estimate of the approximation error in the H1-norm. For the convection-dominated case, the streamline diffusion stabilization (aka SUPG) is also discussed.

  9. Autecology of Vibrio vulnificus and Vibrio parahaemolyticus in tropical waters

    SciTech Connect (OSTI)

    Rivera, S.; Lugo, T.; Hazen, T.C.

    1988-12-31

    Water and shellfish samples collected from estuaries, mangroves, and beaches along the coast of Puerto Rico were examined for Vibrio vulnificus and Vibrio parahaemolyticus. An array of water quality parameters were also measured simultaneous with bacteria sampling. Both species of vibrio were associated with estuary and mangrove locations, and neither was isolated from sandy beaches. Densities of V. vulnificus were negatively correlated with salinity, 10--15 ppt being optimal. V. parahaemolyticus was isolated from sites with salinities between 20 and 35 ppt, the highest densities occurring at 20 ppt. Densities of Vibrio spp. and V. parahaemolyticus for a tropical estuary surpassed those reported for temperate estuaries by several orders of magnitude. Both densities of total Vibrio spp. and V. parahaemolyticus in the water were directly related to densities of fecal coliforms, unlike V. vulnificus. The incidence of ONPG(+) strains among sucrose({minus}) Vibrio spp. served as an indicator of the frequency of V. vulnificus in this group. More than 63% of the V. vulnificus isolated were pathogenic. V. vulnificus and V. parahaemolyticus occupy clearly separate niches within the tropical estuarine-marine ecosystem.

  10. Utilization of geothermal heat in tropical fruit-drying process

    SciTech Connect (OSTI)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  11. Mixed Convection in the VHTR in the Event of a LOFA

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-05-01

    The US Department of Energy, Office of Nuclear Energy (DOE-NE) is supporting the development of a very high temperature reactor (VHTR) concept as the primary focus of it next generation nuclear power plant (NGNP) program. The VHTR is cooled by forcing helium downwards through the core into the lower plenum and out the hot duct. In the event that the coolant circulators are lost, the driving pressure drop across the core will reduce to zero and there will be the opportunity for natural circulation to occur. During the time that the circulators are powering down, the heat transfer in the core from the graphite blocks to the helium coolant will transform from turbulent forced convection to mixed convection, where buoyancy effects become important, to free or natural convection, where buoyancy is dominant. Analysis of the nature of the forced, mixed and free convection is best done using computational fluid dynamic (CFD) software that can provide fine details of the flow and heat transfer. However, CFD analysis involves approximations in the results because of the finite nature of the spatial and temporal discretizations required, the inexact nature of the turbulence models that are used and the finite precision of the computers employed. Therefore, it is necessary to validate the CFD computations. Validation is accomplished by comparing results from specific CFD computations to experimental data that have been taken specifically for the purpose of validation and that are related to the physical phenomena in question. The present report examines the flow and heat transfer parameters (dimensionless numbers) that characterize the flow and reports ranges for their values based on specific CFD studies performed for the VHTR.

  12. DOE/SC-ARM-14-012 The Mid-latitude Continental Convective Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report M Jensen P Kollias S Giangrande April 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

  13. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tolle, Merja; Gutjahr, Oliver; Feser, Frauke; et al

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less

  14. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges

    SciTech Connect (OSTI)

    Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tolle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole; Leung, Lai-Yung R.

    2015-05-27

    Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.

  15. Microwave heating device for internal heating convection experiments, applied to Earth's mantle dynamics

    SciTech Connect (OSTI)

    Surducan, E.; Surducan, V.; Neamtu, C.; Limare, A.; Di Giuseppe, E.

    2014-12-15

    We report the design, construction, and performances of a microwave (MW) heating device for laboratory experiments with non-contact, homogeneous internal heating. The device generates MW radiation at 2.47 GHz from a commercial magnetron supplied by a pulsed current inverter using proprietary, feedback based command and control hardware and software. Specially designed MW launchers direct the MW radiation into the sample through a MW homogenizer, devised to even the MW power distribution into the sample's volume. An adjustable MW circuit adapts the MW generator to the load (i.e., the sample) placed in the experiment chamber. Dedicated heatsinks maintain the MW circuits at constant temperature throughout the experiment. Openings for laser scanning for image acquisition with a CCD camera and for the cooling circuits are protected by special MW filters. The performances of the device are analyzed in terms of heating uniformity, long term output power stability, and load matching. The device is used for small scale experiments simulating Earth's mantle convection. The 30 30 5 cm{sup 3} convection tank is filled with a water?based viscous fluid. A uniform and constant temperature is maintained at the upper boundary by an aluminum heat exchanger and adiabatic conditions apply at the tank base. We characterize the geometry of the convective regime as well as its bulk thermal evolution by measuring the velocity field by Particle Image Velocimetry and the temperature field by using Thermochromic Liquid Crystals.

  16. Section 41

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiative Forcing of the Diurnal Cycle of Intense Convection in the Tropical Pacific W. M. Gray and J. D. Sheaffer Department of Atmospheric Science Colorado State University Fort Collins, Colorado Introduction This U.S. Department of Energy-Atmospheric Radiation Measurement (DOE-ARM) supported research is concerned with better delineating the nature of the diurnal cycle of intense convection over the tropical oceans and a comparative review of these observations with their implications

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling from a Tropical State of Mind Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Mrowiec AA, C Rio, AM Fridlind, AS Ackerman, AD Del Genio, OM Pauluis, AC Varble, and J Fan. 2012. "Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and

  19. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect (OSTI)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  20. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect (OSTI)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  1. Convection Triggering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to as "mechanical forcing." More recently, another mechanism, often referred to as "thermodynamic forcing," has been suggested, leveraging on the fact that leading edges of cold...

  2. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-01

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  3. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimesmore » to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.« less

  4. Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice

    SciTech Connect (OSTI)

    Gustafson, William I.; Ma, Po-Lun; Singh, Balwinder

    2014-12-17

    The physics suite of the Community Atmosphere Model version 5 (CAM5) has recently been implemented in the Weather Research and Forecasting (WRF) model to explore the behavior of the parameterization suite at high resolution and in the more controlled setting of a limited area model. The initial paper documenting this capability characterized the behavior for northern high latitude conditions. This present paper characterizes the precipitation characteristics for continental, mid-latitude, springtime conditions during the Midlatitude Continental Convective Clouds Experiment (MC3E) over the central United States. This period exhibited a range of convective conditions from those driven strongly by large-scale synoptic regimes to more locally driven convection. The study focuses on the precipitation behavior at 32 km grid spacing to better anticipate how the physics will behave in the global model when used at similar grid spacing in the coming years. Importantly, one change to the Zhang-McFarlane deep convective parameterization when implemented in WRF was to make the convective timescale parameter an explicit function of grid spacing. This study examines the sensitivity of the precipitation to the default value of the convective timescale in WRF, which is 600 seconds for 32 km grid spacing, to the value of 3600 seconds used for 2 degree grid spacing in CAM5. For comparison, an infinite convective timescale is also used. The results show that the 600 second timescale gives the most accurate precipitation over the central United States in terms of rain amount. However, this setting has the worst precipitation diurnal cycle, with the convection too tightly linked to the daytime surface heating. Longer timescales greatly improve the diurnal cycle but result in less precipitation and produce a low bias. An analysis of rain rates shows the accurate precipitation amount with the shorter timescale is assembled from an over abundance of drizzle combined with too little heavy rain events. With longer timescales one can improve the distribution, particularly for the extreme rain rates. Ultimately, without changing other aspects of the physics, one must choose between accurate diurnal timing and rain amount when choosing an appropriate convective timescale.

  5. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  6. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  7. Atmospheric Radiation Measurement (ARM) Data from the Tropical Western Pacific (TWP) Site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The Tropical Western Pacific (TWP) site is one of the four fixed sites. It consists of three climate research facilities; the Manus facility on Los Negros Island in Manus, Papua New Guinea (established in 1996); the Nauru facility on Nauru Island, Republic of Nauru (1998); and the Darwin facility in Darwin, Northern Territory, Australia (2002). The operations are supported by government agencies in each host country. Covering the area roughly between 10 degrees N and 10 degrees S of the equator and from 130 degrees E to 167 degrees E, the TWP locale includes a region that plays a large role in the interannual variability observed in the global climate system. More than 250,000 TWP data sets from 1996 to the present reside in the ARM Archive. Begin at the TWP information page for links or access data directly from the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  8. Tropical Storm Frances Situation Report, September 8, 2004 (10:00 PM EDT)

    SciTech Connect (OSTI)

    None

    2004-09-08

    The report provides highlights related to impacts of Tropical Storm Frances n the Florida area. Sections on electric information, oil and gas information, and county outage data are provided.

  9. Tropical Storm Frances Situation Report, September 8, 2004 (10:00 AM EDT)

    SciTech Connect (OSTI)

    2004-09-08

    The report provides highlights related to impacts of Tropical Storm Frances in the Florida area. Sections on electric information, oil and gas information, and county outage data are provided.

  10. Tropical Storm Frances Situation Report, September 7, 2004 (10:00 PM EDT)

    SciTech Connect (OSTI)

    2004-09-07

    The report provides highlights related to impacts of Tropical Storm Frances in the Florida area. Sections on electric information, oil and gas information, storm track, and county outage data are provided.

  11. Observing and modelling f-region ionospheric dynamics using the (OII) 7320a emission. Doctoral thesis

    SciTech Connect (OSTI)

    Carr, S.S.

    1992-01-01

    Limb-scan observations of Doppler line profiles from the (OII) lambda 7320A emission at F-Region altitudes, made with the Fabry-Perot interferometer (FPI) on the Dynamics Explorer-2 (DE-2) spacecraft, have been analyzed to provide measurements of the meridional component of the ion convection velocity along the instrument line-of-sight. The DE-2 results presented here demonstrate the first spaceborne use of the remote-sensing Doppler techniques for measurements of ionospheric convection. The FPI meridional ion drift measurements have been compared with nearly simultaneous in situ ion drift measurements from the Retarding Potential Analyzer (RPA) on DE 2. Once allowance is made for the temporal lag between the in situ and remote measurements, the results from the two techniques are found to be in good agreement, within specified experimental errors, giving confidence in the FPI measurements.

  12. Improved atmosphere-ocean coupled modeling in the tropics for climate

    Office of Scientific and Technical Information (OSTI)

    prediction (Technical Report) | SciTech Connect Improved atmosphere-ocean coupled modeling in the tropics for climate prediction Citation Details In-Document Search Title: Improved atmosphere-ocean coupled modeling in the tropics for climate prediction We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of

  13. Calculation of natural convection test at Phenix using the NETFLOW++ code

    SciTech Connect (OSTI)

    Mochizuki, H.; Kikuchi, N.; Li, S.

    2012-07-01

    The present paper describes modeling and analyses of a natural convection of the pool-type fast breeder reactor Phenix. The natural convection test was carried out as one of the End of Life Tests of the Phenix. Objective of the present study is to assess the applicability of the NETFLOW++ code which has been verified thus far using various water facilities and validated using the plant data of the loop-type FBR 'Monju' and the loop-type experimental fast reactor 'Joyo'. The Phenix primary heat transport system is modeled based on the benchmark documents available from IAEA. The calculational model consists of only the primary heat transport system with boundary conditions on the secondary-side of IHX. The coolant temperature at the primary pump inlet, the primary coolant temperature at the IHX inlet and outlet, the secondary coolant temperatures and other parameters are calculated by the code where the heat transfer between the hot and cold pools is explicitly taken into account. A model including the secondary and tertiary systems was prepared, and the calculated results also agree well with the measured data in general. (authors)

  14. FULLY CONVECTIVE MAGNETO-ROTATIONAL TURBULENCE IN LARGE ASPECT-RATIO SHEARING BOXES

    SciTech Connect (OSTI)

    Bodo, G.; Rossi, P.; Cattaneo, F.; Mignone, A.

    2015-01-20

    We present a numerical study of turbulence and dynamo action in stratified shearing boxes with both finite and zero net magnetic flux. We assume that the fluid obeys the perfect gas law and has finite thermal diffusivity. The latter is chosen to be small enough so that vigorous convective states develop. The properties of these convective solutions are analyzed as the aspect ratio of the computational domain is varied and as the value of the mean field is increased. For the cases with zero net flux, we find that a well-defined converged state is obtained for large enough aspect ratios. In the converged state, the dynamo can be extremely efficient and can generate substantial toroidal flux. We identify solutions in which the toroidal field is mostly symmetric about the mid-plane and solutions in which it is mostly anti-symmetric. The symmetric solutions are found to be more efficient at transporting angular momentum and can give rise to a luminosity that is up to an order of magnitude larger than the corresponding value for the anti-symmetric states. In the cases with a finite net flux, the system appears to spend most of the time in the symmetric states.

  15. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  16. Convective heat transfer with buoyancy effects from thermal sources on a flat plate

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1991-06-01

    An experimental study is carried out on the thermal interaction between two finite-size heat sources, located on a flat plate that is well insulated on the back. Both the horizontal and the vertical orientations of the surface are studied by measuring the flow velocities, the temperature field, and the local heat flux. The investigation is directed at the pure natural convection circumstance (no forced flow velocity) and the buoyancy-dominated mixed-convection circumstance (presence of a relatively small forced flow velocity). Large temperature gradients occur in the vicinity of the heat sources, resulting in a substantial diffusion of heat along the plate length. However, the effect of conduction is found to be highly localized. The orientation of the surface has a very strong effect on the interaction of the wakes from the heat sources for the circumstances considered. An upstream source is found to have a very strong influence on the temperature of a downstream source in the vertical surface orientation but has a much weaker influence in the horizontal orientation. In the latter circumstance the presence of a small forced flow velocity may actually increase the temperature of a downstream source by tilting the wake from the upstream source toward the downstream source. 25 refs.

  17. MEAN-FIELD MODELING OF AN α{sup 2} DYNAMO COUPLED WITH DIRECT NUMERICAL SIMULATIONS OF RIGIDLY ROTATING CONVECTION

    SciTech Connect (OSTI)

    Masada, Youhei; Sano, Takayoshi E-mail: sano@ile.osaka-u.ac.jp

    2014-10-10

    The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, can be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.

  18. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  19. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  20. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  1. Chemical composition of biomass from tall perennial tropical grasses

    SciTech Connect (OSTI)

    Prine, G.M.; Stricker, J.A.; Anderson, D.L.

    1995-11-01

    The tall perennial tropical grasses, elephantgrass (Pennisetum purpureum Schum.), sugarcane and energycane (Saccharum sp.) and erianthus (Erianthus arundenaceum (Retz) Jesw.) have given very high oven dry biomass yields in Florida and the warm Lower South USA. No good complete analyses of the chemical composition of these grasses for planning potential energy use was available. We sampled treatments of several tall grass demonstrations and experiments containing high-biomass yielding genotypes of the above tall grass crops at several locations in Florida over the two growing seasons, 1992 and 1993. These samples were analyzed for crude protein, NDF, ADF, cellulose, hemicellulose, lignin, and IVDMD or IVOMD. The analysis for the above constituents are reported, along with biomass yields where available, for the tall grass accessions in the various demonstrations and experiments. Particular attention is given to values obtained from the high-yielding tall grasses grown on phosphatic clays in Polk County, FL, the area targeted by a NREL grant to help commercialize bioenergy use from these crops.

  2. Investigation of combined free and forced convection in a 2 x 6 rod bundle during controlled flow transients

    SciTech Connect (OSTI)

    Bates, J.M.; Khan, E.U.

    1980-10-01

    An experimental study was performed to obtain local fluid velocity and temperature measurements in the mixed (combined free and forced) convection regime for specific flow coastdown transients. A brief investigation of steady-state flows for the purely free-convection regime was also completed. The study was performed using an electrically heated 2 x 6 rod bundle contained in a flow housing. In addition a transient data base was obtained for evaluating the COBRA-WC thermal-hydraulic computer program (a modified version of the COBRA-IV code).

  3. The effect of nuclear reaction rates and convective mixing on the evolution of a 6M{sub ?} star

    SciTech Connect (OSTI)

    Halabi, Ghina M.

    2014-05-09

    We present the evolution of a 6M{sub ?} star, of solar-like initial metallicity, and investigate the effects of key nuclear reaction rates, as well as the treatment of the convective mixing on its evolution along the Cepheid instability strip. In particular, we study the effect of recent estimates of the {sup 14}N(p,?){sup 15}O reaction on the formation and extension of the blue loop during core helium burning. We also investigate the effects induced on this blue loop by the adoption of non-standard convective mixing prescriptions, as well as the implications of modifying the Mixing Length Theory.

  4. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    SciTech Connect (OSTI)

    Brown, S.; Lugo, A. E.; Liegel, B.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  5. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    SciTech Connect (OSTI)

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in {sup 3}He {minus} {sup 4}He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f({proportional to}) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs.

  6. Laws of convective vortex formation behind a flame front during its propagation in a tube

    SciTech Connect (OSTI)

    Abrukov, S.A.; Samsonov, V.P.

    1986-05-01

    This paper examines laws and conditions of convective vortex formation in combustion products during the propagation of a slow, stable flame in a vertical, half-open tube. The main element of the experimental unit was the reaction tube and weightless conditions were created in a freely falling container holding the reaction tube. Propane-air and CO-air mixtures were used. The structure of the flow behind the flame front was studied by the interferometric method. Frames are show from an interference film illustrating the typical pattern of vortex formation behind the flame front when the flame propagates upward at a velocity of 7 cm/sec. Analyses of the interferograms shows that the flame is stable before the vortices appear and that the flow of combustion products is laminar.

  7. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers

    SciTech Connect (OSTI)

    Ghorbani, N. [School of Mechanical Engineering, University of Leeds, Leeds, England (United Kingdom); Taherian, H. [Department of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX (United States); Gorji, M. [Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol (Iran); Mirgolbabaei, H. [Department of Mechanical Engineering, Islamic Azad University, Jouybar branch, Jouybar (Iran)

    2010-10-15

    In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

  8. Analysis of transport phenomena during the convective drying in superheated steam

    SciTech Connect (OSTI)

    Topin, F.; Tadrist, L. [Univ. de Provence, Marseille (France)

    1997-10-01

    This work focused on high-temperature convective drying (superheated steam drying). The process has been investigated both experimentally and numerically. The experimental analysis was carried out in an aerodynamic return-flow wind-tunnel, with very small cylinders of cellular concrete. For the local analysis, the samples were fitted with thermocouples and pressure sensors. The mean moisture content of the cylinders was measured by simple weighing while the temperature and pressure readings were being taken. Global and local analysis of heat and mass transfer in small cylinders in superheated steam were carried out. The systematical study for several sizes and aerothermal conditions show a similar behavior for moisture content, pressure and temperature values. A numerical model for high temperature drying, using the finite elements method, in a 2-D configuration, was implemented and validated.

  9. Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications

    SciTech Connect (OSTI)

    Fossa, M.; Menezo, C.; Leonardi, E.

    2008-02-15

    An experimental study on natural convection in an open channel is carried out in order to investigate the effect of the geometrical configuration of heat sources on the heat transfer behaviour. To this aim, a series of vertical heaters are cooled by natural convection of air flowing between two parallel walls. The objective of the work is to investigate the physical mechanisms which influence the thermal behaviour of a double-skin photovoltaic (PV) facade. This results in a better understanding of the related phenomena and infers useful engineering information for controlling the energy transfers from the environment to the PV surfaces and from the PV surfaces to the building. Furthermore increasing the heat transfer rate from the PV surfaces increases the conversion efficiency of the PV modules since they operate better as their temperature is lower. The test section consists in a double vertical wall, 2 m high, and each wall is constituted by 10 different heating modules 0.2 m high. The heater arrangement simulates, at a reduced scale, the presence of a series of vertical PV modules. The heat flux at the wall ranges from 75 to 200 W/m{sup 2}. In this study, the heated section is 1.6 m in height, preceded by an adiabatic of 0.4 m in height. Different heating configurations are analyzed, including the uniform heating mode and two different configurations of non uniform, alternate heating. The experimental procedure allows the wall surface temperature, local heat transfer coefficient and local and average Nusselt numbers to be inferred. The experimental evidences show that the proper selection of the separating distance and heating configuration can noticeably decrease the surface temperatures and hence enhance the conversion efficiency of PV modules. (author)

  10. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  11. Land cover change and remote sensing: Examples of quantifying spatiotemporal dynamics in tropical forests

    SciTech Connect (OSTI)

    Krummel, J.R.; Su, Haiping; Fox, J.; Yarnasan, S.; Ekasingh, M.

    1995-06-01

    Research on human impacts or natural processes that operate over broad geographic areas must explicitly address issues of scale and spatial heterogeneity. While the tropical forests of Southeast Asia and Mexico have been occupied and used to meet human needs for thousands of years, traditional forest management systems are currently being transformed by rapid and far-reaching demographic, political, economic, and environmental changes. The dynamics of population growth, migration into the remaining frontiers, and responses to national and international market forces result in a demand for land to produce food and fiber. These results illustrate some of the mechanisms that drive current land use changes, especially in the tropical forest frontiers. By linking the outcome of individual land use decisions and measures of landscape fragmentation and change, the aggregated results shows the hierarchy of temporal and spatial events that in summation result in global changes to the most complex and sensitive biome -- tropical forests. By quantifying the spatial and temporal patterns of tropical forest change, researchers can assist policy makers by showing how landscape systems in these tropical forests are controlled by physical, biological, social, and economic parameters.

  12. Tropical Ocean Climate Study (TOCS) and Japan-United States Tropical Ocean Study (JUSTOS) on the R/V KAIYO, 25 Jan to 2 March 1997, to the Tropical Western Pacific Ocean BNL component

    SciTech Connect (OSTI)

    Reynolds, R.M.; Smith, S.

    1997-04-11

    The Japanese U.S. Tropical Ocean Study (JUSTOS) cruise on the R/V KAIYO in the Tropical Western Pacific Ocean was a collaborative effort with participants from the Japanese Marine Science and Technology Center (JAMSTEC), the National Center for Atmospheric Research (NCAR), and Brookhaven National Laboratory BNL. This report is a summary of the instruments, measurements, and initial analysis of the BNL portion of the cruise only. It includes a brief description of the instrument system, calibration procedures, problems and resolutions, data collection, processing and data file descriptions. This is a working document, which is meant to provide both a good description of the work and as much information as possible in one place for future analysis.

  13. The annual cycle in the tropical Pacific Ocean based on assimilated ocean data from 1983 to 1992

    SciTech Connect (OSTI)

    Smith, T.M.; Chelliah, M.

    1995-06-01

    An analysis of the tropical Pacific Ocean from January 1983 to December 1992 is used to describe the annual cycle, with the main focus on subsurface temperature variations. Some analysis of ocean-current variations are also considered. Monthly mean fields are generated by assimilation of surface and subsurface temperature observations from ships and buoys. Comparisons with observations show that the analysis reasonably describes large-scale ocean thermal variations. Ocean currents are not assimilated and do not compare as well with observations. However, the ocean-current variations in the analysis are qualitatively similar to the known variations given by others. The authors use harmonic analysis to separate the mean annual cycle and estimate its contribution to total variance. The analysis shows that in most regions the annual cycle of subsurface thermal variations is larger than surface variations and that these variations are associated with changes in the depth of the thermocline. The annual cycle accounts for most of the total surface variance poleward of about 10{degrees} latitude but accounts for much less surface and subsurface total variance near the equator. Large subsurface annual cycles occur near 10{degrees}N associated with shifts of the intertropical convergence zone and along the equator associated with the annual cycle of equatorial wind stress. The hemispherically asymmetric depths of the 20{degrees}C isotherms indicate that the large Southern Hemisphere warm pool, which extends to near the equator, may play an important role in thermal variations on the equator. 51 refs., 18 figs., 1 tab.

  14. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  15. ARM - PI Product - A Model Evaluation Data Set for the Tropical ARM Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsA Model Evaluation Data Set for the Tropical ARM Sites ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : A Model Evaluation Data Set for the Tropical ARM Sites This data set has been derived from various ARM and external data sources with the main aim of providing modelers easy access to quality controlled data for model evaluation. The data set contains highly aggregated (in time) data from a

  16. Safety Observations Achieve Results

    Energy Science and Technology Software Center (OSTI)

    2000-01-16

    The SOAR web application provides a multi-checklist capability where focused observations can be created to address risk-likely work environments, tasks, etc. The SOAR web application has numerous reports to sort the data by key word, multiple factors (i.e., location, team, behavior, checklist, work environment, etc.), and the highest frequency of behaviors and error-likely predecessors, etc. Other performance indicators are also provided.

  17. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader (acting) Bob Roback Email Deputy Group Leader (acting) Jeff Heikoop Email Profile pages header Search our Profile pages

  18. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  19. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    SciTech Connect (OSTI)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: Molten Salts: The candidate molten salts for investigation will be selected. Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. Scaling Analysis: Scaling analysis to design the test loop will be performed. Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. Fabricate the Test Loop. Perform the Tests. Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

  20. Two-dimensional flux-corrected transport solver for convectively dominated flows

    SciTech Connect (OSTI)

    Baer, M.R.; Gross, R.J.

    1986-01-01

    A numerical technique designed to solve a wide class of convectively dominated flow problems is presented. An attractive feature of the technique is its ability to resolve the behavior of field quantities possessing large gradients and/or shocks. The method is a finite-difference technique known as flux-corrected transport (FCT) that maintains four important numerical considerations - stability, accuracy, monotonicity, and conservation. The theory and methodology of two-dimensional FCT is presented. The method is applied in demonstrative example calculations of a 2-D Riemann problem with known exact solutions and to the Euler equations in a study of classical Rayleigh-Taylor and Kelvin-Helmholtz instability problems. The FCT solver has been vectorized for execution on the Cray 1S - a typical call with a 50 by 50 mesh requires about 0.00428 cpu seconds of execution time per call to the routine. Additionally, we have maintained a modular structure for the solver that eases its implementation. Fortran listings of two versions of the 2-D FCT solvers are appended with a driver main program illustrating the call sequence for the modules. 59 refs., 49 figs.

  1. Experimental research on heat transfer of natural convection in vertical rectangular channels with large aspect ratio

    SciTech Connect (OSTI)

    Lu, Qing; Qiu, Suizheng; Su, Guanghui [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi'an JIaotong University, Xi'an, Shaanxi 710049 (China); School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China); Tian, Wenxi; Ye, Zhonghao [School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

    2010-01-15

    This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60-24) and the ratio of length to gap clearance (800-320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel's integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m{sup 2}, the maximum wall temperature was lower than 350 C. All this work is valuable for the plate type reactor's design and safety analysis. (author)

  2. Characterization of Fuego for laminar and turbulent natural convection heat transfer.

    SciTech Connect (OSTI)

    Francis, Nicholas Donald, Jr. (,; .)

    2005-08-01

    A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).

  3. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    SciTech Connect (OSTI)

    Lee, C.M.; Schock, H.J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity. 10 references.

  4. Surface energy fluxes at Central Florida during the convection and precipitation electrification experiment. Final Report

    SciTech Connect (OSTI)

    Nie, D.; Demetriades-shah, T.D.; Kanemasu, E.T.

    1993-04-01

    One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz; Sud and Smith; Sato et. al). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al). In order to better describe the processes in the atmosphere at various scales and improve the ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.

  5. Numerical analyses of two-and three-dimensional thermoacoustic convection generated by a transient step in the temperature of one wall

    SciTech Connect (OSTI)

    Ozoe, H. ); Sato, N. ); Churchill, S.W. )

    1990-01-01

    This paper reports general two- and three-dimensional models derived and solved numerically for the thermoacoustical convection that is generated in a compressible fluid by rapid heating of one of the vertical enclosing walls.

  6. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    SciTech Connect (OSTI)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R; Semazzi, Fred; Kumar, Vipin

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditional and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Animation Joins Learning Tools on Science Education Website Bookmark and Share ARM's tropical convective clouds animation illustrates the difference between tropical cloud...

  8. Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

    2014-01-01

    In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

  9. Conjugate natural convection heat transfer through a conductive partition separating two reservoirs at different temperatures

    SciTech Connect (OSTI)

    Kimura, Shigeo; Darie, Emanuel; Kiwata, Takahiro; Okajima, Atsushi

    1999-07-01

    A simple one-dimensional theory regarding the heat transfer through a thermally conductive partition that separates two fluid reservoirs at different temperatures has been developed. According to the theory a unique nondimensional (Biot number-like) parameter to characterize the problem is identified; the parameter is defined by the geometric aspect ratio of the partition, the fluid-to-partition thermal conductivity ratio and the Rayleigh number based on the temperature difference between the two reservoirs. The theory predicts the average temperatures of both sides of the partition and the overall Nusselt number. The theory has the strength due to its simplicity and the fact that the unique Biot number-like parameter contains all the conditions necessary to describe the problem. In order to test the proposed one-dimensional theory a series of experiments have been conducted using an apparatus that consists of two water chambers and a partition separating the two. The one chamber, which is filled with water, is heated by electric heaters and the other is cooled by a serpentine copper pipe. Three different materials, i.e., copper, stainless steel and ceramics, are employed for the partition. The heat transfer rates across the partition are measured by the electric power dissipated at the heaters. The reservoir temperatures and the partition temperatures are monitored by thermocouples. The Rayleigh number defined by the partition height and the temperature difference of the two reservoirs is around 10{sup 8}. a pH indicator method to visualize convecting flows shows a presence of velocity boundary layers along both sides of the vertical partition. The temperature measurements in the reservoirs show a strong temperature stratification in the core region, where the water is largely stagnant and sandwiched by two counter-advancing horizontal jets at the top and bottom. The experimentally-obtained average heat transfer rates and partition surface temperatures are well compared with the theoretical predictions.

  10. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  11. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    SciTech Connect (OSTI)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 19982011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (JuneNovember) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  12. Tropical Western Pacific site science mission plan. Semiannual project report, January--June 1998

    SciTech Connect (OSTI)

    Ackerman, T.; Mather, J.; Clements, W.; Barnes, F.

    1998-11-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains (SGP) of the United States, the Tropical Western Pacific (TWP), and the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO). This Site Science Mission Plan [RPT(TWP)-010.000] describes the ARM program in the Tropical Western Pacific locale.

  13. "A New Paradigm for Secondary Eyewall Formation in Tropical Cyclones",

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chun-Chieh Wu (National Taiwan University) | Princeton Plasma Physics Lab July 27, 2012, 12:00pm to 1:15pm Geophysical Fluid Dynamics Laboratory Smagorinsky Seminar Room Geophysical Fluid Dynamics Laboratory Princeton University Forrestal Campus 201 Forrestal Road Princeton, NJ 08540-6649 "A New Paradigm for Secondary Eyewall Formation in Tropical Cyclones", Chun-Chieh Wu (National Taiwan University) Contact Information Website: Website

  14. Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microbase Cloud Products and Associated Heating Rates in the Tropical Western Pacific J. H. Mather and S. A. McFarlane Pacific Northwest National Laboratory Richland, Washington Introduction The microbase value added product (Miller et al. 2003) provides a standardized framework for calculating and storing continuous retrievals of cloud microphysical properties including liquid water content (LWC), ice water content (IWC), and cloud droplet size. Microbase is part of the larger broadband heating

  15. Tropical Africa: Land Use, Biomass, and Carbon Estimates for 1980 (NDP-055)

    SciTech Connect (OSTI)

    Brown, S.

    2002-04-16

    This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.

  16. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energys Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM programs archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  17. The Role of Shallow Cloud Moistening in MJO and Non-MJO Convective...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to quantify bulk shallow cloud moistening through evaporation of condensed water using a simple method based on observations of liquid water path, cloud depth and temporal...

  18. Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy * 2 Istituto Nazionale di Fisica della Materia, UdR Padova, Italy 3 Department of Physics, University of ...

  19. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P. Martin Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padova, Italy and Istituto Nazionale Fisica della Materia, INFM, Padova, Italy G. ...

  20. Observation

    Office of Scientific and Technical Information (OSTI)

    to an Orbital-Selective Mott Phase in A x Fe 2-y Se 2 (AK, Rb) Superconductors M. Yi, 1, 2 D. H. Lu, 3 R. Yu, 4 S. C. Riggs, 1, 2 J.-H. Chu, 1, 2 B. Lv, 5 Z. Liu, 1, 2 M. Lu,...

  1. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  2. Design Report for the Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect (OSTI)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  3. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  4. A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Zhijie Xu

    2012-07-01

    We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

  5. A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Xu, Zhijie

    2012-07-01

    We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

  6. Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain

    SciTech Connect (OSTI)

    Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.

    2014-07-15

    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.

  7. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    SciTech Connect (OSTI)

    Rosenfeld, Daniel

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  8. Voyager 2 observations of plasmas and flows out to 104 AU

    SciTech Connect (OSTI)

    Richardson, J. D.; Decker, R. B. E-mail: robert.decker@apljhu.edu

    2014-09-10

    Voyager 2 has crossed through 20 AU of the heliosheath; assuming the same heliosheath thickness as at Voyager 1, it is now two-thirds of the way to the heliopause. The plasma data are generally of good quality, although the increasing flow angle of the plasma makes analysis more difficult. The average plasma speed has remained constant but the flow angles have increased to almost 60 in the RT plane and to almost 30 in the RN plane. The average density and thermal speed have been constant since a density increase observed in 2011. Comparison of V2 plasma flows derived from plasma science experiment (PLS) data and Low Energy Charged Particle (LECP) proton anisotropies give good agreement except when heavy ion contributions or non-convective proton anisotropies are observed in the LECP data.

  9. Observation of dust torus with poloidal rotation in direct current glow discharge plasma

    SciTech Connect (OSTI)

    Kaur, Manjit Bose, Sayak; Chattopadhyay, P. K. Sharma, Devendra; Ghosh, J.; Saxena, Y. C.

    2015-03-15

    Observation of dust cloud rotation in parallel-plate DC glow discharge plasma is reported here. The experiments are carried out at high pressures (∼130 Pa) with a metallic ring placed on the lower electrode (cathode). The dust cloud rotates poloidally in the vertical plane near the cathode surface. This structure is continuous toroidally. Absence of magnetic field rules out the possibility of E × B induced ion flow as the cause of dust rotation. The dust rotational structures exist even with water cooled cathode. Therefore, temperature gradient driven mechanisms, such as thermophoretic force, thermal creep flow, and free convection cannot be causing the observed dust rotation. Langmuir probe measurement reveals the existence of a sharp density gradient near the location of the rotating dust cloud. The gradient in the density, giving rise to a gradient in the ion drag force, has been identified as the principal cause behind the rotation of dust particles.

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Properties of Cirrus over the Western Tropical Pacific as a Function of Their Assocaition with Deep Convective Outflows Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), University of Utah (a), Geophysical Fluid Dynamics Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar

  11. gray-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiatively Forced Diurnal Circulations and the Distribution of Tropical Water Vapor W. M. Gray and J. D. Sheaffer Department of Atmospheric Science Colorado State University Fort Collins, Colorado Overview Because the tropical ocean regions are the primary source of available energy for the general circulation, their principal cyclic variations (e.g., factors governing the diurnal convective cycle) must be accurately represented in global climate models (GCMs). The observed morning maximum of

  12. State observer for synchronous motors

    DOE Patents [OSTI]

    Lang, Jeffrey H. (Waltham, MA)

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  13. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    SciTech Connect (OSTI)

    Hotta, H.; Rempel, M.; Yokoyama, T.

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ?} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ?}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the ?v{sub r}{sup ?}v{sub ?}{sup ?}? correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation ?v{sub r}{sup ?}v{sub ?}{sup ?}? is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation ?v{sub r}{sup ?}v{sub ?}{sup ?}? results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  14. (Collection of data on tropical forest inventories, Rome, Italy, March 20--25, 1989): Foreign trip report

    SciTech Connect (OSTI)

    Brown, S.; Gillespie, A.

    1989-04-06

    All forestry information in the library of FAO was organized into country ''boxes,'' and all boxes for countries in tropical Asia and tropical America were searched for data on forest inventories. Information on location and extent of inventories and resulting stand and stock tables were obtained for (1) converting to biomass by using methods that were already developed and (2) calculating expansion factors (commercial volume to total biomass). This work was conducted by the University of Illinois (Drs. Sandra Brown, Principal Investigator, and Andrew Gillespie, Research Associate) for the Department of Energy's Energy Systems Program managed by Oak Ridge National Laboratory. The travelers were successful in obtaining copies of some data for most countries in tropical Asia and tropical America. Most of the inventories for Asia were for only parts of countries, whereas most in America were national in scale. With the information gathered, the travelers will be able to make biomass estimates, geographically referenced, for many forest types representing thousands of hectares in most countries in these two tropical regions.

  15. NS&T MANAGEMENT OBSERVATIONS

    SciTech Connect (OSTI)

    Gianotto, David

    2014-06-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of managements observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&Ts MOP.

  16. NS&T Management Observations

    SciTech Connect (OSTI)

    Gianotto, David

    2014-09-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of managements observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&Ts MOP.

  17. ARM - Surface Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is...

  18. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    SciTech Connect (OSTI)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun; Clark, Adam; Bikos, Dan; Dembek, Scott R.

    2014-10-01

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 ?m of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.

  19. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect (OSTI)

    Castaeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Mndez-Pinzn, H. A.; Pedroza-Rodrguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40C.

  20. The absorption chiller in large scale solar pond cooling design with condenser heat rejection in the upper convecting zone

    SciTech Connect (OSTI)

    Tsilingiris, P.T. )

    1992-07-01

    The possibility of using solar ponds as low-cost solar collectors combined with commercial absorption chillers in large scale solar cooling design is investigated. The analysis is based on the combination of a steady-state solar pond mathematical model with the operational characteristics of a commercial absorption chiller, assuming condenser heat rejection in the upper convecting zone (U.C.Z.). The numerical solution of the nonlinear equations involved leads to results which relate the chiller capacity with pond design and environmental parameters, which are also employed for the investigation of the optimum pond size for a minimum capital cost. The derived cost per cooling kW for a 350 kW chiller ranges from about 300 to 500 $/kW cooling. This is almost an order of magnitude lower than using a solar collector field of evacuated tube type.

  1. Biomass Burning Observation Project (BBOP) Final Campaign Report

    SciTech Connect (OSTI)

    Kleinman, LI; Sedlacek, A. J.

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  2. Survival and distribution of Vibrio cholerae in a tropical rain forest stream

    SciTech Connect (OSTI)

    Perez-Rosas, N.; Hazen, T.C.

    1988-12-31

    For 12 months Vibrio cholerae and fecal coliforms were monitored along with 9 other water quality parameters at 12 sites in a rain forest watershed in Puerto Rico. Densities of V. cholerae and fecal coliforms were not significantly correlated even though the highest densities of both bacteria were found at a sewage outfall. High densities of V. cholerae were also found at pristine sites high in the watershed. V. cholerae and Escherichia coli were inoculated into membrane diffusion chambers, placed at two sites and monitored for 5 days on two different occasions. Two different direct count methods indicated that the density of E. coli and V. cholerae did not change significantly during the course of either study. Physiological activity, as measured by INT-reduction and relative nucleic acid composition declined for E. coli during the first 12 h then increased and remained variable during the remainder of the study. V. cholerae activity, as measured by relative nucleic acid concentrations, remained high and unchanged for the entire study. INT-reduction in V. cholerae declined initially but regained nearly all of it`s original activity within 48 h. This study suggests that V. cholerae is an indigenous organism in tropical freshwaters and that assays other than fecal coliforms or E. coli must be used for assessing public health risk in tropical waters.

  3. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2012-06-01

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are presented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices. Capsule: "Combining dynamical modeling of high-impact weather using traditional regional climate models with statistical techniques allows for comprehensive sampling of the full distribution, uncertainty estimation, direct assessment of impacts, and increased confidence in future changes."

  4. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2013-10-19

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

  5. A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation

    SciTech Connect (OSTI)

    Zhengyu Liu; Boyin Huang

    1997-07-01

    Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the local equilibrium time, and latitudinal differential heating. Most importantly, this intensity is strongly regulated in the coupled system, with a saturation level that can be reached at a modest coupling strength. The saturation west-east sea surface temperature difference (and the associated Walker circulation) corresponds to about one-quarter of the latitudinal differential equilibrium temperature. This regulation is caused primarily by the decoupling of the SST gradient from a strong ocean current. The author`s estimate suggests that the present Pacific is near the saturation state. Furthermore, the much weaker Walker circulation system in the Atlantic Ocean is interpreted as being the result of the influence of the adjacent land, which is able to extend into the entire Atlantic to change the zonal distribution of the trade wind. The theory is also applied to understand the tropical climatology in coupled GCM simulations, in the Last Glacial Maximum climate, and in the global warming climate, as well as in the regulation of the tropical sea surface temperature. 41 refs., 15 figs.

  6. Distant Observer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Distant Observer Tool Quickly Identifies Costly Flaws in Concentrating Solar Power (CSP) Fields National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. The Distant Observer (DO) tool, developed by

  7. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    SciTech Connect (OSTI)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-06-06

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 {mu}s. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  8. Improving Parameterization of Entrainment Rate for Shallow Convection with Aircraft Measurements and Large-Eddy Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; Wu, Xianghua; Endo, Satoshi; Cao, Le; Li, Yueqing; Guo, Xiaohao

    2016-02-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less

  9. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    SciTech Connect (OSTI)

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Bellot Rubio, Luis R. [Instituto de Astrofsica de Andaluca (CSIC), Apdo. 3040, E-18080 Granada (Spain); De la Cruz Rodrguez, Jaime, E-mail: ada@astro.uio.no [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup 1} and expands at a horizontal speed of 4 km s{sup 1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup 1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90 in the magnetic bubble interior, along with temperature deficits of up to 250 K at log ? = 2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The computational domain spans from the upper convection zone to the lower corona. In the modeled chromosphere, the rising flux sheet produces a large, cool, magnetized bubble. We compare this bubble with the observed ones and find excellent agreement, including similar field strengths and velocity signals in the photosphere and chromosphere, temperature deficits, ascent speeds, expansion velocities, and lifetimes.

  10. Tuberous legumes: preliminary evaluation of tropical Australian and introduced species as fuel crops

    SciTech Connect (OSTI)

    Saxon, E.C.

    1981-04-01

    The evaluation of native and introduced legumes with starch-storing roots or tubers was undertaken to test whether plants traditionally collected as food by Australian aborigines might have a role in the development of crops for liquid fuel production (by fermentation of carbohydrates to ethanol). Tuberous-rooted legumes from overseas were planted at the Commonwealth Scientific and Industrial Research Organization, division of Tropical Crops and Pastures, Kimberley Research Station, Western Australia (15/sup 0/39'S, 128/sup 0/42'E) in December 1974, March 1978 and February 1979. Roots from the latter plantings were harvested in June 1979. Native plant material was collected during visits to aboriginal communities in the Kimberleys between April and June 1979. The native and introduced specimens were analyzed for fermentable carbohydrate and protein content. Several native plants appear more promising than introduced species as liquid fuel crops.

  11. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect (OSTI)

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  12. Biomass Burning Observation Project Specifically,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally

  13. Diffuse Shortwave Intensive Observation Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Diffuse Shortwave Intensive Observation Period The Diffuse Shortwave IOP ran from September 23 to October 12, 2001. During this IOP, Joe Michalsky (The State University of New York-Albany) and Tom Stoffel (National Renewable Energy Laboratory) deployed approximately 15 radiometers of various designs and manufacturers on the SGP Radiometer Calibration Facility. The purpose was to compare the accuracy of the radiometers for diffuse shortwave measurements. The Scripps Institution of Oceanography

  14. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  15. ARM - Mobile Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011

  16. Observation of Nonlinear Compton Scattering

    SciTech Connect (OSTI)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  17. Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.

    1985-01-01

    We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

  18. Category:Observation Wells | Open Energy Information

    Open Energy Info (EERE)

    Observation Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Observation Wells page? For detailed information on Observation Wells, click here....

  19. Observation of the Top Quark

    DOE R&D Accomplishments [OSTI]

    Kim, S. B.

    1995-08-01

    Top quark production is observed in{bar p}p collisions at{radical}s= 1.8 TeV at the Fermilab Tevatron. The Collider Detector at Fermilab (CDF) and D{O} observe signals consistent with t{bar t} to WWb{bar b}, but inconsistent with the background prediction by 4.8{sigma} (CDF), 4.6a (D{O}). Additional evidence for the top quark Is provided by a peak in the reconstructed mass distribution. The kinematic properties of the excess events are consistent with the top quark decay. They measure the top quark mass to be 176{plus_minus}8(stat.){plus_minus}10(sys.) GeV/c{sup 2} (CDF), 199{sub -21}{sup+19}(stat.){plus_minus}22(sys.) GeV/c{sup 2} (D{O}), and the t{bar t} production cross section to be 6.8{sub -2.4}{sup+3.6}pb (CDF), 6.4{plus_minus}2.2 pb (D{O}).

  20. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-04-29

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (66 ± 2%) was rapid (11 to 26 years; mean and SE: 18 ± 3 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial–millennial turnover was typically much less abundant (34 ± 3%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral-associated C over decadal scales. Steady-state inputs of mineral-associated C were statistically similar among the three topographic positions, and could represent 10–25% of annual litter production. Observed trends in mineral-associated Δ14C over time could not be fit using the single-pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic two-pool model. The large C fluxes in surface and near-surface soils documented here are supported by findings from paired 14C studies in other types of ecosystems, and suggest that most mineral-associated C cycles relatively rapidly (decadal scales) across ecosystems that span a broad range of state factors.« less

  1. Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hall, S. J.; McNicol, G.; Natake, T.; Silver, W. L.

    2015-01-16

    It has been proposed that the large soil carbon (C) stocks of humid tropical forests result predominantly from C stabilization by reactive minerals, whereas oxygen (O2) limitation of decomposition has received much less attention. We examined the importance of these factors in explaining patterns of C stocks and turnover in the Luquillo Experimental Forest, Puerto Rico, using radiocarbon (14C) measurements of contemporary and archived samples. Samples from ridge, slope, and valley positions spanned three soil orders (Ultisol, Oxisol, Inceptisol) representative of humid tropical forests, and differed in texture, reactive metal content, O2 availability, and root biomass. Mineral-associated C comprised themore » large majority (87 ± 2%, n = 30) of total soil C. Turnover of most mineral-associated C (74 ± 4%) was rapid (9 to 29 years, mean and SE 20 ± 2 years) in 25 of 30 soil samples across surface horizons (0–10 and 10–20 cm depths) and all topographic positions, independent of variation in reactive metal concentrations and clay content. Passive C with centennial – millennial turnover was much less abundant (26%), even at 10–20 cm depths. Carbon turnover times and concentrations significantly increased with concentrations of reduced iron (Fe(II)) across all samples, suggesting that O2 availability may have limited the decomposition of mineral associated C over decadal scales. Steady-state inputs of mineral-associated C were similar among the three topographic positions, and could represent 10–30% of annual litterfall production (estimated by doubling aboveground litterfall). Observed trends in mineral-associated Δ14C over time could not be fit using the single pool model used in many other studies, which generated contradictory relationships between turnover and Δ14C as compared with a more realistic constrained two-pool model. The large C fluxes in surface and near-surface soils implied by our data suggest that other studies using single-pool Δ14C models of mineral-associated C dynamics, unconstrained by multiple time points, may have systematically underestimated C turnover.« less

  2. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    SciTech Connect (OSTI)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000

  3. Final Report: DOE Project: DE-SC-0005399 Linking the uncertainty of low frequency variability in tropical forcing in regional climate change

    SciTech Connect (OSTI)

    Forest, Chris E.; Barsugli, Joseph J.; Li, Wei

    2015-02-20

    Final report for DOE Project: DE-SC-0005399 -- Linking the uncertainty of low frequency variability in tropical forcing in regional climate change. The project utilizes multiple atmospheric general circulation models (AGCMs) to examine the regional climate sensitivity to tropical sea surface temperature forcing through a series of ensemble experiments. The overall goal for this work is to use the global teleconnection operator (GTO) as a metric to assess the impact of model structural differences on the uncertainties in regional climate variability.

  4. The global climate for December 1990-February 1991: Strong temperature and precipitation contrasts over North America and Eurasia; mixed ENSO conditions in the tropics

    SciTech Connect (OSTI)

    Chelliah, M. )

    1993-07-01

    During most of the December 1990-February 1991 season sharp transcontinental temperature anomaly contrasts were evident in North America, Eurasia, and Australia. Large-scale atmospheric precipitations are more difficult to characterize. In the equatorial tropics there was some evidence of conditions similar to ENSO near the date line, but an almost complete failure of other ENSO components to appear in the east Pacific and in the tropical atmospheric circulation. 12 refs., 21 figs., 1 tab.

  5. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  6. Comet tail formation: Giotto observations

    SciTech Connect (OSTI)

    Wilken, B.; Jockers, K.; Johnstone, A.; Coates, A.; Heath, J.; Formisano, V.; Amata, E.; Winningham, J.D.; Thomsen, M.; Bryant, D.A.

    1986-01-01

    The process of mass loading of the solar wind by cometary ions, which forms comet tails, has been observed throughout the coma of comet Halley. Three distinct regimes were found where the nature of the energy and momentum coupling between solar wind and cometary ions is different. Outside the bow shock, where there is little angular scattering of the freshly ionized particles, the coupling is described by the simple pickup trajectory and the energy is controlled by the angle between the flow and the magnetic field. Just inside the bow shock, there is considerable scattering accompanied by another acceleration process which raises some particle energies well above the straightforward pickup value. Finally, closer to the nucleus, the amount of scattering decreases and the coupling is once more controlled by the magnetic field direction. 4 refs., 3 figs.

  7. Cloud Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical and Radiative Properties Derived from MODIS, VIRS, AVHRR, and GMS Data Over the Tropical Western Pacific G. D. Nowicki, M. L. Nordeen, P. W. Heck, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Atmospheric Sciences Division Langley Research Center Hampton, Virginia S. Sun-Mack Science Applications International Corporation Hampton, Virginia Introduction Utilization of the

  8. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; Sessions, S.; Herman, M. J.; Sobel, A.; Wang, S.; Kim, D.; Cheng, A.; Bellon, G.; et al

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  9. Mixed convection heat transfer to and from a horizontal cylinder in cross-flow with heating from below.

    SciTech Connect (OSTI)

    Greif, Ralph (University of California, Berkeley, CA); Evans, Gregory Herbert; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM); Laskowski, Gregory Michael

    2006-02-01

    Heat transfer to and from a circular cylinder in a cross-flow of water at low Reynolds number was studied both experimentally and numerically. The experiments were carried out in a high aspect ratio water channel. The test section inflow temperature and velocity, channel lower surface temperature and cylinder surface temperature were controlled to yield either laminar or turbulent flow for a desired Richardson number. When the lower surface was unheated, the temperatures of the lower surface and water upstream of the cylinder were maintained approximately equal and the flow was laminar. When the lower surface was heated, turbulence intensities as high as 20% were measured several cylinder diameters upstream of the cylinder due to turbulent thermal plumes produced by heating the lower surface. Variable property, two-dimensional simulations were undertaken using a variant of the u{sup 2}-f turbulence model with buoyancy production of turbulence accounted for by a simple gradient diffusion model. Predicted and measured heat flux distributions around the cylinder are compared for values of the Richardson number, Gr{sub d}/Re{sub d}{sup 2} from 0.3 to 9.3. For laminar flow, the predicted and measured heat flux results agreed to within the experimental uncertainty. When the lower surface was heated, and the flow was turbulent, there was qualitative agreement between predicted and measured heat flux distributions around the cylinder. However the predicted spatially averaged Nusselt number was from 37% to 53% larger than the measured spatially averaged Nusselt number. Additionally, spatially averaged Nusselt numbers are compared to correlations in the literature for mixed convection heat transfer to/from cylinders in cross-flow. The results presented here are larger than the correlation values. This is believed to be due to the effects of buoyancy-induced turbulence resulting from heating the lower surface and the proximity of the cylinder to that surface.

  10. Generalized chloride mass balance: Forward and inverse solutions for one-dimensional tracer convection under transient flux

    SciTech Connect (OSTI)

    Ginn, T.R.; Murphy, E.M.

    1996-12-01

    Forward and inverse solutions are provided for analysis of inert tracer profiles resulting from one-dimensional convective transport under fluxes which vary with time and space separately. The developments are displayed as an extension of conventional chloride mass balance (CMB) techniques to account for transient as well as space-dependent water fluxes. The conventional chloride mass balance has been used over two decades to estimate recharge over large time scales in arid environments. In this mass balance approach, the chloride concentration in the pore water, originating from atmospheric fallout, is inversely proportional to the flux of water through the sediments. The CMB method is especially applicable to arid and semi-arid regions where evapotranspirative enrichment of the pore water produces a distinct chloride profile in the unsaturated zone. The solutions presented allow incorporation of transient fluxes and boundary conditions in CMB analysis, and allow analysis of tracer profile data which is not constant with depth below extraction zone in terms of a rational water transport model. A closed-form inverse solution is derived which shows uniqueness of model parameter and boundary condition (including paleoprecipitation) estimation, for the specified flow model. Recent expressions of the conventional chloride mass balance technique are derived from the general model presented here; the conventional CMB is shown to be fully compatible with this transient flow model and it requires the steady-state assumption on chloride mass deposition only (and not on water fluxes or boundary conditions). The solutions and results are demonstrated on chloride profile data from west central New Mexico.

  11. New photodisintegration threshold observable in

    SciTech Connect (OSTI)

    E.A. Wulf; R.S. Canon; Sally J. Gaff; J.H. Kelley; R.M. Prior; E.C. Schreiber; M. Spraker; D.R. Tilley; H.R. Weller; M. Viviani; A. Kievsky; S. Rosati; Rocco Schiavilla

    2000-02-01

    Measurements of the cross section, vector, and tensor analyzing powers, and linear gamma-ray polarization in the radiative capture reactions D(p,y){sup 3} He and p(d,y){sup 3}He at c.m. energies in the range 0-53 keV allow the determination of the reduced matrix elements (RMEs) relevant for these transitions. From these RMEs the value of the integral which determines the Gerasimov-Drell-Hearn sum rule for He is obtained in the threshold region, corresponding to two-body breakup, and compared with the results of an ab initio microscopic three-body model calculation.The theoretical predictions for the value of this integral based on a ''nucleons-only'' assumption are an order of magnitude smaller than experiment. The discrepancy is reduced to about a factor of 2 when two-body currents are taken into account. This factor of 2 is due to an almost exact cancellation between the dominant E1 RMEs in the theoretical calculation. The excess E1 strength observed experimentally could provide useful insights into the nuclear interaction at low energies.

  12. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  13. Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems

    SciTech Connect (OSTI)

    Moers, M.E.C.; Larter, S.R. )

    1993-07-01

    Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose and glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.

  14. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    SciTech Connect (OSTI)

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    2009-04-15

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density, water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.

  15. Validation and analysis of microwave-derived rainfall over the tropics. Master's thesis

    SciTech Connect (OSTI)

    Fleishauer, R.P.

    1993-01-01

    A recently developed single channel microwave rain rate retrieval algorithm exists to measure global precipitation over the data-sparse tropical oceans. The objective of this study is to retrieve and validate rainfall using this algorithm, followed by an analysis of the derived rainfall fields. Retrieval consists of applying the algorithm technique to the extraction of four years worth of achieved data from the Electrically Scanning Microwave Radiometer (ESMR) instrument flown aboard the NIMBUS 5 satellite. The Pacific Atoll Raingage Data Set is chosen as a ground truth measure to validate the ESMR-Derived rainfall data against, comparing slope, intercept and correlation between 5 deg x 5 deg area average. Despite limitations imposed by the comparison of point measurements to area-averaged rainfall, results show a 0.80 correlation. Monthly and quarterly climatological mean rainfall estimates are produced, with a consequent analysis of prominent signals, especially in the Intertropical Convergence Zone (ITCZ), South Pacific Convergence Zone (SPCZ) and the Indian monsoon. Latent heat flux is computed, using the ESMR-derived rainfall, and plotted to show qualitatively where seasonal latent thermodynamic energy sources and sinks exist in the atmosphere. A comparison of the summer and winter quarterly composites of the above products with previously compiled climatologies and Outgoing Longwave Radiation (OLR) showed only minor discrepancies in location and intensity, which are discussed in some detail.

  16. GNEP Partners and Observers | Department of Energy

    Office of Environmental Management (EM)

    GNEP Partners and Observers GNEP Partners and Observers A list of GNEP partners and observers. PDF icon GNEP Partners and Observers More Documents & Publications Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT Senior Delegation Officials From All GNEP Participants Meeting Materials: April 21, 2008

  17. Special Emphasis Observances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity and Inclusion » Special Emphasis Observances Special Emphasis Observances The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Department of Energy observes special days, weeks, and months

  18. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene First Observation of Plasmarons in Graphene Print Wednesday, 30 June 2010 00:00 An international team of scientists performing...

  19. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations,...

  20. Convective Radio Occultations Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scienze dell'Atmosfera e del Clima, Rome, Italy Principal Investigator March 2016 Work ... Stefania Bonafoni (University of Perugia, Italy). 2.0 Notable Events or Highlights The ...

  1. Fracturing And Liquid CONvection

    Energy Science and Technology Software Center (OSTI)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modelingmore » for the coupled thermal-hydrological-mechanical processes. Conventionally, these types of problems are solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. FALCON eliminates the need for using operator-splitting methods to simulate these systems, and the scalability of the underlying MOOSE architecture allows for simulating these tightly coupled processes at the reservoir scale, allowing for examination of the system as a whole (something the operator-splitting methodologies generally cannot do).« less

  2. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect (OSTI)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  3. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    SciTech Connect (OSTI)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee; Hazen, Terry

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  4. Mitigation potential and cost in tropical forestry - relative role for agroforestry

    SciTech Connect (OSTI)

    Makundi, Willy R.; Sathaye, Jayant A.

    2004-01-01

    This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectiveness indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.

  5. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    SciTech Connect (OSTI)

    Alkasasbeh, Hamzeh Taha Sarif, Norhafizah Md Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  6. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Convective Systems Jasmine Cetrone and Robert Houze University of Washington Motivation Atmospheric heating by high clouds is important for tropical circulation. Many...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anomalies during the 2009 Year of Tropical Convection (YOTC), GCM parameterized physics have been tested at the process level and determined the suitability of these...

  8. ARM-WPac-MSEbin-poster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amazonia, suggesting further improvements are needed. Tropical Oceanic Convection CRM Test Case Interesting features of MSE-binned results and parameterization implications. A...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Manus Submitter: Wang, Y., Department of Geography Long, C. N., NOAA Global Monitoring DivisionCIRES...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of...

  11. ARM - TWP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection...

  12. Primary and secondary organics in tropical Amazonian rainforest aerosols: Chiral analysis of 2-methyltetrols

    SciTech Connect (OSTI)

    Gonzalez, Nelida; Borg-Karlson, Anna-Karin; Artaxo, Paulo; Guenther, Alex B.; Krejci, R.; Noziere, Barbara; Noone, Kevin

    2014-06-01

    This work presents the application of a newly developed method to facilitate the distinction between primary and secondary organic compounds in ambient aerosols based on their chiral analysis. The organic constituents chosen for chiral analysis are the four stereomers of the 2-methyltetrols, (2R,3S)- and (2S,3R)- methylerythritol and (2S,3S)- and (2R,3R)- methylthreitol. Ambient PM10 aerosol samples were collected between June 2008 and June 2009 near Manaus, Brazil, in a remote tropical rainforest environment of central Amazonia. The samples were analyzed for the presence of these four stereomers because qualitatively, in a previous study, they have been demonstrated to have partly primary origins. Thus the origin of these compounds may be primary and secondary from the biosynthesis and oxidation processes of isoprene within plants and also in the atmosphere. Using authentic standards, the quantified concentrations were in average 78.2 and 72.8 ng m-3 for (2R,3S)- and (2S,3R)- methylerythritol and 3.1 and 3.3 ng m-3 for (2S,3S)- and (2R,3R)- methylthreitol during the dry season and 7.1, 6.5, 2.0, and 2.2 ng m-3 during the wet season, respectively. Furthermore, these compounds were found to be outside the confidence interval for racemic mixtures (enantiomeric fraction, Ef = 0.5 -0.01) in nearly all the samples, with deviations of up to 32 % (Ef = 0.61) for (2R,3S)-methylerythritol and 47 % (Ef = 0.65) for (2S,3S)-methylthreitol indicating (99% confidence level) biologically-produced 2-methyltetrols. The minimum primary origin contribution ranged between 0.19 and 29.67 ng m-3 for the 2-methylerythritols and between 0.15 and 1.2 ng m-3 for the 2-methylthreitols. The strong correlation of the diatereomers (racemic 2-methylerythritol and 2-methylthreitol) in the wet season implied a secondary origin. Assuming the maximum secondary contribution in the dry season, the secondary fraction in the wet season was 81-99 % and in the dry season, 10 - 95 %. Nevertheless, from the total 2-methyltetrol mass, the secondary mass represented 31 % whereas the primary 69 %. These results could have been expected for PM10 aerosols and might be different for fine particles at the same site. In addition, correlations with isoprene emission estimates for this site only showed an anti-correlation with 2-methylthreitol suggesting their direct emission from biological activity. The present study reinforces the importance of the analysis of chiral organic compounds to correctly assess the contribution of primary biogenic emissions and isoprene oxidation products to biogenic secondary organic aerosol.

  13. Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database

    SciTech Connect (OSTI)

    Brown, S.

    2002-02-07

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. The data sets within this database are provided in three file formats: ARC/INFO{trademark} exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer- coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the centerpoint of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SASTM access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  14. Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests: A Database

    SciTech Connect (OSTI)

    Brown, S

    2001-05-22

    A database was generated of estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam. The data sets within this database are provided in three file formats: ARC/INFOTM exported integer grids, ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages, and generic ASCII files with x, y coordinates for use with non-GIS software packages. This database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each. These files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10{sup 6} grams) and integer-coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non-forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the center-point of each grid cell. The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10{sup 15} grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg. Fortran and SAS{trademark} access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  15. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1...

  16. Enterprise Assessments Operational Awareness Record of Observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site: Waste Isolation Pilot Plant (WIPP) Subject: Observations of the design and modification progress of ... with regards to the design process and not to any state or local ...

  17. Posters Ground-Based Radiometric Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data have also complemented other remote sensors such as K-band cloud Doppler radar and Doppler lidar. In addition, radiometric observations compose a database of ground- truth...

  18. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson P.E. & Timothy Jannik - Savannah River National Laboratory Teresa Eddy - Savannah...

  19. Report: Human Capital Discussion and Observations

    Office of Environmental Management (EM)

    Human Capital Discussion, Observations, and Recommendations August 24, 2006 Submitted by: Mr. A. James Barnes and Mr. Dennis Ferrigno Background: During the March 23-24, 2006 EMAB...

  20. EA-1964: National Ecological Observation Network (NEON)

    Broader source: Energy.gov [DOE]

    The National Science Foundation (NSF) prepared an EA that evaluated potential environmental impacts of the proposed National Ecological Observation Network (NEON), a continental-scale network of...

  1. Aircraft S-HIS Observations during MPACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aircraft S-HIS Observations during MPACE DeSlover, Daniel University of Wisconsin Holz, Robert University of Wisconsin, CIMMS Turner, David University of Wisconsin-Madison...

  2. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  3. Measuring the seeds of ion outflow: auroral sounding rocket observations of low-altitude ion heating and circulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; Hampton, D. L.; Bekkeng, T. A.; Cohen, I. J.; Conde, M.; Fisher, L. E.; Horak, P.; Lessard, M. R.; et al

    2016-01-25

    Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E→xB→ convection away from the arc (poleward) andmore » downflows of hundreds of m s-1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s-1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less

  4. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore » asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  5. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    SciTech Connect (OSTI)

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOT asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.

  6. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    SciTech Connect (OSTI)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  7. Simulation of the intraseasonal variability over the Eastern Pacific ITCZ

    Office of Scientific and Technical Information (OSTI)

    in climate models (Journal Article) | SciTech Connect Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models Citation Details In-Document Search Title: Simulation of the intraseasonal variability over the Eastern Pacific ITCZ in climate models During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two

  8. Microsoft PowerPoint - ARM2008_norfolk.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties from CloudSat and ARM Observations at Manus Island Zheng Zheng Liu, Roger Liu, Roger Marchand Marchand , and Thomas Ackerman , and Thomas Ackerman University of Washington Sally McFarlane Sally McFarlane Pacific Northwest National Laboratory 2 Motivation * Radiative heating is important * Cloud vertical differential heating affects local convective dynamics * Horizontal differential heating helps to maintain large scale tropical dynamics * Challenge and solution * Radiative heating

  9. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    check on the interpretation of the data-were not available. The current observations are direct and the results are unambiguous because they were obtained from a simple material...

  10. ARM - Field Campaign - Biomass Burning Observation Project -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or...

  11. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure has remained elusive. Working at the ALS, a team of researchers from Korea, Japan, and the U.S. has now observed electron spin-charge separation in a one-dimensional...

  12. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  13. Observing AAPI Heritage Month | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Observing AAPI Heritage Month Observing AAPI Heritage Month May 1, 2012 - 4:42pm Addthis Bill Valdez Bill Valdez Director of Workforce Management What are the key facts? President Obama has also appointed a historic number of highly qualified Asian Americans and Pacific Islanders to senior positions in his Administration Throughout May,the White House Initiative on Asian Americans and Pacific Islanders will be sharing the many ways in which the Obama Administration has helped the Asian American

  14. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  15. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons First Direct Observation of Spinons and Holons Print Wednesday, 30 August 2006 00:00 Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single

  16. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene First Observation of Plasmarons in Graphene Print Wednesday, 30 June 2010 00:00 An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were

  17. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

    SciTech Connect (OSTI)

    Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

    2014-04-27

    We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

  18. Vertical air motions over the Tropical Western Pacific for validating cloud resolving and regional models

    SciTech Connect (OSTI)

    Williams, Christopher R.

    2015-03-16

    The objective of this project was to estimate the vertical air motion using Doppler velocity spectra from two side-by-side vertically pointing radars. The retrieval technique was applied to two different sets of radars. This first set was 50- and 920-MHz vertically pointing radars near Darwin, Australia. The second set was 449-MHz and 2.8-GHz vertically pointing radars deployed at SGP for MC3E. The retrieval technique uses the longer wavelength radar (50 or 449 MHz) to observe both the vertical air motion and precipitation motion while the shorter wavelength radar (920 MHz or 2.8 GHz) observes just the precipitation motion. By analyzing their Doppler velocity spectra, the precipitation signal in the 920 MHz or 2.8 GHz radar is used to mask-out the precipitation signal in the 50 or 449 MHz radar spectra, leaving just the vertical air motion signal.

  19. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect (OSTI)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.

  20. Effect of microscale protrusions on local fluid flow and mass transport in the presence of forced convection

    SciTech Connect (OSTI)

    Matzen, G.W.

    1997-01-01

    Three-dimensional creeping flow around single, axisymmetric protrusions is studied numerically using the boundary-integral technique. Emphasis is placed upon cylindrical protrusions on plane walls for various height-to-radius (h-to-a) aspect ratios, but cones and sections of spheres protruding from plane walls are also briefly examined. The presented items include shear-stress distributions, shear-stress contours, extents of the fluid-flow disturbance, total forces and torques on the cylinders, streamlines, and skin-friction lines. Also included is a discussion of flow topology around axisymmetric geometries. No flow reversal is observed for cylindrical protrusions with aspect ratios greater than 2.4 to 2.6. At higher aspect ratios, the fluid tends to be swept around cylindrical protrusions with little vertical motion. At lower aspect ratios, the strength of the recirculation increases, and the recirculation region becomes wider in the transverse direction and narrower in the flow direction. Also, the recirculation pattern begins to resemble the closed streamline patterns in two-dimensional flow over square ridges. However, unlike two-dimensional flow, closed streamline patterns are not observed. For arbitrary axisymmetric geometries, the extent of the fluid-flow disturbance can be estimated with the total force that is exerted on the protrusion. When the same force is exerted on protrusions with different aspect ratios, the protrusion with the higher aspect ratio tends to have a greater disturbance in the flow direction and a smaller disturbance in the transverse direction. The total force exerted on cylindrical protrusions with rounded corners is only slightly lower than the total force exerted on cylindrical protrusions with sharp corners.

  1. Selecting Observation Platforms for Optimized Anomaly Detectability under Unreliable Partial Observations

    SciTech Connect (OSTI)

    Wen-Chiao Lin; Humberto E. Garcia; Tae-Sic Yoo

    2011-06-01

    Diagnosers for keeping track on the occurrences of special events in the framework of unreliable partially observed discrete-event dynamical systems were developed in previous work. This paper considers observation platforms consisting of sensors that provide partial and unreliable observations and of diagnosers that analyze them. Diagnosers in observation platforms typically perform better as sensors providing the observations become more costly or increase in number. This paper proposes a methodology for finding an observation platform that achieves an optimal balance between cost and performance, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, an observation platform optimization algorithm is utilized that uses two greedy heuristics, one myopic and another based on projected performances. These heuristics are sequentially executed in order to find best observation platforms. The developed algorithm is then applied to an observation platform optimization problem for a multi-unit-operation system. Results show that improved observation platforms can be found that may significantly reduce the observation platform cost but still yield acceptable performance for correctly inferring the occurrences of special events.

  2. Singular behavior of jet substructure observables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  3. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect (OSTI)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  4. Testing the copernican principle via cosmological observations

    SciTech Connect (OSTI)

    Bolejko, Krzysztof; Wyithe, J. Stuart B. E-mail: swyithe@unimelb.edu.au

    2009-02-15

    Observations of distances to Type-Ia supernovae can be explained by cosmological models that include either a gigaparsec-scale void, or a cosmic flow, without the need for Dark Energy. Instead of invoking dark energy, these inhomogeneous models instead violate the Copernican Principle. we show that current cosmological observations (Supernovae, Baryon Acoustic Oscillations and estimates of the Hubble parameters based on the age of the oldest stars) are not able to rule out inhomogeneous anti-Copernican models. The next generation of surveys for baryonic acoustic oscillations will be sufficiently precise to either validate the Copernican Principle or determine the existence of a local Gpc scale inhomogeneity.

  5. ARM - PI Product - Niamey Dust Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust Observations ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Niamey Dust Observations Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be

  6. Observed and modeled patterns of covariability between low-level cloudiness and the structure of the trade-wind layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nuijens, Louise; Medeiros, Brian; Sandu, Irina; Ahlgrimm, Maike

    2015-11-06

    We present patterns of covariability between low-level cloudiness and the trade-wind boundary layer structure using long-term measurements at a site representative of dynamical regimes with moderate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10 CMIP5 models. By using single-time step output at a single location, we find that models can produce a fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratificationmore » at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the tradewind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing the observed behavior in all respects. As a result, these findings suggest that climate models do not realistically represent the physical processes that underlie the coupling between trade-wind clouds and their environments in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.« less

  7. Observational constraints on Tachyon and DBI inflation

    SciTech Connect (OSTI)

    Li, Sheng; Liddle, Andrew R. E-mail: arl@roe.ac.uk

    2014-03-01

    We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed c{sub s}{sup 2}?1) and relativistic behaviour (c{sub s}{sup 2}||1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic c{sub s}{sup 2}?1 case, determined by the competition of model parameters, while for the relativistic case c{sub s}{sup 2}?0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.

  8. Assessing health impacts in complex eco-epidemiological settings in the humid tropics: Modular baseline health surveys

    SciTech Connect (OSTI)

    Winkler, Mirko S.; Divall, Mark J.; Krieger, Gary R.; Schmidlin, Sandro; Magassouba, Mohamed L.; Knoblauch, Astrid M.; Singer, Burton H.; Utzinger, Juerg

    2012-02-15

    The quantitative assessment of health impacts has been identified as a crucial feature for realising the full potential of health impact assessment (HIA). In settings where demographic and health data are notoriously scarce, but there is a broad range of ascertainable ecological, environmental, epidemiological and socioeconomic information, a diverse toolkit of data collection strategies becomes relevant for the mainly small-area impacts of interest. We present a modular, cross-sectional baseline health survey study design, which has been developed for HIA of industrial development projects in the humid tropics. The modular nature of our toolkit allows our methodology to be readily adapted to the prevailing eco-epidemiological characteristics of a given project setting. Central to our design is a broad set of key performance indicators, covering a multiplicity of health outcomes and determinants at different levels and scales. We present experience and key findings from our modular baseline health survey methodology employed in 14 selected sentinel sites within an iron ore mining project in the Republic of Guinea. We argue that our methodology is a generic example of rapid evidence assembly in difficult-to-reach localities, where improvement of the predictive validity of the assessment and establishment of a benchmark for longitudinal monitoring of project impacts and mitigation efforts is needed.

  9. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̄μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν̄μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̄2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ̄) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν̄μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  10. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect (OSTI)

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

  11. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect (OSTI)

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  12. Self-potential observations during hydraulic fracturing

    SciTech Connect (OSTI)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  13. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  14. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  15. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  16. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  17. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  18. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  19. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  20. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  1. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  2. Program Management Review Steering Committee Observations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Review Jim Dooley Forest Concepts, LLC Steering Committee Observations 2 Members Steering Committee: Member Affiliation Jim Dooley Forest Concepts, LLC Dean Dreamel ExxonMobil/University of California, Berkeley Jim Kellis DuPont Mike Lakeman Boeing and Algae Biomass Organization Valri Lightner DOE Loan Programs Office Jack McDonald Independent Shelie Miller University of Michigan Carol Werner Environmental and Energy Study Institute 3 Outline I. BETO Portfolio II. Coordination

  3. ARM - Arctic Lower Troposphere Observed Structure (ALTOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govField CampaignsArctic Lower Troposphere Observed Structure (ALTOS) Related Links ALTOS Home ISDAC Home ARM Field Campaigns Home News Department of Energy Announces $7 Million in Funding for Climate Research Field Studies October 23, 2008 Tethered Balloon Headlines Field Campaign at North Slope of Alaska October 28, 2010 Arctic Campaign Cut Short; Spring Restart A Possibility November 3, 2010 ALTOS Backgrounder (PDF, 1.3MB) Experiment Planning Proposal Abstract Science Plan (PDF, 902KB)

  4. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect (OSTI)

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  5. Direct Observation of Paramagnons in Palladium

    SciTech Connect (OSTI)

    Doubble, R.; Hayden, S M.; Dai, Pengcheng; Mook Jr, Herbert A; Thompson, James R; Frost, C.

    2010-01-01

    We report an inelastic neutron scattering study of the spin fluctuations in the nearly ferromagnetic element palladium. Dispersive over-damped collective magnetic excitations or 'paramagnons' are observed up to 128 meV. We analyze our results in terms of a Moriya-Lonzarich-type spin-fluctuation model and estimate the contribution of the spin fluctuations to the low-temperature heat capacity. In spite of the paramagnon excitations being relatively strong, their relaxation rates are large. This leads to a small contribution to the low-temperature electronic specific heat.

  6. William Herschel, the First Observational Cosmologist

    ScienceCinema (OSTI)

    Lemonick, Michael [Princeton University and Time Magazine, Princeton, New Jersey, United States

    2010-01-08

    In the late 1700s, a composer, orchestra director and soloist named William Herschel became fascinated with astronomy, and, having built his own reflecting telescope, went out in his garden in Bath, England, one night and discovered Uranus?the first planet in human history ever found by an individual. The feat earned him a lifetime pension from King George III. But Herschel considered the discovery to be relatively unimportant in comparison to his real work: understanding the composition, structure and evolution of the universe. In pursuing that work, he became the first observational cosmologist.

  7. Reported Significant Observation (RSO) studies. Revision 1

    SciTech Connect (OSTI)

    Eicher, R.W.

    1992-12-01

    The Reported Significant Observation (RSO) study used in the field of safety is an information-gathering technique where employee-participants describe situations they have personally witnessed involving good and bad practices and safe and unsafe conditions. This information is useful in the risk assessment process because it focuses on hazards and thereby facilitates their elimination. However, RSO cannot be the only component in a risk assessment program. Used by the Air Force in their aviation psychology program and further developed by John C. Flanagan, RSO is more commonly known as the ``Critical Incident Technique.`` However, the words ``Critical`` and ``Incident`` had other connotations in nuclear safety, prompting early users within the Aerojet Nuclear Company to coin the more fitting title of ``Reported Significant Observations.`` The technique spread slowly in the safety field primarily because the majority of users were researchers interested in after-the-fact data, with application to everyday problems and behavioral factors. RSO was formally recognized as a significant hazard reduction tool during the development of the Management Oversight and Risk Tree (MORT) program for the US Atomic Energy Commission. The Department of Energy (DOE) has, in turn, adopted MORT for its system safety program, and this has resulted in RSO being a modern and viable technique for DOE contractor safety programs.

  8. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect (OSTI)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  9. Fermi LAT Observations of LS 5039

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  10. Head Observation Organizer (HObO)

    SciTech Connect (OSTI)

    Steven Predmore

    2008-03-06

    The Head Observation Organizer, HObO, is a computer program that stores and manages measured ground-water levels. HObO was developed to help ground-water modelers compile, manage, and document water-level data needed to calibrate ground-water models. Well-construction and water-level data from the U.S. Geological Survey National Water Database (NWIS) easily can be imported into HObO from the NWIS web site (NWISWeb). The water-level data can be flagged to determine which data will be included in the calibration data set. The utility program HObO_NWISWeb was developed to simplify the down loading of well and water-level data from NWISWeb. An ArcGIS NWISWeb Extension was developed to retrieve site information from NWISWeb. A tutorial is presented showing the basic elements of HObO.

  11. Global Volunteer Observing Ship (VOS) Program Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Volunteer Observing Ship (VOS) Program. The VOS project is coordinated by the UNESCO International Ocean Carbon Coordination Project (IOCCP). The international groups from 14 countries have been outfitting research ships and commercial vessels with automated CO2 sampling equipment to analyze the carbon exchange between the ocean and atmosphere. [copied from http://cdiac.ornl.gov/oceans/genInfo.html] CDIAC provides a map interface with the shipping routes of the 14 countries involved marked in different colors. Clicking on the ship's name on that route brings up information about the vessel, the kinds of measurements collected and the timeframe, links to project pages, and, most important, the links to the data files themselves. The 14 countries are: United States, United Kingdom, Japan, France, Germany, Australia, Canada, Spain, Norway, New Zealand, China (including Taiwan), Iceland, and the Netherlands. Both archived and current, underway data can be accessed from the CDIAC VOS page.

  12. Constraint effects observed in crack initiation stretch

    SciTech Connect (OSTI)

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  13. Resolved multifrequency radio observations of GG Tau

    SciTech Connect (OSTI)

    Andrews, Sean M.; Birnstiel, T.; Rosenfeld, K. A.; Wilner, D. J.; Chandler, Claire J.; Pérez, L. M.; Isella, Andrea; Ricci, L.; Carpenter, J. M.; Calvet, N.; Corder, S. A.; Deller, A. T.; Dullemond, C. P.; Greaves, J. S.; Harris, R. J.; Henning, Th.; Linz, H.; Kwon, W.; Lazio, J.; Mundy, L. G.; and others

    2014-06-01

    We present subarcsecond resolution observations of continuum emission associated with the GG Tau quadruple star system at wavelengths of 1.3, 2.8, 7.3, and 50 mm. These data confirm that the GG Tau A binary is encircled by a circumbinary ring at a radius of 235 AU with a FWHM width of ∼60 AU. We find no clear evidence for a radial gradient in the spectral shape of the ring, suggesting that the particle size distribution is spatially homogeneous on angular scales ≳0.''1. A central point source, likely associated with the primary component (GG Tau Aa), exhibits a composite spectrum from dust and free-free emission. Faint emission at 7.3 mm is observed toward the low-mass star GG Tau Ba, although its origin remains uncertain. Using these measurements of the resolved, multifrequency emission structure of the GG Tau A system, models of the far-infrared to radio spectrum are developed to place constraints on the grain size distribution and dust mass in the circumbinary ring. The non-negligible curvature present in the ring spectrum implies a maximum particle size of 1-10 mm, although we are unable to place strong constraints on the distribution shape. The corresponding dust mass is 30-300 M {sub ⊕}, at a temperature of 20-30 K. We discuss how this significant concentration of relatively large particles in a narrow ring at a large radius might be produced in a local region of higher gas pressures (i.e., a particle 'trap') located near the inner edge of the circumbinary disk.

  14. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  15. Observational tests for ?(t)CDM cosmology

    SciTech Connect (OSTI)

    Pigozzo, C.; Carneiro, S.; Dantas, M.A.; Alcaniz, J.S. E-mail: aldinez@on.br E-mail: alcaniz@on.br

    2011-08-01

    We investigate the observational viability of a class of cosmological models in which the vacuum energy density decays linearly with the Hubble parameter, resulting in a production of cold dark matter particles at late times. Similarly to the flat ?CDM case, there is only one free parameter to be adjusted by the data in this class of ?(t)CDM scenarios, namely, the matter density parameter. To perform our analysis we use three of the most recent SNe Ia compilation sets (Union2, SDSS and Constitution) along with the current measurements of distance to the BAO peaks at z = 0.2 and z = 0.35 and the position of the first acoustic peak of the CMB power spectrum. We show that in terms of ?{sup 2} statistics both models provide good fits to the data and similar results. A quantitative analysis discussing the differences in parameter estimation due to SNe light-curve fitting methods (SALT2 and MLCS2k2) is studied using the current SDSS and Constitution SNe Ia compilations. A matter power spectrum analysis using the 2dFGRS is also performed, providing a very good concordance with the constraints from the SDSS and Constitution MLCS2k2 data.

  16. Optical monitor for observing turbulent flow

    DOE Patents [OSTI]

    Albrecht, Georg F. (Livermore, CA); Moore, Thomas R. (Rochester, NY)

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  17. Observation on the role of chlorine in high temperature erosion-corrosion of alloys in an AFBC system

    SciTech Connect (OSTI)

    Xie, W.; Orndorff, W.; Smith, J.; Pan, W.P.; Riley, J.T.; Anderson, K.; Smith, S.; Ho, K.

    1997-12-31

    Two 1,000-hour burns were conducted with the 12-inch (0.3m) laboratory AFBC system at Western Kentucky University. Operating conditions similar to those used at the 160 MW AFBC system at the TVA Shawnee Steam Plant located near Paducah, KY were used. A 1,000-hour burn was done with a low-chlorine (0.012% Cl and 3.0% S) Western Kentucky No.9 coal. A second 1,000-hour burn was conducted with high-chlorine (0.28% Cl and 2.4% S) Illinois No.6 coal. Four different metal alloys [carbon steel C1020 (0.18% C and 0.05% Cr), 304 SS (18.39% Cr and 8.11% Ni), 309 SS (23.28% Cr and 13.41% Ni), and 347 SS (18.03% Cr and 9.79% Ni)] were exposed uncooled in the freeboard at the entrance to the convection pass, where the metal temperature was approximately 900K. The carbon steel samples were essentially destroyed. However, it was expected that C1020 carbon steel samples would not withstand the high temperatures selected for the testing. A small amount of scale failure was observed on the other three samples in both test runs. Based on the SEM-EDS mapping results, there is no localized chloride distribution observed on the surface of the coupons, neither in the scale failure area nor on the rest of the metal part. Some trace amounts of chloride was found, but it was evenly distributed on the surface of the coupons. There is no concentration of chloride on the spot of scale failure. The scale failure might be due to sulfur attack and/or the effect of erosion. Further study with higher chlorine content coals for more conclusive information is needed.

  18. A Study of Longwave Radiation Codes for Climate Studies: Validation with ARM Observations and Tests in General Circulation Models

    SciTech Connect (OSTI)

    Robert G. Ellingson

    2004-09-28

    One specific goal of the Atmospheric Radiation Measurements (ARM) program is to improve the treatment of radiative transfer in General Circulation Models (GCMs) under clear-sky, general overcast and broken cloud conditions. Our project was geared to contribute to this goal by attacking major problems associated with one of the dominant radiation components of the problem --longwave radiation. The primary long-term project objectives were to: (1) develop an optimum longwave radiation model for use in GCMs that has been calibrated with state-of-the-art observations for clear and cloudy conditions, and (2) determine how the longwave radiative forcing with an improved algorithm contributes relatively in a GCM when compared to shortwave radiative forcing, sensible heating, thermal advection and convection. The approach has been to build upon existing models in an iterative, predictive fashion. We focused on comparing calculations from a set of models with operationally observed data for clear, overcast and broken cloud conditions. The differences found through the comparisons and physical insights have been used to develop new models, most of which have been tested with new data. Our initial GCM studies used existing GCMs to study the climate model-radiation sensitivity problem. Although this portion of our initial plans was curtailed midway through the project, we anticipate that the eventual outcome of this approach will provide both a better longwave radiative forcing algorithm and from our better understanding of how longwave radiative forcing influences the model equilibrium climate, how improvements in climate prediction using this algorithm can be achieved.

  19. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    SciTech Connect (OSTI)

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-10

    We examine the connection between the observed star-forming sequence (SFR ? M {sup ?}) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope ? ? 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M {sub ?}) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that ? = 1 at log (M/M {sub ?}) < 10.5 and ? = 0.7-0.13z (Whitaker et al.) at log (M/M {sub ?}) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ?0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  20. Observational Constraints on the Nature of the Dark Energy: First...

    Office of Scientific and Technical Information (OSTI)

    Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey Citation Details In-Document Search Title: Observational...

  1. ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Observations in the ARM Pilot Radiation Observation Experiment Campaign Data Sets IOP Participant Data Source Description Final Data Tooman WSI Order Data Westwater ftirraob...

  2. Observation of Large Photoacoustic Signal Phase Changes During...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Observation of Large Photoacoustic Signal Phase Changes During a Diffusion Process Citation Details In-Document Search Title: Observation of Large Photoacoustic...

  3. Aided by Simulations, Scientists Observe Atomic Collapse State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collapse State Observed Aided by Simulations, Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013...

  4. Observation of a Macroscopically Quantum-Entangled Insulator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of a Macroscopically Quantum-Entangled Insulator Observation of a Macroscopically Quantum-Entangled Insulator Print Wednesday, 27 May 2009 00:00 It has recently been...

  5. Net Zero Waste - Tools and Technical Support ...and other observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Waste - Tools and Technical Support ...and other observations Net Zero Waste - Tools and Technical Support ...and other observations Presentation at Waste-to-Energy using...

  6. USGS-Earth Resources Observation and Science (EROS) Center |...

    Open Energy Info (EERE)

    USGS-Earth Resources Observation and Science (EROS) Center Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USGS-Earth Resources Observation and Science (EROS) Center...

  7. Common Cyber Security Vulnerabilities Observed in Control System...

    Energy Savers [EERE]

    Common Cyber Security Vulnerabilities Observed in Control System Assessments by the INL NSTB Program Common Cyber Security Vulnerabilities Observed in Control System Assessments by...

  8. Observation of Ordered Structures in Counterion Layers near Wet...

    Office of Scientific and Technical Information (OSTI)

    Observation of Ordered Structures in Counterion Layers near Wet Charged Surfaces: A Potential Mechanism for Charge Inversion Citation Details In-Document Search Title: Observation ...

  9. ARM - Field Campaign - Arctic Lower Troposphere Observed Structure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsArctic Lower Troposphere Observed Structure (ALTOS) Campaign Links Science Plan ALTOS Website Related Campaigns Supplement to Arctic Lower Troposphere Observed...

  10. Tropical Winds N

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industries such as steel factories and oil refineries also create a lot of air pollution. In other words, whenever you see smoke coming out of a factory's chimney, you are seeing ...

  11. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect (OSTI)

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  12. INTERPLANETARY PROPAGATION OF SOLAR ENERGETIC PARTICLE HEAVY IONS OBSERVED AT 1 AU AND THE ROLE OF ENERGY SCALING

    SciTech Connect (OSTI)

    Mason, G. M.; Haggerty, D. K.; Li, G.; Zank, G. P.; Cohen, C. M. S.; Leske, R. A.; Mewaldt, R. A.; Desai, M. I.

    2012-12-20

    We have studied {approx}0.3 to >100 MeV nucleon{sup -1} H, He, O, and Fe in 17 large western hemisphere solar energetic particle events (SEP) to examine whether the often observed decrease of Fe/O during the rise phase is due to mixing of separate SEP particle populations, or is an interplanetary transport effect. Our earlier study showed that the decrease in Fe/O nearly disappeared if Fe and O were compared at energies where the two species interplanetary diffusion coefficient were equal, and therefore their kinetic energy nucleon{sup -1} was different by typically a factor {approx}2 ({sup e}nergy scaling{sup )}. Using an interplanetary transport model that includes effects of focusing, convection, adiabatic deceleration, and pitch angle scattering we have fit the particle spectral forms and intensity profiles over a broad range of conditions where the 1 AU intensities were reasonably well connected to the source and not obviously dominated by local shock effects. The transport parameters we derive are similar to earlier studies. Our model follows individual particles with a Monte Carlo calculation, making it possible to determine many properties and effects of the transport. We find that the energy scaling feature is preserved, and that the model is reasonably successful at fitting the magnitude and duration of the Fe/O ratio decrease. This along with successfully fitting the observed decrease of the O/He ratio leads us to conclude that this feature is best understood as a transport effect. Although the effects of transport, in particular adiabatic deceleration, are very significant below a few MeV nucleon{sup -1}, the spectral break observed in these events at 1 AU is only somewhat modified by transport, and so the commonly observed spectral breaks must be present at injection. For scattering mean free paths of the order of 0.1 AU adiabatic deceleration is so large below {approx}200 keV nucleon{sup -1} that ions starting with such energies at injection are cooled sufficiently as to be unobservable at 1 AU. Because of the complicating factors of different spectral break energies for different elements, it appears that SEP abundances determined below the break are least susceptible to systematic distortions.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparing Global Atmospheric Model Simulations of Tropical Convection Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Mean profiles of (first column) total precipitation normalized Q1, (second column) convective precipitation normalized convective heating, (third column) stratiform heating, and (fourth column) convective

  14. A Radar-based Observing System for Validation of Cloud Resolving Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar System Designed for Validation of Cloud Resolving Models Pavlos Kollias Atmospheric Science Division Brookhaven National Laboratory Cloud REsolving MOdel Radar (CREMORA) Scientific Justification Why do we need to know 3-D structure of cloud systems? Slide provided by Tom Ackerman -Evaluation of *Cloud System Resolving Models (one pathway to parameterization development and to climate models) *Satellite retrievals of cloud system properties -Lifecycle of convective systems - all phases of

  15. Far infrared supplement: Catalog of infrared observations, second edition

    SciTech Connect (OSTI)

    Gezari, D.Y.; Schmitz, M.; Mead, J.M.

    1988-08-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  16. Observation of 690 MV m^-1 Electron Accelerating Gradient with...

    Office of Scientific and Technical Information (OSTI)

    Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure Citation Details In-Document Search Title: Observation of 690 MV m-1...

  17. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    SciTech Connect (OSTI)

    Chitta, L. P.; Kariyappa, R.; Van Ballegooijen, A. A.; DeLuca, E. E.; Solanki, S. K.

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.

  18. Kalman filter data assimilation: Targeting observations and parameter estimation

    SciTech Connect (OSTI)

    Bellsky, Thomas Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  19. NS&T Managment Observations - 1st Quarter

    SciTech Connect (OSTI)

    David Gianotto

    2014-06-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of managements observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&Ts MOP.

  20. Radioactivity in Precipitation: Methods & Observations from Savannah River

    Office of Environmental Management (EM)

    Site | Department of Energy Radioactivity in Precipitation: Methods & Observations from Savannah River Site Radioactivity in Precipitation: Methods & Observations from Savannah River Site Presentation from the 33rd Tritium Focus Group Meeting held in Aiken, South Carolina on April 22-24, 2014. PDF icon Radioactivity in Precipitation: Methods & Observations from Savannah River Site More Documents & Publications DOE-HDBK-1129-2008 F-Tank Farm Performance Assessment, Rev 1

  1. Nanometer-scale temperature imaging for independent observation of Joule

    Office of Scientific and Technical Information (OSTI)

    and Peltier effects in phase change memory devices (Journal Article) | SciTech Connect Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices Citation Details In-Document Search Title: Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric

  2. Direct observation of resistive heating at graphene wrinkles and grain

    Office of Scientific and Technical Information (OSTI)

    boundaries (Journal Article) | SciTech Connect Direct observation of resistive heating at graphene wrinkles and grain boundaries Citation Details In-Document Search Title: Direct observation of resistive heating at graphene wrinkles and grain boundaries We directly measure the nanometer-scale temperature rise at wrinkles and grain boundaries (GBs) in functioning graphene devices by scanning Joule expansion microscopy with 50 nm spatial and 0.2K temperature resolution. We observe a small

  3. Current and Past 48 Hours HMS Observations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Current and Past 48 Hours HMS Observations Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Current and Past 48 Hours HMS Observations Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Date Ceiling (ft) Visibility (miles) Liquid

  4. Enterprise Assessments - Operational Awareness Record of the Observation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Waste Isolation Pilot Plant Horizon-14 Exercise - January 2015 | Department of Energy - Operational Awareness Record of the Observation of the Waste Isolation Pilot Plant Horizon-14 Exercise - January 2015 Enterprise Assessments - Operational Awareness Record of the Observation of the Waste Isolation Pilot Plant Horizon-14 Exercise - January 2015 December 2014 Operational Awareness Record of the Observation of the Waste Isolation Pilot Plant Horizon-14 Exercise (EA-WIPP-2014-12-08) The

  5. Ultrafast myoglobin structural dynamics observed with an X-ray...

    Office of Scientific and Technical Information (OSTI)

    to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such 'proteinquake' observed in myoglobin through...

  6. Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM TWP Nauru Observations to Evaluate a Simple Thermodynamic Model of the Subcloud Layer Under Fair-Weather Cumulus Conditions Albrecht, Bruce University of Miami Kollias,...

  7. Observed Relations Between Snowfall Microphysics and Triple-Frequency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to derive important snowfall microphysical parameters like median mass diameter, fractal dimension, or particle habit. These observations further revealed that naturally occurring...

  8. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Citation Details ...

  9. Observation of Ion Acceleration and Heating during Collisionless...

    Office of Scientific and Technical Information (OSTI)

    ... This unique in-plane potential is established by electron dynamics around the electron ... Furthermore, heat conduction is too large to sustain the observed ion temperature ...

  10. Nanometer-scale temperature imaging for independent observation...

    Office of Scientific and Technical Information (OSTI)

    temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices Citation Details In-Document Search Title: Nanometer-scale temperature ...

  11. Observation Wells At East Brawley Area (Matlick & Jayne, 2008...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At East Brawley Area (Matlick & Jayne, 2008) Exploration Activity Details...

  12. COLLOQUIUM: Initial Observations from the New Horizons Flyby...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Observations from the New Horizons Flyby of Pluto Dr. Andy Cheng Johns Hopkins University Applied Physics Laboratory Colloquium Committee: The Princeton Plasma...

  13. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  14. Observation Wells At Lightning Dock Geothermal Area (Reeder,...

    Open Energy Info (EERE)

    Geothermal Area (Reeder, 1957) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957)...

  15. Observation Wells At Lightning Dock Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Area (Warpinski, Et Al., 2004)...

  16. Observation Wells At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At The Needles Area (DOE GTP) Exploration Activity...

  17. Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Mccoy Geothermal Area (DOE GTP) Exploration...

  18. Simultaneous observation of nascent plasma and bubble induced...

    Office of Scientific and Technical Information (OSTI)

    in water with various pulse durations Citation Details In-Document Search Title: Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with ...

  19. Genetically encoded sensors enable real-time observation of metabolite...

    Office of Scientific and Technical Information (OSTI)

    8, 2016 Title: Genetically encoded sensors enable real-time observation of metabolite production Authors: Rogers, Jameson K. ; Church, George M. Publication Date: 2016-02-08 ...

  20. Direct observation of resistive heating at graphene wrinkles...

    Office of Scientific and Technical Information (OSTI)

    Direct observation of resistive heating at graphene wrinkles and grain boundaries Citation ... Sponsoring Org: SC USDOE - Office of Science (SC) Country of Publication: United ...