Powered by Deep Web Technologies
Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fractional Electromagnetic Waves  

E-Print Network [OSTI]

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

2011-08-31T23:59:59.000Z

2

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since  

E-Print Network [OSTI]

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

3

Marine controlled-source elec-tromagnetic (CSEM) sounding is  

E-Print Network [OSTI]

and hazard mitigation KAREN WEITEMEYER, STEVEN CONSTABLE, and KERRY KEY, Scripps Institution of Oceanography

Key, Kerry

4

Electromagnetic Wave Dynamics in  

E-Print Network [OSTI]

possibilities for strong localization of electromagnetic radiation in a dense and ultracold atomic gas sample an ultracold atomic rubidium gas sample, showing the coherent backscattering cone. The angular width of electrical excita- tion of condensed samples.3 Ongoing experimental and theoretical research directed toward

5

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network [OSTI]

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

6

Some Wave Equations for Electromagnetism and Gravitation  

E-Print Network [OSTI]

The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Zi-Hua Weng

2010-08-11T23:59:59.000Z

7

On Generating Gravity Waves with Matter and Electromagnetic Waves  

E-Print Network [OSTI]

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

8

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect (OSTI)

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

9

Counting energy packets in the electromagnetic wave  

E-Print Network [OSTI]

We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

Stefan Popescu; Bernhard Rothenstein

2007-05-18T23:59:59.000Z

10

On the gravitational fields created by the electromagnetic waves  

E-Print Network [OSTI]

We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.

A. Loinger; T. Marsico

2011-06-11T23:59:59.000Z

11

Electromagnetic Waves in the De Sitter Space  

E-Print Network [OSTI]

5-Dimensional wave equation for a massive particle of spin 1 in the background of de Sitter space-time model is solved in static coordinates. The spherical 5-dimensional vectors $A_{a}, a= 1,...,5$ of three types, $j,j+1, j-1$ are constructed. In massless case they give electromagnetic wave solutions, obeying the Lorentz condition. 5-form of equations in massless case is used to produce recipe to build electromagnetic wave solutions of the types $\\Pi, E,M$; the first is trivial and can be removed by a gauge ransformation. The recipe is specified to produce spherical $\\Pi, E, M$ solutions in static coordinates.

V. S. Otchik; V. M. Red'kov

2010-01-24T23:59:59.000Z

12

Electromagnetic waves, gravitational coupling and duality analysis  

E-Print Network [OSTI]

In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.

E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna

2005-10-27T23:59:59.000Z

13

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network [OSTI]

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

14

Electromagnetic waves with nonlinear dispersion law  

E-Print Network [OSTI]

Last year physicists in Europe have measured the velocity of the neutrinos particles. They found the neutrinos moving faster than the speed of light in vacuum. This result means that Einstein's relativity principle and its consequences in modern physics need a global additional renovation. In present paper the part of this problem is considered in terms of basic Maxwell's method only. By means of introduction a diffusion like displacement current the new super wave equation was derived, which permits of its solution be described the electromagnetic waves moving some faster than the conventional speed of light in vacuum especially in a gamma ray of a very short wave length region. The unique properties of these waves are that they undergo nonlinear dispersion law, uppermost limit of which is restricted. Discussion of further experimental problems and a number of estimations are given for the macro physic super wave equations also.

Pavel Mednis

2012-02-08T23:59:59.000Z

15

Electromagnetic wave scattering by small bodies  

E-Print Network [OSTI]

A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

A. G. Ramm

2008-04-21T23:59:59.000Z

16

Electromagnetic waves in a polydisperse dusty plasma  

SciTech Connect (OSTI)

The properties of low-frequency electromagnetic waves in a polydisperse dusty plasma are studied. The dispersion relation for the waves propagating at an arbitrary angle to the external magnetic field is derived, with the coefficients explicitly determined by the dust-size distribution function. The dependence of wave dispersion on properties of the dust-size distribution function is analysed. It is shown that the cutoff for an oblique propagation in plasma with a wide scatter of dust sizes takes place at a much lower frequency than in a plasma with monosized dust particles. It is found that dispersion properties of a transversal magnetosonic wave mode around dust–cyclotron frequencies considerably differ from those in a plasma with monosized dust. In a plasma with low mass fraction of dust particles, the dispersion is smooth without the cutoff and the resonance intrinsic for a plasma with monosized dust. Increase of the dust fraction results in splitting of the dispersion curve on to two branches. Further increase of the dust fraction leads to emergence of the third branch located between the cutoffs and restricted from the lower and higher frequencies by two resonances. The dependence of the frequencies of cutoffs and resonances on the width of the dust-size distribution, its slope and the dust mass fraction are analysed. It is shown that the transparency frequency windows in a plasma with polydisperse dust are wider for transversal elecromagnetic waves, but narrower for longitudinal or oblique waves.

Prudskikh, V. V.; Shchekinov, Yu. A. [Department of Physics, Southern Federal University, Rostov on Don 344090 (Russian Federation)] [Department of Physics, Southern Federal University, Rostov on Don 344090 (Russian Federation)

2013-10-15T23:59:59.000Z

17

Electromagnetic wave scattering by many small particles  

E-Print Network [OSTI]

Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

A. G. Ramm

2006-08-18T23:59:59.000Z

18

Electromagnetic wave scattering by many conducting small particles  

E-Print Network [OSTI]

A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

A. G. Ramm

2008-04-21T23:59:59.000Z

19

Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation  

E-Print Network [OSTI]

12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

Santolik, Ondrej

20

Electromagnetic Waves Propagation in 3D Plasma Configurations  

E-Print Network [OSTI]

Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Surface electromagnetic wave equations in a warm magnetized quantum plasma  

SciTech Connect (OSTI)

Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2014-07-15T23:59:59.000Z

22

The modified electromagnetism and the emergent longitudinal wave  

E-Print Network [OSTI]

The classical theory of electromagnetism has been revisited and the possibility of longitudinal photon wave is explored. It is shown that the emergence of longitudinal wave is a consequence of Lorenz gauge (condition) violation. Proca, Vlaenderen & Waser and Arbab theories are investigated.

Arbab I Arbab; Mudhahir Al-Ajmi

2014-01-22T23:59:59.000Z

23

Reflection of electromagnetic waves from mixtures of plane gravitational and scalar waves  

E-Print Network [OSTI]

We consider colliding wave packets consisting of hybrid mixtures of electromagnetic, gravitational and scalar waves. Irrespective of the scalar field, the electromagnetic wave still reflects from the gravitational wave. Some reflection processes are given for different choice of packets in which the Coulomb-like component $\\Psi_2$ vanishes. Exact solution for multiple reflection of an electromagnetic wave from successive impulsive gravitational waves is obtained in a closed form. It is shown that a succesive sign flip in the Maxwell spinor arises as a result of encountering with an impulsive train (i.e. the Dirac's comb curvature) of gravitational waves. Such an observable effect may be helpful in the detection of gravitational wave bursts.

Ozay Gurtug; Mustafa Halilsoy; Ozlem Unver

2006-08-22T23:59:59.000Z

24

Electromagnetic waves and Stokes parameters in the wake of a gravitational wave  

E-Print Network [OSTI]

A theoretical description of electromagnetic waves in the background of a (weak) gravitational wave is presented. Explicit expressions are obtained for the Stokes parameters during the passage of a plane-fronted gravitational wave described by the Ehlers-Kundt metric. In particular, it is shown that the axis of the polarization ellipse oscillates, its ellipticity remaining constant.

Shahen Hacyan

2012-06-15T23:59:59.000Z

25

Reverse Time Migration for Extended Obstacles: Electromagnetic Waves  

E-Print Network [OSTI]

We propose a new single frequency reverse time migration (RTM) algorithm for imaging extended targets using electromagnetic waves. The imaging functional is defined as the imaginary part of the cross-correlation of the Green function for Helmholtz equation and the back-propagated electromagnetic field. The resolution of our RTM method for both penetrable and non-penetrable extended targets is studied by virtue of Helmholtz-Kirchhoff identity for the time-harmonic Maxwell equation. The analysis implies that our imaging functional is always positive and thus may have better stability properties. Numerical examples are provided to demonstrate the powerful imaging quality and confirm our theoretical results.

Junqing Chen; Zhiming Chen; Guanghui Huang

2014-06-10T23:59:59.000Z

26

Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks  

E-Print Network [OSTI]

We present waveform observations of electromagnetic lower hybrid and whistler waves with f_ci 1.01. Thus, the whistler mode waves appear to be driven by a heat flux instability and cause perpendicular heating of the halo electrons. The lower hybrid waves show a much weaker correlation between \\partialB and normalized heat flux magnitude and are often observed near magnetic field gradients. A third type of event shows fluctuations consistent with a mixture of both lower hybrid and whistler mode waves. These results suggest that whistler waves may indeed be regulating the electron heat flux and the halo temperature anisotropy, which is important for theories and simulations of electron distribution evolution from the sun to the earth.

Wilson, L B; Szabo, A; Breneman, A; Cattell, C A; Goetz, K; Kellogg, P J; Kersten, K; Kasper, J C; Maruca, B A; Pulupa, M

2012-01-01T23:59:59.000Z

27

The momentum of an electromagnetic wave inside a dielectric  

SciTech Connect (OSTI)

The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.

Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

2013-09-15T23:59:59.000Z

28

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Pablo L. Saldanha

2010-02-04T23:59:59.000Z

29

Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts  

E-Print Network [OSTI]

It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

Saldanha, Pablo L

2009-01-01T23:59:59.000Z

30

Gradient instabilities of electromagnetic waves in Hall thruster plasma  

SciTech Connect (OSTI)

This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

Tomilin, Dmitry [Department of Electrophysics, Keldysh Research Centre, Moscow 125438 (Russian Federation)

2013-04-15T23:59:59.000Z

31

Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma  

SciTech Connect (OSTI)

The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)

2014-04-15T23:59:59.000Z

32

Screening of electromagnetic field fluctuations by s--wave and d--wave superconductors  

E-Print Network [OSTI]

We investigate theoretically the shielding of the electromagnetic field fluctuations by s-wave and d-wave superconductors within the framework of macroscopic quantum electrodynamics. The spin flip lifetime is evaluated above a niobium and a bismuth strontium calcium copper oxide (BSCCO) surface, and the screening effect is studied as a function of the thickness of the superconducting layer. Further, we study the different temperature dependence of the atomic spin relaxation above the two superconductors.

Rachele Fermani; Stefan Scheel

2010-01-04T23:59:59.000Z

33

Pion light-front wave function, parton distribution and the electromagnetic form factor  

E-Print Network [OSTI]

We derive a light-front wave function of the pion, which reproduces its valence parton distribution and a electromagnetic form factor consistent with data.

Thomas Gutsche; Valery E. Lyubovitskij; Ivan Schmidt; Alfredo Vega

2014-10-23T23:59:59.000Z

34

Electromagnetic wave propagation through an overdense magnetized collisional plasma layer  

SciTech Connect (OSTI)

The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.

Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P. [Voss Scientific LLC, Albuquerque, New Mexico 87108 (United States)

2009-08-15T23:59:59.000Z

35

Nanofocusing of mid-infrared electromagnetic waves on graphene monolayer  

SciTech Connect (OSTI)

Nanofocusing of mid-infrared (MIR) electromagnetic waves on graphene monolayer with gradient chemical potential is investigated with numerical simulation. On an isolated freestanding monolayer graphene sheet with spatially varied chemical potential, the focusing spot sizes of frequencies between 44 THz and 56 THz can reach around 1.6?nm and the intensity enhancement factors are between 2178 and 654. For 56 THz infrared, a group velocity as slow as 5×10{sup ?5} times of the light speed in vacuum is obtained at the focusing point. When the graphene sheet is placed on top of an aluminum oxide substrate, the focusing spot size of 56 THz infrared reduces to 1.1?nm and the intensity enhancement factor is still as high as 220. This structure offers an approach for focusing light in the MIR regime beyond the diffraction limit without complicated device geometry engineering.

Qiu, Weibin, E-mail: wbqiu@hqu.edu.cn, E-mail: wqiu@semi.ac.cn [College of Information Science and Engineering, National Huaqiao University, Xiamen 361021, Fujian (China); Institute of Semiconductors, Chinese Academy of Science, 100083 Beijing (China); Liu, Xianhe; Zhao, Jing; He, Shuhong; Ma, Yuhui; Wang, Jia-Xian [College of Information Science and Engineering, National Huaqiao University, Xiamen 361021, Fujian (China); Pan, Jiaoqing [Institute of Semiconductors, Chinese Academy of Science, 100083 Beijing (China)

2014-01-27T23:59:59.000Z

36

Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding  

E-Print Network [OSTI]

) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels

Eagar, Thomas W.

37

Electromagnetic waves destabilized by runaway electrons in near-critical electric fields  

SciTech Connect (OSTI)

Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

2013-01-15T23:59:59.000Z

38

THE BIANCHI IDENTITIES, ELECTROMAGNETIC WAVES, AND CHARGE CONSERVATION IN THE P(4) THEORY OF  

E-Print Network [OSTI]

OF GRAVITATION AND ELECTROMAGNETISM J. H. Chilton and K. S. Hammon Department of Physics North Carolina State, namely the affine geometry of the P(4) = O(1, 3) R4 theory of gravitation and electromag- netism (Norris) theory one obtains a conservation law and a wave equation for the electromagnetic field that parallels

Norris, Larry K.

39

Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid wave in ionospheric heating experiments  

E-Print Network [OSTI]

Computer simulations for direct conversion of the HF electromagnetic wave into the upper hybrid emissions (SEE). A direct conversion process is proposed as an excitation mech- anism of the upper hybrid, 1996) The electrostatic waves at the UH resonance were assumed to be excited via ``direct conversion

Paris-Sud XI, Université de

40

Electromagnetic wave scattering by small perfectly conducting particles and applications  

E-Print Network [OSTI]

A formula for the electromagnetic (EM) field in the medium, in which many small perfectly conducting particles of an arbitrary shape are distributed, is derived.

Alexander G. Ramm

2014-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column  

SciTech Connect (OSTI)

Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

2014-01-15T23:59:59.000Z

42

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E. Miroshnichenko, S. Flach, and M. V. Fistul  

E-Print Network [OSTI]

Breathers in Josephson junction ladders: Resonances and electromagnetic wave spectroscopy A. E localized states discrete breathers and linear electromagnetic excitations EE's in Josephson junction lattices 6 , and localized resistive states in Josephson junction arrays 7­10 . The latter systems

Flach, Sergej

43

Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma  

E-Print Network [OSTI]

233 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma P.5 03BCs) is launched into a subcritical argon plasma (ne ~1011 cm-3, P0 ~ 5 10-4 Torr), resulting.35 1. Introduction. Our purpose is to study the ion acoustic wave excited in a subcritical plasma

Boyer, Edmond

44

Self-generation and management of spin-electromagnetic wave solitons and chaos  

SciTech Connect (OSTI)

Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation)

2014-06-09T23:59:59.000Z

45

Electromagnetic wave propagation in a random distribution of C{sub 60} molecules  

SciTech Connect (OSTI)

Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

2014-10-15T23:59:59.000Z

46

Heating of ions by high frequency electromagnetic waves in magnetized plasmas  

SciTech Connect (OSTI)

The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be properly quantified in terms of the wave parameters and can be conveniently used to find ideal conditions needed to heat ions by high frequency electromagnetic waves.

Zestanakis, P. A.; Kominis, Y.; Hizanidis, K. [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece); Ram, A. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-07-15T23:59:59.000Z

47

Large-amplitude circularly polarized electromagnetic waves in magnetized plasma  

SciTech Connect (OSTI)

We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

Vasko, I. Y., E-mail: vaskoiy@gmail.com; Artemyev, A. V.; Zelenyi, L. M. [Space Research Institute, RAS, Moscow (Russian Federation)] [Space Research Institute, RAS, Moscow (Russian Federation)

2014-05-15T23:59:59.000Z

48

Self-focusing of intense high frequency electromagnetic waves in a collisional magnetoactive plasma  

SciTech Connect (OSTI)

The self-focusing of an intense electromagnetic beam in a collisional magnetoactive plasma has been investigated by the perturbation method. Considering the relativistic and ponderomotive nonlinearities and the first three terms of perturbation expansion for the electron density and velocity, the nonlinear wave equation is obtained. This wave equation is solved by applying the source dependent expansion method and the evolution of electromagnetic beam spot-size is discussed. It is shown that the laser spot-size decreases with increasing the collision frequency and external magnetic field strength.

Niknam, A. R.; Hashemzadeh, M. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of); Aliakbari, A.; Majedi, S. [Physics Department, Faculty of Science, Tafresh University, Tafresh (Iran, Islamic Republic of); Haji Mirzaei, F. [Physics Department, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of)

2011-11-15T23:59:59.000Z

49

Extinction theorem and propagation of electromagnetic waves between two semi-infinite anisotropic magnetoelectric materials  

E-Print Network [OSTI]

Based on molecular optics we investigate the reflection and refraction of an electromagnetic wave between two semi-infinite anisotropic magnetoelectric materials. In terms of Hertz vectors and the principle of superposition, we generalize the extinction theorem and derive the propagation characteristics of wave. Using these results we can easily explain the physical origin of Brewster effect. Our results extend the extinction theorem to the propagation of wave between two arbitrary anisotropic materials and the methods used can be applied to other problems of wave propagation in materials, such as scattering of light.

Weixing Shu; Zhongzhou Ren; Hailu Luo; Fei Li; Qin Wu

2006-10-11T23:59:59.000Z

50

Electromagnetic wave propagation in an active medium and the equivalent Schrdinger equation with an energy-dependent complex potential  

E-Print Network [OSTI]

Electromagnetic wave propagation in an active medium and the equivalent Schrödinger equation with an energy-dependent complex potential H. Bahlouli,* A. D. Alhaidari, and A. Al Zahrani Physics Department to provide an alternative, but equivalent, representation of plane electromagnetic em wave propagation

51

Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma  

SciTech Connect (OSTI)

The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

Jian Liu and Hong Qin

2011-11-07T23:59:59.000Z

52

All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices  

SciTech Connect (OSTI)

Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

Nikitin, Andrey A.; Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland); Semenov, Alexander A.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Lähderanta, E. [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland)

2014-03-03T23:59:59.000Z

53

Terahertz electromagnetic wave generation and amplification by an electron beam in the elliptical plasma waveguides with dielectric rod  

SciTech Connect (OSTI)

The propagation of electromagnetic waves in an elliptical plasma waveguide including strongly magnetized plasma column and a dielectric rod is investigated. The dispersion relation of guided hybrid electromagnetic waves is obtained. Excitation of the waves by a thin annular relativistic elliptical electron beam will be studied. The time growth rate of electromagnetic waves is obtained. The effects of relative permittivity constant of dielectric rod, radius of dielectric rod, accelerating voltage, and current density of the annular elliptical beam on the growth rate and the frequency spectra are numerically presented.

Rahmani, Z., E-mail: z.rahmani@kashanu.ac.ir; Jazi, B. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Department of Condense Matter, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

2014-09-15T23:59:59.000Z

54

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network [OSTI]

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection...

Revalski, Mitchell; Wickramasinghe, Thulsi

2015-01-01T23:59:59.000Z

55

Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure V. A. Fedotov,1,* P. L. Mladyonov,2  

E-Print Network [OSTI]

Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure V. A. Fedotov,1 of the effect would be reversed for an electromag- netic wave propagating in opposite directions. It is a polarization sensitive transmission effect asymmetric with respect to the direc- tion of wave propagation

Zheludev, Nikolay

56

2D modeling of electromagnetic waves in cold plasmas  

SciTech Connect (OSTI)

The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

Crombé, K. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels, Belgium and Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, B (Belgium); Van Eester, D.; Koch, R.; Kyrytsya, V. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels (Belgium)

2014-02-12T23:59:59.000Z

57

Propagation of electromagnetic waves in a structured ionosphere  

SciTech Connect (OSTI)

The ionosphere is a birefringent medium which strongly affects the transmission of very high frequency (vhf) radio signals. These effects must be understood in detail if one wishes to look at the propagation of wide bandwidth coherent signals through the ionosphere. We develop a general perturbative solution of Maxwell`s equations for vhf signals propagating in the ionosphere, subject only to mild restrictions on the ionospheric structure. This solution can be extended to give the propagating field to any desired degree of precision. The case of a laminar ionosphere with harmonic waves is developed in greater detail, and we show how to calculate the ray path in this case. This solution is used to elucidate the effects of refraction on the phase of the signal, and we calculate the spatial- and frequency-coherence functions. The electric field for a laminar ionosphere without waves is analyzed to clarify the physical origins of the terms modifying the signal phase. We then calculate the solution in this case for the Appleton-Hartree model of the ionospheric dielectric function and express the result as a series in inverse powers of frequency. We conclude by calculating the ray path for a model ionosphere using the Appleton-Hartree dielectric function and a parabolic layer for the electron density.

Murphy, T.

1996-06-01T23:59:59.000Z

58

Shapiro steps and stimulated radiation of electromagnetic waves due to Josephson oscillations in layered superconductors.  

SciTech Connect (OSTI)

Single crystals of layered high-temperature superconductors intrinsically behave as stacks of Josephson junctions. We analyze response of current-biased stack of intrinsic junctions to irradiation by the external electromagnetic (em) wave. In addition to well-known Shapiro steps in the current-voltage characteristics, irradiation promotes stimulated radiation which adds with spontaneous Josephson radiation from the crystal. Such enhancement of radiation from current-biased crystal may be used for amplification of em waves. Irradiation also facilitates synchronization of Josephson oscillations in all intrinsic Josephson junctions of a single crystal as well as oscillations in intrinsic junctions of different crystals.

Bulaevskii, L. N.; Kosehlev, A. E.; Tachiki, M.; Materials Science Division; LANL; Univ. of Tokyo

2008-01-01T23:59:59.000Z

59

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network [OSTI]

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

2015-02-03T23:59:59.000Z

60

A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma  

SciTech Connect (OSTI)

A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi'an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi'an Shaanxi 710071 (China)

2013-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Full-wave Surface Integral Equation Method for Electromagnetic-circuit Simulation of Three-dimensional Interconnects in Layered Media  

E-Print Network [OSTI]

FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS IN LAYERED MEDIA A Dissertation by NUR KURT KARSILAYAN Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Electrical Engineering FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS...

Karsilayan, Nur

2011-08-08T23:59:59.000Z

62

Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma  

SciTech Connect (OSTI)

The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ?{sub c}/?<1 (?{sub c} and ? are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ?{sub c}/?>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (?{sub c}/?)<1/(?{sub c}/?)>1 by increasing the magnetic field strength.

Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of)] [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)] [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

2013-08-15T23:59:59.000Z

63

Numerical approximation of the Schrödinger equation with the electromagnetic field by the Hagedorn wave packets  

SciTech Connect (OSTI)

In this paper, we approximate the semi-classical Schrödinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(?{sup 1/2}), where ? is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(?{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ? is not very small.

Zhou, Zhennan, E-mail: zhou@math.wisc.edu

2014-09-01T23:59:59.000Z

64

Graphene as a high impedance surface for ultra-wideband electromagnetic waves  

SciTech Connect (OSTI)

The metals are regularly used as reflectors of electromagnetic fields emitted by antennas ranging from microwaves up to THz. To enhance the reflection and thus the gain of the antenna, metallic high impedance surfaces (HIS) are used. HIS is a planar array of continuous metallic periodic cell surfaces able to suppress surface waves, which cause multipath interference and backward radiation in a narrow bandwidth near the cell resonance. Also, the image currents are reduced, and therefore the antenna can be placed near the HIS. We demonstrate that graphene is acting as a HIS surface in a very large bandwidth, from microwave to THz, suppressing the radiation leakages better than a metal.

Aldrigo, Martino; Costanzo, Alessandra [Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” – DEI, University of Bologna, Viale del Risorgimento, 2, 40132 Bologna (Italy); Dragoman, Mircea [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania); Dragoman, Daniela [Department of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania)

2013-11-14T23:59:59.000Z

65

Propagation of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency  

SciTech Connect (OSTI)

In this paper, we investigate the absorption spectra of terahertz electromagnetic wave in plasma with inhomogeneous collision frequency. Profiles are introduced to describe the non-uniformity of collision frequency. It is interesting to find that when the plasma is collision frequency inhomogeneous, the absorption spectrum would decreases faster than that in uniform plasma. And the rate of decreasing would be different when the profile changes. Two parameters are set up to predict how the profiles affect the absorption spectra. Furthermore, the effects of electron density are also considered.

Tian, Yuan; Han, YiPing; Ling, YingJie [School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071 (China)] [School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071 (China); Ai, Xia [National Laboratory of Science and Technology on Antennas and Microwaves Xidian University, Xi'an 710071 (China)] [National Laboratory of Science and Technology on Antennas and Microwaves Xidian University, Xi'an 710071 (China)

2014-02-15T23:59:59.000Z

66

Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma  

SciTech Connect (OSTI)

Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2012-07-15T23:59:59.000Z

67

Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves  

E-Print Network [OSTI]

We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.

Urzhumov, Yaroslav; Smith, David R; 10.1063/1.3691242

2012-01-01T23:59:59.000Z

68

Coherent interaction of a monochromatic gravitational wave with both elastic bodies and electromagnetic circuits  

E-Print Network [OSTI]

The interaction of a gravitational wave with a system made of an RLC circuit forming one end of a mechanical harmonic oscillator is investigated. We show that, in some configurations, the coherent interaction of the wave with both the mechanical oscillator and the RLC circuit gives rise to a mechanical quality factor increase of the electromagnetic signal. When this system is used as an amplifier of gravitational periodic signals in the frequency range 50-1000 Hz, at ultracryogenic temperatures and for sufficiently long integration times (up to 4 months), a sensitivity of 10^(-24)-10^(-27) on the amplitude of the metric could be achieved when thermal noise, shot noise and amplifier back--action are considered.

Enrico Montanari; Pierluigi Fortini

1998-08-26T23:59:59.000Z

69

Surfatron acceleration of protons by an electromagnetic wave at the heliosphere periphery  

SciTech Connect (OSTI)

The trapping and subsequent efficient surfatron acceleration of weakly relativistic protons by an electromagnetic wave propagating across an external magnetic field in plasma at the heliosphere periphery is considered. The problem is reduced to analysis of a second-order time-dependent nonlinear equation for the wave phase on the particle trajectory. The conditions of proton trapping by the wave, the dynamics of the components of the particle momentum and velocity, the structure of the phase plane, the particle trajectories, and the dependence of the acceleration rate on initial parameters of the problem are analyzed. The asymptotic behavior of the characteristics of accelerated particles for the heliosphere parameters is investigated. The optimum conditions for surfatron acceleration of protons by an electromagnetic wave are discussed. It is demonstrated that the experimentally observed deviation of the spectra of cosmic-ray protons from standard power-law dependences can be caused by the surfatron mechanism. It is shown that protons with initial energies of several GeV can be additionally accelerated in the heliosphere (the region located between the shock front of the solar wind and the heliopause at distances of about 100 astronomical units (a.u.) from the Sun) up to energies on the order of several thousands of GeV. In order to explain the proton spectra in the energy range of ?20–500 GeV, a two-component phenomenological model is proposed. The first component corresponds to the constant (in this energy range) galactic contribution, while the second (variable) component corresponds to the heliospheric contribution, which appears due to the additional acceleration of soft cosmic-ray protons at the heliosphere periphery. Variations in the proton spectra measured on different time scales between 1992 and 2008 in the energy range from several tens to several hundred GeV, as well as the dependence of these spectra on the heliospheric weather, can be explained by surfatron acceleration of protons in the heliosphere.

Loznikov, V. M., E-mail: loznikov@yandex.ru; Erokhin, N. S.; Zol’nikova, N. N.; Mikhailovskaya, L. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)] [Russian Academy of Sciences, Space Research Institute (Russian Federation)

2013-10-15T23:59:59.000Z

70

Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves  

DOE Patents [OSTI]

An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

1989-11-28T23:59:59.000Z

71

Particle dynamics and deviation effects in the field of a strong electromagnetic wave  

E-Print Network [OSTI]

Some strong field effects on test particle motion associated with the propagation of a plane electromagnetic wave in the exact theory of general relativity are investigated. Two different profiles of the associated radiation flux are considered in comparison, corresponding to either constant or oscillating electric and magnetic fields with respect to a natural family of observers. These are the most common situations to be experimentally explored, and have a well known counterpart in the flat spacetime limit. The resulting line elements are determined by a single metric function, which turns out to be expressed in terms of standard trigonometric functions in the case of a constant radiation flux, and in terms of special functions in the case of oscillating flux, leading to different features of test particle motion. The world line deviation between both uncharged and charged particles on different spacetime trajectories due to the combined effect of gravitational and electromagnetic forces is studied. The interaction of charged particles with the background radiation field is also discussed through a general relativistic description of the inverse Compton effect. Motion as well as deviation effects on particles endowed with spin are studied too. Special situations may occur in which the direction of the spin vector change during the interaction, leading to obsevables effects like spin-flip.

Donato Bini; Andrea Geralico; Maria Haney; Antonello Ortolan

2014-08-23T23:59:59.000Z

72

Utilization of electromagnetic detector for selection and detection of high-frequency relic gravitational waves  

E-Print Network [OSTI]

It is shown that coupling system between fractal membranes and a Gaussian beam passing through a static magnetic field has strong selection capability for the stochastic relic gravitational wave background. The relic GW components propagating along the positive direction of the symmetrical axis of the Gaussian beam might generate an optimal electromagnetic perturbation while the perturbation produced by the relic GW components propagating along the negative and perpendicular directions to the symmetrical axis will be much less than the former.The influence of the random fluctuation of the relic GWs to such effect can be neglected and the influence of the random fluctuation of the relic GWs to such effect can be neglected.

Fangyu Li; Zhenya Chen; Ying Yi

2005-11-03T23:59:59.000Z

73

Phase field method to optimize dielectric devices for electromagnetic wave propagation  

SciTech Connect (OSTI)

We discuss a phase field method for shape optimization in the context of electromagnetic wave propagation. The proposed method has the same functional capabilities as the level set method for shape optimization. The first advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. The second is compatibility with the topology optimization method due to the similar domain representation and the sensitivity analysis. Structural shapes are represented by the phase field function defined in the design domain, and this function is optimized by solving a time-dependent reaction diffusion equation. The artificial double-well potential function used in the equation is derived from sensitivity analysis. We study four types of 2D or 2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic crystal design based on the Bloch theory and photonic crystal wave guide design, and two are the recent topics of designing dielectric left-handed metamaterials and dielectric ring resonators.

Takezawa, Akihiro, E-mail: akihiro@hiroshima-u.ac.jp; Kitamura, Mitsuru, E-mail: kitamura@naoe.hiroshima-u.ac.jp

2014-01-15T23:59:59.000Z

74

Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field  

SciTech Connect (OSTI)

We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.

Colavita, E. [Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, México, D.F., 09790 (Mexico)] [Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, México, D.F., 09790 (Mexico); Hacyan, S., E-mail: hacyan@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, A. P. 20-364, México D. F., 01000 (Mexico)

2014-03-15T23:59:59.000Z

75

Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)  

SciTech Connect (OSTI)

Efficient coupling of thermal electron Bernstein waves (EBW) to ordinary mode (Omode) electromagnetic radiation has been measured in plasmas heated by energetic neutral beams and high harmonic fast waves in the National Spherical Torus Experiment (NSTX) [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol.3, p. 1135]. The EBW to electromagnetic mode coupling efficiency was measured to be 0.8 {+-} 0.2, compared to a numerical EBW modeling prediction of 0.65. The observation of efficient EBW coupling to O-mode, in relatively good agreement with numerical modeling, is a necessary prerequisite for implementing a proposed high power EBW current drive system on NSTX.

G. Taylor; P.C. Efthimion; B.P. LeBlanc; M.D. Carter; J.B. Caughman; J.B. Wilgen; J. Preinhaelter; R.W. Harvey; S.A. Sabbagh

2005-02-02T23:59:59.000Z

76

Tracing the geometry around a massive, axisymmetric body to measure, through gravitational waves, its mass moments and electromagnetic moments  

E-Print Network [OSTI]

The geometry around a rotating massive body, which carries charge and electrical currents, could be described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). When a small body is orbiting this massive body, it will move on geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper is a generalization of previous similar results by Ryan. The fact that the electromagnetic moments of spacetime can be measured demonstrates that one can obtain information about the electromagnetic field purely from gravitational wave analysis. Additionally, these measurements could be used as a test of the no-hair theorem for black holes.

T. P. Sotiriou; T. A. Apostolatos

2004-10-25T23:59:59.000Z

77

Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection  

E-Print Network [OSTI]

In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300um, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as we...

Zhang, Xingyu; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Lee, Charles Y -C; Chen, Ray T

2015-01-01T23:59:59.000Z

78

Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response  

E-Print Network [OSTI]

The cosmic strings(CSs) may be one important source of gravitational waves(GWs), and it has been intensively studied due to its special properties such as the cylindrical symmetry. The CSs would generate not only usual continuous GW, but also impulsive GW that brings more concentrated energy and consists of different GW components broadly covering low-, intermediate- and high-frequency bands simultaneously. These features might underlie interesting electromagnetic(EM) response to these GWs generated by the CSs. In this paper, with novel results and effects, we firstly calculate the analytical solutions of perturbed EM fields caused by interaction between impulsive cylindrical GWs (would be one of possible forms emitted from CSs) and background celestial high magnetic fields or widespread cosmological background magnetic fields, by using rigorous Einstein - Rosen metric. Results show: perturbed EM fields are also in the impulsive form accordant to the GW pulse, and asymptotic behaviors of the perturbed EM fields are fully consistent with the asymptotic behaviors of the energy density, energy flux density and Riemann curvature tensor of corresponding impulsive cylindrical GWs. The analytical solutions naturally give rise to the accumulation effect which is proportional to the term of distance^1/2, and based on it, we for the first time predict potentially observable effects in region of the Earth caused by the EM response to GWs from the CSs.

H. Wen; F. Y. Li; Z. Y. Fang; A. Beckwith

2014-05-04T23:59:59.000Z

79

Full-wave algorithms for model order reduction and electromagnet analysis of impedance and scattering  

E-Print Network [OSTI]

As technology advances and sophisticated electronic systems achieve ubiquity, the demand for thorough, efficient Electromagnetic (EM) analysis continues to rise. The prohibitive costs of constructing and maintaining ...

Klemas, Thomas J. (Thomas Jonas)

2005-01-01T23:59:59.000Z

80

Understanding the Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves  

E-Print Network [OSTI]

Searches for gravitational-wave backgrounds using pulsar timing arrays look for correlations in the timing residuals induced by the background across the pulsars in the array. The correlation signature of an isotropic, unpolarized gravitational-wave background predicted by general relativity follows the so-called Hellings and Downs curve, which is a relatively simple function of the angle between a pair of pulsars. To aid students and beginning researchers interested in pulsar timing, we give a pedagogical discussion of the Helling and Downs curve for pulsar timing arrays, considering simpler analogous scenarios involving sound and electromagnetic waves. We calculate Hellings-and-Downs type functions for these two scenarios and develop a framework suitable for doing more general correlation calculations.

Jenet, Fredrick A

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Understanding the Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves  

E-Print Network [OSTI]

Searches for gravitational-wave backgrounds using pulsar timing arrays look for correlations in the timing residuals induced by the background across the pulsars in the array. The correlation signature of an isotropic, unpolarized gravitational-wave background predicted by general relativity follows the so-called Hellings and Downs curve, which is a relatively simple function of the angle between a pair of pulsars. To aid students and beginning researchers interested in pulsar timing, we give a pedagogical discussion of the Helling and Downs curve for pulsar timing arrays, considering simpler analogous scenarios involving sound and electromagnetic waves. We calculate Hellings-and-Downs type functions for these two scenarios and develop a framework suitable for doing more general correlation calculations.

Fredrick A. Jenet; Joseph D. Romano

2014-12-03T23:59:59.000Z

82

Particle-In-Cell Simulations of a Nonlinear Transverse Electromagnetic Wave in a Pulsar Wind Termination Shock  

E-Print Network [OSTI]

A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over $\\gtrsim 10^2$ skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale (at least 0.05") might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.

O. Skjaeraasen; A. Melatos; A. Spitkovsky

2005-08-08T23:59:59.000Z

83

Particle-In-Cell Simulations of a Nonlinear Transverse Electromagnetic Wave in a Pulsar Wind Termination Shock  

SciTech Connect (OSTI)

A 2.5-dimensional particle-in-cell code is used to investigate the propagation of a large-amplitude, superluminal, nearly transverse electromagnetic (TEM) wave in a relativistically streaming electron-positron plasma with and without a shock. In the freestreaming, unshocked case, the analytic TEM dispersion relation is verified, and the streaming is shown to stabilize the wave against parametric instabilities. In the confined, shocked case, the wave induces strong, coherent particle oscillations, heats the plasma, and modifies the shock density profile via ponderomotive effects. The wave decays over {approx}> 10{sup 2} skin depths; the decay length scale depends primarily on the ratio between the wave frequency and the effective plasma frequency, and on the wave amplitude. The results are applied to the termination shock of the Crab pulsar wind, where the decay length-scale ({approx}> 0.05''?) might be comparable to the thickness of filamentary, variable substructure observed in the optical and X-ray wisps and knots.

Skjaeraasen, Olaf; /Inst. Theor. Astrophys., Oslo; Melatos, A.; /Melbourne U.; Spitkovsky, A.; /KIPAC, Menlo Park

2005-08-15T23:59:59.000Z

84

Slow light propagation and amplification via electromagnetically induced transparency and four-wave mixing in an optically dense atomic vapor  

E-Print Network [OSTI]

We experimentally and theoretically analyze the propagation of weak signal field pulses under the conditions of electromagnetically induced transparency (EIT) in hot Rb vapor, and study the effects of resonant four-wave mixing (FWM). In particular, we demonstrate that in a double-$\\Lambda$ system, formed by the strong control field with the weak resonant signal and a far-detuned Stokes field, both continuous-wave spectra and pulse propagation dynamics for the signal field depend strongly on the amplitude of the seeded Stokes field, and the effect is enhanced in optically dense atomic medium. We also show that the theory describing the coupled propagation of the signal and Stokes fields is in good agreement with the experimental observations.

N. B. Phillips; A. V. Gorshkov; I. Novikova

2009-03-24T23:59:59.000Z

85

Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause  

SciTech Connect (OSTI)

Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

Henning, F. D., E-mail: farranalfonso@gmail.com; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000 (South Africa)

2014-04-15T23:59:59.000Z

86

Low-frequency absorption cross section of the electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher dimensions  

E-Print Network [OSTI]

We investigate the low-frequency absorption cross section of the electromagnetic waves for the extreme Reissner-Nordstrom black holes in higher dimensions. We first construct the exact solutions to the relevant wave equations in the zero-frequency limit. In most cases it is possible to use these solutions to find the transmission coefficients of partial waves in the low-frequency limit. We use these transmission coefficients to calculate the low-frequency absorption cross section in five and six spacetime dimensions. We find that this cross section is dominated by the modes with l=2 in the spherical-harmonic expansion rather than those with l=1, as might have been expected, because of the mixing between the electromagnetic and gravitational waves. We also find an upper limit for the low-frequency absorption cross section in dimensions higher than six.

Luis C. B. Crispino; Atsushi Higuchi; George E. A. Matsas

2010-12-16T23:59:59.000Z

87

Spin oscillations of relativistic fermions in the field of a traveling circularly polarized electromagnetic wave and a constant magnetic field  

E-Print Network [OSTI]

The Dirac equation, in the field of a traveling circularly polarized electromagnetic wave and a constant magnetic field, has singular solutions, corresponding the expansion of energy in vicinity of some singular point. These solutions described relativistic fermions. States relating to these solutions are not stationary. The temporal change of average energy, momentum and spin for single and mixed states is studied in the paper. A distinctive feature of the states is the disappearance of the longitudinal component of the average spin. Another feature is the equivalence of the condition of fermion minimal energy and the classical condition of the magnetic resonance. Finding such solutions assumes the use of a transformation for rotating and co-moving frames of references. Comparison studies of solutions obtained with the Galilean and non-Galilean transformation shown that some parameters of the non-Galilean transformation may be measured in high-energy physics.

Boris V. Gisin

2014-05-13T23:59:59.000Z

88

Theory of electromagnetic fields  

E-Print Network [OSTI]

We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

Wolski, Andrzej

2011-01-01T23:59:59.000Z

89

Connecting the Electromagnetic and Gravitational Wave Skies in the Era of Advanced LIGO  

E-Print Network [OSTI]

McWilliams, Princeton U. 9:30 ­ 10:30 "Gravitational-wave astronomy: past, present, and future-924-7855 138 Nassau Street, Princeton, NJ 08542 #12;High Energy EM Counterparts and Capabilities Thursday, 3 Lower Energy EM Counterparts and Capabilities Friday, 4 May 2012 9:30 ­ 10:30 "Needle in a Haystack

90

UT of bimetallic welds by shear horizontal waves and electromagnetic ultrasonic (EMUS) probes  

SciTech Connect (OSTI)

Bimetallic transition welds include in most cases besides the austenitic weldment an austenitic buttering. Their inspection by ultrasound is strongly complicated by a high degree of elastic anisotropy. The elastic anisotropy results in phase and group velocities of the elastic wave-modes, which are functions of the propagation direction inside the weld metal and which cause skewing of the sound beams. The coarse grain structure leads to enhanced scattering. Furthermore, there exists a mismatch of the acoustical impedances between the weld metal and the base metal, which depends on the angle of incidence at the interface base metal/weld metal and weld metal/buttering. Due to these facts up to now using standard UT-techniques only the HAZ`s are inspected from both sides. In many cases dissimilar metal welds are only accessible from one side. Therefore, US-techniques are necessary which are capable to inspect the whole weld even if there is only access from one side. By improvement of the technology of the EMUS-probes and of the EMUS-instrumentation for the US-transduction of SH-waves a reliable technique for the ISI of dissimilar metal welds and also of austenitic welds is available. The contribution will shortly introduce into the physical basis of the SH-wave technique and present the results of test specimen measurements. The main part of the paper will report about the experiences and the results of field applications in different nuclear power plants.

Huebschen, G.; Salzburger, H.J.; Kroening, M. [Fraunhofer-Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

1994-12-31T23:59:59.000Z

91

Photon Wave-packet Manipulation via Dynamic Electromagnetically Induced Transparency in Multilayer Structures  

E-Print Network [OSTI]

We present a Maxwell-Bloch description of the dynamics of a light pulse propagating through a spatially inhomogeneous system consisting of alternating layers of EIT media and vacuum. We study the effect of a dynamical modulation of the EIT control field on the shape of the wave packet: interesting effects due to the presence of interfaces with group velocity mismatch are found. An effective description based on a continuity equation is developed. Modulation schemes that can be realized in ultracold atomic samples with standard experimental techniques are proposed and discussed.

Francesco Bariani; Iacopo Carusotto

2010-02-01T23:59:59.000Z

92

Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers  

E-Print Network [OSTI]

The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

Jordan Camp; Scott D. Barthelmy; Lindy Blackburn; Kenneth Carpenter; Neil Gehrels; Jonah Kanner; Frank E. Marshall; Judith L. Racusin; Takanori Sakamoto

2013-04-12T23:59:59.000Z

93

The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas  

SciTech Connect (OSTI)

Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the ?{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States)] [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States) [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, District of Columbia 20064 (United States); Navarro, Roberto [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile)] [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime A. [Departamento de Física, Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas, Casilla 160-C, Concepción (Chile)] [Departamento de Física, Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas, Casilla 160-C, Concepción (Chile)

2014-01-15T23:59:59.000Z

94

The dispersion relation and excitation of transverse magnetic mode electromagnetic waves in rippled-wall waveguide with a plasma rod and an annular dielectric  

SciTech Connect (OSTI)

By using the linear field theory, the dispersion relation of electromagnetic waves in a rippled-wall waveguide with a plasma rod and an annular dielectric is obtained. In addition, by injecting a finite thick annular intense relativistic electron beam in this waveguide, the excitation of these waves is investigated. Furthermore, the effects of the radius of the plasma rod, the radius of the dielectric, the corrugation amplitude, and period on the frequency spectrum are investigated. Besides, the time growth rate of excitation of these waves by an annular relativistic electron beam is studied. Finally, to demonstrate the advantages of this rippled-wall waveguide, the dispersion relation and the growth rate of three simplified cases are investigated.

Nejati, M. [Physics Department, Shahid Beheshti University, G. C. Evin, Tehran (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, Shahid Beheshti University, G. C. Evin, Tehran (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

95

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

96

611: Electromagnetic Theory Problem Sheet 6  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

97

Electromagnetic Light in Medium of Polarized Atoms $^3$He  

E-Print Network [OSTI]

First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

V. N. Minasyan

2009-04-01T23:59:59.000Z

98

Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course  

E-Print Network [OSTI]

1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit

Taflove, Allen

99

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE  

E-Print Network [OSTI]

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically

100

In conventional accelerators, energy from RF electro-magnetic waves in vacuum is transformed into kinetic energy  

E-Print Network [OSTI]

In conventional accelerators, energy from RF electro- magnetic waves in vacuum is transformed for accelerating and storing countercirculating beams of 7-TeV protons, has a stored beam energy exceeding 300 MJ. Accelerator-based light sources rely on the fact that when beams of GeV electrons interact with magnetic

Geddes, Cameron Guy Robinson

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Doctopic: Condensed matter ARTICLE IN PRESS PLA:17759 Please cite this article in press as: A.G. Ramm, Electromagnetic wave scattering by small bodies, Physics Letters A (2008), doi:10.1016/j.physleta.2008.03.010  

E-Print Network [OSTI]

Doctopic: Condensed matter ARTICLE IN PRESS PLA:17759 Please cite this article in press as: A.physleta.2008.03.010 JID:PLA AID:17759 /SCO Doctopic: Condensed matter [m5+; v 1.91; Prn:24/04/2008; 15:29] P.1 (1-9) Physics Letters A ··· (····) ···­··· www.elsevier.com/locate/pla Electromagnetic wave

102

E-Print Network 3.0 - amplitude ion-acoustic waves Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Physics 2 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

103

E-Print Network 3.0 - amplitude acoustic wave Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 15 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

104

E-Print Network 3.0 - acoustic waves moving Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 14 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

105

E-Print Network 3.0 - acoustic wave gas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 19 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

106

E-Print Network 3.0 - acoustic wave induced Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics 9 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

107

E-Print Network 3.0 - acoustic waves generated Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences 17 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

108

E-Print Network 3.0 - acoustic wave detector Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 3 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic...

109

Waves  

E-Print Network [OSTI]

Waves is the supporting document to the Master of Fine Arts thesis exhibition of the same title. Exhibited March 7-12 2010 in the Art and Design Gallery at the University of Kansas, Waves was comprised of a series of mixed media drawings...

LaCure, Mari Mae

2010-04-29T23:59:59.000Z

110

Electromagnetic field with constraints and Papapetrou equation  

E-Print Network [OSTI]

It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.

Z. Ya. Turakulov; A. T. Muminov

2006-01-12T23:59:59.000Z

111

Name of the Presentation Fundamental Properties of Electromagnetic RadiationFundamental Properties of Electromagnetic Radiation  

E-Print Network [OSTI]

a continuous spectrum of energy from gamma rays to radio waves. The visible portion of the spectrum may to radio waves. The visible portion of the spectrum may be measured using wavelength (measured between the Sun and the Earth. Electromagnetic Spectrum Electromagnetic Spectrum The Sun produces

112

Electromagnetic space-time crystals. III. Dispersion relations for partial solutions  

E-Print Network [OSTI]

Partial solutions of the Dirac equation describing an electron motion in electromagnetic crystals created by plane waves with linear and circular polarizations are treated. It is shown that the electromagnetic crystal formed by circularly polarized waves possesses the spin birefringence.

G. N. Borzdov

2014-10-21T23:59:59.000Z

113

Perfectly Reflectionless Omnidirectional Electromagnetic Absorber  

E-Print Network [OSTI]

We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

Sainath, Kamalesh

2014-01-01T23:59:59.000Z

114

Advances in non-planar electromagnetic prototyping  

E-Print Network [OSTI]

The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

Ehrenberg, Isaac M

2013-01-01T23:59:59.000Z

115

Electromagnetic Theory 1 /56 Electromagnetic Theory  

E-Print Network [OSTI]

Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic

Bicknell, Geoff

116

Electromagnetic Geometry  

E-Print Network [OSTI]

We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.

M. Novello; F. T. Falciano; E. Goulart

2011-11-08T23:59:59.000Z

117

Electromagnetic signatures of far-field gravitational radiation in the 1+3 approach  

E-Print Network [OSTI]

Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.

Alvin J. K. Chua; Priscilla Cañizares; Jonathan R. Gair

2014-12-06T23:59:59.000Z

118

Scattering by an electromagnetic radiation field  

E-Print Network [OSTI]

Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin $\\frac12$ and electromagnetic (spin 1) fields, is studied too.

Donato Bini; Andrea Geralico

2014-08-21T23:59:59.000Z

119

An electromagnetic black hole made of metamaterials  

E-Print Network [OSTI]

Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

Cheng, Qiang

2009-01-01T23:59:59.000Z

120

Electromagnetic Reciprocity.  

SciTech Connect (OSTI)

A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

Aldridge, David F.

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Electromagnetic Radiations as a Fluid Flow  

E-Print Network [OSTI]

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

122

Electromagnetic or other directed energy pulse launcher  

DOE Patents [OSTI]

The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

Ziolkowski, Richard W. (Livermore, CA)

1990-01-01T23:59:59.000Z

123

Relativistic approach to electromagnetic imaging  

E-Print Network [OSTI]

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Budko, N

2004-01-01T23:59:59.000Z

124

Relativistic approach to electromagnetic imaging  

E-Print Network [OSTI]

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Neil Budko

2004-03-11T23:59:59.000Z

125

Direct observation of tetrahertz electromagnetic waves emitted from intrinsic Josephson junctions in single crystallie Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}.  

SciTech Connect (OSTI)

We have observed intense, coherent, continuous and monochromatic electromagnetic (EM) emission at terahertz frequencies generated from a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} intrinsic Josephson junction system. The mesa is fabricated by the Argon-ion-milling and photolithography techniques on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal. The frequency, {nu}, of the EM radiation observed from the sample obeys simple relations: {nu} = c/n{lambda} = c/2nw and {nu} = 2eV/hN, where c is the light velocity in vacuum, n the refractive index of a superconductor, {lambda} the wave length of the EM emission in vacuum, w the shorter width of the mesa, V the voltage applied to the mesa, N the number of layers of intrinsic Josephson junctions, e and h are the elementary charge and the Planck constant, respectively. These two relations strongly imply that the mechanism of the emission is, firstly, due to the geometrical resonance of EM waves to the mesa like a cavity resonance occuring in the mesa structure, and forming standing waves as cavity resonance modes, and secondly, due to the ac-Josephson effect, which works coherently in all intrinsic Josephson junctions. The peculiar temperature dependence of the power intensity emitted form samples shows a broad maximum in a temperature region between 20 and 40 K, suggesting that the nonequilibrium effect plays an essential role for the emission of EM waves in this system. The estimated total power is significantly improved in comparison with the previous report [L. Ozyuzer et al., Science 318 (2007) 1291, K. Kadowaki, et al., Physica C 437-438 (2006) 111, I.E. Batov, et al., Appl. Phys. Lett. 88 (2006) 262504], and reached as high as 5 {micro}W from single mesa with w = 60 {micro}m at 648 GHz, which enables us to use it for some of applications. So far, we succeeded in fabricating the mesa emitting EM waves up to 960 GHz in the fundamental mode in the w = 40 {micro}m mesa, whereas the higher harmonics up to the 4-th order were observed, resulting in a frequency exceeding 2.5 THz. In sharp contrast to the previous reports [K. Kadowaki, et al., Physica C 437-438 (2006) 111, M.-H. Bae, et al., Phys. Rev. Lett. 98, (2007) 027002], all the present measurements were done in zero magnetic field. Lastly, a plausible theoretical model for the mechanism of emission is discussed.

Kadowaki, K.; Yamaguchi, H.; Kawamata, K.; Yamamoto, T.; Minami, H.; Kakeya, I.; Welp, U.; Ozyuzer, L.; Koshelev, A.; Kurter, C.; Gray, K. E.; Kwok, W.-K.; Materials Science Division; Univ. of Tsukuba; Izmir Inst. of Tech.; Illinois Inst. of Tech.

2008-04-01T23:59:59.000Z

126

On the Axioms of Topological Electromagnetism  

E-Print Network [OSTI]

The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.

D. H. Delphenich

2003-12-14T23:59:59.000Z

127

Electromagnetic Field Theory  

E-Print Network [OSTI]

Electromagnetic Field Theory BO THID� UPSILON BOOKS #12;#12;ELECTROMAGNETIC FIELD THEORY #12;#12;Electromagnetic Field Theory BO THID� Swedish Institute of Space Physics and Department of Astronomy and Space, Sweden UPSILON BOOKS · COMMUNA AB · UPPSALA · SWEDEN #12;Also available ELECTROMAGNETIC FIELD THEORY

Hart, Gus

128

Scanning evanescent electro-magnetic microscope  

DOE Patents [OSTI]

A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

2001-01-01T23:59:59.000Z

129

Wave-wave interactions in solar type III radio bursts  

SciTech Connect (OSTI)

The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

Thejappa, G. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); MacDowall, R. J. [NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-02-11T23:59:59.000Z

130

E-Print Network 3.0 - amplitude-modulated electromagnetic fields...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Engineering 8 Yerkes Summer Institute 2002 Before we begin our investigations into radio waves you should review the Summary: of the spectrum. Electromagnetic radiation...

131

Electromagnetic models of the lightning return stroke Yoshihiro Baba1  

E-Print Network [OSTI]

Electromagnetic models of the lightning return stroke Yoshihiro Baba1 and Vladimir A. Rakov2] Lightning return-stroke models are needed for specifying the source in studying the production of transient-called engineering models, electromagnetic return-stroke models allow a self-consistent full-wave solution for both

Florida, University of

132

Electromagnetic space-time crystals. II. Fractal computational approach  

E-Print Network [OSTI]

A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

G. N. Borzdov

2014-10-20T23:59:59.000Z

133

Line geometry and electromagnetism III: groups of transformations  

E-Print Network [OSTI]

The role of linear and projective groups of transformations in line geometry and electromagnetism is examined in accordance with Klein's Erlanger Programm for geometries. The group of collineations of real projective space is chosen as the most general group, and reductions to some of its various subgroups are then detailed according to their relevance to electromagnetic fields, and especially wave-like ones.

D. H. Delphenich

2014-04-16T23:59:59.000Z

134

Electromagnetic Interrogation and the Doppler Shift Using the Method of Mappings  

E-Print Network [OSTI]

Electromagnetic Interrogation and the Doppler Shift Using the Method of Mappings H.T. Banks, Shuhua University Raleigh, NC 27695-8212 December 11, 2009 Abstract We consider the electromagnetic detection of a Doppler shift for an electromagnetic wave reflecting from a moving interface. This entails solving Maxwell

135

THIN LAYER MODELS FOR ELECTROMAGNETISM MARC DURUFLE, VICTOR PERON, AND CLAIR POIGNARD  

E-Print Network [OSTI]

THIN LAYER MODELS FOR ELECTROMAGNETISM MARC DURUFL´E, VICTOR P´ERON, AND CLAIR POIGNARD ABSTRACT of electromagnetic waves in domains with thin layer. These models appear as first order approximations of the electromagnetic field. They are obtained thanks to a multiscale expansion of the exact solution with respect

Paris-Sud XI, Université de

136

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM  

E-Print Network [OSTI]

ON MIMO CHANNEL CAPACITY, SPATIAL SAMPLING AND THE LAWS OF ELECTROMAGNETISM Sergey Loyka School by the laws of electromagnetism on achievable MIMO channel capacity in its general form. Our approach is a two expansion of a generic electromagnetic wave combined with Nyquist sampling theorem in the spatial domain, we

Loyka, Sergey

137

Electromagnetically induced torque on a large ring in the microwave range  

E-Print Network [OSTI]

Electromagnetically induced torque on a large ring in the microwave range Olivier EMILE1) Abstract We report on the exchange of Orbital Angular Momentum between an electromagnetic wave and a 30 cm in the detection of angular momentum in electromagnetics, in acoustics and also in the magnetization

Boyer, Edmond

138

E-Print Network 3.0 - acoustic waves Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plasma Summary: 233 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma P... in a standing wave. The associated ponderomotive force generates...

139

Investigation of electromagnetic welding  

E-Print Network [OSTI]

We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

Pressl, Daniel G. (Daniel Gerd)

2009-01-01T23:59:59.000Z

140

Electromagnetic properties of neutrinos  

E-Print Network [OSTI]

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi  

E-Print Network [OSTI]

3-D Wave Propagation Simulation in Complex Indoor Structures Farshid Aryanfar' and Kamal Sarabandi in different environments is important for specifying system parameters. Recently, wave propagation prediction electromagnetic wave propagation models have been developed. Examination of reported wave propagation algorithms

Sarabandi, Kamal

142

Inferring black hole charge from backscattered electromagnetic radiation  

E-Print Network [OSTI]

We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

2014-09-16T23:59:59.000Z

143

A Full Review of the Theory of Electromagnetism  

E-Print Network [OSTI]

We will provide detailed arguments showing that the set of Maxwell equations, and the corresponding wave equations, do not properly describe the evolution of electromagnetic wave-fronts. We propose a nonlinear corrected version that is proven to be far more appropriate for the modellization of electromagnetic phenomena. The suitability of this approach will soon be evident to the reader, through a sequence of astonishing congruences, making the model as elegant as Maxwell's, but with increased chances of development. Actually, the new set of equations will allow us to explain many open questions, and find links between electromagnetism and other theories that have been searched for a long time, or not even imagined.

D. Funaro

2005-05-09T23:59:59.000Z

144

Electromagnetic Measurements at RHIC  

E-Print Network [OSTI]

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki

Hamagaki, Hideki

145

Electromagnetic Abdulaziz Hanif  

E-Print Network [OSTI]

Electromagnetic Propulsion Abdulaziz Hanif Electrical Engineering Department King Fahd University of spacecraft, which would be jolted through space by electromagnets, could take us farther than any of these other methods. When cooled to extremely low temperatures, electromagnets demonstrate an unusual behavior

Masoudi, Husain M.

146

Electromagnetic Measurements at RHIC  

E-Print Network [OSTI]

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue ­ scope of EM measurements · EM

Hamagaki, Hideki

147

DNA waves and water  

E-Print Network [OSTI]

Some bacterial and viral DNA sequences have been found to induce low frequency electromagnetic waves in high aqueous dilutions. This phenomenon appears to be triggered by the ambient electromagnetic background of very low frequency. We discuss this phenomenon in the framework of quantum field theory. A scheme able to account for the observations is proposed. The reported phenomenon could allow to develop highly sensitive detection systems for chronic bacterial and viral infections.

L. Montagnier; J. Aissa; E. Del Giudice; C. Lavallee; A. Tedeschi; G. Vitiello

2010-12-23T23:59:59.000Z

148

Electromagnetically driven peristaltic pump  

DOE Patents [OSTI]

An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

Marshall, Douglas W. (Blackfoot, ID)

2000-01-01T23:59:59.000Z

149

Shielding effectiveness against electromagnetic interference  

SciTech Connect (OSTI)

The use of metal-filled and metal-coated plastics and other modified dielectric materials to replace metals for enclosures has created a need to test these materials for their electromagnetic interference (EMI) shielding effectiveness (SE). Shielding effectiveness involves a variety of electromagnetic environments, and useful data can be obtained from tests that carefully limit the environment to that of a plane wave. Such an environment can be created in a circular or rectangular transmission line. Two such transmission line test fixtures, which hold samples of the material to be tested, have been developed. The fixtures described in this report are the National Bureau of Standards (NBS) coaxial transverse electromagnetic (TEM) cell, and a dual TEM cell constructed at ORNL from a design suggested by the NBS. The NBS coaxial fixture is an improved version of the device recommended by the American Society for Testing and Materials (ASTM). The problems associated with measuring SE are well described in the literature. The two methods described here are the result of years of work to establish procedures and instrumentation that will produce acceptable data.

Googe, J.M.; Hess, R.A.

1987-10-01T23:59:59.000Z

150

Electromagnetic soliton-particle with spin and magnetic moment  

E-Print Network [OSTI]

Electromagnetic soliton-particle with both quasi-static and quick-oscillating wave parts is considered. Its mass, spin, charge, and magnetic moment appear naturally when the interaction with distant solitons is considered. The substantiation of Dirac equation for the wave part of the interacting soliton-particle is given.

Alexander A. Chernitskii

2012-12-17T23:59:59.000Z

151

Unbalanced electromagnetic forces  

E-Print Network [OSTI]

) . I :, jazdz g (Member) (Member) August 1974 -" ~ 5:. -. 62 ABSTRACT Unbalanced Electromagnetic Forces (August 1974) Craig Martin Hansen, B. S. , Texas A&M University Directed by: Dr. Attilio J. Giaroia Electromagnetic forces from moving... be deduced from the history of the development of an under- standing of electromagnetic forces. This is a relatively short history (starting in the late 1800's) filled with misunderstandings and pre]udices. This history can be divided into two eras: non...

Hansen, Craig Martin

2012-06-07T23:59:59.000Z

152

Meson electromagnetic form factors  

E-Print Network [OSTI]

The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.

Stanislav Dubnicka; Anna Z. Dubnickova

2012-10-23T23:59:59.000Z

153

Complex geometry and pre-metric electromagnetism  

E-Print Network [OSTI]

The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.

D. H. Delphenich

2004-12-10T23:59:59.000Z

154

Low-frequency electromagnetic field in a Wigner crystal  

SciTech Connect (OSTI)

Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

Stupka, Anton [Oles Honchar Dnipropetrovs'k National University, Gagarin Ave., 72, 49010 Dnipropetrovs'k (Ukraine)

2013-03-15T23:59:59.000Z

155

Direct and Inverse Problems for Wave Propagation in Random Media February 29, 2000  

E-Print Network [OSTI]

vector and #27;(z) is the dissipation. The local acoustic sound speed is given by c(z) = s K(z) #26;(z Abstract The propagation of waves (acoustic, elastic, electromagnetic) in randomly layered media is highly that our work on the acoustic wave equation can be generalized to elastic waves and electromagnetic waves

Asch, Mark

156

NISTHB 150-11 Electromagnetic  

E-Print Network [OSTI]

NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley. #12;NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10

157

Electromagnetic Siegert states for periodic dielectric structures  

E-Print Network [OSTI]

The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

Friends R. Ndangali; Sergei V. Shabanov

2011-08-09T23:59:59.000Z

158

Tunability enhanced electromagnetic wiggler  

DOE Patents [OSTI]

The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

Schlueter, R.D.; Deis, G.A.

1992-03-24T23:59:59.000Z

159

Electromagnetic wormholes and virtual magnetic monopoles  

E-Print Network [OSTI]

We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

2007-03-20T23:59:59.000Z

160

Electromagnetic partner of the gravitational signal during accretion onto black holes  

E-Print Network [OSTI]

We investigate the generation of electromagnetic and gravitational radiation in the vicinity of a perturbed Schwarzschild black hole. The gravitational perturbations and the electromagnetic field are studied by solving the Teukolsky master equation with sources, which we take to be locally charged, radially infalling, matter. Our results show that, in addition to the gravitational wave generated as the matter falls into the black hole, there is also a burst of electromagnetic radiation. This electromagnetic field has a characteristic set of quasinormal frequencies, and the gravitational radiation has the quasinormal frequencies of a Schwarzschild black hole. This scenario allows us to compare the gravitational and electromagnetic signals that are generated by a common source.

Juan Carlos Degollado; Victor Gualajara; Claudia Moreno; Darío Núñez

2014-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electromagnetic Interference from the ILC Beams  

SciTech Connect (OSTI)

Electromagnetic interference is an emerging problem of the future. This investigation analyzed the data collected from airborne radiation waves that caused electronic devices to fail. This investigation was set up at SLAC in End Station A and the data collected from the electromagnetic waves were received from antennas. In order to calibrate the antennas it required a signal generator to transmit the signals to the antenna and a digital oscilloscope to receive the radiation waves from the other antenna. The signal generator that was used was only able to generate signals between 1 and 1.45 GHz; therefore, the calibrations were not able to be completed. Instead, excel was used to create a curve fitting for the attenuation factors that were already factory calibrated. The function from the curve fitting was then used to extend the calibrations on the biconical and yagi antennas. A fast Fourier Transform was then ran in Matlab on the radiation waves received by the oscilloscope; in addition, the attenuation factors were calculated into the program to show the actual amplitudes of these radiation waves. For future research, the antennas will be manually calibrated and the results will be reanalyzed.

Brown, LaVonda N.; /Norfolk State U. /SLAC

2007-11-07T23:59:59.000Z

162

I. What is electromagnetic radiation and the electromagnetic spectrum?  

E-Print Network [OSTI]

i­1 I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X effects on matter. This "stuff" is called electromagnetic radiation, because it travels (radiates) and has electrical and magnetic effects. Electromagnetic radiation is the means for many of our interactions

Sitko, Michael L.

163

Purely electromagnetic spacetimes  

E-Print Network [OSTI]

Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

B. V. Ivanov

2007-12-15T23:59:59.000Z

164

Electromagnetic rotational actuation.  

SciTech Connect (OSTI)

There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

Hogan, Alexander Lee

2010-08-01T23:59:59.000Z

165

Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances  

SciTech Connect (OSTI)

The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

2012-09-26T23:59:59.000Z

166

High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D  

E-Print Network [OSTI]

High order asymptotics for the electromagnetic scattering from thin periodic layers : the 3D of electromagnetic waves by a thin periodic layer made of an array of regularly-spaced obstacles. The size, they satisfy electrostatic problems posed in an infinite 3D strip that require a careful analysis. Error

Boyer, Edmond

167

EMG #121471 Electromagnetics, 25:679693, 2005  

E-Print Network [OSTI]

. Keywords electromagnetic compatibility, electromagnetic interference, aperture, cou- pling, finite compatibility (EMC) and electromagnetic interference (EMI) requirements, it is crucial to quantify

Ramahi, Omar

168

Electromagnetic Scattering by Spheres of Topological Insulators  

E-Print Network [OSTI]

The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

Ge, Lixin; Zi, Jian

2015-01-01T23:59:59.000Z

169

Electromagnetic properties of baryons  

SciTech Connect (OSTI)

We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Martin-Camalich, J. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, Spain and Department of Physics and Astronomy, University of Sussex, BN1 9Qh, Brighton (United Kingdom)

2011-10-21T23:59:59.000Z

170

3. ELECTROMAGNETIC COMPATIBILITY Abstract --The electromagnetic interference between the  

E-Print Network [OSTI]

walls and tubes) and with strong EMI (Electromagnetic Interference). So it is ideal to use the power

Paris-Sud XI, Université de

171

ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD  

E-Print Network [OSTI]

ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD Manuel G¨udel 1 and Donat G. Wentzel 2 1 accelerated by a strong dc electric field show not only very efficient generation of beam waves but also emission of o­mode radiation. We present a set of particle simulations for which we study the behavior

Guedel, Manuel

172

Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics  

DOE Patents [OSTI]

A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

Bakhtiari, Sasan (Westmont, IL); Gopalsami, Nachappa (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

1999-03-23T23:59:59.000Z

173

Hydrodynamic construction of the electromagnetic field  

E-Print Network [OSTI]

We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

Peter Holland

2014-10-03T23:59:59.000Z

174

Televisions, Video Privacy, and Powerline Electromagnetic Interference  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Safe Use Guidelines, Electromagnetic Interference, and FCC Warning . . . . . . . . . . . . .v

Matsuoka, Yoky

175

Electromagnetic Radiation REFERENCE: Remote Sensing of  

E-Print Network [OSTI]

1 CHAPTER 2: Electromagnetic Radiation Principles REFERENCE: Remote Sensing of the Environment John;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions, creating convectional currents in the atmosphere. c) Electromagnetic energy in the form of electromagnetic

Gilbes, Fernando

176

Electromagnetically Induced Flows Michiel de Reus  

E-Print Network [OSTI]

Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

Vuik, Kees

177

Electromagnetism and Gravitation  

E-Print Network [OSTI]

The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

Kenneth Dalton

1997-03-10T23:59:59.000Z

178

Electromagnetic pulsar spindown  

E-Print Network [OSTI]

We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.

I. Contopoulos

2007-01-10T23:59:59.000Z

179

Computational Electronics and Electromagnetics  

SciTech Connect (OSTI)

The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

DeFord, J.F.

1993-03-01T23:59:59.000Z

180

Electromagnetic solitary pulses in a magnetized electron-positron plasma  

SciTech Connect (OSTI)

A theory for large amplitude compressional electromagnetic solitary pulses in a magnetized electron-positron (e-p) plasma is presented. The pulses, which propagate perpendicular to the external magnetic field, are associated with the compression of the plasma density and the wave magnetic field. Here the solitary wave magnetic field pressure provides the restoring force, while the inertia comes from the equal mass electrons and positrons. The solitary pulses are formed due to a balance between the compressional wave dispersion arising from the curl of the inertial forces in Faraday's law and the nonlinearities associated with the divergence of the electron and positron fluxes, the nonlinear Lorentz forces, the advection of the e-p fluids, and the nonlinear plasma current densities. The compressional solitary pulses can exist in a well-defined speed range above the Alfven speed. They can be associated with localized electromagnetic field excitations in magnetized laboratory and space plasmas composed of electrons and positrons.

Shukla, P. K. [RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Eliasson, B. [Institut fuer Theoretische Physik, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Stenflo, L. [Department of Physics, Linkoeping University, SE-58183 Linkoeping (Sweden)

2011-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gravitation and Electromagnetism  

E-Print Network [OSTI]

The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.

B. G. Sidharth

2001-06-16T23:59:59.000Z

182

Quaternion Gravi-Electromagnetism  

E-Print Network [OSTI]

Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.

A. S. Rawat; O. P. S. Negi

2011-07-05T23:59:59.000Z

183

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1996-06-11T23:59:59.000Z

184

Banded electromagnetic stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1994-04-05T23:59:59.000Z

185

Developing de Broglie Wave  

E-Print Network [OSTI]

The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.

J X Zheng-Johansson; P-I Johansson

2006-08-27T23:59:59.000Z

186

Electromagnetic nucleon form factors in instant and point form  

E-Print Network [OSTI]

We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point forms. Corresponding results for the elastic nucleon electromagnetic form factors as well as charge radii and magnetic moments are presented. We also compare results obtained by different realistic nucleon wave functions stemming from alternative constituent quark models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model transition operators.

T. Melde; K. Berger; L. Canton; W. Plessas; R. F. Wagenbrunn

2007-09-30T23:59:59.000Z

187

Electromagnetic field quantization in a linear dielectric medium  

E-Print Network [OSTI]

By modeling a dielectric medium with two independent reservoirs, i.e., electric and magnetic reservoirs, the electromagnetic field is quantized in a linear dielectric medium consistently. A Hamiltonian is proposed from which using the Heisenberg equations, not only the Maxwell equations but also the structural equations can be obtained. Using the Laplace transformation, the wave equation for the electromagnetic vector potential is solved in the case of a homogeneous dielectric medium. Some examples are considered showing the applicability of the model to both absorptive and nonabsorptive dielectrics.

F. Kheirandish; M. Amooshahi

2005-11-13T23:59:59.000Z

188

Coherent hybrid electromagnetic field imaging  

DOE Patents [OSTI]

An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

2008-08-26T23:59:59.000Z

189

Stable operating regime for traveling wave devices  

DOE Patents [OSTI]

Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

Carlsten, Bruce E. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

190

E-Print Network 3.0 - acoustic wave equation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 23 Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma Summary: in the ion acoustic wave equation we obtain 4 where no is the...

191

Gravity Waves Gravity Waves  

E-Print Network [OSTI]

;14/03/2014 6 H L H L L Phase & Group Velocity #12;14/03/2014 7 Doppler Effect #12;14/03/2014 8 Shock Waves #12;14/03/2014 14 Supernova Remnant Cassiopeia A Supernova blast waves #12;14/03/2014 15 Tycho's Remnant (SN 1572AD A SNR flythrough Theory of Supernova Blast Waves Supernovae: Type Ia Subsonic deflagration wave turning

Weijgaert, Rien van de

192

ELECTROMAGNETIC COMPATIBILITY AND RENEWABLE POWER FOR IMPLANTABLE NEUROSTIMULATORS  

E-Print Network [OSTI]

J, Bakker P: Electromagnetic interference from radiomaking electromagnetic interference neurostimulator functioninclude electromagnetic interference and battery failure. In

Pantchenko, Oxana S.

2012-01-01T23:59:59.000Z

193

Electromagnetic analysis of nanostructure dispersion in polymer matrices  

E-Print Network [OSTI]

P. R. , “Enhanced electromagnetic interference shielding40] Chung D. D. L. “Electromagnetic Interference Shieldingreinforcement, electromagnetic interference shielding, etc.

Pfeifer, Steven Charles; Pfeifer, Steven Charles

2012-01-01T23:59:59.000Z

194

Particle acceleration in superluminal strong waves  

E-Print Network [OSTI]

We calculate the electron acceleration in random superluminal strong waves (SLSWs) and radiation from them by using numerical methods in the context of the termination shock of the pulsar wind nebulae. We pursue the electrons by solving the equation of motion in the analytically expressed electromagnetic turbulences. These consist of primary SLSW and isotropically distributed secondary electromagnetic waves. Under the dominance of the secondary waves, all electrons gain nearly equal energy. On the other hand, when the primary wave is dominant, selective acceleration occurs. The phase of the primary wave felt by the electrons moving nearly along the wavevector changes very slowly compared to the oscillation of the wave, which is called "phase locked", and such electrons are continuously accelerated. This acceleration by SLSWs may play a crucial role in the pre-acceleration for the shock acceleration. In general, the radiation from the phase-locked population is different from the synchro-Compton radiation. How...

Teraki, Yuto; Nagataki, Shigehiro

2015-01-01T23:59:59.000Z

195

Electromagnetic field and cosmic censorship  

E-Print Network [OSTI]

We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

Koray Düzta?

2014-04-09T23:59:59.000Z

196

Torsion and the Electromagnetic Field  

E-Print Network [OSTI]

In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy-momentum tensor, to produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.

V. C. de Andrade; J. G. Pereira

1999-01-11T23:59:59.000Z

197

Electromagnetism on Anisotropic Fractals  

E-Print Network [OSTI]

We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

Martin Ostoja-Starzewski

2011-06-08T23:59:59.000Z

198

Electromagnetic Probes in PHENIX  

E-Print Network [OSTI]

Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

Gabor David

2006-09-21T23:59:59.000Z

199

Gravitation and electromagnetism  

E-Print Network [OSTI]

Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.

V. P. Dmitriyev

2002-07-23T23:59:59.000Z

200

Electromagnetic pump stator coil  

DOE Patents [OSTI]

An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

Fanning, A.W.; Dahl, L.R.

1996-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces  

DOE Patents [OSTI]

An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

Aurand, John F. (Edgewood, NM)

1999-01-01T23:59:59.000Z

202

Resonant circuit which provides dual-frequency excitation for rapid cycling of an electromagnet  

DOE Patents [OSTI]

Disclosed is a novel ring-magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the sinusoidal guide field of the ring magnet during particle acceleration. The control circuit generates sinusoidal excitation currents of different frequencies in the half waves. During radio-frequency acceleration of the synchrotron, the control circuit operates with a lower frequency sine wave and, thereafter, the electromagnets are reset with a higher-frequency half sine wave.

Praeg, W.F.

1982-03-09T23:59:59.000Z

203

Ponderomotive Forces On Waves In Modulated Media  

SciTech Connect (OSTI)

Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

Dodin, I.Y; Fisch, Nathaniel

2014-02-28T23:59:59.000Z

204

Electromagnetic fuel injector  

SciTech Connect (OSTI)

This patent describes an electromagnetic fuel injector for an internal combustion engine having a valve axis and including a housing, a flat armature connected to a movable valve element arranged to cooperate with a valve seat, spring means for exerting a force in an axial direction on the armature, and electromagnetic means for exerting a force in an opposite direction on the armature when electrically energized. The improvement comprises: the spring means being a helical coil spring disposed in substantially coaxial alignment with the valve axis and having an end in compressive engagement with the armature, the final coil which includes the end of the coil spring being inclined axially outward at an angle relative to a plane normal to the axis of the spring so as to apply to the armature a greater axial spring force to one side of the valve axis than the other thereby to effect pivoting of the armature about a pivot, the pivot being determined by the location of the end of the coil spring.

Gieseking, J.H.

1987-04-28T23:59:59.000Z

205

Standing wave compressor  

DOE Patents [OSTI]

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

206

G. Tsoulos (Ed.), MIMO System Technology for Wireless Communications, CRC & Taylor and Francis, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37)  

E-Print Network [OSTI]

, Boca Raton, 2006. 20-Jul-05 Chapter 3: Information Theory and Electromagnetism: Are They Related? 1(37) INFORMATION THEORY AND ELECTROMAGNETISM: ARE THEY RELATED? Sergey Loyka1 , Juan Mosig2 1 School of Information [9-14]. Electromagnetic waves are used as the primary carrier of information. The basic

Loyka, Sergey

207

Electromagnetic neutrino: a short review  

E-Print Network [OSTI]

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09T23:59:59.000Z

208

"Millikan oil drops" as quantum transducers between electromagnetic and gravitational radiation  

E-Print Network [OSTI]

Pairs of Planck-mass-scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

Raymond Y. Chiao

2007-02-25T23:59:59.000Z

209

Electromagnetic reactions on light nuclei  

E-Print Network [OSTI]

Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.

Sonia Bacca; Saori Pastore

2014-07-13T23:59:59.000Z

210

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

211

Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability  

SciTech Connect (OSTI)

The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.

Borhanian, J.; Hosseini Faradonbe, F. [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)] [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil (Iran, Islamic Republic of)

2014-04-15T23:59:59.000Z

212

Gravitational waves and gamma-ray bursts  

E-Print Network [OSTI]

Gamma-Ray Bursts are likely associated with a catastrophic energy release in stellar mass objects. Electromagnetic observations provide important, but indirect information on the progenitor. On the other hand, gravitational waves emitted from the central source, carry direct information on its nature. In this context, I give an overview of the multi-messenger study of gamma-ray bursts that can be carried out by using electromagnetic and gravitational wave observations. I also underline the importance of joint electromagnetic and gravitational wave searches, in the absence of a gamma-ray trigger. Finally, I discuss how multi-messenger observations may probe alternative gamma-ray burst progenitor models, such as the magnetar scenario.

Alessandra Corsi; for the LIGO Scientific Collaboration; for the Virgo Collaboration

2012-05-11T23:59:59.000Z

213

Nucleon Electromagnetic Form Factors  

SciTech Connect (OSTI)

There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

2007-10-01T23:59:59.000Z

214

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network [OSTI]

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe. Office: CP 273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy416/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 416/417 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

215

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network [OSTI]

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe. Office: CP273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy417/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

216

Total cross-section for photon-axion conversions in external electromagnetic field  

E-Print Network [OSTI]

We reconsider the conversion of the photon into axion in the external electromagnetic fields, namely in the static fields and in a periodic field of the wave guide. The total cross-sections for the conversion are evaluated in detail. The result shows that with strong strength of external electromagnetic fields, the cross-sections are large enough to measure the axion production. In the wave guide there exists the resonant conversion at the low energies, in which the value of cross-sections is much enhanced

D. V. Soa; H. N. Long; T. D. Tham

2014-02-20T23:59:59.000Z

217

Electromagnetic Signals from Bacterial DNA  

E-Print Network [OSTI]

Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian

2012-02-09T23:59:59.000Z

218

Black Hole Thermodynamics and Electromagnetism  

E-Print Network [OSTI]

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

219

SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS  

SciTech Connect (OSTI)

This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

2008-08-01T23:59:59.000Z

220

Electromagnetic Calorimeter for HADES  

E-Print Network [OSTI]

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

2011-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electromagnetic Calorimeter for HADES  

E-Print Network [OSTI]

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV....

Czyzycki, W; Fabbietti, L; Golubeva, M; Guber, F; Ivashkin, A; Kajetanowicz, M; Krasa, A; Krizek, F; Kugler, A; Lapidus, K; Lisowski, E; Pietraszko, J; Reshetin, A; Salabura, P; Sobolev, Y; Stanislav, J; Tlusty, P; Torrieri, T; Traxler, M

2011-01-01T23:59:59.000Z

222

PHYSICAL REVIEW E 86, 046204 (2012) Impedance and power fluctuations in linear chains of coupled wave chaotic cavities  

E-Print Network [OSTI]

cavities takes place through a small port, and electromagnetic energy flows in a single propagation mode of electromagnetic wave energy through a chain of coupled cavities is considered. The cavities are assumed that can be characterized as an enclosed region with ports for the ingress and egress of waves, less work

Anlage, Steven

223

2011 Waves -1 STANDING WAVES  

E-Print Network [OSTI]

2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand the differences between transverse and longitudinal waves. APPARATUS: Buzzer board with string, meter stick

Glashausser, Charles

224

Spacetime algebra as a powerful tool for electromagnetism  

E-Print Network [OSTI]

We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

Justin Dressel; Konstantin Y. Bliokh; Franco Nori

2014-12-03T23:59:59.000Z

225

Detecting excess ionizing radiation by electromagnetic breakdown of air  

SciTech Connect (OSTI)

A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanche breakdown time (10-200 ns) and could profitably be as long as the statistical lag time in ambient air (typically, microseconds). Candidate pulsed electromagnetic sources over a wavelength range, 3 mm>{lambda}>10.6 {mu}m, are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW, 10 {mu}s output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO{sub 2} laser with 30 MW, 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO{sub 2} laser could have a longer range >100 m.

Granatstein, Victor L.; Nusinovich, Gregory S. [Center for Applied Electromagnetics, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2010-09-15T23:59:59.000Z

226

Energy Content of Colliding Plane Waves using Approximate Noether Symmetries  

E-Print Network [OSTI]

This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

M. Sharif; Saira Waheed

2011-09-19T23:59:59.000Z

227

High-frequency surface wave pumped He-Ne laser  

SciTech Connect (OSTI)

A new electrodeless He-Ne laser using a plasma produced by an electromagnetic surface wave as the active medium is described. Gain measurements are reported as a function of the pump wave frequency from 200 to 915 MHz. The dependence of laser performance on the gas mixture and pressure is also presented.

Moutoulas, C.; Moisan, M.; Bertrand, L.; Hubert, J.; Lachambre, J.L.; Ricard, A.

1985-02-15T23:59:59.000Z

228

Waves in Nature, Lasers to Tsumanis and Beyond  

ScienceCinema (OSTI)

Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

LLNL - University of California Television

2009-09-01T23:59:59.000Z

229

Dynamics of electromagnetic solitons in a relativistic plasma  

SciTech Connect (OSTI)

Dynamical features of one-dimensional electromagnetic solitons formed in a relativistic interaction of a linearly polarized laser light with underdense cold plasma are investigated. The relativistic Lorentz force in an intense laser light pushes electrons into longitudinal motion, generating coupled longitudinal-transverse waves. In a weakly relativistic approximation these modes are well described by the generalized nonlinear Schroedinger type of equation, with two extra nonlocal terms. Here, an original analytical solution for a moving electromagnetic soliton is derived in an implicit form. For an isolated soliton, our analysis shows that the motion downshifts the soliton eigenfrequency and decreases its amplitude. The effect of the soliton velocity on the stability is analytically predicted and checked numerically. Results show shifting of the stability region toward larger amplitudes in comparison to the standing soliton case. Rich dynamics with examples of (un)stable soliton propagation and breather creation and formation of unstable cusp-type structures is exposed numerically.

Mancic, Ana; Hadzievski, Ljupco; Skoric, Milos M. [Department of Physics, Faculty of Sciences and Mathematics, University of Nis, P. O. B. 224, 18001 Nis (Serbia and Montenegro); Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia and Montenegro); National Institute for Fusion Science, Toki, 509-5292 (Japan)

2006-05-15T23:59:59.000Z

230

Laser photon merging in an electromagnetic field inhomogeneity  

E-Print Network [OSTI]

We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.

Holger Gies; Felix Karbstein; Rashid Shaisultanov

2014-08-13T23:59:59.000Z

231

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

232

Electromagnetic radiation by gravitating bodies  

E-Print Network [OSTI]

Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2008-05-06T23:59:59.000Z

233

Electromagnetic Interrogation of Structural Health D. Huston, N. Pelczarski, B. Esser, and X. Zhao  

E-Print Network [OSTI]

Mechanical Engineering Department, University of Vermont, Burlington, VT 05405 USA S. Arms Microstrain Inc., Burlington, VT 05401, USA ABSTRACT This paper will give an overview of the possibility of using electromagnetic (EM) waves to determine the health of a structure. Two techniques will be discussed. The first

Huston, Dryver R.

234

Electromagnetic-gravitational cross-sections in external electromagnetic fields  

E-Print Network [OSTI]

The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

Long, H N; Tran, T A; Tuan, T A; Long, Hoang Ngoc; Van Soa, Dang; Tran, Tuan A; Tuan, Tran Anh

1994-01-01T23:59:59.000Z

235

Self-Duality in Nonlinear Electromagnetism  

E-Print Network [OSTI]

We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.

Mary K. Gaillard; Bruno Zumino

1997-05-28T23:59:59.000Z

236

Electromagnetic design considerations for fast acting controllers  

SciTech Connect (OSTI)

Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

1996-07-01T23:59:59.000Z

237

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic Interference Analysis of  

E-Print Network [OSTI]

to electromagnetic interference (EMI) is becoming a critical aspect of signal integrity analysis. For mod- eling in high-speed packages [2]. As a result, effi- cient and accurate electromagnetic interference (EMIIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic

Roy, Sourajeet

238

ECE 203 Spring 2012 Engineering Electromagnetics Waves (3)  

E-Print Network [OSTI]

optoelectronic devices. As a proof-of-concept, polymer tandem solar cells have been fabri- cated by a direct1b), which is a widely used conducting polymer in organic optoelectronic devices.20 Although GO

Gilchrist, James F.

239

Speech coding, reconstruction and recognition using acoustics and electromagnetic waves  

DOE Patents [OSTI]

The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

Holzrichter, J.F.; Ng, L.C.

1998-03-17T23:59:59.000Z

240

Orthogonal-Phase-Velocity Propagation of Electromagnetic Plane Waves  

E-Print Network [OSTI]

In an isotropic, homogeneous, nondissipative, dielectric-magnetic medium that is simply moving with respect to an inertial reference frame, planewave solutions of the Maxwell curl postulates can be such that the phase velocity and the time-averaged Poynting vector are mutually orthogonal. Orthogonal-phase-velocity propagation thus adds to the conventional positive-phase-velocity propagation and the recently discovered negative-phase-velocity propagation that is associated with the phenomenon of negative refraction.

Tom G. Mackay; Akhlesh Lakhtakia

2005-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Structurally Electromagnetic Formation Flight (EMFF)  

E-Print Network [OSTI]

Structurally connected secondary mirror EMFF secondary mirror EMFF Design Electromagnetic Formation for a smaller, simpler system. µEMFF investigates the use of conventional conductors, capacitors, and solar propellants that often limit lifetime, the EMFF system uses solar power to energize a magnetic field

de Weck, Olivier L.

242

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can

Pope, Christopher

243

Electromagnetic Interrogation of Dielectric Materials 1  

E-Print Network [OSTI]

Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them

244

Course Outline Physics 433: Electromagnetism II  

E-Print Network [OSTI]

Course Outline Physics 433: Electromagnetism II Spring 2014 Prof. Keun Hyuk "Ken" Ahn 483 Tiernan of this course is on the elementary concepts of electromagnetic fields. Upon completion of the course, students are expected to be capable of using the Maxwell equations to calculate simple electromagnetic problems, ranging

245

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network [OSTI]

611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F

Pope, Christopher

246

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network [OSTI]

Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1

Bernard, Claude

247

Physics 4: Introductory Physics Electromagnetism and Light  

E-Print Network [OSTI]

Physics 4: Introductory Physics Electromagnetism and Light Professor Jeffrey D. Richman Department: Electromagnetism and Light Welcome to Physics 4! What is your goal in life? If it is to become an engineer or to pursue a career in science, this is a key class for you. Understanding electromagnetism and light

Fygenson, Deborah Kuchnir

248

Electromagnetics from Simulation to Optimal Design  

E-Print Network [OSTI]

1 Electromagnetics from Simulation to Optimal Design Christian Hafner Laboratory for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG 23, 2013 #12;2 IFH courses · Advanced engineering electromagnetics (Leuchtmann, start spring 2014

Lang, Annika

249

Electromagnetic Formation Flight of Satellite Arrays  

E-Print Network [OSTI]

Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics

250

Modified definition of group velocity and electromagnetic energy conservation equation  

E-Print Network [OSTI]

The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.

Changbiao Wang

2015-01-19T23:59:59.000Z

251

Electromagnetic scattering from grassland Part II: Measurement and modeling results  

E-Print Network [OSTI]

-InvestigatoronmanyprojectssponsoredbyNASA,JPL,ARO,ONR,ARL, and GM all related in one way or the other to microwave and millimeter wave radar remote sensing. He has published many book chapters and more than 80 papers in refereed journals on electromagnetic scattering, random media modeling, microwave measurement...LecturerAwardfromtheGerman Federal Ministry for Education, Science, and Technology. FawwazT.Ulaby(M’68–SM’74–F’80)receivedthe B.S.degreeinphysicsfromtheAmericanUniversity of Beirut, Lebanon, in 1964, and the M.S.E.E. and Ph.D.degreesinelectricalengineeringfromtheUni- versity...

Stiles, James Marion; Ulaby, F. T.; Sarabandi, K.

2000-01-01T23:59:59.000Z

252

Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs  

E-Print Network [OSTI]

- Iil Z LLI ) I- O LI III ) D- Z 00 + 0 CI z 0 I- U CI 0 K 0. CI D VERTICAL HEAT LOSS tt44 OVERBURDEN FLUID FLOW CONVECTION CONDUCTION P= Pe T=Te VERTICAL HEAT LOSS ~ ELECTROMAGNETIC WAVE Fig. 2 ? Schematic View of EMH Process 12... The ProPerties that affected the heated oil production rate the most were initial oil viscosity, formation ~ility, drainage radius, p~e drop, and ~ture. The heated oil prcduction rate estimation equation was applied to 80 Texas heavy oil ~irs to de...

Doublet, Louis Edward

1988-01-01T23:59:59.000Z

253

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board  

E-Print Network [OSTI]

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board

Chase, B E; Lanni, F; Makowiecki, D S; Radeka, V; Rescia, S; Takai, H; Bán, J; Parsons, J; Sippach, W

1999-01-01T23:59:59.000Z

254

Discrimination of partial discharge electromagnetic signal in SF{sub 6} gas from external noises using phase gate control method  

SciTech Connect (OSTI)

The authors proposed phase gate control method for distinguishing frequency spectrum of electromagnetic wave caused by partial discharge (PD) in SF{sub 6} gas from external noises. They investigated the dependence of the polarity and phase angle of ac voltage on the electromagnetic wave spectrum. They derived the frequency region where PD spectrum caused by SF{sub 6} gas can be detected under noisy conditions. The authors also related quantitatively the gain of electromagnetic wave spectrum to the maximum PD charge simultaneously occurring in both SF{sub 6} gas and air. On the basis of these results, they determined the minimum detectable PD level in SF{sub 6} gas under noisy conditions as a function of measuring frequency.

Hikita, M.; Hoshino, T.; Kato, T.; Hayakawa, N.; Okubo, H. [Nagoya Univ. (Japan); Ueda, T. [Chubu Electric Power Co., Inc., Nagoya (Japan)

1996-12-31T23:59:59.000Z

255

Strong permanent magnet-assisted electromagnetic undulator  

DOE Patents [OSTI]

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

Halbach, Klaus (Berkeley, CA)

1988-01-01T23:59:59.000Z

256

Optimisation and comparison of integrated models of direct-drive linear machines for wave energy conversion   

E-Print Network [OSTI]

Combined electrical and structural models of five types of permanent magnet linear electrical machines suitable for direct-drive power take-off on wave energy applications are presented. Electromagnetic models were ...

Crozier, Richard Carson

2014-06-30T23:59:59.000Z

257

Chaotic Emission from Electromagnetic Systems Considering Self-Interaction  

E-Print Network [OSTI]

The emission of electromagnetic waves from a system described by the H\\'enon-Heiles potential is studied in this work. The main aim being to analyze the behavior of the system when the damping term is included explicitly into the equations of motion. Energy losses at the chaotic regime and at the regular regime are compared. The results obtained here are similar to the case of gravitational waves emission, as long we consider only the energy loss. The main difference being that in the present work the energy emitted is explicitly calculated solving the equation of motion without further approximations. It is expected that the present analysis may be useful when studying the analogous problem of dissipation in gravitational systems.

Fernando Kokubun; Vilson T. Zanchin

2006-05-02T23:59:59.000Z

258

Transient electromagnetic interference in substations  

SciTech Connect (OSTI)

Electromagnetic interference levels on sensitive electronic equipment are quantified experimentally and theoretically in air and gas insulated substations of different voltages. Measurement techniques for recording interference voltages and currents and electric and magnetic fields are reviewed and actual interference data are summarized. Conducted and radiated interference coupling mechanisms and levels in substation control wiring are described using both measurement results and electromagnetic models validated against measurements. The nominal maximum field and control wire interference levels expected in the switchyard and inside the control house from switching operations, faults, and an average lightning strike are estimated using high frequency transient coupling models. Comparisons with standards are made and recommendations given concerning equipment shielding and surge protection.

Wiggins, C.M.; Thomas, D.E.; Nickel, F.S.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (United States)); Wright, S.E. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-10-01T23:59:59.000Z

259

Dark Energy, Gravitation and Electromagnetism  

E-Print Network [OSTI]

In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.

B. G. Sidharth

2004-01-08T23:59:59.000Z

260

Laminated electromagnetic pump stator core  

DOE Patents [OSTI]

A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

Fanning, A.W.

1995-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The nature of electromagnetic energy  

E-Print Network [OSTI]

The nature of the electromagnetic (EM) energy for general charge and current distributions is analyzed. There are two well known forms for calculating EM energy as the integral over all space of either the electromagnetic fields: $u_{\\bf EB}=({\\bf E\\bcdot D+B\\bcdot H})/8\\pi$, or the electromagnetic potentials and charge-current densities: $u_{\\rho{\\bf A}}=1/2(\\rho\\phi+{\\bf j\\bcdot A})$. We discuss the appropriate use of each of these forms in calculating the total EM energy and the EM energy within a limited volume. We conclude that only the form $u_{\\bf EB}$ can be considered as a suitable EM energy density, while either form can be integrated to find the total EM energy. However, bounding surface integrals (if they don't vanish) must be included when using the $u_{\\bf EB}$ form. Including these surface integrals resolves some seeming paradoxes in the energy of electric or magnetic dipoles in uniform fields

Jerrold Franklin

2007-07-23T23:59:59.000Z

262

Poynting-vector based method for determining the bearing and location of electromagnetic sources  

DOE Patents [OSTI]

A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

Simons, David J. (Modesto, CA); Carrigan, Charles R. (Tracy, CA); Harben, Philip E. (Livermore, CA); Kirkendall, Barry A. (Golden, CO); Schultz, Craig A. (Danville, CA)

2008-10-21T23:59:59.000Z

263

Derivation of Gell-Mann-Nishijima formula from the electromagnetic field modes of a hadron  

E-Print Network [OSTI]

When an electron probes another elementary particle Q, the wave function of the electron can be separated into two independent parts, the first part represents the electronic motion, the second part represents the electromagnetic field mode around the particle Q. In analogy with optical modes $TEM_{nlm}$ for a laser resonator, when the electromagnetic field around the particle Q forms into a mode, the quantum numbers of the mode satisfy the Gell-Mann-Nishijima formula, these quantum numbers are recognized as the charge number, baryon number and strangeness number. The modes are used as a visual model to understand the abstract baryon number and strangeness number of hadrons.

Huai-yang Cui

2010-07-23T23:59:59.000Z

264

Direct space-time observation of pulse tunneling in an electromagnetic band gap  

SciTech Connect (OSTI)

We present space-time-resolved measurements of electromagnetic pulses tunneling through a coaxial electromagnetic band gap structure. The results show that during the tunneling process the field distribution inside the barrier is an exponentially decaying standing wave whose amplitude increases and decreases as it slowly follows the temporal evolution of the input pulse. At no time is a pulse maximum found inside the barrier, and hence the transmitted peak is not the incident peak that has propagated to the exit. The results support the quasistatic interpretation of tunneling dynamics and confirm that the group delay is not the traversal time of the input pulse peak.

Doiron, Serge; Hache, Alain [Department de physique et d'astronomie, Universite de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada); Winful, Herbert G. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

2007-08-15T23:59:59.000Z

265

Electromagnetic Effects in SDF Explosions  

SciTech Connect (OSTI)

The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

Reichenbach, H; Neuwald, P; Kuhl, A L

2010-02-12T23:59:59.000Z

266

Electromagnetic interactions at RHIC and LHC  

E-Print Network [OSTI]

At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.

M. C. Guclu

2008-11-15T23:59:59.000Z

267

Cellular Manipulation and Control by Electromagnetism | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phenomenon for sensors; however, one may also use intense electromagnetic radiation, such as pulsed power, plasmas, or lasers, to induce changes in cellular...

268

6.630 Electromagnetic Theory, Fall 2002  

E-Print Network [OSTI]

6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

Kong, Jin Au, 1942-

269

22.105 Electromagnetic Interactions, Fall 1998  

E-Print Network [OSTI]

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...

Hutchinson, I. H. (Ian H.)

270

Electromagnetic effects on transportation systems  

SciTech Connect (OSTI)

Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

Morris, M.E.; Dinallo, M.A.

1996-05-01T23:59:59.000Z

271

Quantum modulation against electromagnetic interference  

E-Print Network [OSTI]

Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

Juan Carlos Garcia-Escartin

2014-11-26T23:59:59.000Z

272

Electromagnetic properties of massive neutrinos  

SciTech Connect (OSTI)

The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

2013-10-15T23:59:59.000Z

273

Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field  

SciTech Connect (OSTI)

A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfven and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

Liu Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

2012-10-15T23:59:59.000Z

274

Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors  

E-Print Network [OSTI]

Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Eintein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

Shoemaker, Deirdre; London, Lionel; Pekowsky, Larne

2015-01-01T23:59:59.000Z

275

Electron Bernstein waves in spherical torus plasmas  

SciTech Connect (OSTI)

Propagation and absorption of the electron Bernstein waves (EBWs) in spherical tokamaks (STs) have been intensively discussed in recent years because the EBWs coupled with an externally launched electromagnetic beam seem to be the only opportunity for microwave plasma heating and current drive in the electron cyclotron (EC) frequency range in the STs. The whole problem of the electron Bernstein heating and current drive (EBWHCD) in spherical plasmas is naturally divided into three major parts: coupling of incident electromagnetic waves (EMWs) to the EBWs near the upper hybrid resonance (UHR) surface, propagation and absorption of the EBWs in the plasma interior and generation of noninductive current driven by the EBWs. The present paper is a brief survey of the most important theoretical and numerical results on the issue of EBWs.

Saveliev, A. N. [A.F.Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation)

2006-11-30T23:59:59.000Z

276

Electromagnetic probes of the QGP  

E-Print Network [OSTI]

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

E. L. Bratkovskaya; O. Linnyk; W. Cassing

2014-09-15T23:59:59.000Z

277

Vacuum Waves  

E-Print Network [OSTI]

As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.

Paul S. Wesson

2012-12-11T23:59:59.000Z

278

Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999  

E-Print Network [OSTI]

to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

California at Los Angeles, University of

279

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters  

E-Print Network [OSTI]

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters H University, Raleigh, NC 27695-8205 August 17, 2005 Abstract We consider electromagnetic interrogation, uniform, log-normal, and log-Bi-Gaussian distributions. Keywords: Electromagnetic interrogation

280

Regularity and approximation of systems arising in electromagnetic interrogation of  

E-Print Network [OSTI]

Regularity and approximation of systems arising in electromagnetic interrogation of dielectric describes the electromagnetic interrogation of dielectric materials. We address the well describing the electromagnetic in- terrogation of dielectric materials. Let E and H be the intensities

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Excitation of terahertz nanoantennas by Rabi waves  

SciTech Connect (OSTI)

Theoretical model of quantum dot ring, strongly coupled with classical electromagnetic field, is developed. We demonstrate, that tunnel current in the QD-ring has low-frequency component, excited by Rabi waves, propagating into the ring, and the ring can be considered as a candidate for role of terahertz magnetic loop antenna. The low-frequency current is inspired by the asymmetry of electron tunneling.

Slepyan, G. Ya.; Yerchak, Y. D.; Maksimenko, S. A. [Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220030 Minsk (Belarus); Hoffmann, A. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Bass, F. G. [Department of Physics, Bar-Ilan University, 52900 Ramat-Gan (Israel)

2011-10-03T23:59:59.000Z

282

Narrow field electromagnetic sensor system and method  

DOE Patents [OSTI]

A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

283

Space-time Curvature of Classical Electromagnetism  

E-Print Network [OSTI]

The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

R. W. M. Woodside

2004-10-08T23:59:59.000Z

284

Electromagnetic corrections to light hadron masses  

E-Print Network [OSTI]

At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.

A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos

2011-01-12T23:59:59.000Z

285

Optimization Material Distribution methodology: Some electromagnetic examples  

E-Print Network [OSTI]

730 1 Optimization Material Distribution methodology: Some electromagnetic examples P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon Abstract--In this paper, a new approach towards Optimization Material to be highly adaptive to various kinds of electromagnetic actuator optimization approaches. Several optimal

Paris-Sud XI, Université de

286

Noninvasive valve monitor using alternating electromagnetic field  

DOE Patents [OSTI]

One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

1993-01-01T23:59:59.000Z

287

Gravitational Waves in G4v  

E-Print Network [OSTI]

Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. G4v predictions differ markedly from those of GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. The predicted antenna patterns have been shown t...

Mead, Carver

2015-01-01T23:59:59.000Z

288

Photon wave functions, wave-packet quantization of light, and coherence theory  

E-Print Network [OSTI]

The monochromatic Dirac and polychromatic Titulaer-Glauber quantized field theories (QFTs) of electromagnetism are derived from a photon-energy wave function in much the same way that one derives QFT for electrons, that is, by quantization of a single-particle wave function. The photon wave function and its equation of motion are established from the Einstein energy-momentum-mass relation, assuming a local energy density. This yields a theory of photon wave mechanics (PWM). The proper Lorentz-invariant single-photon scalar product is found to be non-local in coordinate space, and is shown to correspond to orthogonalization of the Titulaer-Glauber wave-packet modes. The wave functions of PWM and mode functions of QFT are shown to be equivalent, evolving via identical equations of motion, and completely describe photonic states. We generalize PWM to two or more photons, and show how to switch between the PWM and QFT viewpoints. The second-order coherence tensors of classical coherence theory and the two-photon wave functions are shown to propagate equivalently. We give examples of beam-like states, which can be used as photon wave functions in PWM, or modes in QFT. We propose a practical mode converter based on spectral filtering to convert between wave packets and their corresponding biorthogonal dual wave packets.

Brian J. Smith; M. G. Raymer

2007-12-09T23:59:59.000Z

289

applied computational electromagnetics: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetics Geosciences Websites Summary: Max Optics, Inc. 12;MadMax Optics 2 Stealth Electromagnetic interference Antennas on complex platformsFMM Code...

290

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon  

E-Print Network [OSTI]

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites Ning (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI

Gao, Hongjun

291

Project no. 516369 Electromagnetic compatibility between rolling stock and  

E-Print Network [OSTI]

to anything in that environment. Electromagnetic interference (EMI): Degradation of the performance compatibility EMI Electromagnetic interference ETSI European Telecommunications Standards Institute FM Frequency

Paris-Sud XI, Université de

292

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation  

E-Print Network [OSTI]

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation Approach in electromagnetic interference (EMI) modeling and simulation for modern and future wireless communication systems

Loyka, Sergey

293

Nonlinear phenomena of generation of longitudinal electric current by transversal electromagnetic field in plasmas  

E-Print Network [OSTI]

The analysis of nonlinear interaction of transversal electromagnetic field with collisionless plasma is carried out. Formulas for calculation electric current in collisionless plasma with arbitrary degree of degeneration of electronic gas are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal current, received at the classical linear analysis.

Latyshev, A V

2015-01-01T23:59:59.000Z

294

The CLAS Forward Electromagnetic Calorimeter  

SciTech Connect (OSTI)

The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

2001-05-01T23:59:59.000Z

295

Generation of the longitudinal current by the transversal electromagnetic field in classical and quantum plasmas  

E-Print Network [OSTI]

From Vlasov kinetic equation for collisionless plasmas distribution function in square-law approximation on size of electromagnetic field is received. Formulas for calculation electric current at any temperature (any degree of degeneration of electronic gas) are deduced. The case of small values of the wave numbers is considered. It is shown, that the nonlinearity account leads to occurrence the longitudinal electric current directed along a wave vector. This longitudinal current orthogonal to known transversal classical current, received at the linear analysis. From the kinetic equation with Wigner integral for collisionless quantum plasma distribution function is received in square-law on vector potential approximation. Formulas for calculation electric current at any temperature are deduced. The case of small values of wave number is considered. It is shown, that size of a longitudinal current at small values of wave number and for classical plasma and for quantum plasma coincide. Graphic comparison of dim...

Latyshev, A V

2015-01-01T23:59:59.000Z

296

Electromagnetic Perturbations in the Reconnecting Current Sheet in MRX  

SciTech Connect (OSTI)

Magnetic reconnection is a fundamental plasma process in which magnetic field lines break and reconnect, converting magnetic field energy into particle kinetic energy. Electromagnetic fluctuations, which may play a role in fast reconnection, are studied from both an experimental and theoretical standpoint. The waves, which are in the lower hybrid range of frequencies, may be produced by a plasma instability known as the oblique lower hybrid drift instability. When the electron drift velocity is large, the theory predicts coupling between whistler and acoustic waves in the ion frame that may lead to an instability in the vicinity of the current sheet. On the experimental side, an antenna placed in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory is used to apply perturbations, and their propagation characteristics are measured. Results from a 2mm diameter antenna indicate that any induced fluctuations are confined to the current sheet and are preferentially excited in the direction of electron flow within the layer. Preliminary data from a 2cm diameter antenna shows a wave propagating in the electron flow direction at the local electron drift velocity. Thus electron drift appears to play a crucial role in the appearance of fluctuations.

Dorfman, Seth; Ji, Hantao; Yamada, MasAki; Ren Yang; Gerhardt, Stefan; Kulsrud, Russell; McGeehan, Brendan; Wang Yansong [Princeton Plasma Physics Laboratory, Princeton NJ 08540 (United States)

2006-11-30T23:59:59.000Z

297

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007 661 Novel Planar Electromagnetic Bandgap Structures  

E-Print Network [OSTI]

. A novel concept of using these EBG structures for electromagnetic interference reduction is also, the power/ground noise creates significant and new challenges for electromagnetic interference

Ramahi, Omar

298

Excitation of Banded Whistler Waves in the Magnetosphere  

SciTech Connect (OSTI)

Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

299

Transverse Wave Propagation in Relativistic Two-fluid Plasmas around Reissner-Nordström-de Sitter Black Hole  

E-Print Network [OSTI]

The transverse electromagnetic waves propagating in a relativistic two-fluid plasma influenced by the gravitational field of the Reissner-Nordstr\\"{o}m-de Sitter black hole has been investigated exploiting 3+1 split of spacetime. Reformulating the two-fluid equations, the set of simultaneous linear equations for the perturbations have been derived. Using a local approximation, the one-dimensional radial propagation of Alfv\\'{e}n and high frequency electromagnetic waves are investigated. The dispersion relation for these waves is obtained and solved numerically for the wave number.

M. Atiqur Rahman; M. Hossain Ali

2009-02-22T23:59:59.000Z

300

Multi-wave methods via ultrasound - Department of Mathematics ...  

E-Print Network [OSTI]

absorb much more energy of electromagnetic waves (in some specific .... that a numerical method based on the theoretical developments considered here ..... where |?| is the norm in the metric c?2g, and the prime in ?? stands for the ...... smooth way to make the kernel properly supported at the price of a smoothing error.

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems  

SciTech Connect (OSTI)

Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.

Cai, Wei

2014-05-15T23:59:59.000Z

302

Ultrarelativistic electron states in a general background electromagnetic field  

E-Print Network [OSTI]

The feasibility of obtaining exact analytical results in the realm of QED in the presence of a background electromagnetic field is almost exclusively limited to a few tractable cases, where the Dirac equation in the corresponding background field can be solved analytically. This circumstance has restricted, in particular, the theoretical analysis of QED processes in intense laser fields to within the plane-wave approximation even at those high intensities, achievable experimentally only by tightly focusing the laser energy in space. Here, within the Wentzel-Kramers-Brillouin (WKB) or eikonal approximation, we construct analytically single-particle electron states in the presence of a background electromagnetic field of general space-time structure in the realistic assumption that the initial energy of the electron is the largest dynamical energy scale in the problem. The relatively compact expression of these states opens, in particular, the possibility of investigating analytically strong-field QED processes in the presence of spatially focused laser beams, which is of particular relevance in view of the upcoming experimental campaigns in this field.

A. Di Piazza

2014-07-27T23:59:59.000Z

303

High frequency electromagnetic burn monitoring for underground coal gasification  

SciTech Connect (OSTI)

This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

Deadrick, F.J.; Hill, R.W.; Laine, E.F.

1981-06-17T23:59:59.000Z

304

A current driven electromagnetic mode in sheared and toroidal configurations  

E-Print Network [OSTI]

The induced electric field in a tokamak drives a parallel electron current flow. In an inhomogeneous, finite beta plasma, when this electron flow is comparable to the ion thermal speed, the Alfven mode wave solutions of the electromagnetic gyrokinetic equation can become nearly purely growing kink modes. Using the new "low-flow" version of the gyrokinetic code GS2 developed for momentum transport studies [Barnes et al 2013 Phys. Rev. Lett. 111, 055005], we are able to model the effect of the induced parallel electric field on the electron distribution to study the destabilizing influence of current on stability. We identify high mode number kink modes in GS2 simulations and make comparisons to analytical theory in sheared magnetic geometry. We demonstrate reassuring agreement with analytical results both in terms of parametric dependences of mode frequencies and growth rates, and regarding the radial mode structure.

Pusztai, István; Parra, Felix I; Barnes, Michael

2013-01-01T23:59:59.000Z

305

From Photons to Atoms - The Electromagnetic Nature of Matter  

E-Print Network [OSTI]

Motivated by a revision of the classical equations of electromagnetism that allow for the inclusion of solitary waves in the solution space, the material collected in these notes examine the consequences of adopting the modified model in the description of atomic structures. The possibility of handling "photons" in a deterministic way opens indeed a chance for reviewing the foundations of quantum physics. Atoms and molecules are described as aggregations of nuclei and electrons joined through organized photon layers resonating at various frequencies, explaining how matter can absorb or emit light quanta. Some established viewpoints are subverted, offering an alternative scenario. The analysis seeks to provide an answer to many technical problems in physical chemistry and, at the same time, to raise epistemological questions.

Daniele Funaro

2012-05-07T23:59:59.000Z

306

Variational Principles for Constrained Electromagnetic Field and Papapetrou Equation  

E-Print Network [OSTI]

In our previous article [4] an approach to derive Papapetrou equations for constrained electromagnetic field was demonstrated by use of field variational principles. The aim of current work is to present more universal technique of deduction of the equations which could be applied to another types of non-scalar fields. It is based on Noether theorem formulated in terms of Cartan' formalism of orthonormal frames. Under infinitesimal coordinate transformation the one leads to equation which includes volume force of spin-gravitational interaction. Papapetrou equation for vector of propagation of the wave is derived on base of the equation. Such manner of deduction allows to formulate more accurately the constraints and clarify equations for the potential and for spin.

A. T. Muminov

2007-06-28T23:59:59.000Z

307

Spinors and pre-metric electromagnetism  

E-Print Network [OSTI]

The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.

David Delphenich

2005-12-22T23:59:59.000Z

308

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

309

Electromagnetic Properties for Arbitrary Spin Particles: Part 1 $-$ Electromagnetic Current and Multipole Decomposition  

E-Print Network [OSTI]

In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.

Cédric Lorcé

2009-01-27T23:59:59.000Z

310

Shock Wave Polarizations and Optical Metrics in the Born and the Born-Infeld Electrodynamics  

E-Print Network [OSTI]

We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations what allows for deriving relations that determine the jump coefficients in the expansion series of the potential. The solution of the first-order jump relations shows that, in contrast to linear Maxwell's electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born-Infeld theories. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived.

Christoph Minz; Horst-Heino von Borzeszkowski; Thoralf Chrobok; Gerold Schellstede

2014-11-12T23:59:59.000Z

311

Shock Wave Polarizations and Optical Metrics in the Born and the Born-Infeld Electrodynamics  

E-Print Network [OSTI]

We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations what allows for deriving relations that determine the jump coefficients in the expansion series of the potential. The solution of the first-order jump relations shows that, in contrast to linear Maxwell's electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born-Infeld theories. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived.

Christoph Minz; Horst-Heino von Borzeszkowski; Thoralf Chrobok; Gerold Schellstede

2015-02-27T23:59:59.000Z

312

Dynamic programming applied to electromagnetic satellite actuation  

E-Print Network [OSTI]

Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

Eslinger, Gregory John

2013-01-01T23:59:59.000Z

313

Electrical wire insulation and electromagnetic coil  

DOE Patents [OSTI]

An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

1984-01-01T23:59:59.000Z

314

Singular Modes of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Neil V. Budko; Alexander B. Samokhin

2006-06-15T23:59:59.000Z

315

Singular Modes of the Electromagnetic Field  

E-Print Network [OSTI]

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Budko, N V; Budko, Neil V.; Samokhin, Alexander B.

2006-01-01T23:59:59.000Z

316

Characterization of electromagnetic transients in power substations  

E-Print Network [OSTI]

CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER CiOERS, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Electrical Engineering CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER GOERS, JR. Approved as to style and content by: Dr. B. Don Russell (Chairman of Committee...

Goers, William Chester

1980-01-01T23:59:59.000Z

317

Electromagnetic Beams Overpass the Black Hole Horizon  

E-Print Network [OSTI]

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

318

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network [OSTI]

To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.

C. Bernard; E. D. Freeland

2010-11-17T23:59:59.000Z

319

Electromagnetic and spin polarisabilities in lattice QCD  

E-Print Network [OSTI]

We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

W. Detmold; B. C. Tiburzi; A. Walker-Loud

2006-10-02T23:59:59.000Z

320

Elec Eng 2FH3 Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 Electromagnetics I  

E-Print Network [OSTI]

Elec Eng 2FH3 ­ Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 ­ Electromagnetics I field 6. Inductance 7. Faraday's law CALENDAR DESCRIPTION: Electromagnetics Part I is an introduction into engineering electromagnetics. It covers the mathematical foundations such as selected topics of vector

Haykin, Simon

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Rogue waves for a long wave-short wave resonance model with multiple short waves  

E-Print Network [OSTI]

1 Rogue waves for a long wave-short wave resonance model with multiple short waves Hiu Ning Chan (1 waves; Long-short resonance PACS Classification: 02.30.Jr; 05.45.Yv; 47.35.Fg #12;2 ABSTRACT A resonance between long and short waves will occur if the phase velocity of the long wave matches the group velocity

322

Vortices in Brain waves  

E-Print Network [OSTI]

2003). Vortices in Brain Waves 62. M. E. Raichle, ScienceVORTICES IN BRAIN WAVES WALTER J. FREEMAN Department ofthat is recorded in brain waves (electroencephalogram, EEG).

Freeman, Walter J III; Vitiello, Giuseppe

2010-01-01T23:59:59.000Z

323

Lorentz violation and red shift of gravitational waves in brane-worlds  

E-Print Network [OSTI]

In this paper we study the speed of gravitational waves in a brane world scenario and show that if the extra dimension is space-like, the speed of the propagation of such waves is greater in the bulk than that on the brane. Therefore, the 4D Lorentz invariance is broken in the gravitational sector. A comparison is also made between the red shift of such waves and those of the electromagnetic waves on the brane. Such a comparison is essential for extracting the signature of the extra dimension and thus clarifying the question of maximal velocity of gravitational waves in the bulk.

Fatemeh Ahmadi; Jafar Khodagholizadeh; H. R. Sepangi

2014-11-07T23:59:59.000Z

324

Environmental Effects for Gravitational-wave Astrophysics  

E-Print Network [OSTI]

The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly-dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors -the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals- and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, ...

Barausse, Enrico; Pani, Paolo

2014-01-01T23:59:59.000Z

325

Structural health monitoring by ultrasonic guided waves  

E-Print Network [OSTI]

mesh) to prevent electromagnetic interference. Three, mm xlarge source of electromagnetic interference at the locationagainst strong electromagnetic interference. RATIO PICO(C)/

Bartoli, Ivan

2007-01-01T23:59:59.000Z

326

Mixed-domain performance model of the piezoelectric traveling-wave motor and the development of a two-sided device  

E-Print Network [OSTI]

In recognition of the growing consideration of piezoelectric traveling-wave motors as suitable replacements for small-scale electromagnetic motors, the present work addresses two parallel objectives: (1) to develop an ...

Glenn, Timothy Scott, 1971-

2002-01-01T23:59:59.000Z

327

Wave propagation in axion electrodynamics  

E-Print Network [OSTI]

In this paper, the axion contribution to the electromagnetic wave propagation is studied. First we show how the axion electrodynamics model can be embedded into a premetric formalism of Maxwell electrodynamics. In this formalism, the axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but emerges in a natural way as an irreducible part of a general constitutive tensor.We show that in order to represent the axion contribution to the wave propagation it is necessary to go beyond the geometric approximation, which is usually used in the premetric formalism. We derive a covariant dispersion relation for the axion modified electrodynamics. The wave propagation in this model is studied for an axion field with timelike, spacelike and null derivative covectors. The birefringence effect emerges in all these classes as a signal of Lorentz violation. This effect is however completely different from the ordinary birefringence appearing in classical optics and in premetric electrodynamics. The axion field does not simple double the ordinary light cone structure. In fact, it modifies the global topological structure of light cones surfaces. In CFJ-electrodynamics, such a modification results in violation of causality. In addition, the optical metrics in axion electrodynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they are even non-Finslerian.

Yakov Itin

2007-06-20T23:59:59.000Z

328

High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts  

E-Print Network [OSTI]

Most of the current knowldege about GRB is based on electromagnetic observations at MeV and lower energies. Here we focus on some recent theoretical work on GRB, in particular the higher energy (GeV-TeV) photon emission, and two potentially important non-electromagnetic channels, the TeV and higher energy neutrino signals, and the gravitational wave signals expected from GRB.

P. Meszaros; S. Kobayashi; S. Razzaque; B. Zhang

2003-05-06T23:59:59.000Z

329

Electromagnetic time reversal algorithms and source localization in lossy dielectric media  

E-Print Network [OSTI]

The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies (radio and microwave) associated with polarization in dielectrics.

Abdul Wahab; Amer Rasheed; Tasawar Hayat; Rab Nawaz

2014-09-16T23:59:59.000Z

330

Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites  

E-Print Network [OSTI]

Composites for Electromagnetic Interference Shielding. NanoY. Ma, et al. Electromagnetic Interference (EMI) Shieldingof Bonn). Chung DDL. Electromagnetic interference shielding

Park, Sung-Hoon

2009-01-01T23:59:59.000Z

331

Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism  

E-Print Network [OSTI]

from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION

Zhou, Peng; Johnson, William C.

2010-01-01T23:59:59.000Z

332

Stochastic Gravitational Wave Background from Exoplanets  

E-Print Network [OSTI]

Recent exoplanet surveys have predicted a very large population of planetary systems in our galaxy, more than one planet per star on the average, perhaps totalling about two hundred billion. These surveys, based on electro-magnetic observations, are limited to a very small neighbourhood of the solar system and the estimations rely on the observations of only a few thousand planets. On the other hand, orbital motions of planets around stars are expected to emit gravitational waves (GW), which could provide information about the planets not accessible to electro-magnetic astronomy. The cumulative effect of the planets, with periods ranging from few hours to several years, is expected to create a stochastic GW background (SGWB). We compute the characteristic GW strain of this background based on the observed distribution of planet parameters. We also show that the integrated extragalactic background is comparable or less than the galactic background at different frequencies. Our estimate shows that the net backg...

Ain, Anirban; Mitra, Sanjit

2015-01-01T23:59:59.000Z

333

Electromagnetic Field in de Sitter Expanding Universe: Majorana--Oppenheimer Formalism, Exact Solutions in non-Static Coordinates  

E-Print Network [OSTI]

Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.

O. V. Veko; N. D Vlasii; Yu. A. Sitenko; E. M. Ovsiyuk; V. M. Red'kov

2014-10-30T23:59:59.000Z

334

Electromagnetic Field in de Sitter Expanding Universe: Majorana--Oppenheimer Formalism, Exact Solutions in non-Static Coordinates  

E-Print Network [OSTI]

Tetrad-based generalized complex formalism by Majorana--Oppenheimer is applied to treat electromagnetic field in extending de Sitter Universe in on-static spherically-symmetric coordinates. With the help of Wigner D-functions, we separate angular dependence in the complex vector field E_{j}(t,r)+i B_{j}(t,r) from (t,r)-dependence. The separation parameter arising here instead of frequency \\omega in Minkowski space-time is quantized, non-static geometry of the de Sitter model leads to definite dependence of electromagnetic modes on the time variable. Relation of 3-vector complex approach to 10-dimensional Duffin-Kemmer-Petiau formalism is considered. On this base, the electromagnetic waves of magnetic and electric type have been constructed in both approaches. In Duffin-Kemmer-Petiau approach, there are constructed gradient-type solutions in Lorentz gauge.

Veko, O V; Sitenko, Yu A; Ovsiyuk, E M; Red'kov, V M

2014-01-01T23:59:59.000Z

335

Chaotic dynamics induced by space-charge waves in cyclotron resonance accelerators R. Pakter and I. L. Caldas  

E-Print Network [OSTI]

particles is the so called cyclotron-resonance accel- erator 1,2 , where a coherent electromagnetic wave may wave-particle synchro- nism may be self-sustained throughout the accelerating pe- riod. Transverse the related fields tend to be small if the particle beam is of ap- propriate thickness 2 . As for longitudinal

Caetano, Tiberio

336

Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide  

SciTech Connect (OSTI)

We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

Alekhina, Tatiana Yu.; Tyukhtin, Andrey V. [Radiophysics Department of St. Petersburg University, 1 Ulyanovskaya, St. Petersburg 198504 (Russian Federation)

2011-06-15T23:59:59.000Z

337

Merging electromagnetism with space-time metric  

E-Print Network [OSTI]

In the present work, it is shown that the electromagnetism may be directly associated to the four-dimensional space-time geometry. The starting point is an analysis of the geodesic equation of general relativity where it is verified that it contains implicitly the effects of the Coulomb and the Lorentz forces. Consequently, some components of the metric tensor are identified with the components of the four-vector electromagnetic potential. Then, it is constructed a low-field equation for the electromagnetism in the same structure of the Einstein field equations for the gravitation, relating the curvature of space-time to sources of charge and current density. In this framework, all the Maxwell equations are implicit. A proof of consistency with the framework of quantum mechanics is shown.

C. A. Duarte

2014-03-10T23:59:59.000Z

338

Phenomenology of the Deuteron Electromagnetic Form Factors  

E-Print Network [OSTI]

A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.

TheJLAB t20 collaboration; D. Abbott

2000-02-25T23:59:59.000Z

339

Duality in Off-Shell Electromagnetism  

E-Print Network [OSTI]

In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.

Martin Land

2006-03-21T23:59:59.000Z

340

Electromagnetic Observables in Few-Nucleon Systems  

E-Print Network [OSTI]

The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.

Sonia Bacca

2012-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electromagnetic continuous casting project: Final report  

SciTech Connect (OSTI)

This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

1988-10-01T23:59:59.000Z

342

Comment on ''Chaotic electron trajectories in an electromagnetic wiggler free-electron laser with ion-channel guiding'' [Phys. Plasmas 17, 093103 (2010)  

SciTech Connect (OSTI)

The chaotic electron dynamics in a free-electron laser with electromagnetic-wave wiggler and ion-channel has been recently reported by A. Taghavi et al.[Phys. Plasmas 17, 093103 (2010)]. We comment on the authors use of a set of initial condition that is not correct based on the dispersion relation and steady-state orbits.

Nasr, N.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

2011-05-15T23:59:59.000Z

343

Coda wave interferometry 1 Coda wave interferometry  

E-Print Network [OSTI]

Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry

Snieder, Roel

344

Beams of electromagnetic radiation carrying angular momentum: The Riemann-Silberstein vector and the classical-quantum correspondence  

E-Print Network [OSTI]

All beams of electromagnetic radiation are made of photons. Therefore, it is important to find a precise relationship between the classical properties of the beam and the quantum characteristics of the photons that make a particular beam. It is shown that this relationship is best expressed in terms of the Riemann-Silberstein vector -- a complex combination of the electric and magnetic field vectors -- that plays the role of the photon wave function. The Whittaker representation of this vector in terms of a single complex function satisfying the wave equation greatly simplifies the analysis. Bessel beams, exact Laguerre-Gauss beams, and other related beams of electromagnetic radiation can be described in a unified fashion. The appropriate photon quantum numbers for these beams are identified. Special emphasis is put on the angular momentum of a single photon and its connection with the angular momentum of the beam.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2006-01-12T23:59:59.000Z

345

Environmental Effects for Gravitational-wave Astrophysics  

E-Print Network [OSTI]

The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors -- the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals -- and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, "firewalls" and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

Enrico Barausse; Vitor Cardoso; Paolo Pani

2015-01-07T23:59:59.000Z

346

Dr. S. Cruz-Pol, INEL 4152-Electromagnetics  

E-Print Network [OSTI]

field density [VF/m2] Ã?H = magnetic field intensity, [A/m] Ã?B = magnetic field density, [Teslas] Take JdlH Cruz-Pol, Electromagnetics UPRM Electromagnetics Ã? This is the principle of motors, hydro

Cruz-Pol, Sandra L.

347

College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during  

E-Print Network [OSTI]

designed the cyclone; a safer technology aimed at replacing the drum separators. The prototy er increase Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during cyclone; a safer technology aimedPENNSTATE College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation

Demirel, Melik C.

348

Motor Packaging with Consideration of Electromagnetic and Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

349

E-Print Network 3.0 - axisymmetric electromagnetic resonators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Lab Northwest Electromagnetics & Acoustics Research Outline Introduction to Terahertz ... Source: La Rosa, Andres H. - Department of Physics, Portland State...

350

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network [OSTI]

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Budko, Neil V

2007-01-01T23:59:59.000Z

351

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network [OSTI]

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Neil V. Budko

2007-12-05T23:59:59.000Z

352

FMM Code Libraries for Computational Electromagnetics  

E-Print Network [OSTI]

Max Optics, Inc. #12;MadMax Optics 2 · Stealth · Electromagnetic interference · Antennas on complex platforms ­ Closed and open surfaces, complex materials · Fast, Direct Solvers for Ill-Conditioned Problems ­ handle isotropic materials with closed surfaces ­ Open surfaces still active area of research · Geometric

Maryland at College Park, University of

353

Structural composites with integrated electromagnetic functionality  

E-Print Network [OSTI]

Structural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza, such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties, these materials may be leveraged for active tasks such as filtering. The advantages of such hybrid composites

Nemat-Nasser, Sia

354

Electromagnetic Composites at the Compton Scale  

E-Print Network [OSTI]

A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

Frederick J. Mayer; John R. Reitz

2011-09-10T23:59:59.000Z

355

Line geometry and electromagnetism I: basic structures  

E-Print Network [OSTI]

Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.

D. H. Delphenich

2013-09-11T23:59:59.000Z

356

Decomposition of Electromagnetic Q and P Media  

E-Print Network [OSTI]

Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.

Lindell, I V

2015-01-01T23:59:59.000Z

357

Electromagnetic Wellbore Heating Ibrahim Agyemang1  

E-Print Network [OSTI]

Chapter 5 Electromagnetic Wellbore Heating Ibrahim Agyemang1 , Matthew Bolton2 , Lloyd Bridge2 with the recovery of petroleum fluids from an oil reservoir using electrical energy. By its very nature this problem must deal with both the equations that describe the fluid flow as well as the heat flow equations

Bohun, C. Sean

358

Electromagnetic characterization of PCB cards for mobile phones  

E-Print Network [OSTI]

Electromagnetic characterization of PCB cards for mobile phones Ali Jazzar(*), Edith Clavel state, more the price linked to the EMC (Electromagnetic Compatibility) requirements is important .Thus the electromagnetic perturbations inside and outside the structure. The required CAD tool to achieve this modeling

Boyer, Edmond

359

Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC  

E-Print Network [OSTI]

Electromagnetics, 26:3­35, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one

Anlage, Steven

360

Electromagnetic measurements of duodenal digesta flow in cannulated sheep  

E-Print Network [OSTI]

Electromagnetic measurements of duodenal digesta flow in cannulated sheep C. PONCET, M. IVAN M of duodenal digesta flow were made in sheep implanted with an electromagnetic flowmeter probe on the ascending to frequent oscillation of the digesta. It was concluded that accurate quantitative electromagnetic

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas  

SciTech Connect (OSTI)

We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

2014-10-15T23:59:59.000Z

362

Gravitational Waves in G4v  

E-Print Network [OSTI]

Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in flat space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. G4v predictions differ markedly from those of GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. The predicted antenna patterns have been shown to be highly distinguishable in the case of continuous gravitational-wave sources, and should therefore be testable as data from Advanced LIGO becomes available over the next few years.

Carver Mead

2015-03-16T23:59:59.000Z

363

Plane waves Lumped systems  

E-Print Network [OSTI]

1 Impedance · Plane waves ­ Lumped systems S x y z Impedance · Plane waves ­ Lumped systems · open tube #12;2 Impedance · Plane waves ­ Lumped systems · closed tube Impedance · Cylindrical waves z x y r #12;3 Impedance · Cylindrical waves ­ Circumferential part n=0 n=1 n=2 n=3 Impedance · Cylindrical

Berlin,Technische Universität

364

A strong permanent magnet-assisted electromagnetic undulator  

DOE Patents [OSTI]

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

Halbach, K.

1987-01-30T23:59:59.000Z

365

Wave guide impedance matching method and apparatus  

DOE Patents [OSTI]

A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

Kronberg, James W. (Beech Island, SC)

1990-01-01T23:59:59.000Z

366

Smooth sandwich gravitational waves  

E-Print Network [OSTI]

Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.

J. Podolsky

1998-07-16T23:59:59.000Z

367

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 57, NO. 1, JANUARY 2010 249 Hybrid Formulation of the Equation Systems of the  

E-Print Network [OSTI]

(PEEC) method for the solution of combined elec- tromagnetic and circuit (EM-CKT) problems. Traditional electro- magnetic solution methods suffer from singularity of the system matrix due to the decoupling DC-to-daylight and its capability to provide memory saving. Index Terms--Circuit electromagnetic, low

Frigioni, Daniele

368

Solitary and shock waves in magnetized electron-positron plasma  

SciTech Connect (OSTI)

An Ohm's law for electron-positron (EP) plasma is obtained. In the framework of EP magnetohydrodynamics, we investigate nonrelativistic nonlinear waves' solutions in a magnetized EP plasma. In the collisionless limit, quasistationary propagating solitary wave structures for the magnetic field and the plasma density are obtained. It is found that the wave amplitude increases with the Mach number and the Alfvén speed. However, the dependence on the plasma temperature is just the opposite. Moreover, for a cold EP plasma, the existence range of the solitary waves depends only on the Alfvén speed. For a hot EP plasma, the existence range depends on the Alfvén speed as well as the plasma temperature. In the presence of collision, the electromagnetic fields and the plasma density can appear as oscillatory shock structures because of the dissipation caused by the collisions. As the collision frequency increases, the oscillatory shock structure becomes more and more monotonic.

Lu, Ding; Li, Zi-Liang; Abdukerim, Nuriman; Xie, Bai-Song, E-mail: bsxie@bnu.edu.cn [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

2014-02-15T23:59:59.000Z

369

On plane waves in diluted relativistic cold plasmas  

E-Print Network [OSTI]

We briefly report on some exact results [G. Fiore, arXiv:1312.4665 preprint, to appear in J. Phys. A] regarding plane waves in a relativistic cold plasma. If the plasma, initially at rest, is reached by a transverse plane electromagnetic travelling-wave, then its motion has a very simple dependence on this wave in the limit of zero density, otherwise can be determined by an iterative procedure whose accuracy decreases with time or the plasma density. Thus one can describe in particular the impact of a very intense and short laser pulse onto a plasma and determine conditions for the "slingshot effect" [G. Fiore, R. Fedele, U. De Angelis, arXiv:1309.1400 preprint] to occur. The motion in vacuum of a charged test particle subject to a wave of the same kind is also determined, for any initial velocity.

Gaetano Fiore

2014-05-01T23:59:59.000Z

370

Hyperreal Waves on Transfinte, Terminated, Distortionless and Lossless, Transmission Lines  

E-Print Network [OSTI]

A prior work (see Chapter 8 of the book, ``Graphs and Networks: Transfinite and Nonstandard,'' Birkhauser-Boston, Cambridge, Mass., USA, 2004) examined the propagation of an electromagnetic wave on a transfinite transmission line, transfinite in the sense that infinitely many one-way infinite transmission lines are connected in cascade. That there are infinitely many such one-way infinite lines results in the wave propagating without ever reflecting at some discontinuity. The present work examines the cascade where the cascade terminates after only finitely many one-way infinite transmission lines, with the result that reflected waves are now produced at both the far end as well as at the initial end of the transfinite transmission line. The question of whether the reflected waves are infini tesimal or appreciable and whether they sum to an infinitesimal or appreciable amount are resolved for both distortionless and lossless lines. Finally, the generalizations to higher ranks of transfiniteness is briefly summarized.

A. H. Zemanian

2004-06-10T23:59:59.000Z

371

Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence  

SciTech Connect (OSTI)

The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

Wu, C. S.; Lee, K. H. [Institute of Space Science, National Central University, Zhongli, Taiwan (China); Wang, C. B. [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei (China); Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China)

2012-08-15T23:59:59.000Z

372

Gyrokinetic Particle Simulation of Compressible Electromagnetic Turbulence in High-? Plasmas  

SciTech Connect (OSTI)

Supported by this award, the PI and his research group at the University of California, Irvine (UCI) have carried out computational and theoretical studies of instability, turbulence, and transport in laboratory and space plasmas. Several massively parallel, gyrokinetic particle simulation codes have been developed to study electromagnetic turbulence in space and laboratory plasmas. In space plasma projects, the simulation codes have been successfully applied to study the spectral cascade and plasma heating in kinetic Alfven wave turbulence, the linear and nonlinear properties of compressible modes including mirror instability and drift compressional mode, and the stability of the current sheet instabilities with finite guide field in the context of collisionless magnetic reconnection. The research results have been published in 25 journal papers and presented at many national and international conferences. Reprints of publications, source codes, and other research-related information are also available to general public on the PI’s webpage (http://phoenix.ps.uci.edu/zlin/). Two PhD theses in space plasma physics are highlighted in this report.

Lin, Zhihong

2014-03-13T23:59:59.000Z

373

Equations of a Moving Mirror and the Electromagnetic Field  

E-Print Network [OSTI]

We consider a slab of a material that is linear, isotropic, non-magnetizable, ohmic, and electrically neutral when it is at rest. The slab interacts with the electromagnetic field through radiation pressure. Using a relativistic treatment, we deduce the exact equations governing the dynamics of the field and of the slab, as well as, approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much smaller than that of the field. Moreover, the dynamics of the mirror involve a time-dependent mass arising from the interaction with the field and it is related to the effective mass of mechanical oscillators used in optomechanics. By the same reason, the mirror is subject to a velocity dependent force which is related to the much sought cooling of mechanical oscillators in optomechanics.

Luis Octavio Castaños; Ricardo Weder

2014-10-28T23:59:59.000Z

374

Effects of thermal motion on electromagnetically induced absorption  

E-Print Network [OSTI]

We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

E. Tilchin; O. Firstenberg; A. D. Wilson-Gordon

2011-07-04T23:59:59.000Z

375

Resistive wall tearing mode generated finite net electromagnetic torque in a static plasma  

SciTech Connect (OSTI)

The MARS-F code [Y. Q. Liu et al., Phys. Plasmas 7, 3681 (2000)] is applied to numerically investigate the effect of the plasma pressure on the tearing mode stability as well as the tearing mode-induced electromagnetic torque, in the presence of a resistive wall. The tearing mode with a complex eigenvalue, resulted from the favorable averaged curvature effect [A. H. Glasser et al., Phys. Fluids 18, 875 (1975)], leads to a re-distribution of the electromagnetic torque with multiple peaking in the immediate vicinity of the resistive layer. The multiple peaking is often caused by the sound wave resonances. In the presence of a resistive wall surrounding the plasma, a rotating tearing mode can generate a finite net electromagnetic torque acting on the static plasma column. Meanwhile, an equal but opposite torque is generated in the resistive wall, thus conserving the total momentum of the whole plasma-wall system. The direction of the net torque on the plasma is always opposite to the real frequency of the mode, agreeing with the analytic result by Pustovitov [Nucl. Fusion 47, 1583 (2007)]. When the wall time is close to the oscillating time of the tearing mode, the finite net torque reaches its maximum. Without wall or with an ideal wall, no net torque on the static plasma is generated by the tearing mode. However, re-distribution of the torque density in the resistive layer still occurs.

Hao, G. Z., E-mail: haogz@swip.ac.cn; Wang, A. K.; Xu, M.; Qu, H. P.; Peng, X. D.; Wang, Z. H.; Xu, J. Q.; Qiu, X. M. [Southwestern Institute of Physics, Post Office Box 432, Chengdu 610041 (China)] [Southwestern Institute of Physics, Post Office Box 432, Chengdu 610041 (China); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

2014-01-15T23:59:59.000Z

376

Quantum mechanics of a charged particle in a background magnetic field interacting with linearized gravitational waves  

E-Print Network [OSTI]

We consider the dynamics of a charged particle interacting with background electromagnetic field under the influence of linearized gravitational waves in the long wave-length and low-velocity limit. Following the prescription in \\cite{speli}, the system is quantized and the Hamiltonian is then solved by using standard algebraic iterative methods. The solution is in conformity with the classical analysis and shows the possibility of tuning the frequency by changing the magnetic field to set up resonance.

Sunandan Gangopadhyay; Anirban Saha

2012-04-02T23:59:59.000Z

377

A Connection between Gravitation and Electromagnetism  

E-Print Network [OSTI]

It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.

D. M. Snyder

2000-02-16T23:59:59.000Z

378

Wave Equations for Invariant Infeld-van der Waerden Wave Functions for Photons and Their Physical Significance  

E-Print Network [OSTI]

The inner structure of the {\\gamma}{\\epsilon}-formalisms of Infeld and van der Waerden admits the occurrence of spin-tensor electromagnetic fields which bear invariance under the action of the generalized Weyl gauge group. A concise derivation of the wave equations for such fields is carried out explicitly along with the construction of a set of torsionless covariant-derivative expressions. It is emphatically pointed out that the integration of the wave equations arising herein may under certain circumstances produce significant insights into the situation concerning the description of some physical properties of the cosmic microwave background.

J. G. Cardoso

2010-06-09T23:59:59.000Z

379

Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors  

E-Print Network [OSTI]

It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

Clovis Jacinto de Matos

2007-10-29T23:59:59.000Z

380

Electromagnetic couplings of elementary vector particles  

E-Print Network [OSTI]

On the basis of the three fundamental principles of (i) Poincar\\'{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by \\xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and \\xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.

M. Napsuciale; S. Rodriguez; E. G. Delgado-Acosta; M. Kirchbach

2007-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Velocity damper for electromagnetically levitated materials  

DOE Patents [OSTI]

A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

Fox, R.J.

1994-06-07T23:59:59.000Z

382

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

383

The electromagnetic model of Gamma Ray Bursts  

E-Print Network [OSTI]

I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

Maxim Lyutikov

2005-12-13T23:59:59.000Z

384

Resonant electromagnetic emission from intrinsic Josephson-junction stacks with laterally modulated Josephson critical current.  

SciTech Connect (OSTI)

Intrinsic Josephson-junction stacks realized in mesas fabricated out of high-temperature superconductors may be used as sources of coherent electromagnetic radiation in the terahertz range. The major challenge is to synchronize Josephson oscillations in all junctions in the stack to get significant radiation out of the crystal edge parallel to the c axis. We suggest a simple way to solve this problem via artificially prepared lateral modulation of the Josephson critical current identical in all junctions. In such a stack, phase oscillations excite the in-phase Fiske mode when the Josephson frequency matches the Fiske-resonance frequency which is set by the stack lateral size. The powerful, almost standing electromagnetic wave is excited inside the crystal in the resonance. This wave is homogeneous across the layers, meaning that the oscillations are synchronized in all junctions in the stack. We evaluate behavior of the I-V characteristics and radiated power near the resonance for arbitrary modulation and find exact solutions for several special cases corresponding to symmetric and asymmetric modulations of the critical current.

Koshelev, A. E.; Bulaevskii, L. N.; Materials Science Division; LANL

2008-01-01T23:59:59.000Z

385

Model independent determination of the light-cone wave functions for exclusive processes  

E-Print Network [OSTI]

We present a method to compute, by numerical simulations of lattice QCD, the light-cone wave functions which enter exclusive processes at large momentum transfer, such as electromagnetic elastic scatterings, or exclusive semi-leptonic decays as B -> pi (B -> rho) and radiative decays as B -> K* gamma. The method is based on first principles and does not require any model assumption.

Aglietti, U; Corbò, G; Franco, E; Martinelli, G; Silvestrini, L

1998-01-01T23:59:59.000Z

386

Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa...  

E-Print Network [OSTI]

, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons frequency electromagnetic radiation,1 confirming the theoretical prediction by Maxwell that visible light of the first applications for powerful radio waves, i.e., radar.4 Immediately recognizing the implications

Smith, James E.

387

Solar Eclipse Anomalies and Wave Refraction  

E-Print Network [OSTI]

There is some inconclusive evidence that measurement devices sensitive to local gravitation exhibit anomalous behaviour during solar eclipses. We investigate if these findings can be incorporated into the standard general relativistic model of gravitation. The General Theory of Relativity (GTR) describes gravitation as the response of an object to local spacetime curvature. Gravitational waves travelling at the speed of light are then a necessary mechanism to maintain the required consistency between local curvature and distant gravitating mass. Gravitational waves will certainly be subject to refraction by bodies such as the moon and we explore if such an effect can result in an error in the apparent position of the sources and thereby give rise to the characteristic pattern of response associated with the eclipse anomaly. It is found there are phenomenological similarities, but only if gravitational waves are considered not merely to respond to spacetime curvature but are also significantly affected by the presence of mass, perhaps in a manner analogous to electromagnetic waves propagating through matter.

Alasdair Macleod

2006-10-23T23:59:59.000Z

388

Gravitational waves from rapidly rotating neutron stars  

E-Print Network [OSTI]

Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of $B\\approx 10^{12}$ G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.

Brynmor Haskell; Nils Andersson; Caroline D`Angelo; Nathalie Degenaar; Kostas Glampedakis; Wynn C. G. Ho; Paul D. Lasky; Andrew Melatos; Manuel Oppenoorth; Alessandro Patruno; Maxim Priymak

2014-07-31T23:59:59.000Z

389

Water Waves Roger Grimshaw  

E-Print Network [OSTI]

,2) provide a kinematic description of water waves, which to this point means that the conditionsWater Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves

390

Electromagnetically-Induced Frame-Dragging around Astrophysical Objects  

E-Print Network [OSTI]

Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

Ruiz, Andrés F Gutiérrez

2015-01-01T23:59:59.000Z

391

PROPAGATING WAVES ALONG SPICULES  

SciTech Connect (OSTI)

Alfvenic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigate the statistical properties of Alfvenic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high-cadence observations of the Solar Optical Telescope on board Hinode. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules and found (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively); (2) the phase speed gradually increases with height; (3) upward waves dominant at lower altitudes, standing waves at higher altitudes; (4) standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase; (5) in some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule; and (6) the medians of the amplitude, period, and velocity amplitude were 55 km, 45 s, and 7.4 km s{sup -1}, respectively. We speculate that upward propagating waves are produced near the solar surface (below the spicule) and downward propagating waves are caused by reflection of (initially) upward propagating waves off the transition region at the spicule top. The mix of upward and downward propagating waves implies that exploiting these waves to perform seismology of the spicular environment requires careful analysis and may be problematic.

Okamoto, Takenori J. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); De Pontieu, Bart, E-mail: joten.okamoto@nao.ac.jp [Lockheed Martin Solar and Astrophysics Laboratory, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

2011-08-01T23:59:59.000Z

392

the wave model A traveling wave is an organized disturbance  

E-Print Network [OSTI]

1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

Winokur, Michael

393

Motor Packaging with Consideration of Electromagnetic and Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material Characteristics Electric Machine R&D...

394

Electromagnetic scattering and induction models for spheroidal geometries  

E-Print Network [OSTI]

Electromagnetic scattering from a medium containing randomly distributed discrete dielectric spheroidal inclusions is studied. Also, the broadband magnetoquasistatic solution for the induced magnetic field from a conducting ...

Barrowes, Benjamin E., 1973-

2004-01-01T23:59:59.000Z

395

Analysis Of Factors Affecting Natural Source Slf Electromagnetic...  

Open Energy Info (EERE)

relationship between the sensor orientation and the received artificial electromagnetic interference, influence of weather conditions on the data quality and so on. The results...

396

Design Optimization of electromagnetic actuator by genetic algorithm  

E-Print Network [OSTI]

condition in the design or in the optimization of ... efficient linear electromagnetic actuator with an .... derivative of the stored magnetic energy with respect.

ELBEZ

2008-02-26T23:59:59.000Z

397

Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...  

Open Energy Info (EERE)

Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

398

Overview Of Electromagnetic Methods Applied In Active Volcanic...  

Open Energy Info (EERE)

areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations...

399

Electromagnetic Soundings At Kilauea East Rift Geothermal Area...  

Open Energy Info (EERE)

of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

400

6.013 Electromagnetics and Applications, Fall 2002  

E-Print Network [OSTI]

Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

Staelin, David H.

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003  

E-Print Network [OSTI]

Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

Zahn, Markus, 1946-

402

Novel resonance-assisted electromagnetic-transport phenomena  

E-Print Network [OSTI]

We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

Kurs, André B

2011-01-01T23:59:59.000Z

403

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

404

Electromagnetically induced transparency controlled by a microwave field  

E-Print Network [OSTI]

interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

2009-01-01T23:59:59.000Z

405

Unification of Gravity and Electromagnetism II A Geometric Theory  

E-Print Network [OSTI]

It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

Partha Ghose

2014-08-05T23:59:59.000Z

406

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 44, NO. 4, NOVEMBER 2002 495 A New Nonlinear Model of EMI-Induced  

E-Print Network [OSTI]

predictions. Index Terms--Demodulation, electromagnetic compatibility (EMC), electromagnetic interference (EMI are useful in the sizing of electromagnetic interference (EMI) filtering structures. Usually, RFI distortion

407

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 5, OCTOBER 2013 883 Characterization of Changes in LDO  

E-Print Network [OSTI]

sensitive to electromagnetic interference (EMI) coupled onto the power supply, with concomitant output--Ageing, electromagnetic compatibility (EMC), electromagnetic interference (EMI), immunity drift, low dropout (LDO) voltage

Paris-Sud XI, Université de

408

Magneto-optical resonance of electromagnetically induced absorption with high contrast and narrow width in a vapour cell with buffer gas  

E-Print Network [OSTI]

The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counterpropagating light waves is proposed. We theoretically analyze the absorption of a probe light wave in presence of counterpropagating one with the same frequency as the function of a static magnetic field applied along the vectors of light waves, propagating in a vapour cell. Here, as an example, we study a "dark" type of atomic dipole transition Fg=1-->Fe=1 in D1 line of 87Rb, where usually the electromagnetically induced transparency (EIT) can be observed. To obtain the EIA signal one should proper chose the polarizations of light waves and intensities. In contrast of regular schemes for observing EIA signals (in a single travelling light wave in the Hanle configuration or in a bichromatic light field consisted of two travelling waves), the proposed scheme allows one to use buffer gas to significantly enhance properties of the resonance. Also the dramatic influence of atomic transition openness on contrast of the resonance is revealed, that gives great advantage in comparison with cyclic atomic transitions. The obtained results can be interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

D. V. Brazhnikov; A. V. Taichenachev; V. I. Yudin

2014-08-11T23:59:59.000Z

409

Generalized Terminal Modeling of Electromagnetic Interference  

SciTech Connect (OSTI)

Terminal models have been used for various applications. In this paper, a three-terminal model is proposed for electromagnetic-interference (EMI) characterization. The model starts with a power electronic system at a particular operating condition and creates a unique linearized equivalent circuit. Impedances and current/voltage sources define the noise throughout the entire EMI frequency spectrum. All parameters needed to create the model are clearly defined to ensure convergence and maximize accuracy. In addition, the accuracy of the model is confirmed up to 100 MHz for a dc-dc boost converter using both simulation and experimental validation.

Baisden, Andrew Carson [IEEE Industrial Applications Society; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL

2010-01-01T23:59:59.000Z

410

Physics with the ALICE Electromagnetic Calorimeter  

E-Print Network [OSTI]

I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

Rene Bellwied; for the ALICE Collaboration

2009-07-17T23:59:59.000Z

411

Artificial Retina Project: Electromagnetic and Thermal Effects  

SciTech Connect (OSTI)

This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

Lazzi, Gianluca

2014-08-29T23:59:59.000Z

412

Electromagnetic Dipole Strength in Transitional Nuclei  

E-Print Network [OSTI]

Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.

S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner

2008-08-19T23:59:59.000Z

413

Electromagnetic corrections to pseudoscalar decay constants  

E-Print Network [OSTI]

The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.

Benjamin Glaessle; Gunnar S. Bali

2011-11-16T23:59:59.000Z

414

Electromagnetic Properties of the Early Universe  

E-Print Network [OSTI]

Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama

2008-05-29T23:59:59.000Z

415

Nonlocal Electromagnetic Response of Graphene Nanostructures  

E-Print Network [OSTI]

Nonlocal electromagnetic effects of graphene arise from its naturally dispersive dielectric response. We present semi-analytical solutions of nonlocal Maxwell's equations for graphene nano-ribbons array with features around 100 nm, where we found prominent departures from its local response. Interestingly, the nonlocal corrections are stronger for light polarization parallel to the ribbons, which manifests as additional broadening of the Drude peak. For the perpendicular polarization case, nonlocal effects lead to blue-shifts of the plasmon peaks. These manifestations provide a physical measure of nonlocal effects, and we quantify their dependence on ribbon width, doping and wavelength.

Fallahi, Arya; Tamagnone, Michele; Perruisseau-Carrier, Julien

2014-01-01T23:59:59.000Z

416

Transverse Wave Propagation in Relativistic Two-fluid Plasmas around Schwarzschild-anti-de Sitter Black Hole  

E-Print Network [OSTI]

The 3+1 formalism of Thorne and Macdonald has been used to derive the linear two-fluid equations for transverse waves in the plasma closed to the Schwarzschild-anti-de Sitter (SAdS) black hole. We reformulate the relativistic two-fluid equations to take account of gravitational effects due to the event horizon and negative cosmological constant and describe the set of simultaneous linear equations for the perturbations. Using a local approximation we investigate the one-dimensional radial propagation of Alfven and high frequency electromagnetic waves. We derive the dispersion relation for these waves and solve it for the wave number k numerically.

M. Atiqur Rahman

2012-05-06T23:59:59.000Z

417

Photon wave function  

E-Print Network [OSTI]

Photon wave function is a controversial concept. Controversies stem from the fact that photon wave functions can not have all the properties of the Schroedinger wave functions of nonrelativistic wave mechanics. Insistence on those properties that, owing to peculiarities of photon dynamics, cannot be rendered, led some physicists to the extreme opinion that the photon wave function does not exist. I reject such a fundamentalist point of view in favor of a more pragmatic approach. In my view, the photon wave function exists as long as it can be precisely defined and made useful.

Iwo Bialynicki-Birula

2005-08-26T23:59:59.000Z

418

Immunizing digital systems against electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1993-02-01T23:59:59.000Z

419

Immunizing digital systems against electromagnetic interference  

SciTech Connect (OSTI)

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. (Oak Ridge National Lab., TN (United States)); Antonescu, C. (Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research)

1993-01-01T23:59:59.000Z

420

Progress In Electromagnetics Research B, Vol. 37, 205235, 2012 DERIVATION OF HOMOGENEOUS PERMITTIVITY OF  

E-Print Network [OSTI]

for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal PERMITTIVITY OF COMPOSITE MATERIALS WITH ALIGNED CYLINDRI- CAL INCLUSIONS FOR CAUSAL ELECTROMAGNETIC Debye representation is important for incorporation of a composite material in numerical electromagnetic

Koledintseva, Marina Y.

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Systems.  

E-Print Network [OSTI]

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Integrity and Electromagnetic Interference on High Frequency Electronic Systems. by Luca Daniel Doctor

Daniel, Luca

422

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning Based Waveform Relaxation  

E-Print Network [OSTI]

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning -- In this paper, a waveform relaxation algorithm for the fast electromagnetic interference analysis of distributed is provided to demonstrate the validity of the proposed algorithm. Index Terms -- Electromagnetic interference

Roy, Sourajeet

423

PERGAMON Carbon 39 (2001) 279285 Electromagnetic interference shielding effectiveness of carbon  

E-Print Network [OSTI]

PERGAMON Carbon 39 (2001) 279­285 Review Electromagnetic interference shielding effectiveness materials for electromagnetic interference (EMI) shielding are reviewed. They include composite materials-structural and structural composites, colloi- dal graphite, as well as EMI gasket materials. Electromagnetic interference

Chung, Deborah D.L.

424

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites  

E-Print Network [OSTI]

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer electromagnetic interference (EMI) shielding material with shielding effectiveness 124 dB, low surface impedance interference shielding 1. Introduction Electromagnetic interference (EMI) shielding is receiv- ing increasing

Chung, Deborah D.L.

425

Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)  

E-Print Network [OSTI]

1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution

426

Millimeter wave transmissometer computer system  

SciTech Connect (OSTI)

A millimeter wave transmissometer has been designed and built by the Pacific Northwest Laboratory in Richland, Washington for the US Army at the Dugway Proving Grounds in Dugway, Utah. This real-time data acquisition and control system is used to test and characterize battlefield obscurants according to the transmittance of electromagnetic radiation in the millimeter wavelengths. It is an advanced five-frequency instrumentation radar system consisting of a transceiver van and a receiver van deployed at opposite sides of a test grid. The transceiver computer systems is the successful integration of a Digital Equipment Corporation (DEC) VAX 8350, multiple VME bus systems with Motorola M68020 processors (one for each radar frequency), an IEEE-488 instrumentation bus, and an Aptec IOC-24 I/O computer. The software development platforms are the VAX 8350 and an IBM PC/AT. A variety of compilers, cross-assemblers, microcode assemblers, and linkers were employed to facilitate development of the system software. Transmittance measurements from each radar are taken forty times per second under control of a VME based M68020.

Wiberg, J.D.; Widener, K.B.

1990-04-01T23:59:59.000Z

427

Scattering of radio frequency waves by blobs in tokamak plasmas  

SciTech Connect (OSTI)

The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hizanidis, Kyriakos; Kominis, Yannis [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Athens, GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Athens, GR-15773 (Greece)

2013-05-15T23:59:59.000Z

428

Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes  

SciTech Connect (OSTI)

A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

2014-02-18T23:59:59.000Z

429

Generalization of the Atkinson-Wilcox Theorem and the Development of a Novel Scaled Boundary Finite Element Formulation for the Numerical Simulation of Electromagnetic Radiation  

E-Print Network [OSTI]

The Scaled Boundary Finite Element Method is a novel semi-analytical method jointly developed by Chongmin Song and John P Wolf to solve problems in elastodynamics and allied problems in civil engineering. This novel method has been recently reformulated for the following categories of problems in electromagnetics: (1) Determination of Eigen values of metallic cavity structures, 2) Full wave analysis of Shielded micro-strip transmission line structures, and Very Large Scale Integrated Circuit (VLSI) interconnects, and 3) Full wave analysis of periodic structures. In this paper, a novel Scaled Boundary Finite Element formulation is developed for the numerical simulation of the time harmonic electromagnetic radiation in free space from metallic structures of arbitrary shape. The development of the novel formulation necessitates the generalization of the familiar Atkinson-Wilcox radiation series expansion so as to be applicable for arbitrary boundary circumscribing the source of radiation.

Rajan, V S P

2006-01-01T23:59:59.000Z

430

Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial  

E-Print Network [OSTI]

ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2012 Major Subject: Electrical Engineering ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office...

Yu, Jingjing

2012-10-19T23:59:59.000Z

431

Material Surface Design to Counter Electromagnetic Interrogation of Targets  

E-Print Network [OSTI]

Material Surface Design to Counter Electromagnetic Interrogation of Targets H.T. Banks, K. Ito, G and ferromagnetic layers coat- ing a conducting object to provide an attenuation capability against electro. Fresnel's law for the reflectance index is extended to the electromagnetic propagation in anisotropic

432

Electromagnetic Field Creation During EWPT Nucleation With Lepton Currents  

E-Print Network [OSTI]

We include the electromagnetic currents from fermion degrees of freedom in the equations of motion for electroweak MSSM with a right-handed Stop that we have recently investigated. It is found that near the surface of the bubble walls there are important effects on the electromagnetic fields produced during bubble nucleation.

Leonard S. Kisslinger; Sameer Walawalkar; Ernest M. Henley; Mikkel B. Johnson

2005-10-11T23:59:59.000Z

433

Electromagnetic field at Finite Temperature: A first order approach  

E-Print Network [OSTI]

In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

R. Casana; B. M. Pimentel; J. S. Valverde

2007-02-04T23:59:59.000Z

434

Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University,  

E-Print Network [OSTI]

Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University, Bruce McGee, Mc Workshop, June 2000. 1 Introduction In this paper we derive a simple model that describes the recovery of petroleum fluids from an oil reservoir by the method of electromagnetic heating. By its very nature

Bohun, C. Sean

435

Electromagnetic actuator to reduce vibration sources Thibaut Chailloux*  

E-Print Network [OSTI]

in an FE- Tuned Magnetic Equivalent Circuit of an Electromagnetic Relay, Sixdenier F., Raulet M.-A., MarionElectromagnetic actuator to reduce vibration sources Thibaut Chailloux* , L. Morel* , F. Sixdenier In order to improve passenger comfort, a reduction of vibration sources in vehicles is being considered

Paris-Sud XI, Université de

436

Do Mirrors for Gravitational Waves Exist?  

E-Print Network [OSTI]

Thin superconducting films are predicted to be highly reflective mirrors for gravitational waves at microwave frequencies. The quantum mechanical non-localizability of the negatively charged Cooper pairs, which is protected from the localizing effect of decoherence by an energy gap, causes the pairs to undergo non-picturable, non-geodesic motion in the presence of a gravitational wave. This non-geodesic motion, which is accelerated motion through space, leads to the existence of mass and charge supercurrents inside the superconducting film. On the other hand, the decoherence-induced localizability of the positively charged ions in the lattice causes them to undergo picturable, geodesic motion as they are carried along with space in the presence of the same gravitational wave. The resulting separation of charges leads to a virtual plasma excitation within the film that enormously enhances its interaction with the wave, relative to that of a neutral superfluid or any normal matter. The existence of strong mass supercurrents within a superconducting film in the presence of a gravitational wave, dubbed the "Heisenberg-Coulomb effect," implies the specular reflection of a gravitational microwave from a film whose thickness is much less than the London penetration depth of the material, in close analogy with the electromagnetic case. The argument is developed by allowing classical gravitational fields, which obey Maxwell-like equations, to interact with quantum matter, which is described using the BCS and Ginzburg-Landau theories of superconductivity, as well as a collisionless plasma model. Several possible experimental tests of these ideas, including mesoscopic ones, are presented alongside comments on the broader theoretical implications of the central hypothesis.

Stephen J. Minter; Kirk Wegter-McNelly; Raymond Y. Chiao

2009-06-30T23:59:59.000Z

437

New wave generation  

E-Print Network [OSTI]

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

Mercier, Matthieu J.

438

Electromagnetic field with induced massive term: Case with scalar field  

E-Print Network [OSTI]

We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-04-21T23:59:59.000Z

439

Electromagnetic Mass Models in General Theory of Relativity  

E-Print Network [OSTI]

"Electromagnetic mass" where gravitational mass and other physical quantities originate from the electromagnetic field alone has a century long distinguished history. In the introductory chapter we have divided this history into three broad categories -- classical, quantum mechanical and general relativistic. Each of the categories has been described at a length to get the detailed picture of the physical background. Recent developments on Repulsive Electromagnetic Mass Models are of special interest in this introductory part of the thesis. In this context we have also stated motivation of our work. In the subsequent chapters we have presented our results and their physical significances. It is concluded that the electromagnetic mass models which are the sources of purely electromagnetic origin ``have not only heuristic flavor associated with the conjecture of Lorentz but even a physics having unconventional yet novel features characterizing their own contributions independent of the rest of the physics".

Sumana Bhadra

2007-10-30T23:59:59.000Z

440

Electromagnetic field with induced massive term: Case with spinor field  

E-Print Network [OSTI]

We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electron Bernstein Wave Studies in MST  

SciTech Connect (OSTI)

The overdense plasma in an RFP prevents electromagnetic waves from propagating past the edge, however use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to gradients in the edge current density profile allowing EBW to potentially be a stabilizing influence. A new MW level experiment is being commissioned on MST to evaluate the potential use of the EBW for current profile control on the RFP. The development of new equipment includes a 5.5 GHz klystron driven by a novel switchmode power supply. A quartz window has been constructed and coupling with a cylindrical molybdenum wave guide antenna has been studied. Due to the steep edge density gradient in the RFP, it is possible to efficiently couple to the EBW with O or X mode launch. The EBW is strongly damped at the electron cyclotron resonance where it couples to the electron gyromotion and alters the electron distribution. Either Fisch-Boozer or Ohkawa current drive mechanisms can be activated to drive off axis current in the plasma. Preliminary experiments have been performed to verify high power coupling and understand heating via observed x-ray emission when compared to Fokker-Plank modeling in CQL3D.

Seltzman, Andrew H.; Anderson, Jay K.; Nonn, Paul D.; Kauffold, Jason X.; Forest, Cary B. [University of Wisconsin-Madison, Dept. Of Physics, 1150 University Ave., Madison, WI 53706 (United States); Diem, Stephanie J. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

2011-12-23T23:59:59.000Z

442

Cosmic-Ray Acceleration at Ultrarelativistic Shock Waves: Effects of Downstream Short-Wave Turbulence  

E-Print Network [OSTI]

The present paper is the last of a series studying the first-order Fermi acceleration processes at relativistic shock waves with the method of Monte Carlo simulations applied to shocks propagating in realistically modeled turbulent magnetic fields. The model of the background magnetic field structure of Niemiec & Ostrowski (2004, 2006) has been augmented here by a large-amplitude short-wave downstream component, imitating that generated by plasma instabilities at the shock front. Following Niemiec & Ostrowski (2006), we have considered ultrarelativistic shocks with the mean magnetic field oriented both oblique and parallel to the shock normal. For both cases simulations have been performed for different choices of magnetic field perturbations, represented by various wave power spectra within a wide wavevector range. The results show that the introduction of the short-wave component downstream of the shock is not sufficient to produce power-law particle spectra with the "universal" spectral index 4.2. On the contrary, concave spectra with cutoffs are preferentially formed, the curvature and cutoff energy being dependent on the properties of turbulence. Our results suggest that the electromagnetic emission observed from astrophysical sites with relativistic jets, e.g. AGN and GRBs, is likely generated by particles accelerated in processes other than the widely invoked first-order Fermi mechanism.

Jacek Niemiec; Michal Ostrowski; Martin Pohl

2006-03-14T23:59:59.000Z

443

E-Print Network 3.0 - ac electromagnetic field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics (time permitting). 12;The Nature of Electromagnetism Electric and magnetic fields... that are coupled; they are then referred to as an electromagnetic field....

444

E-Print Network 3.0 - active electromagnetic interference Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electromagnetic interference Search Powered by Explorit Topic List Advanced Search Sample search results for: active electromagnetic interference Page: << < 1 2 3 4 5 > >> 1...

445

Medium Voltage Overhead Power-line Broadband Communications; Transmission Capacity and Electromagnetic Interference  

E-Print Network [OSTI]

and Electromagnetic Interference P. Amirshahi and M. Kavehrad (FIEEE) The Pennsylvania State University, Department distribution networks for broadband power-line communications applications. Electromagnetic interference

Kavehrad, Mohsen

446

1. Shielding against Electromagnetic Interference With telecommunication networks connecting wireless devices around the globe, there  

E-Print Network [OSTI]

#12;1. Shielding against Electromagnetic Interference With telecommunication networks connecting electromagnetic interference (EMI) across the airwaves. These communication networks are ubiquitous and dynamic

Rincon-Mora, Gabriel A.

447

E-Print Network 3.0 - account electromagnetic transient Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electromagnetic transient Search Powered by Explorit Topic List Advanced Search Sample search results for: account electromagnetic transient Page: << < 1 2 3 4 5 > >> 1 Frontiers...

448

Performance Assessment of the Wave Dragon Wave Energy Converter  

E-Print Network [OSTI]

Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave

Hansen, René Rydhof

449

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino  

E-Print Network [OSTI]

Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

Merlino, Robert L.

450

Theory of Dipole Induced Electromagnetic Transparency  

E-Print Network [OSTI]

A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

2015-01-01T23:59:59.000Z

451

Electromagnetic matrix elements for negative parity nucleons  

E-Print Network [OSTI]

Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

2014-12-15T23:59:59.000Z

452

Electromagnetic mass difference on the lattice  

E-Print Network [OSTI]

We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.

Yusuke Namekawa; Yoshio Kikukawa

2005-09-24T23:59:59.000Z

453

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

454

An Alfvn wave maser in the laboratory J. E. Maggs, G. J. Morales, and T. A. Carter  

E-Print Network [OSTI]

phenomenon reported is analogous to the Alfvén wave maser proposed to exist in naturally occurring, near of energetic ions1 in the radiation belt. Another class of Alfvén maser activity is considered to occur amplification of electromagnetic radiation leading to laser or maser action requires that a combination

California at Los Angles, University of

455

Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms  

SciTech Connect (OSTI)

In this paper, we demonstrate the detection of millimeter waves via Autler-Townes splitting in {sup 85}Rb Rydberg atoms. This method may provide an independent, atom-based, SI-traceable method for measuring mm-wave electric fields, which addresses a gap in current calibration techniques in the mm-wave regime. The electric-field amplitude within a rubidium vapor cell in the WR-10 wave guide band is measured for frequencies of 93.71 GHz and 104.77?GHz. Relevant aspects of Autler-Townes splitting originating from a four-level electromagnetically induced transparency scheme are discussed. We measured the E-field generated by an open-ended waveguide using this technique. Experimental results are compared to a full-wave finite element simulation.

Gordon, Joshua A., E-mail: josh.gordon@nist.gov; Holloway, Christopher L. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, Dave A.; Miller, Stephanie; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-07-14T23:59:59.000Z

456

Improved methods for detecting gravitational waves associated with short gamma-ray bursts  

E-Print Network [OSTI]

In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted search for gravitational wave compact binary merger signals in coincidence with short GRBs was developed and used to analyze data from the first generation LIGO and Virgo instruments. In this paper, we present improvements to this search that enhance our ability to detect gravitational wave counterparts to short GRBs. Specifically, we introduce an improved method for estimating the gravitational wave background to obtain the event significance required to make detections; implement a method of tiling extended sky regions, as required when searching for signals associated to poorly localized GRBs from Fermi Gamma-ray Burst Monitor or the InterPlanetary Network; and incorporate astrophysical knowledge about the beaming of GRB emission to restrict the search parameter space. We descri...

Williamson, A R; Fairhurst, S; Harry, I W; Macdonald, E; Macleod, D; Predoi, V

2014-01-01T23:59:59.000Z

457

Energy flux of Alfven waves in weakly ionized plasma  

E-Print Network [OSTI]

The overshooting convective motions in the solar photosphere are frequently proposed as the source for the excitation of Alfv\\'en waves. However, the photosphere is a) very weakly ionized, and, b) the dynamics of the plasma particles in this region is heavily influenced by the plasma-neutral collisions. The purpose of this work is to check the consequences of these two facts on the above scenario and their effects on the electromagnetic waves. It is shown that the ions and electrons in the photosphere are both un-magnetized; their collision frequency with neutrals is much larger than the gyro-frequency. This implies that eventual Alfv\\'en-type electromagnetic perturbations must involve the neutrals as well. This has the following serious consequences: i) in the presence of perturbations, the whole fluid (plasma + neutrals) moves; ii) the Alfv\\'en velocity includes the total (plasma + neutrals) density and is thus considerably smaller compared to the collision-less case; iii) the perturbed velocity of a unit volume, which now includes both plasma and neutrals, becomes much smaller compared to the ideal (collision-less) case; and iv) the corresponding wave energy flux for the given parameters becomes much smaller compared to the ideal case.

J. Vranjes; S. Poedts; B. P. Pandey; B. De Pontieu

2008-05-29T23:59:59.000Z

458

Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report  

SciTech Connect (OSTI)

A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

2009-09-01T23:59:59.000Z

459

A comparison between matter wave and light wave interferometers for the detection of gravitational waves  

E-Print Network [OSTI]

We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.

Pacôme Delva; Marie-Christine Angonin; Philippe Tourrenc

2006-09-20T23:59:59.000Z

460

Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers  

SciTech Connect (OSTI)

In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

James C. Foley; David K. Rehbein; Daniel J. Barnard

2001-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses  

SciTech Connect (OSTI)

Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

Acuna, M. A. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad de Buenos Aires, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

2011-03-15T23:59:59.000Z

462

Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection  

SciTech Connect (OSTI)

A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

Le Bourdais, Florian; Marchand, Benoît [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

2014-02-18T23:59:59.000Z

463

Rao-Blackwellised Interacting Markov Chain Monte Carlo for Electromagnetic Scattering Inversion  

E-Print Network [OSTI]

The following electromagnetism (EM) inverse problem is addressed. It consists in estimating local radioelectric properties of materials recovering an object from the global EM scattering measurement, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on High Performance Computing (HPC) machines. Applied to a large training data set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, on which Bayesian inference can be performed. Considering the radioelectric properties as a dynamic stochastic process, evolving in function of the frequency, it is shown how advanced Markov Chain Monte Carlo methods, called Sequential Monte Carlo (SMC) or interacting particles, can provide estimations of the EM properties of each material, and their associated uncertainties.

Giraud, François

2012-01-01T23:59:59.000Z

464

Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems  

E-Print Network [OSTI]

Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

2010-04-27T23:59:59.000Z

465

Electromagnetic quasinormal modes of D-dimensional black holes II  

E-Print Network [OSTI]

By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.

A. López-Ortega

2007-06-20T23:59:59.000Z

466

An approach to electromagnetism from the general relativity  

E-Print Network [OSTI]

Classical gravitation is so similar to the electrostatic that the possible unification has been investigated for many years. Although electromagnetism is formulated successfully by quantum field theory, this paper proposes a simple approach to describe the electromagnetism from the macroscopic perspective of general relativity. The hypothesis is based on two charged particles that cause disturbance energy sufficient to disrupt the space-time and explain approximately Maxwell's equations. Therefore, with such this simple idea, we suggest the possibility that the geometric relationship between electromagnetism and gravitation is not yet fully exhausted.

Robert Monjo i Agut

2013-12-02T23:59:59.000Z

467

Theory of electromagnetic fluctuations for magnetized multi-species plasmas  

SciTech Connect (OSTI)

Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

2014-09-15T23:59:59.000Z

468

Cycloidal Wave Energy Converter  

SciTech Connect (OSTI)

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

469

Calcium homeostasis of isolated heart muscle cells exposed to pulsed high-frequency electromagnetic fields  

SciTech Connect (OSTI)

The intracellular calcium concentration ([Ca{sup 2+}]{sub i}) of isolated ventricular cardiac myocytes of the guinea pig was measured during the application of pulsed high-frequency electromagnetic fields. The high-frequency fields were applied in a transverse electromagnetic cell designed to allow microscopic observation of the myocytes during the presence of the high-frequency fields. The [Ca{sup 2+}]{sub i} was measured as fura-2 fluorescence by means of digital image analysis. Both the carrier frequency and the square-wave pulse-modulation pattern were varied during the experiments (carrier frequencies: 900, 1,300, and 1,800 MHz pulse modulated at 217 Hz with 14% duty cycle; pulsation pattern at 900 MHz; continuous wave, 16 Hz,and 50 Hz modulation with 50% duty cycle and 30 kHz modulation with 80% duty cycle). The mean specific absorption rate (SAR) values in the solution were within one order of magnitude of 1 mW/kg. They varied depending on the applied carrier frequency and pulse pattern. The experiments were designed in three phases: 500 s of sham exposure, followed by 500 s of field exposure, then chemical stimulation without field. The chemical stimulation (K{sup +}-depolarization) indicated the viability of the cells. The K{sup +} depolarization yielded a significant increase in [Ca{sup 2+}]{sub i}. Significant differences between sham exposure and high-frequency field exposure were not found except when a very small but statistically significant difference was detected in the case of 900 MHz/50 Hz. However, this small difference was not regarded as a relevant effect of the exposure.

Wolke, S.; Gollnick, F.; Meyer, R. [Univ. Bonn (Germany)] [Univ. Bonn (Germany); Neibig, U.; Elsner, R. [Inst. fuer Nachrichtentechnik Braunschweig (Germany)] [Inst. fuer Nachrichtentechnik Braunschweig (Germany)

1996-05-01T23:59:59.000Z

470

CONSERVATION Preserving concrete, from dams to  

E-Print Network [OSTI]

, helium and lithium arising from interactions in the early Universe. The main constituents are expected interact. DESY/MILDESCIENCECOMM/EXOZET 6 M A R C H 2 0 1 4 | V O L 5 0 7 | N A T U R E | 2 9 COMMENT © 2014 or interact with elec- tromagnetic waves, the majority of it cannot be made of baryons -- particles

Napp, Nils

471

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM  

E-Print Network [OSTI]

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM GABRIEL CALOZ, MONIQUE DAUGE, ERWAN FAOU, VICTOR P´ERON ABSTRACT. We consider the equations of electromagnetism set on a domain made in electromagnetism. This effect describes the rapid decay of electromagnetic fields with depth inside a metallic

Dauge, Monique

472

Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band  

E-Print Network [OSTI]

graphene-based electronics have opened the door to electromagnetic communications in the nanoscale. In this

Josep Miquel Jornet; Ian F. Akyildiz

2010-01-01T23:59:59.000Z

473

Electromagnetic modeling of the energy distribution of a metallic cylindrical parabolic reflector covered with a magnetized plasma layer  

SciTech Connect (OSTI)

The energy distribution along the focal axis of a long metallic cylindrical parabolic reflector with a plasma layer on its surface in the presence of an external magnetic field is investigated. The effects of some physical parameters, such as the plasma frequency, the wave frequency and the thickness of plasma layer on the energy distribution and the reflected and transmitted electromagnetic fields, are simulated. These investigations for both S- and P-polarizations have been done separately. It is found that the maximum value of the reflected intensity increases by increasing the incident wave frequency and by decreasing the plasma layer thickness and the plasma frequency for both polarizations. Furthermore, the results show that the increase of the magnetic field strength can cause an increase in the reflected intensity for S-polarization and a slight decrease for P-polarization.

Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Khajehmirzaei, M. R. [Laser and Plasma Research Institute, Shahid Beheshti University, GC, Tehran (Iran, Islamic Republic of); Davoudi-Rahaghi, B.; Rahmani, Z.; Jazi, B.; Abdoli-Arani, A. [Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

2014-07-15T23:59:59.000Z

474

Nonlinear spherical Alfven waves  

E-Print Network [OSTI]

We present an one-dimensional numerical study of Alfven waves propagating along a radial magnetic field. Neglecting losses, any spherical Alfven wave, no matter how small its initial amplitude is, becomes nonlinear at sufficiently large radii. From previous simulations of Alfven waves in plane parallel atmospheres we did expect the waves to steepen and produce current sheets in the nonlinear regime, which was confirmed by our new calculations. On the other hand we did find that even the least nonlinear waves were damped out almost completely before 10 solar radii. A damping of that kind is required by models of Alfven wave-driven winds from old low-mass stars as these winds are mainly accelerated within a few stellar radii.

Ulf Torkelsson; G. Christopher Boynton

1997-09-23T23:59:59.000Z

475

Emission of terahertz waves from stacks of intrinsic Josephson junctions.  

SciTech Connect (OSTI)

By patterning mesoscopic crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (BSCCO) into electromagnetic resonators the oscillations of a large number of intrinsic Josephson junctions can be synchronized into a macroscopic coherent state accompanied by the emission of strong continuous wave THz-radiation. The temperature dependence of the emission is governed by the interplay of self-heating in the resonator and by re-trapping of intrinsic Josephson junctions which can yield a strongly non-monotonic temperature dependence of the emission power. Furthermore, proper shaping of the resonators yields THz-sources with voltage-tunable emission frequencies.

Gray, K. E.; Koshelev, A. E.; Kurter, C.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H.; Tachiki, M.; Kwok, W.-K.; Welp, U.; Materials Science Division; Izmir Inst. of Tech.; Univ. Tsukuba; Univ. Tokyo

2009-06-01T23:59:59.000Z

476

Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion  

E-Print Network [OSTI]

. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 #12;#12;Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion Daniel A. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 This work

477

K -> pi pi Phenomenology in the Presence of Electromagnetism  

E-Print Network [OSTI]

We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.

Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich

2000-08-28T23:59:59.000Z

478

Low-cost electromagnetic tagging : design and implementation  

E-Print Network [OSTI]

Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

Fletcher, Richard R. (Richard Ribon)

2002-01-01T23:59:59.000Z

479

Exploring the Last Electromagnetic Frontier with the Long Wavelength Array  

E-Print Network [OSTI]

LWA Science with the Long Wavelength Demonstrator Array Radio transients offer a new frontier for next-generationExploring the Last Electromagnetic Frontier with the Long Wavelength Array The University of New. All solar system giant planets generate

Ellingson, Steven W.

480

An investigation of the depolarization of backscattered electromagnetic waves using a lidar polarimeter  

E-Print Network [OSTI]

of the samples was varied from a very rough to a moderately rough surface. Using these targets, polarized and depolarized backscatter measurements were recorded using both horizon- tal and vertical transmit polarization for angles of in- cidence between 0...' . . . . . . . . . . . 48 III -3 III-4 II I- 5 III-6 Intensity pattern for p /p a s Intensity pattern for p /p a s Intensity pattern for p /p a s 2. 0 x 10 1. 0 x 10 2. 62 x 10 Experimental arrangement for collimated beam experiment 49 50 51 53 III- 7...

Wilhelmi, Gary Joe

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "tromagnetic waves electromagnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves  

E-Print Network [OSTI]

Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

Cole, Benjamin

2012-10-19T23:59:59.000Z

482

Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with  

E-Print Network [OSTI]

]. However, as pointed Defect Piezo-electric sensor Co-axial cable Piezo-electric sensor Co-axial cable the Project team POEMS of INRIA and the laboratory LIST of CEA Saclay. The general objective of this collaboration has been the nu- merical simulation of piezo-electric sensors used for non destructive testing

Boyer, Edmond

483

Condition assessment of GFRP-retrofitted concrete cylinders using electromagnetic waves  

E-Print Network [OSTI]

The objective of this study is to develop an integrated nondestructive testing (NDT) capability, termed FAR NDT (Far-field Airborne Radar NDT), for the detection of defects, damages, and rebars in the near-surface region ...

Yu, Tzu-Yang (Tzu-Yang Young), 1973-

2008-01-01T23:59:59.000Z

484

1. Lens Aberration (Hubble) 2. Diffraction of electromagnetic waves at aperture stop of the lens  

E-Print Network [OSTI]

of the lens 3. Defocusing 4. Motions and vibrations of the camera telephoto lenses motion of the object 7. Electronic interference fixed and moving patterns 8. Noisy digital circuits individual bits with phase ignored) is roughly the equivalent of frequency response in an audio system, and can

Turkel, Eli

485

Electromagnetic and physical properties of sea ice formed in the presence of wave action  

E-Print Network [OSTI]

Estimating the magnitude of brine flux to the upper ocean requires an ability to assess the dynamics of the formation of sea ice in a region. Brine storage and rate of expulsion is determined by the environmental conditions under which the sea ice...

Onstott, R. G.; Gogineni, Sivaprasad; Gow, A. J.; Grenfell, T. C.; Jezek, K. C.; Perovich, D. K.; Swift, C. T.

1998-09-01T23:59:59.000Z

486

Electromagnetic wave scattering by many small Mathematics Department, Kansas State University,  

E-Print Network [OSTI]

for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles we formulate an idea of creating a "smart" material nanotechnologically, by embedding many small particles in a given region in such a way that the resulting material would, for instance, have a desired

487

Electromagnetic wave scattering by many small Mathematics Department, Kansas State University,  

E-Print Network [OSTI]

for homogeneous bodies of arbitrary shapes. An idea to create a ''smart'' material by embedding many small of this Section we formulate an idea of creating a ''smart'' material nanotechnologically, by embedding many small particles in a given region in such a way that the resulting material would, for instance, have a desired

488

Hysteresis of ionization waves  

SciTech Connect (OSTI)

A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Bruhn, B.; Testrich, H. [Institut fuer Physik, E.-M.-Arndt Universitaet Greifswald, Felix-Hausdorff-Str. 6, 17487 Greifswald (Germany); Wilke, C. [Leibniz-Institut fuer Plasmaforschung und Technologie, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

2008-06-15T23:59:59.000Z

489

Structure-borne sound Flexural wave (bending wave)  

E-Print Network [OSTI]

1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

Berlin,Technische Universität

490

Wave Propagation Theory 2.1 The Wave Equation  

E-Print Network [OSTI]

2 Wave Propagation Theory 2.1 The Wave Equation The wave equation in an ideal fluid can be derived #12;66 2. Wave Propagation Theory quantities of the quiescent (time independent) medium are identified perturbations is much smaller than the speed of sound. 2.1.1 The Nonlinear Wave Equation Retaining higher

491

Wave momentum flux parameter: a descriptor for nearshore waves  

E-Print Network [OSTI]

Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution

US Army Corps of Engineers

492

Shallow Water Waves and Solitary Waves Willy Hereman  

E-Print Network [OSTI]

Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer of the Subject II. Introduction­Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI

Hereman, Willy A.M.

493

Design of high temperature high speed electromagnetic axial thrust bearing  

E-Print Network [OSTI]

DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

Mohiuddin, Mohammad Waqar

2002-01-01T23:59:59.000Z

494

Electromagnetic quasinormal modes of an asymptotically Lifshitz black hole  

E-Print Network [OSTI]

Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotically Lifshitz black hole. Based on the values obtained for the quasinormal frequencies we discuss the classical stability of the quasinormal modes. We also study whether the electromagnetic field possesses unstable modes in the D-dimensional Lifshitz spacetime.

A. Lopez-Ortega

2014-06-01T23:59:59.000Z

495

Electromagnetic quasinormal modes of D-dimensional black holes  

E-Print Network [OSTI]

Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.

A. López-Ortega

2006-11-02T23:59:59.000Z

496

Electromagnetic vertex function of the pion at T > 0  

E-Print Network [OSTI]

The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of $T = 0.93 T_c$. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding ${\\cal O}(a)$ improved vector current. The electromagnetic vertex function is extracted for pion masses down to $360 {\\rm MeV}$ and momentum transfers $Q^2 \\le 2.7 {\\rm GeV}^2$.

J. van der heide; J. H. Koch; E. Laermann

2005-12-23T23:59:59.000Z

497

Effects of Electromagnetic Fields on Fish and Invertebrates  

SciTech Connect (OSTI)

In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

2010-10-13T23:59:59.000Z

498

The Stability of a Shearing Viscous Star with Electromagnetic Field  

E-Print Network [OSTI]

We analyze the role of electromagnetic field for the stability of shearing viscous star with spherical symmetry. Matching conditions are given for the interior and exterior metrics. We use perturbation scheme to construct the collapse equation. The range of instability is explored in Newtonian and post Newtonian (pN) limits. We conclude that the electromagnetic field diminishes the effects of shearing viscosity in the instability range and makes the system more unstable at both Newtonian and post Newtonian approximations.

M. Sharif; M. Azam

2013-12-04T23:59:59.000Z

499

New wave generation  

E-Print Network [OSTI]

We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (2007). This mechanism, which involves a tunable source comprised of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential has yet to be realized. Our studies reveal that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.

Mercier, Matthieu J; Mathur, Manikandan; Gostiaux, Louis; Peacock, Thomas; Dauxois, Thierry

2015-01-01T23:59:59.000Z

500

Directed Relativistic Blast Wave  

E-Print Network [OSTI]

A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.

Andrei Gruzinov

2007-04-23T23:59:59.000Z