National Library of Energy BETA

Sample records for trips total distance

  1. Fact #612: March 1, 2010 The Distance of Trips to Work | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: March 1, 2010 The Distance of Trips to Work Fact #612: March 1, 2010 The Distance of Trips to Work The recently released Nationwide Household Travel Survey shows that nearly 60% of work trips are 10 miles or less in distance. Only 9% of work trips are over 30 miles. The average work trip distance is 13.9 miles. Vehicle Trips to Work by Trip Distance, 2009 Graph showing the vehicle trips to work by trip distance. Nearly 60% of work trips are 10 miles or less in distance. For more

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500... 3.2 Q 0.8 0.9 0.8 0.5 500 to 999......

  3. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500... 3.2 357 336 113 188 177 59 500 to 999......

  4. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.4 500 to 999......

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.9 1.0 500 to 999......

  6. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.5 0.3 Q 500 to 999......

  7. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  10. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  11. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  12. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  13. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  14. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  15. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  16. Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator |

    Office of Environmental Management (EM)

    Department of Energy Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator November 19, 2012 - 9:51am Addthis Save time and money on your next road trip with fueleconomy.gov's newest tool, <a href="http://www.fueleconomy.gov/trip/">My Trip Calculator</a>. | Photo courtesy of iStockphoto.com/gioadventures. Save time and money on your next road trip with fueleconomy.gov's newest tool, My

  17. One-trip drum operating instruction

    SciTech Connect (OSTI)

    Ruff, D.T.

    1994-10-01

    The one trip system is a bagless transfer system for egress of waste from gloveboxes into 55 gallon one-trip drums. The contents of this document give an overview of the assembly, loading, and handling of the one-trip drum for use in the WRAP-1 plant.

  18. Avoid Nuisance Tripping with Premium Efficiency Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoid Nuisance Tripping with Premium Efficiency Motors In most cases, upgrading to premium effciency motors has no noticeable impact on the electrical system. However, in rare cases nuisance trips can occur during start-up. Addressing this topic requires an understanding of starting current. The National Electrical Manufacturers Association (NEMA) recognizes and describes two components of starting current: instantaneous peak inrush and locked rotor current (LRC). Nuisance tripping primarily has

  19. Field Trip Check List | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To ensure a successful field trip, we have developed a teacher checklist to help you plan appropriately for your trip. Argonne National Laboratories is a gated facility and requires additional steps compared to more traditional field trip locations. Pre-Trip Preparation Plan to arrive at the lab by 9:45 am and depart after lunch around 1:00 pm. Adjustments can be made to these times in advance. Tell all adults and students that are age 16 and older to bring a photo ID. Students can use their

  20. Avoid Nuisance Tripping with Premium Efficiency Motors

    Broader source: Energy.gov [DOE]

    In most cases, upgrading to premium efficiency motors has no noticeable impact on the electrical system. However, in rare cases nuisance trips can occur during start-up. Addressing this topic requires an understanding of starting current.This tip sheet discusses how to avoid nuisance tripping with premium efficiency motors and provides suggested actions.

  1. My Trip to Mongolia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trip to Mongolia My Trip to Mongolia September 29, 2010 - 10:37am Addthis Deputy Secretary Poneman meets with Mongolia’s Foreign Minister to discuss energy issues. Deputy Secretary Poneman meets with Mongolia's Foreign Minister to discuss energy issues. Daniel B. Poneman Daniel B. Poneman Former Deputy Secretary of Energy Last week, I traveled to Mongolia to discuss our shared energy challenges and our shared energy opportunities. The United States and Mongolia enjoy a warm friendship and

  2. PIA - GovTrip (DOE data) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GovTrip (DOE data) PIA - GovTrip (DOE data) PIA - GovTrip (DOE data) PDF icon PIA - GovTrip (DOE data) More Documents & Publications PIA - INL PeopleSoft - Human Resource System Manchester Software 1099 Reporting PIA, Idaho National Laboratory Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory

  3. MCMII and the TriP chip

    SciTech Connect (OSTI)

    Juan Estrada et al.

    2003-12-19

    We describe the development of the electronics that will be used to read out the Fiber Tracker and Preshower detectors in Run IIb. This electronics is needed for operation at 132ns bunch crossing, and may provide a measurement of the z coordinate of the Fiber Tracker hits when operating at 396ns bunch crossing. Specifically, we describe the design and preliminary tests of the Trip chip, MCM IIa, MCM IIb and MCM IIc. This document also serves as a user manual for the Trip chip and the MCM.

  4. Road Tripping through the Geothermal Frontier

    Broader source: Energy.gov [DOE]

    After more than a year since the announcement of available funding, the project teams for our Frontier Observatory for Research in Geothermal Energy (FORGE) each hosted our geothermal experts at their candidate sites this fall. Were calling it our road trip through the geothermal frontier.

  5. Road Tripping through the Geothermal Frontier

    Broader source: Energy.gov [DOE]

    And they’re off! After more than a year since the announcement of available funding, the project teams selected for our Frontier Observatory for Research in Geothermal Energy (FORGE) each hosted our geothermal experts at their candidate sites this fall. We’re calling it our road trip through the geothermal frontier.

  6. Long Valley Caldera Field Trip Log | Open Energy Information

    Open Energy Info (EERE)

    to library Conference Paper: Long Valley Caldera Field Trip Log Abstract NA Authors Gene A. Suemnicht and Bastien Poux Conference NGA Long Valley Field Trip, July 5-7, 2012;...

  7. Probabilistic methods in a study of trip setpoints

    SciTech Connect (OSTI)

    Kaulitz, D. E.

    2012-07-01

    Most early vintage Boiling Water Reactors have a high head and high capacity High Pressure Coolant Injection (HPCI) pump to keep the core covered following a loss of coolant accident (LOCA). However, the protection afforded by the HPCI pump for mitigating a LOCA introduces the potential that a spurious start of the HPCI pump could oversupply the reactor vessel and lead to an automatic trip of the main turbine due to high water level. A turbine trip and associated increase in moderator density could challenge the bases of fuel integrity operating limits. To prevent turbine trip during spurious operation of the HPCI pump, the reactor protection system includes instrumentation and logic to sense high water level and automatically trip the HPCI pump prior to reaching the turbine trip setpoint. This paper describes an analysis that was performed to determine if existing reactor vessel water level trip instrumentation, logic and setpoints result in a high probability that the HPCI pump will trip prior to actuation of the turbine trip. Using nominal values for the initial water level and for the HPCI pump and turbine trip setpoints, and using the probability distribution functions for measurement uncertainty in these setpoints, a Monte Carlo simulation was employed to determine probabilities of successfully tripping the HPCI pump prior to tripping of the turbine. The results of the analysis established that the existing setpoints, instrumentation and logic would be expected to reliably prevent a trip of the main turbine. (authors)

  8. Hunton Group core workshop and field trip

    SciTech Connect (OSTI)

    Johnson, K.S.

    1993-12-31

    The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

  9. Upcoming Trips and Review Events Listing | Department of Energy

    Energy Savers [EERE]

    Upcoming Trips and Review Events Listing Upcoming Trips and Review Events Listing Calendar listing of all Upcoming Trips and Review Events. Waste Treatment Plant External Independent Review, Office of River Protection, Richland March 28, 2016 8:00AM EDT to April 1, 2016 5:00PM EDT Earned Value Management System (EVMS) Roadside Assist Visit. April 4, 2016 8:00AM EDT to April 7

  10. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: May 21, 2012 Average Trip Length is Less Than Ten Miles Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business are the shortest trips, on average. One-way trips to/from work average 12.2 miles. Trip Length by Purpose, 2009 Graphic showing trip length by purpose,

  11. DOE GovTrip PIA, Office of Corporate Information Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy GovTrip PIA, Office of Corporate Information Systems DOE GovTrip PIA, Office of Corporate Information Systems DOE GovTrip PIA, Office of Corporate Information Systems PDF icon DOE GovTrip PIA, Office of Corporate Information Systems More Documents & Publications PIA - GovTrip (DOE data) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory

  12. Upcoming Trips and Review Events Calendar | Department of Energy

    Energy Savers [EERE]

    Upcoming Trips and Review Events Calendar Upcoming Trips and Review Events Calendar Complete listing of all Upcoming Trips and Review Events. March 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 Waste Treatment Plant External Independent Review, Office of River Protection, Richland 8:00AM to 5:00PM EDT »

  13. Gov. Granholm, Administration Officials to Preview the President's Trip to

    Office of Environmental Management (EM)

    Holland, Michigan | Department of Energy Gov. Granholm, Administration Officials to Preview the President's Trip to Holland, Michigan Gov. Granholm, Administration Officials to Preview the President's Trip to Holland, Michigan July 14, 2010 - 12:00am Addthis WASHINGTON- Today at 4:00 p.m. EDT, Michigan Governor Jennifer Granholm, White House Communications Director Dan Pfeiffer, and Matt Rogers, Senior Advisor to Energy Secretary Chu, will hold a press conference call ahead of the

  14. Road Tripping through the Geothermal Frontier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Road Tripping through the Geothermal Frontier Road Tripping through the Geothermal Frontier Addthis Geothermal Well Head, Utah 1 of 5 Geothermal Well Head, Utah This geothermal well head is located near the University of Utah's FORGE candidate site. The area is already renewables-friendly, with a wind farm nearby. Image: Elisabet Metcalfe, EERE Snake River Plain, Idaho 2 of 5 Snake River Plain, Idaho The mountainous view captures INL's Snake River Plain candidate site which is located on the

  15. Fact #615: March 22, 2010 Average Vehicle Trip Length | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5: March 22, 2010 Average Vehicle Trip Length Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to an average of 12.6 miles. The average trip length has been growing each survey year since the lowest average in 1983. Average Vehicle Trip Length, 1969-2009 Graph showing the average vehicle

  16. National Science Bowl Competitors Win Trip to Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competitors Win Trip to Colorado For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1997 -- A Wooton High School team from Rockville, Md. won an all expenses paid opportunity to explore Colorado's energy resources this summer by answering difficult questions in what has become known as high school's "World Series of Science." The team today won second place in the 1997 National Science Bowl in Chevy Chase, Md. The trip will include visiting a geothermal site in

  17. Energy Secretary Chu Trip to Kokomo, Indiana Cancelled | Department of

    Office of Environmental Management (EM)

    Energy Trip to Kokomo, Indiana Cancelled Energy Secretary Chu Trip to Kokomo, Indiana Cancelled July 16, 2010 - 12:00am Addthis Washington D.C. - The event today on Friday, July 16 with Energy Secretary Steven Chu has been cancelled so that Secretary Chu can continue his work with the federal science team on the oil spill response. Media contact(s): (202) 586-4940 Addthis Related Articles Energy Secretary Chu to Visit Delphi Power Electronics Plant in Kokomo Indiana Secretary Chu in Houston

  18. Secretary Chu Postpones China Trip to Continue Work on BP Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am...

  19. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  20. Analysis of reactor trips originating in balance of plant systems

    SciTech Connect (OSTI)

    Stetson, F.T.; Gallagher, D.W.; Le, P.T.; Ebert, M.W. )

    1990-09-01

    This report documents the results of an analysis of balance-of-plant (BOP) related reactor trips at commercial US nuclear power plants of a 5-year period, from January 1, 1984, through December 31, 1988. The study was performed for the Plant Systems Branch, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission. The objectives of the study were: to improve the level of understanding of BOP-related challenges to safety systems by identifying and categorizing such events; to prepare a computerized data base of BOP-related reactor trip events and use the data base to identify trends and patterns in the population of these events; to investigate the risk implications of BOP events that challenge safety systems; and to provide recommendations on how to address BOP-related concerns in regulatory context. 18 refs., 2 figs., 27 tabs.

  1. Readout of Secretary Chu's Middle East trip: Thursday, February 25 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Thursday, February 25 Readout of Secretary Chu's Middle East trip: Thursday, February 25 February 25, 2010 - 12:00am Addthis Today, Secretary Chu was in Doha, Qatar, where he began the day by signing a Memorandum of Understanding on Renewable and Alternative Energy with Deputy Prime Minister and Energy & Industry Minister Abdullah bin Hamad Al-Attiyah. The agreement provides a framework for bilateral cooperation with the Ministry and other Qatari institutions on

  2. Readout of Secretary Chu's Middle East trip: Tuesday, February 23 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tuesday, February 23 Readout of Secretary Chu's Middle East trip: Tuesday, February 23 February 23, 2010 - 12:00am Addthis Today, Secretary Chu visited King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia, on the Red Sea coast near Jeddah. His host was Saudi Minister of Petroleum and Minerals Ali Al Naimi, who is Chair of the KAUST Board of Trustees. KAUST is an international, graduate-level research university dedicated to science and

  3. PRIVACY IMPACT ASSESSMENT: CF GovTrip PIA Template Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CF - GovTrip PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/02061.pdf MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element &Site July 28, 2009 General Services Administration NORTHROP

  4. Readout of Secretary Chu's Middle East trip: Wednesday, February 24 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wednesday, February 24 Readout of Secretary Chu's Middle East trip: Wednesday, February 24 February 24, 2010 - 12:00am Addthis Today, Secretary Chu was in Abu Dhabi in the United Arab Emirates, where he affirmed the commitment of the United States to building a close relationship with the UAE on clean energy issues. He began the day with a meeting with the Minister of Energy for UAE, Mohammed bin Dha'en el Hamili. He then signed an Implementing Agreement on nuclear

  5. Vehicle Technologies Office Merit Review 2014: Trip Prediction and Route-Based Vehicle Energy Management

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about trip prediction...

  6. DOE GovTrip PIA, Office of Corporate Information Systems | Department...

    Energy Savers [EERE]

    Systems More Documents & Publications PIA - GovTrip (DOE data) Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant...

  7. Online Planning Tools Make Road Trips a Snap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Online Planning Tools Make Road Trips a Snap Online Planning Tools Make Road Trips a Snap May 18, 2015 - 11:42pm Addthis Use planning tools from FuelEconomy.gov to save fuel and money on your summer road trips. | Photo courtesy of Pat Corkery/NREL. Use planning tools from FuelEconomy.gov to save fuel and money on your summer road trips. | Photo courtesy of Pat Corkery/NREL. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this mean for me? Spend less money to fuel

  8. Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response Efforts | Department of Energy Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am Addthis Washington DC -- Energy Secretary Steven Chu will postpone a trip to China, scheduled for next week, at the request of President Obama and stay in the country to continue his work on response efforts to the BP oil spill. "Finding a solution to this crisis is a

  9. U.S. Energy Secretary Bodman Completes Middle East Trip | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bodman Completes Middle East Trip U.S. Energy Secretary Bodman Completes Middle East Trip November 20, 2005 - 2:51pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman concluded his four-nation swing through the Middle East this weekend, by attending the inauguration of the New Permanent Headquarter Office Building of the International Energy Forum (IEF) Secretariat and participating in a number of bilateral meetings in Riyadh, Saudi Arabia. "This trip allowed me

  10. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  11. Coiled tubing isolates zones, fractures wells with single trip service

    SciTech Connect (OSTI)

    Silverman, S.A.

    1999-04-01

    A system has been devised that combines high pressure coiled tubing (CT) and a selective isolation technique to frac multiple zones in a single operation. Multiple zones in one well can be individually isolated, fractured and flowed back simultaneously which results in reduced exposure to kill fluids and therefore higher retained conductivity for newly created fractures. The technique has been named CoilFRAC{trademark} by Dowell. The key benefits to the entire operation are reduced rig and operations time compared to conventional fracturing processes. Time savings, increased production, and environmental benefits are the economic drivers that result in rapid return on investment for production operators. The single trip concept for perforating and stimulation crews also brings additional benefits over multiple mobilizations. Wells which previously had only major zones perforated and stimulated and which are currently depleted can be revived economically using this system, giving the well a second life. The paper describes the equipment and its safety and contingency features, optimized shallow gas production in Alberta, and results from a South Texas oil well fracturing.

  12. Trip report for field visit to Fayetteville Shale gas wells.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-09-30

    This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

  13. Vermont Single Trip Permit to Operate a Motor Vehicle in Excess...

    Open Energy Info (EERE)

    Single Trip Permit to Operate a Motor Vehicle in Excess of Statutory Weight or Dimension Limits (Form OSD-002) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  14. U.S. Secretary of Energy Concludes Successful Trip to Trinidad and Tobago |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Successful Trip to Trinidad and Tobago U.S. Secretary of Energy Concludes Successful Trip to Trinidad and Tobago May 13, 2008 - 12:00pm Addthis Visit continues bilateral efforts to advance energy security WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today concluded a visit to the Republic of Trinidad and Tobago focused on strengthening and expanding the two nations' strategic energy and economic relationship. The United States is Trinidad and Tobago's

  15. Field Trip to EM's Idaho Treatment Facility is Students' High Point of

    Energy Savers [EERE]

    Class | Department of Energy Field Trip to EM's Idaho Treatment Facility is Students' High Point of Class Field Trip to EM's Idaho Treatment Facility is Students' High Point of Class December 29, 2015 - 12:10pm Addthis The Idaho State University class is briefed by Idaho Treatment Group Operations Support Manager Jeremy Hampton, far left, front row. The Idaho State University class is briefed by Idaho Treatment Group Operations Support Manager Jeremy Hampton, far left, front row. Class

  16. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to advancements in computing technology making it possible for more business to be handled electronically. VMT for shopping was almost

  17. Secure distance ranging by electronic means

    DOE Patents [OSTI]

    Gritton, Dale G. (Pleasanton, CA)

    1992-01-01

    A system for secure distance ranging between a reader 11 and a tag 12 wherein the distance between the two is determined by the time it takes to propagate a signal from the reader to the tag and for a responsive signal to return, and in which such time is random and unpredictable, except to the reader, even though the distance between the reader and tag remains the same. A random number (19) is sent from the reader and encrypted (26) by the tag into a number having 16 segments of 4 bits each (28). A first tag signal (31) is sent after such encryption. In response, a random width start pulse (13) is generated by the reader. When received in the tag, the width of the start pulse is measured (41) in the tag and a segment of the encrypted number is selected (42) in accordance with such width. A second tag pulse is generated at a time T after the start pulse arrives at the tag, the time T being dependent on the length of a variable time delay t.sub.v which is determined by the value of the bits in the selected segment of the encrypted number. At the reader, the total time from the beginning of the start pulse to the receipt of the second tag signal is measured (36, 37). The value of t.sub.v (21, 22, 23, 34) is known at the reader and the time T is subtracted (46) from the total time to find the actual propagation t.sub.p for signals to travel between the reader 11 and tag 12. The propagation time is then converted into distance (46).

  18. Google+ Virtual Field Trip on Vehicle Electrification at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Don't miss this exclusive peek into the U.S. Department of Energy's Argonne National Laboratory. Attendees will meet three researchers who will explain a different phase of vehicle electrification research. This field trip is very similar to the tou

  19. What is the distance to the CMB?

    SciTech Connect (OSTI)

    Clarkson, Chris; Umeh, Obinna; Maartens, Roy; Durrer, Ruth E-mail: umeobinna@gmail.com E-mail: Ruth.Durrer@unige.ch

    2014-11-01

    The success of precision cosmology depends not only on accurate observations, but also on the theoretical model --- which must be understood to at least the same level of precision. Subtle relativistic effects can lead to biased measurements if they are neglected. One such effect gives a systematic shift in the distance-redshift relation away from its background value, due to the non-linear relativistic conservation of total photon flux. We also show directly how this shift follows from a fully relativistic analysis of the geodesic deviation equation. We derive the expectation value of the shift using second-order perturbations about a concordance background, and show that the distance to last scattering is increased by 1%. We argue that neglecting this shift could lead to a significant bias in the background cosmological parameters, because it alters the meaning of the background model. A naive adjustment of CMB parameter estimation if this shift is really a correction to the background would raise the H{sub 0} value inferred from the CMB by 5%, potentially removing the tension with local measurements of H{sub 0}. Other CMB parameters which depend on the distance would also be shifted by ? 1? when combined with local H{sub 0} data. While our estimations rely on a simplistic analysis, they nevertheless illustrate that accurately defining the background model in terms of the expectation values of observables is critical when we aim to determine the model parameters at the sub-percent level.

  20. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  1. Long working distance interference microscope

    DOE Patents [OSTI]

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.

    2004-04-13

    Disclosed is a long working distance interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. The long working distance of 10-30 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-D height profiles of MEMS test structures to be acquired across an entire wafer. A well-matched pair of reference/sample objectives is not required, significantly reducing the cost of this microscope, as compared to a Linnik microinterferometer.

  2. Effect of recirculation pump trip following anticipated transients without scram at Big Rock Point

    SciTech Connect (OSTI)

    Lyon, R.E.

    1981-08-01

    As requested by the US Atomic Energy Commission (now US Nuclear Regulatory Commission) in their Technical Report on Anticipated Transients Without Scram (ATWS) for Water-Cooled Reactors (WASH-1270), Consumers Power Company has submitted analyses which describe the response of their Big Rock Point (BRP) Plant to ATWS. The original analyses were submitted on Febuary 21, 1975, and results indicated that a recirculation pump trip (RPT) was effective in limiting the consequences of an ATWS. The response of BRP to an ATWS was reanalyzed as a part of the Big Rock Point Probabilistic Risk Assessment (PRA). Results of the analysis were submitted on February 26, 1981, with the conclusion that automatic RPT provides little safety improvement at BRP. Purpose of this report is to evaluate the submitted analyses to determine the effectiveness of Recirculation Pump Trip in ATWS recovery.

  3. Commute trip reduction in Washington: Base year worksite characteristics and programs

    SciTech Connect (OSTI)

    Dodds, D.

    1995-02-01

    Employers in Washington`s eight most populous counties are engaged in an effort to reduce their employees` use of single occupant automobiles for commuting. This report documents the status of those employers at the beginning of the Commute Trip Reduction (CTR) program as a basis for evaluating the impacts of the program. The first section provides a brief exploration of the Washington CTR Law and a history of the first steps in its implementation. The second section presents a summary of the characteristics of the worksites affected by the law. The CTR Law calls for reductions in single occupant vehicle (SOV) commuting and in vehicle miles traveled (VMT). The third section of this report presents baseline measurements of SOV and VMT and goals for reducing them. The fourth section provides summary information on the first year of programs employers planned to implement. The final section very briefly outlines actions the Commute Trip Reduction law calls for between 1995 and 1999.

  4. Colorado School Earns Return Trip to National Science Bowl - News Feature |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Colorado School Earns Return Trip to National Science Bowl March 8, 2016 The five student team members from the winning team hold a trophy and banner honoring their victory. Their coaches stand on on each side of the group. Ridgeview Classical Charter Team 1 (from left): Coach Paula Petterson, Blake Salvador, Alyssa Jhones, Colin Tweedy, Logan Howerter, Tyler Dunaisky, and Coach Dave Morse. Ridgeview Classical won the 2016 Colorado High School Science Bowl and will return to nationals

  5. Method and apparatus for optimizing a train trip using signal information

    DOE Patents [OSTI]

    Kumar, Ajith Kuttannair; Daum, Wolfgang; Otsubo, Tom; Hershey, John Erik; Hess, Gerald James

    2013-02-05

    One embodiment of the invention includes a system for operating a railway network comprising a first railway vehicle (400) during a trip along track segments (401/412/420). The system comprises a first element (65) for determining travel parameters of the first railway vehicle (400), a second element (65) for determining travel parameters of a second railway vehicle (418) relative to the track segments to be traversed by the first vehicle during the trip, a processor (62) for receiving information from the first (65) and the second (65) elements and for determining a relationship between occupation of a track segment (401/412/420) by the second vehicle (418) and later occupation of the same track segment by the first vehicle (400) and an algorithm embodied within the processor (62) having access to the information to create a trip plan that determines a speed trajectory for the first vehicle (400), wherein the speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle (400).

  6. Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

    2010-05-01

    TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

  7. Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-04-01

    Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (Ferrite, Bainite, Austenite, Martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined. The comparison between simulation and experimental results leads us to the conclusion that the method using microstructure-based representative volume element (RVE) captures well enough the complex behavior of TRIP steels. The effect of phase transformation, which occurs during the deformation process, on the toughness is observed and discussed.

  8. Distance Probes of Dark Energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D' Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; et al

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  9. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  10. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  11. Trip Report

    Office of Legacy Management (LM)

    Department of Energy 2013 Annual Inspection - Piqua, OH, Decommissioned Reactor Site June 2013 Page 1 2013 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site Summary The former Piqua Nuclear Power Facility (PNPF), a decommissioned nuclear power demonstration facility, was inspected on April 18, 2013. The site, located on the east bank of the Great Miami River in Piqua, Ohio, is in good physical condition. There is no requirement for a follow-up

  12. Trip Report

    Office of Legacy Management (LM)

    Site A/Plot M, Cook County, Illinois May 2013 Page 1 2013 Inspection and Annual Site Status Report for the Site A/Plot M, Cook County, Illinois Decontamination and Decommissioning Program Site Summary Site A/Plot M was inspected on April 10, 2013. The site, located within a county forest preserve with significant tree and grass cover, was in good condition. No cause for a follow-up inspection was identified. Erosion on top of the grass covered mound at Plot M continues to be a concern. Bike

  13. Trip Report

    Office of Legacy Management (LM)

    Falls City, Texas Page 5-1 5.0 Falls City, Texas, Disposal Site 5.1 Compliance Summary The Falls City, Texas, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected on January 21, 2014. The site was in excellent condition. There was no evidence that institutional controls or deed restrictions had been violated. An invasive-species tree was treated with herbicide. Inspectors identified no other maintenance needs or cause for a follow-up inspection. Annual

  14. High School Students Begin Battle for Trip to the National Science Bowl -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL High School Students Begin Battle for Trip to the National Science Bowl January 29, 2009 Proving that they know more about science than some adults will be a cinch for approximately 160 Colorado high school students who will showcase their science and math knowledge at the Colorado Science Bowl on Saturday, January 31, at Dakota Ridge High School. The U.S. Department of Energy began the science bowl tradition nearly 20 years ago as a way to encourage high school students

  15. Title Trip Report: Hydrologic Field Reconnaissance Led by Robert Coache, Water Resources

    National Nuclear Security Administration (NNSA)

    Trip Report: Hydrologic Field Reconnaissance Led by Robert Coache, Water Resources Division, Nevada Department of Natural Resources and Conservation, April 24,1986 Technical Reference Document Author Giampaoli, MaryEllen 1 00991 Document Date ERC Index number 4/24/86 05.09.035 Doc u ment Type Box N u m ber Memo 1684-1 Recipients J. Younker HQS. 880517. 1765 Soonco Applications kitomotional Corporation M86-GEO-MEG-054 ADMIN RECORD # 5. DATE: TO: May 7, 1986 J. Younker ADMINISTRATIVE FROM: M.

  16. Computation of a BWR Turbine Trip with CATHARE-CRONOS2-FLICA4 Coupled Codes

    SciTech Connect (OSTI)

    Mignot, G.; Royer, E.; Rameau, B.; Todorova, N.

    2004-10-15

    The CEA/DEN modeling and computation results with the CATHARE, CRONOS2, and FLICA4 codes of the Organisation for Economic Co-operation and Development boiling water reactor turbine trip benchmark are presented. The first exercise of the benchmark to model the whole reactor thermal hydraulics with specified power has been performed with the CATHARE system code. Exercise 2, devoted to core thermal-hydraulic neutronic analysis with provided boundary conditions and neutronic cross sections, has been carried out with the CRONOS2 and FLICA4 codes. Finally, exercise 3, combining system thermal hydraulics and core three-dimensional thermal-hydraulics-neutronics, was computed with the three coupled codes: CATHARE, CRONOS2, and FLICA4.Our one-dimensional thermal-hydraulic reactor computation agrees well with the benchmark reference data and demonstrates the capacities of CATHARE to model a turbine trip transient. Coupled three-dimensional thermal-hydraulic and neutronic analysis displays a high sensitivity of the power peak to the core thermal-hydraulic model. The use of at least 100 channels is recommended to achieve reasonable results for integral and local parameters. Deviations between experimental data and exercise 3 results are discussed: timing of events, core pressure drop, and neutronic model. Finally, analysis of extreme scenarios as sensitivity studies on the transient to assess the effect of the scram, the bypass relief valve, and the steam relief valves is presented.

  17. Assessment of RELAP5/MOD2 against a main feedwater turbopump trip transient in the Vandellos II Nuclear Power Plant

    SciTech Connect (OSTI)

    Llopis, C.; Casals, A.; Perez, J.; Mendizabal, R.

    1993-12-01

    The Consejo de Seguridad Nuclear (CSN) and the Asociacion Nuclear Vandellos (ANV) have developed a model of Vandellos II Nuclear Power Plant. The ANV collaboration consisted in the supply of design and actual data, the cooperation in the simulation of the control systems and other model components, as well as in the results analysis. The obtained model has been assessed against the following transients occurred in plant: A trip from the 100% power level (CSN); a load rejection from 100% to 50% (CSN); a load rejection from 75% to 65% (ANV); and, a feedwater turbopump trip (ANV). This copy is a report of the feedwater turbopump trip transient simulation. This transient actually occurred in the plant on June 19, 1989.

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  19. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  20. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  2. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  3. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. Cyber Wars Have SQUIDs, Will Travel A Trip to Nuclear North Korea

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lo s a l a m o s s c i e n c e a n d t e c h n o lo g y m ag a z i n e JUly 20 09 Wired for the Future Cyber Wars Have SQUIDs, Will Travel A Trip to Nuclear North Korea 1 663 lo s a l a m o s s c i e n c e a n d t e c h n o lo g y m ag a z i n e J U ly 2 0 0 9 During the Manhattan Project, Enrico Fermi, Nobel Laureate and leader of F-Division, meets with San Ildefonso Pueblo's Maria Martinez, famous worldwide for her extraordinary black pottery. features from terry wallace PrINcIPaL aSSocIatE

  7. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    SciTech Connect (OSTI)

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a German BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)

  8. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  9. Optical distance measurement device and method thereof

    DOE Patents [OSTI]

    Bowers, Mark W. (Patterson, CA)

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  10. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  11. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  12. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  13. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  14. Optical Distance Measurement Device And Method Thereof

    DOE Patents [OSTI]

    Bowers, Mark W. (Patterson, CA)

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  15. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  16. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  17. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  18. Time evolution of the total electric-field strength in multimode lasers

    SciTech Connect (OSTI)

    Brunner, W.; Fischer, R.; Paul, H.

    1988-05-01

    Our previous numerical studies of the output characteristics of multimode lasers are extended to include the evolution of the total electric-field strength. The regular or irregular behavior of the system, which becomes manifest in the evolution of the amplitudes and the phases in the different modes, is reflected also in the evolution of the total electric-field strength in a stroboscopic view. (The total electric-field strength, with its high-frequency time dependence suppressed, is considered at times t, t+..delta..t, t+2..delta..t,..., where ..delta..t is a multiple of the round-trip time in the resonator.) Moreover, it is demonstrated that the evolution of the system is very sensitive to slight changes in the initial conditions. This finding supports the view that the irregularity falls in the class of the so-called deterministic chaos.

  19. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  20. Effects of Retained Austenite Volume Fraction, Morphology, and Carbon Content on Strength and Ductility of Nanostructured TRIP-assisted Steels

    SciTech Connect (OSTI)

    Shen, Yongfeng; Qiu, LN; Sun, Xin; Zuo, Liang; Liaw, Peter K.; Raabe, Dierk

    2015-06-01

    With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (weight percent, wt.%). After intercritical annealing and bainitic holding, a combination ultimate tensile strength (UTS) of 1,100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governingmicrostructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.

  1. Long working distance incoherent interference microscope

    DOE Patents [OSTI]

    Sinclair, Michael B. (Albuquerque, NM); De Boer, Maarten P. (Albuquerque, NM)

    2006-04-25

    A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

  2. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  3. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  4. Instability due to a two recirculation pump trip in a BWR using RAMONA-4B computer code with 3D neutron kinetics

    SciTech Connect (OSTI)

    Cheng, H.S.; Rohatgi, U.S.

    1993-06-01

    An investigation was made of the potential for thermal-hydraulic instabilities coupled to neutronic feedback in a BWR due to a two recirculation pump trip event using the RAMONA-4B computer code with 3D neutron kinetics. It is concluded that a high-power (100%) and low-flow (75%) initial condition would most likely lead to in-phase density wave oscillations after the tripping of both recirculation pumps, and that RAMONA-4B is capable of predicting such thermal-hydraulic instabilities coupled to neutronic feedback in BWR and in SBWR.

  5. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  6. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  7. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  8. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  9. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

  10. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  11. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  12. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  13. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  14. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  15. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  16. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  17. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  18. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  19. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  20. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  1. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  2. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  3. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  4. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  5. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  6. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  7. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  8. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  9. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  10. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  11. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  12. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  13. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  14. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  15. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  16. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  17. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  18. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  19. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  20. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  1. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  2. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  3. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  4. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  5. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  6. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  7. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  8. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  9. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  10. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat

  11. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  12. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  14. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  15. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  16. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  17. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2.0 0.4 Q 0.3 Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings Yes......

  19. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  1. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region Home Appliances Usage Indicators South Atlantic East ...

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural Location (as Self-Reported) Housing Units (millions) Home ...

  7. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.8 10.5 2,263 1,669 1,079 1,312 1,019 507 N N N ConcreteConcrete Block... 5.3 3.4 2,393 1,660 1,614 Q Q Q Q Q Q Composition...

  8. Analysis of the OECD/NRC BWR Turbine Trip Benchmark by the Coupled-Code System ATHLET-QUABOX/CUBBOX

    SciTech Connect (OSTI)

    Langenbuch, S.; Schmidt, K.-D.; Velkov, K.

    2004-10-15

    The OECD/NRC boiling water reactor (BWR) turbine trip benchmark has been calculated by the coupled thermal-hydraulic neutronics system code ATHLET-QUABOX/CUBBOX developed by Gesellschaft fuer Anlagen- und Reaktorsicherheit. The results obtained for all three exercises and for the additional four hypothetical cases are presented. The physical phenomena determining the BWR pressure transient are studied and explained. The sensitivity of results to variations of the initial steady-state conditions and of parameters of the two-phase flow model is discussed. A comparison is also performed for exercise 2 between the reactor core model with 33 thermal-hydraulic channels (THCs) as specified and a reactor core model with 764 THCs using a 1:1 mapping scheme.

  9. Use a DCS-based simulator to proactively manage your fossil DCS retrofit and eliminate unit trips

    SciTech Connect (OSTI)

    Krueger, S.; Greenlee, T.; Wilburs, D.

    1996-10-01

    Several fossil power plants are upgrading their current analog control with a modern distributed control system (DCS). A unit-specific DCS-based simulator for a fossil plant can offer several advantages if acquired early in the upgrade process. Three basic types of DCS-based simulators are discussed below. The experience of the Illinois Power`s (IP) Hennepin Unit 2 is summarized. The Hennepin simulator was developed in parallel with the new DCS-based control system and ready for use three months prior to the actual unit startup. The advantages gained by IP include an opportunity to test/tune the control systems and time to properly train the operations staff. These activities minimized the number of unit trips following the controls retrofit.

  10. The solar neighborhood. XXXV. Distances to 1404 M dwarf systems...

    Office of Scientific and Technical Information (OSTI)

    solar neighborhood. XXXV. Distances to 1404 M dwarf systems within 25 PC in the southern sky Citation Details In-Document Search Title: The solar neighborhood. XXXV. Distances to...

  11. Solar Decathlon 2013: Going the Distance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2013: Going the Distance Solar Decathlon 2013: Going the Distance September 17, 2013 - 4:26pm Addthis Toggle Routes on/off Return to map → Solar Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are approximate. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013: In our new blog series, we're

  12. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  13. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  14. Analysis of the Peach Bottom Turbine Trip 2 Experiment by Coupled RELAP5-PARCS Three-Dimensional Codes

    SciTech Connect (OSTI)

    Bousbia-Salah, Anis; Vedovi, Juswald; D'Auria, Francesco; Ivanov, Kostadin; Galassi, Giorgio

    2004-10-15

    Thanks to continuous progress in computer technology, it is now possible to perform best-estimate simulations of complex scenarios in nuclear power plants. This method is carried out through the coupling of three-dimensional (3-D) neutron modeling of a reactor core into system codes. It is particularly appropriate for transients that involve strong interactions between core neutronics and reactor loop thermal hydraulics. For this purpose, the Peach Bottom boiling water reactor turbine trip test was selected to challenge the capability of such coupled codes. The test is characterized by a power excursion induced by rapid core pressurization and a self-limiting course behavior. In order to perform the closest simulation, the coupled thermal-hydraulic system code RELAP5 and 3-D neutron kinetic code PARCS were used. The obtained results are compared to those available from experimental data. Overall, the coupled code calculations globally predict the most significant observed aspects of the transient, such as the pressure wave amplitude across the core and the power course, with an acceptable agreement. However, sensitivity studies revealed that more-accurate code models should be considered in order to better match the void dynamic and the cross-section variations during transient conditions.

  15. 1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report

    SciTech Connect (OSTI)

    Slate, S.C.; Allen, R.E.

    1993-12-01

    The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

  16. Petrographic description of calcite/opal samples collected on field trip of December 5-9, 1992. Special report No. 7

    SciTech Connect (OSTI)

    Hill, C.A.; Schluter, C.M.

    1993-06-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed analysis and assessment of the water-deposited minerals of Yucca Mountain and adjacent regions. Forty-three separate stops were made and 203 samples were collected during the five days of the field trip. This report describes petrographic observations made on the calcite/opal samples.

  17. Simulation of the Winfrith SGHWR X-trip blowdown experiment using RELAP-UK Mk IV and RETRAN-UK. Final report

    SciTech Connect (OSTI)

    Richards, C.G.

    1981-11-01

    The paper describes calculations with the thermal hydraulics codes RELAP-UK Mk IV and RETRAN to model the behavior of the Winfrith Steam Generating Heavy Water Reactor (WSGHWR) during a controlled depressurization experiment. The results of the simulations are compared with each other and with the experimental data. In the X-trip experiment a reactor trip was initiated from a steady operating condition of 90% of full power and the reactor allowed to depressurize via steam dump lines from the steam drums. During the transient data from a variety of instruments measuring coolant parameters, such as pressures, flows and temperatures, and plant state such as valve positions, were recorded. The version of RETRAN employed in the calculations was a development version of RETRAN-UK with the addition of a number of features from RELAP-UK, including Bryce slip and the Holmes drift flux model. The first 100 seconds of the X-trip transient in one of the two reactor loops has been simulated, during which time the system pressure falls from 940 to 170 psia.

  18. Long working-distance, incoherent light interference microscope (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Long working-distance, incoherent light interference microscope Citation Details In-Document Search Title: Long working-distance, incoherent light interference microscope We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference

  19. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark ...

  20. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Filippenko, Alexei Vladimir Univ. California, Berkeley 79...

  1. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  2. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  3. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  4. U.S. Total Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Stock Type: Total Stocks Strategic Petroleum Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Stock Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum Products 1,968,618 1,991,182 2,001,135 2,009,097 2,021,553 2,014,788 1956-2015 Crude Oil

  5. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG

  6. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 4,471 6,479 7,281 4,217 5,941 6,842 1936-2015 PAD District 1 1,854 1,956 4,571 2,206 2,952 3,174 1981-2015 Connecticut 1995-2015 Delaware 204 678 85 1995-2015 Florida 677 351 299 932 836 1995-2015 Georgia 232 138 120 295 1995-2015 Maine 50 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,328 780 1,575 400 1,131 1,712 1995-2015 New York 7 6 1,475 998 350 322 1995-2015 North Carolina

  7. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  8. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  9. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  10. The solar neighborhood. XXXV. Distances to 1404 M dwarf systems...

    Office of Scientific and Technical Information (OSTI)

    solar neighborhood. XXXV. Distances to 1404 M dwarf systems within 25 PC in the southern sky Winters, Jennifer G.; Jao, Wei-Chun; Dieterich, Sergio B., E-mail:...

  11. Long working-distance, incoherent light interference microscope...

    Office of Scientific and Technical Information (OSTI)

    interference microscope We describe the design and operation of a long-working-distance, ... The design of the new microscope is similar to that of a Linnik interference microscope ...

  12. Property:Distance from Shore(m) | Open Energy Information

    Open Energy Info (EERE)

    Shore(m) Jump to: navigation, search Property Name Distance from Shore(m) Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DistancefromShore(m...

  13. Station Footprint: Separation Distances, Storage Options, and Pre-Cooling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron Harris of Sandia National Laboratories was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_12_harris.pdf More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design

  14. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  15. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  20. Development of the table of initial isolation distances and protective action distances for the 2004 emergency response guidebook.

    SciTech Connect (OSTI)

    Brown, D. F.; Freeman, W. A.; Carhart, R. A.; Krumpolc, M.; Decision and Information Sciences; Univ. of Illinois at Chicago

    2005-09-23

    This report provides technical documentation for values in the Table of Initial Isolation and Protective Action Distances (PADs) in the 2004 Emergency Response Guidebook (ERG2004). The objective for choosing the PADs specified in the ERG2004 is to balance the need to adequately protect the public from exposure to potentially harmful substances against the risks and expenses that could result from overreacting to a spill. To quantify this balance, a statistical approach is adopted, whereby the best available information is used to conduct an accident scenario analysis and develop a set of up to 1,000,000 hypothetical incidents. The set accounts for differences in containers types, incident types, accident severity (i.e., amounts released), locations, times of day, times of year, and meteorological conditions. Each scenario is analyzed using detailed emission rate and atmospheric dispersion models to calculate the downwind chemical concentrations from which a 'safe distance' is determined. The safe distance is defined as the distance downwind from the source at which the chemical concentration falls below health protection criteria. The American Industrial Hygiene Association's Emergency Response Planning Guideline Level 2 (ERPG-2) or equivalent is the health criteria used. The statistical sample of safe distance values for all incidents considered in the analysis are separated into four categories: small spill/daytime release, small spill/nighttime release, large spill/daytime release, and large spill/nighttime release. The 90th-percentile safe distance values for each of these groups became the PADs that appear in the ERG2004.

  1. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  2. Modelling long-distance seed dispersal in heterogeneous landscapes.

    SciTech Connect (OSTI)

    Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.

    2008-01-01

    1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, holding them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our results suggest that long-distance dispersal events can be predicted using spatially explicit modelling to scale-up local movements, placing them in a landscape context. Similar techniques are commonly used by landscape ecologists to model other types of movement; they offer much promise to the study of seed dispersal.

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  17. Total System Performance Assessment Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  18. Analysis of the OECD/NRC BWR Turbine Trip Transient Benchmark with the Coupled Thermal-Hydraulics and Neutronics Code TRAC-M/PARCS

    SciTech Connect (OSTI)

    Lee, Deokjung; Downar, Thomas J.; Ulses, Anthony; Akdeniz, Bedirhan; Ivanov, Kostadin N.

    2004-10-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip 2 (TT2) experiment has been performed using the U.S. Nuclear Regulatory Commission coupled thermal-hydraulics and neutronics code TRAC-M/PARCS. The objective of the analysis was to assess the performance of TRAC-M/PARCS on a BWR transient with significance in two-phase flow and spatial variations of the neutron flux. TRAC-M/PARCS results are found to be in good agreement with measured plant data for both steady-state and transient phases of the benchmark. Additional analyses of four fictitious extreme scenarios are performed to provide a basis for code-to-code comparisons and comprehensive testing of the thermal-hydraulics/neutronics coupling. The obtained results of sensitivity studies on the effect of direct moderator heating on transient simulation indicate the importance of this modeling aspect.

  19. Distance-redshift relations in an anisotropic cosmological model

    SciTech Connect (OSTI)

    Menezes, R. S. Jr.; Pigozzo, C.; Carneiro, S. E-mail: cpigozzo@ufba.br

    2013-03-01

    In this paper we study an anisotropic model generated from a particular Bianchi type-III metric, which is a generalization of Gdel's metric and an exact solution of Einstein's field equations. We analyse type Ia supernova data, namely the SDSS sample calibrated with the MLCS2k2 fitter, and we verify in which ranges of distances and redshifts the anisotropy could be observed. We also consider, in a joint analysis, the position of the first peak in the CMB anisotropy spectrum, as well as current observational constraints on the Hubble constant. We conclude that a small anisotropy is permitted by the data, and that more accurate measurements of supernova distances above z = 2 might indicate the existence of such anisotropy in the universe.

  20. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime; Bellenoue, Marc; Labuda, Sergei; Sotton, Julien

    2010-02-15

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  1. THE MEMBERSHIP AND DISTANCE OF THE OPEN CLUSTER COLLINDER 419

    SciTech Connect (OSTI)

    Roberts, Lewis C.; Gies, Douglas R.; Parks, J. Robert; Grundstrom, Erika D.; McSwain, M. Virginia; Berger, David H.; Mason, Brian D.; Ten Brummelaar, Theo A.; Turner, Nils H. E-mail: gies@chara.gsu.ed E-mail: erika.grundstrom@vanderbilt.ed E-mail: dberger@sysplan.co E-mail: theo@chara-array.or

    2010-09-15

    The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37 {+-} 0.05 mag and a cluster distance of 741 {+-} 36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035.

  2. Scanning optical microscope with long working distance objective

    DOE Patents [OSTI]

    Cloutier, Sylvain G. (Newark, DE)

    2010-10-19

    A scanning optical microscope, including: a light source to generate a beam of probe light; collimation optics to substantially collimate the probe beam; a probe-result beamsplitter; a long working-distance, infinity-corrected objective; scanning means to scan a beam spot of the focused probe beam on or within a sample; relay optics; and a detector. The collimation optics are disposed in the probe beam. The probe-result beamsplitter is arranged in the optical paths of the probe beam and the resultant light from the sample. The beamsplitter reflects the probe beam into the objective and transmits resultant light. The long working-distance, infinity-corrected objective is also arranged in the optical paths of the probe beam and the resultant light. It focuses the reflected probe beam onto the sample, and collects and substantially collimates the resultant light. The relay optics are arranged to relay the transmitted resultant light from the beamsplitter to the detector.

  3. THE DISTANCE MEASUREMENT OF NGC1313 WITH CEPHEIDS

    SciTech Connect (OSTI)

    Qing, Gao; Wang, Wei; Liu, Ji-Feng; Yoachim, Peter

    2015-01-20

    We present the detection of Cepheids in the barred spiral galaxy NGC 1313, using the Wide Field and Planetary Camera 2 on the Hubble Space Telescope. Twenty B(F450W) and V(F555W) epochs of observations spanning over three weeks were obtained, on which the profile-fitting photometry of all stars in the monitored field was performed using the package HSTphot. A sample of 26 variable stars have been identified to be Cepheids, with periods between 3 and 14 days. Based on the derived period-luminosity relations in B- and V-bands, we obtain an extinction-corrected distance modulus of ?{sub NGC} {sub 1313} = 28.32 0.08 (random) 0.06 (systematic), employing the Large Magellanic Cloud as the distance zero point calibrator. The above moduli correspond to a distance of 4.61 0.17 (random) 0.13 (systematic) Mpc, consistent with previous measurements reported in the literature within uncertainties. In addition, the reddening to NGC 1313 is found to be small.

  4. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  5. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  17. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  18. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  19. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  20. Identifying fly ash at a distance from fossil fuel power stations

    SciTech Connect (OSTI)

    Flanders, P.J.

    1999-02-15

    A method has been developed to identify fly ash originating at fossil fuel power stations, even at a distance where the ash level is lower by a factor of 1000 from that close to a source. Until now such detection has been difficult and uncertain. The technique combines collection of particles, measurement of magnetization and coercive field, and microscopy. The analysis depends on the fact that ash from iron sulfide in fossil fuels is in the form of spherical magnetite. These particles have a relatively high coercive field H{sub c}, near 135 Oe, compared with airborne particulates from soil erosion which have an H{sub c} of {approximately}35 Oe. The coercive field of any sample therefore gives an indication for the percentage of fly ash relative to the total amount of magnetic material that is airborne. The concentration of ash from a large, isolated coal burning power station is found to fall off with the distance from the source, approximately as D{sup {minus}1}. As D increases there is a drop in H{sub c}, associated with the reduced amount of fly ash relative to the airborne particulates from soil erosion.

  1. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  2. High speed, long distance, data transmission multiplexing circuit

    DOE Patents [OSTI]

    Mariotti, Razvan (Boulder, CO)

    1991-01-01

    A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.

  3. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  4. (Collection of data on tropical forest inventories, Rome, Italy, March 20--25, 1989): Foreign trip report

    SciTech Connect (OSTI)

    Brown, S.; Gillespie, A.

    1989-04-06

    All forestry information in the library of FAO was organized into country ''boxes,'' and all boxes for countries in tropical Asia and tropical America were searched for data on forest inventories. Information on location and extent of inventories and resulting stand and stock tables were obtained for (1) converting to biomass by using methods that were already developed and (2) calculating expansion factors (commercial volume to total biomass). This work was conducted by the University of Illinois (Drs. Sandra Brown, Principal Investigator, and Andrew Gillespie, Research Associate) for the Department of Energy's Energy Systems Program managed by Oak Ridge National Laboratory. The travelers were successful in obtaining copies of some data for most countries in tropical Asia and tropical America. Most of the inventories for Asia were for only parts of countries, whereas most in America were national in scale. With the information gathered, the travelers will be able to make biomass estimates, geographically referenced, for many forest types representing thousands of hectares in most countries in these two tropical regions.

  5. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  6. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  7. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  8. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  9. Nonlinear, noniterative, single-distance phase retrieval and developmental biology

    SciTech Connect (OSTI)

    Moosmann, Julian; Altapova, Venera; Haenschke, Daniel; Hofmann, Ralf; Baumbach, Tilo

    2012-05-17

    For coherent X-ray imaging, based on phase contrast through free-space Fresnel propagation, we discuss two noniterative, nonlinear approaches to the phase-retrieval problem from a single-distance intensity map of a pure-phase object. On one hand, a perturbative set-up is proposed where nonlinear corrections to the linearized transport-of-intensity situation are expanded in powers of the object-detector distance z and are evaluated in terms of the linear estimate. On the other hand, a nonperturbative projection algorithm, which is based on the (linear and local) contrast-transfer function (CTF), works with an effective phase in Fourier space. This effective phase obeys a modified CTF relation between intensity contrast at z > 0 and phase contrast at z= 0: Unphysical singularities of the local CTF model are cut off to yield 'quasiparticles' in analogy to the theory of the Fermi liquid. By identifying the positions of the zeros of the Fourier transformed intensity contrast as order parameters for the dynamical breaking of scaling symmetry we investigate the phase structure of the forward-propagation problem when interpreted as a statistical system. Results justify the quasiparticle approach for a wide range of intermediary phase variations. The latter algorithm is applied to data from biological samples recorded at the beamlines TopoTomo and ID19 at ANKA and ESRF, respectively.

  10. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  11. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  12. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  13. Red giant stars from the Sloan digital sky survey. II. Distances

    SciTech Connect (OSTI)

    Tan, Kefeng; Chen, Yuqin; Carrell, Kenneth; Zhao, Jingkun; Zhao, Gang

    2014-10-10

    We present distance determinations for a large and clean sample of red giant branch stars selected from the ninth data release of the Sloan Digital Sky Survey. The distances are calculated based on both observational cluster fiducials and theoretical isochrones. Distributions of distances from the two methods are very similar with peaks at about 10 kpc and tails extending to more than 70 kpc. We find that distances from the two methods agree well for the majority of the sample stars; though, on average, distances based on isochrones are 10% higher than those based on fiducials. We test the accuracy of our distance determinations using 332 stars from 10 Galactic globular and open clusters. The average relative deviation from the literature cluster distances is 4% for the fiducial-based distances and 8% for the isochrone-based distances, both of which are within the uncertainties. We find that the effective temperature and surface gravity derived from low-resolution spectra are not accurate enough to essentially improve the performance of distance determinations. However, for stars with significant extinction, effective temperature may help to better constrain their distances to some extent. We make our sample stars and their distances available from an online catalog. The catalog comprises 17,941 stars with reasonable distance estimations reaching to more than 70 kpc, which is suitable for the investigation of the formation and evolution of the Galaxy, especially the Galactic halo.

  14. distance_webinar_2013_03_05.wmv | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    distance_webinar_2013_03_05.wmv File distance_webinar_2013_03_05.wmv More Documents & Publications Asset Score API Webinar June 14, 2013 Home Energy Score Webinar Commercial Building Energy Asset Score 2013 Pilot

  15. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  16. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  17. Analysis of the Argonne distance tabletop exercise method.

    SciTech Connect (OSTI)

    Tanzman, E. A.; Nieves, L. A.; Decision and Information Sciences

    2008-02-14

    The purpose of this report is to summarize and evaluate the Argonne Distance Tabletop Exercise (DISTEX) method. DISTEX is intended to facilitate multi-organization, multi-objective tabletop emergency response exercises that permit players to participate from their own facility's incident command center. This report is based on experience during its first use during the FluNami 2007 exercise, which took place from September 19-October 17, 2007. FluNami 2007 exercised the response of local public health officials and hospitals to a hypothetical pandemic flu outbreak. The underlying purpose of the DISTEX method is to make tabletop exercising more effective and more convenient for playing organizations. It combines elements of traditional tabletop exercising, such as scenario discussions and scenario injects, with distance learning technologies. This distance-learning approach also allows playing organizations to include a broader range of staff in the exercise. An average of 81.25 persons participated in each weekly webcast session from all playing organizations combined. The DISTEX method required development of several components. The exercise objectives were based on the U.S. Department of Homeland Security's Target Capabilities List. The ten playing organizations included four public health departments and six hospitals in the Chicago area. An extent-of-play agreement identified the objectives applicable to each organization. A scenario was developed to drive the exercise over its five-week life. Weekly problem-solving task sets were designed to address objectives that could not be addressed fully during webcast sessions, as well as to involve additional playing organization staff. Injects were developed to drive play between webcast sessions, and, in some cases, featured mock media stories based in part on player actions as identified from the problem-solving tasks. The weekly 90-minute webcast sessions were discussions among the playing organizations that were moderated by a highly-qualified public health physician, who reviewed key scenario developments and player actions, as well as solicited input from each playing organization. The exercise control structure included trusted agents who oversaw exercise planning, playing organization points of contact to ensure exercise coordination, and exercise controller/evaluators to initiate and oversee exercise play. A password-protected exercise website was designed for FluNami 2007 to serve as a compartmentalized central information source, and for transmitting exercise documents. During the course of FluNami 2007, feedback on its quality was collected from players and controller/evaluators. Player feedback was requested at the conclusion of each webcast, upon completion of each problem-solving task, and on October 17, 2007, after the final webcast session had ended. The overall average score given to FluNami 2008 by the responding players was 3.9 on a five-point scale. In addition, suggestions for improving the process were provided by Argonne controller/evaluators after the exercise concluded. A series of recommendations was developed based on feedback from the players and controller/evaluators. These included improvements to the exercise scope and objectives, the problem-solving tasks, the scenarios, exercise control, the webcast sessions, the exercise website, and the player feedback process.

  18. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  19. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  20. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  1. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  2. DISTANCE AND KINEMATICS OF THE TW HYDRAE ASSOCIATION FROM PARALLAXES

    SciTech Connect (OSTI)

    Weinberger, Alycia J.; Boss, Alan P.; Anglada-Escude, Guillem

    2013-01-10

    From common proper motion and signatures of youth, researchers have identified about 30 members of a putative TW Hydrae Association. Only four of these had parallactic distances from Hipparcos. We have measured parallaxes and proper motions for 14 primary members. We combine these with literature values of radial velocities to show that the Galactic space motions of the stars, with the exception of TWA 9 and 22, are parallel and do not indicate convergence at a common formation point sometime in the last few million years. The space motions of TWA 9 and 22 do not agree with the others and indicate that they are not TWA members. The median parallax is 18 mas or 56 pc. We further analyze the stars' absolute magnitudes on pre-main-sequence evolutionary tracks and find a range of ages with a median of 10.1 Myr and no correlation between age and Galactic location. The TWA stars may have formed from an extended and filamentary molecular cloud but are not necessarily precisely coeval.

  3. Southern Asia future plans feature long-distance lines

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This paper reports that although pipe line mileage working, planned and under study has dipped slightly from 47,346 km (29,420 mi) to 44,853 km (27,871 mi), Southern Asia continues to hold a strong position for future projects with some of the most interesting programs in the international market. Two dramatic, long-distance natural gas transmission, gathering and lateral networks continue to hold the future pipe line construction spotlight in Southern Asia. The Association of South East Asian Nations (ASEAN) continues to study a 7,830 km (4,865 mi) gas transmission system. With an estimated cost of $10 billion, the system includes some 6,276 km (3,900 mi) of transmission lines, with 1,094 km (680 mi) offshore. Group members include Brunei, Indonesia, Malaysia, the Philippines, Singapore and Thailand. The second project, the Trans-Asian Pipeline System, involves 3,380 km (2,100 mi) of transmission lines from the Iran's Bandar Abbas gas field across Pakistan to a terminal at Calcutta, India.

  4. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  5. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  6. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  7. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  8. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  9. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  10. Trip Information Log Tracking System

    Energy Science and Technology Software Center (OSTI)

    1992-06-23

    The system is focused on the Employee Business Travel Event. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Travel Event as well as the ability to CRUD frequent flyer milage associated with airline travel. Additionally the system must provide for a compliance reporting system to monitor reductions in travel costs and lost opportunity costs (i.e., not taking advantage of business class or 7 day advance tickets).

  11. A large catalog of accurate distances to molecular clouds from PS1 photometry

    SciTech Connect (OSTI)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.; Green, G.; Finkbeiner, D. P.; Bell, E. F.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Draper, P. W.; Metcalfe, N.; Price, P. A.

    2014-05-01

    Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.

  12. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  13. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  14. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  15. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  16. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  17. Long distance symmetries for nuclear forces and the similarity renormalization group

    SciTech Connect (OSTI)

    Szpigel, S.; Timoteo, V. S.; Arriola, E. R.

    2013-03-25

    In this work we study the emergence of long distance symmetries for nuclear forces within the framework of the similarity renormalization group approach.

  18. Stopping distance for high energy jets in weakly coupled quark-gluon plasmas

    SciTech Connect (OSTI)

    Arnold, Peter; Cantrell, Sean; Xiao Wei

    2010-02-15

    We derive a simple formula for the stopping distance for a high-energy quark traveling through a weakly coupled quark-gluon plasma. The result is given to next-to-leading order in an expansion in inverse logarithms ln(E/T), where T is the temperature of the plasma. We also define a stopping distance for gluons and give a leading-log result. Discussion of stopping distance has a theoretical advantage over discussion of energy loss rates in that stopping distances can be generalized to the case of strong coupling, where one may not speak of individual partons.

  19. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  20. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  1. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  2. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  3. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  4. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 59,693 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  5. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  6. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  7. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  8. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  10. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the ...

  11. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  12. NREL: Building America Total Quality Management - 2015 Peer Review...

    Energy Savers [EERE]

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the...

  13. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

  14. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... PM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  15. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  16. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect (OSTI)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  17. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes:

    Office of Scientific and Technical Information (OSTI)

    MLCS2k2 (Journal Article) | SciTech Connect Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 Citation Details In-Document Search Title: Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to

  18. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    SciTech Connect (OSTI)

    Devi, Yendrembam Chaoba Chakraborty, Biswajit; Prajapat, Shivraj; Mukhopadhyay, Aritra K.; Scholtz, Frederik G.

    2015-04-15

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemovs SU(2) coherent state. Here also, we get a connection between geometry and statistics which is shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ? ?/2.

  19. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Office of Scientific and Technical Information (OSTI)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998

  20. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the

  1. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14-0.20 mag from broadband optical light curves, yielding

  2. Building Better Batteries for Long-Distance Driving and Faster-Charging

    Energy Savers [EERE]

    Electronics | Department of Energy Better Batteries for Long-Distance Driving and Faster-Charging Electronics Building Better Batteries for Long-Distance Driving and Faster-Charging Electronics March 2, 2016 - 10:07am Addthis The colors show the uneven distribution of chemical elements on this particle's surface, which is key to its improved performance in batteries. | Courtesy of Brookhaven National Laboratory and SLAC National Accelerator Laboratory. Karen McNulty Walsh Brookhaven National

  3. Type IIP supernovae as cosmological probes: A SEAM distance to SN1999em

    SciTech Connect (OSTI)

    Baron, E.; Nugent, Peter E.; Branch, David; Hauschildt, Peter H.

    2004-06-01

    Because of their intrinsic brightness, supernovae make excellent cosmological probes. We describe the spectral-fitting expanding atmosphere method (SEAM) for obtaining distances to Type IIP supernovae (SNe IIP) and present a distance to SN 1999em for which a Cepheid distance exists. Our models give results consistent with the Cepheid distance, even though we have not attempted to tune the underlying hydrodynamical model but have simply chosen the best fits. This is in contradistinction to the expanding photosphere method (EPM), which yields a distance to SN 1999em that is 50 percent smaller than the Cepheid distance. We emphasize the differences between the SEAM and the EPM. We show that the dilution factors used in the EPM analysis were systematically too small at later epochs. We also show that the EPM blackbody assumption is suspect. Since SNe IIP are visible to redshifts as high as z {approx}< 6, with the James Webb Space Telescope, the SEAM may be a valuable probe of the early universe.

  4. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  5. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  6. Texas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Texas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  7. Texas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. West Virginia Natural Gas % of Total Residential Deliveries ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) West Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  10. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  11. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. North Carolina Natural Gas % of Total Residential Deliveries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) North Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. New York Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. New York Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  16. Estimation and validation of mode distances for the 1993 Commodity Flow Survey

    SciTech Connect (OSTI)

    Middendorf, D.P.; Bronzini, M. S.; Peterson, B.; Liu, Cheng; Chin, Shih-Miao

    1995-09-01

    The 1993 Commodity Flow Survey (CFS) collected shipment data from a sample of approximately 200,000 domestic business establishments. Each selected establishment provided information on origin, destination, commodity, shipment weight and value, and modes of transport for a sample of its outbound shipments. One data item not reported by CFS participants was shipment distance. This important piece of information was estimated by simulating probable routes using computer models of the highway, rail, air, waterway, and pipeline networks and their interconnections. This paper describes the nature of the shipment distance estimation problem, the procedures used to estimate mode-specific distances between origin and destination ZIP codes, and the techniques used to validate the results.

  17. Combined distance-of-flight and time-of-flight mass spectrometer

    DOE Patents [OSTI]

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  18. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  19. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  20. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  1. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  2. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  3. NREL: Building America Total Quality Management - 2015 Peer Review |

    Energy Savers [EERE]

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review LBNL's FLEXLAB test facility, which includes

  4. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  5. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  6. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  7. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  8. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  9. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","U.S. Total Refiner Acquisition Cost of Crude Oil",3,"Annual",2014,"6301968" ,"Release Date:","212016" ,"Next Release Date:","312016" ,"Excel File...

  10. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  11. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  12. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  13. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  14. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release...

  15. Refinery & Blender Net Production of Total Finished Petroleum...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases EthaneEthylene Ethane Ethylene PropanePropylene Propane Propylene Normal Butane...

  16. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  17. On chemical distances and shape theorems in percolation models with long-range correlations

    SciTech Connect (OSTI)

    Drewitz, Alexander; Rth, Balzs; Sapozhnikov, Artm

    2014-08-01

    In this paper, we provide general conditions on a one parameter family of random infinite subsets of Z{sup d} to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Cern and Popov [On the internal distance in the interlacement set, Electron. J. Probab. 17(29), 125 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora [On the chemical distance for supercritical Bernoulli percolation, Ann Probab. 24(2), 10361048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.

  18. Stellar metallicity of the extended disk and distance of the spiral galaxy NGC 3621

    SciTech Connect (OSTI)

    Kudritzki, Rolf-Peter; Bresolin, Fabio; Hosek, Matthew W. Jr.; Urbaneja, Miguel A.; Przybilla, Norbert E-mail: bresolin@ifa.hawaii.edu E-mail: Miguel.Urbaneja-Perez@uibk.ac.at

    2014-06-10

    Low resolution (?4.5 ) ESO VLT/FORS spectra of blue supergiant stars are analyzed to determine stellar metallicities (based on elements such as iron, titanium, and magnesium) in the extended disk of the spiral galaxy, NGC 3621. Mildly subsolar metallicity (0.30 dex) is found for the outer objects beyond 7 kpc, independent of galactocentric radius and compatible with the absence of a metallicity gradient, confirming the results of a recent investigation of interstellar medium H II region gas oxygen abundances. The stellar metallicities are slightly higher than those from the H II regions when based on measurements of the weak forbidden auroral oxygen line at 4363 but lower than the ones obtained with the R {sub 23} strong line method. It is shown that the present level of metallicity in the extended disk cannot be the result of chemical evolution over the age of the disk with the present rate of in situ star formation. Additional mechanisms must be involved. In addition to metallicity, stellar effective temperatures, gravities, interstellar reddening, and bolometric magnitudes are determined. After the application of individual reddening corrections for each target, the flux-weighted gravity-luminosity relationship of blue supergiant stars is used to obtain a distance modulus of 29.07 0.09 mag (distance D = 6.52 0.28 Mpc). This new distance is discussed in relation to Cepheid and the tip of the red giant branch distances.

  19. Astrophysical tests of modified gravity: Constraints from distance indicators in the nearby universe

    SciTech Connect (OSTI)

    Jain, Bhuvnesh; Vikram, Vinu; Sakstein, Jeremy

    2013-12-10

    We use distance measurements in the nearby universe to carry out new tests of gravity, surpassing other astrophysical tests by over two orders of magnitude for chameleon theories. The three nearby distance indicatorscepheids, tip of the red giant branch (TRGB) stars, and water masersoperate in gravitational fields of widely different strengths. This enables tests of scalar-tensor gravity theories because they are screened from enhanced forces to different extents. Inferred distances from cepheids and TRGB stars are altered (in opposite directions) over a range of chameleon gravity theory parameters well below the sensitivity of cosmological probes. Using published data, we have compared cepheid and TRGB distances in a sample of unscreened dwarf galaxies within 10 Mpc. We use a comparable set of screened galaxies as a control sample. We find no evidence for the order unity force enhancements expected in these theories. Using a two-parameter description of the models (the coupling strength and background field value), we obtain constraints on both the chameleon and symmetron screening scenarios. In particular we show that f(R) models with background field values f {sub R0} above 5 10{sup 7} are ruled out at the 95% confidence level. We also compare TRGB and maser distances to the galaxy NGC 4258 as a second test for larger field values. While there are several approximations and caveats in our study, our analysis demonstrates the power of gravity tests in the local universe. We discuss the prospects for additional improved tests with future observations.

  20. Gathering total items count for pagination | OpenEI Community

    Open Energy Info (EERE)

    Gathering total items count for pagination Home > Groups > Utility Rate Hi I'm using the following base link plus some restrictions to sector, utility, and locations to poll for...

  1. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  2. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  3. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  4. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Broader source: Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  5. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  6. "Table A45. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," 500 and Over",1166.9,4,1.9,0.9,5.3,12.7 ,"Total",806,6.7,2.7,0.2,7.7,5 2011,"Meat Packing Plants" ,"Value of Shipments and Receipts " ,"(million dollars)" ," Under ...

  7. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  8. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  9. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  10. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History

  11. Physisorption and Chemisorption Methods for Evaluating the Total Surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area and Active Surface Area of Two Types of Carbon Materials | Department of Energy Physisorption and Chemisorption Methods for Evaluating the Total Surface Area and Active Surface Area of Two Types of Carbon Materials Physisorption and Chemisorption Methods for Evaluating the Total Surface Area and Active Surface Area of Two Types of Carbon Materials TSA is a gross indicator of soot reactivity and does not always correlate well with the real reactivity. This research shows that a more

  12. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  13. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  14. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  16. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  17. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  18. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total","

  19. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  20. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  3. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  4. Estimation of Anisotoropy from Total Cross Section and Optical Model

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and Optical Model Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-03 OSTI Identifier: 1082234 Report Number(s): LA-UR-13-24025 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Working Party

  5. Webtrends Archives by Fiscal Year - EERE Totals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account. Microsoft Office document icon EERE FY07 Microsoft Office document icon EERE FY08 Microsoft Office document icon EERE FY09 Microsoft Office document icon EERE FY10 Microsoft Office document icon EERE FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Information Center Webtrends Archives by Fiscal

  6. Corridor One: An Integrated Distance Visualization Environment for SSI and ASCI Applications

    SciTech Connect (OSTI)

    Rick Stevens; Jason Leigh

    2002-07-14

    Scenarios describe realistic uses of DVC/Distance technologies in several years. Four scenarios are described: Distributed Decision Making; Remote Interactive Computing; Remote Visualization: (a) Remote Immersive Visualization and (b) Remote Scientific Visualization; Remote Virtual Prototyping. Scenarios serve as drivers for the road maps and enable us to check that the functionality and technology in the road maps match application needs. There are four major DVC/Distance technology areas we cover: Networking and QoS; Remote Computing; Remote Visualization; Remote Data. Each ??road map? consists of two parts, a ??functionality? matrix (what can be done) and a ??technology? matrix (underlying technology). That is, functionality matrices show the desired operational characteristics, while technology matrices show the underlying technology needed. In practice, there isn??t always a clean break between ??functionality? and ??technology,? but it still seems useful to try and separate things this way.

  7. INL and NREL Demonstrate Power Grid Simulation at a Distance - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL INL and NREL Demonstrate Power Grid Simulation at a Distance Capability makes national laboratory assets accessible to grid researchers worldwide May 4, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and Idaho National Laboratory (INL) have successfully demonstrated the capability to connect grid simulations at their two labs for real time interaction via the Internet. This new inter-lab capability enables the modeling of power grids in greater

  8. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2014-11-04

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  9. Optical fiber configurations for transmission of laser energy over great distances

    DOE Patents [OSTI]

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  10. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    SciTech Connect (OSTI)

    Shkolnik, Evgenya L.; Anglada-Escude, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  11. Long-distance entanglement and quantum teleportation in XX spin chains

    SciTech Connect (OSTI)

    Campos Venuti, L.; Giampaolo, S. M.; Illuminati, F.; Zanardi, P.

    2007-11-15

    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supports 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.

  12. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY

    SciTech Connect (OSTI)

    Franca, Fabio La; Bianchi, Stefano; Branchini, Enzo; Matt, Giorgio [Dipartimento di Matematica e Fisica, Universit Roma Tre, Via della Vasca Navale 84, I-00146, Roma (Italy); Ponti, Gabriele, E-mail: lafranca@fis.uniroma3.it [Max-Planck-Institut fr Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei Mnchen (Germany)

    2014-05-20

    We report the discovery of a luminosity distance estimator using active galactic nuclei (AGNs). We combine the correlation between the X-ray variability amplitude and the black hole (BH) mass with the single-epoch spectra BH mass estimates which depend on the AGN luminosity and the line width emitted by the broad-line region. We demonstrate that significant correlations do exist that allow one to predict the AGN (optical or X-ray) luminosity as a function of the AGN X-ray variability and either the H? or the Pa? line widths. In the best case, when the Pa? is used, the relationship has an intrinsic dispersion of ?0.6dex. Although intrinsically more disperse than supernovae Ia, this relation constitutes an alternative distance indicator potentially able to probe, in an independent way, the expansion history of the universe. With respect to this, we show that the new mission concept Athena should be able to measure the X-ray variability of hundreds of AGNs and then constrain the distance modulus with uncertainties of 0.1mag up to z ? 0.6. We also discuss how our estimator has the prospect of becoming a cosmological probe even more sensitive than the current supernovae Ia samples by using a new dedicated wide-field X-ray telescope able to measure the variability of thousands of AGNs.

  13. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect (OSTI)

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  14. Infrared tip of the red giant branch and distances to the MAFFEI/IC 342 group

    SciTech Connect (OSTI)

    Wu, Po-Feng; Tully, R. Brent; Jacobs, Bradley A.; Rizzi, Luca; Dolphin, Andrew E.; Karachentsev, Igor D.

    2014-07-01

    In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ?5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45{sub ?0.13}{sup +0.13} Mpc for IC 342, 3.37{sub ?0.23}{sup +0.32} Mpc for Maffei 1, and 3.52{sub ?0.30}{sup +0.32} Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.

  15. Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering

    SciTech Connect (OSTI)

    Ehiasarian, Arutiun P; Andersson, Joakim; Anders, Andr

    2010-04-18

    The plasma composition of high power impulse magnetron sputtering (HIPIMS) has been studied for titanium and chromium targets using a combined energy analyser and quadrupole mass spectrometer. Measurements were done at distances from 50 to 300 mm from the sputtering target. Ti and Cr are similar in atomic mass but have significantly different sputter yields, which gives interesting clues on the effect of the target on plasma generation and transport of atoms. The Ti and Cr HIPIMS plasmas operated at a peak target current density of ~;;0.5 A cm-2. The measurements of the argon and metal ion content as well as the ion energy distribution functions showed that (1) singly and doubly charged ions were found for argon as well as for the target metal, (2) the majority of ions were singly charged argon for both metals at all distances investigated, (3) the Cr ion density was maintained to distances further from the target than Ti. Gas rarefaction was identified as a main factor promoting transport of metal ions, with the stronger effect observed for Cr, the material with higher sputter yield. Cr ions were found to displace a significant portion of the gas ions, whereas this was less evident in the Ti case. The observations indicate that the presence of metal vapour promotes charge exchange and reduces the electron temperature and thereby practically prevents the production of Ar2+ ions near the target. The content of higher charge states of metal ions depends on the probability of charge exchange with argon.

  16. THE MEGAMASER COSMOLOGY PROJECT. V. AN ANGULAR-DIAMETER DISTANCE TO NGC 6264 AT 140 Mpc

    SciTech Connect (OSTI)

    Kuo, C. Y.; Braatz, J. A.; Lo, K. Y.; Condon, J. J.; Impellizzeri, C. M. V.; Reid, M. J.; Henkel, C.

    2013-04-20

    We present the direct measurement of the Hubble constant, yielding the direct measurement of the angular-diameter distance to NGC 6264 using the H{sub 2}O megamaser technique. Our measurement is based on sensitive observations of the circumnuclear megamaser disk from four observations with the Very Long Baseline Array, the Green Bank Telescope (GBT), and the Effelsberg telescope. We also monitored the maser spectral profile for 2.3 years using the GBT to measure accelerations of maser lines by tracking their line-of-sight velocities as they change with time. The measured accelerations suggest that the systemic maser spots have a significantly wider radial distribution than in the archetypal megamaser in NGC 4258. We model the maser emission as arising from a circumnuclear disk with orbits dominated by the central black hole. The best fit of the data gives a Hubble constant of H{sub 0} = 68 {+-} 9 km s{sup -1} Mpc{sup -1}, which corresponds to an angular-diameter distance of 144 {+-} 19 Mpc. In addition, the fit also gives a mass of the central black hole of (3.09 {+-} 0.42) Multiplication-Sign 10{sup 7} M{sub Sun }. The result demonstrates the feasibility of measuring distances to galaxies located well into the Hubble flow by using circumnuclear megamaser disks.

  17. Minimum separation distances for natural gas pipeline and boilers in the 300 area, Hanford Site

    SciTech Connect (OSTI)

    Daling, P.M.; Graham, T.M.

    1997-08-01

    The U.S. Department of Energy (DOE) is proposing actions to reduce energy expenditures and improve energy system reliability at the 300 Area of the Hanford Site. These actions include replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing a new natural gas distribution system to provide a fuel source for many of these units, and constructing a central control building to operate and maintain the system. The individual heating units will include steam boilers that are to be housed in individual annex buildings located at some distance away from nearby 300 Area nuclear facilities. This analysis develops the basis for siting the package boilers and natural gas distribution systems to be used to supply steam to 300 Area nuclear facilities. The effects of four potential fire and explosion scenarios involving the boiler and natural gas pipeline were quantified to determine minimum separation distances that would reduce the risks to nearby nuclear facilities. The resulting minimum separation distances are shown in Table ES.1.

  18. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  19. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  20. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  1. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, Frank A. (Livermore, CA); Gray, Joe W. (Livermore, CA)

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  2. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    SciTech Connect (OSTI)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-11-12

    A review is given for the explanation of the measurements of Miley et al. of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li et al. from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li et al. were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping.

  3. ELLIPSOIDAL VARIABLE V1197 ORIONIS: ABSOLUTE LIGHT-VELOCITY ANALYSIS FOR KNOWN DISTANCE

    SciTech Connect (OSTI)

    Wilson, R. E.; Chochol, D.; KomzIk, R.; Van Hamme, W.; Pribulla, T.; Volkov, I.

    2009-09-01

    V1197 Orionis light curves from a long-term observing program for red giant binaries show ellipsoidal variation of small amplitude in the V and R{sub C} bands, although not clearly in U and B. Eclipses are not detected. All four bands show large irregular intrinsic variations, including fleeting quasi-periodicities identified by power spectra, that degrade analysis and may be caused by dynamical tides generated by orbital eccentricity. To deal with the absence of eclipses and consequent lack of astrophysical and geometrical information, direct use is made of the Hipparcos parallax distance while the V and R{sub C} light curves and (older) radial velocity curves are analyzed simultaneously in terms of absolute flux. The red giant's temperature is estimated from new spectra. This type of analysis, called Inverse Distance Estimation for brevity, is new and can also be applied to other ellipsoidal variables. Advantages gained by utilization of definite distance and temperature are discussed in regard to how radius, fractional lobe filling, and mass ratio information are expressed in the observations. The advantages were tested in solutions of noisy synthetic data. Also discussed and tested by simulations are ideas on the optimal number of light curves to be solved simultaneously under various conditions. The dim companion has not been observed or discussed in the literature but most solutions find its mass to be well below that of the red giant. Solutions show red giant masses that are too low for evolution to the red giant stage within the age of the Galaxy, although that result is probably an artifact of the intrinsic brightness fluctuations.

  4. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  5. "Table A46. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," 1000 and Over",447.9,4.3,1.6,0.9,7,7.8 ,"Total",806,6.7,2.7,0.2,7.7,5 2011,"Meat Packing Plants" ,"Employment Size " ," Under 50"," Q "," Q "," Q ",0," Q ",0 ," ...

  6. Elba Island, GA Liquefied Natural Gas Total Imports (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 - No Data Reported; -- ...

  7. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect (OSTI)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

  8. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  9. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3/31/2008 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe Technical Report NREL/TP-510-42621 Revised March 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

  10. DOE_GovTrip-PIA.pdf

    Energy Savers [EERE]

  11. Dynamic Rotor Deformation and Vibration Monitoring Using a Non-Incremental Laser Doppler Distance Sensor

    SciTech Connect (OSTI)

    Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen

    2010-05-28

    Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.

  12. Photospheric magnitude diagrams for type II supernovat: A promising tool to compute distances

    SciTech Connect (OSTI)

    Rodrguez, smar; Clocchiatti, Alejandro; Hamuy, Mario, E-mail: olrodrig@astro.puc.cl [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile)

    2014-12-01

    We develop an empirical color-based standardization for Type II supernovae (SNe II), equivalent to the classical surface brightness method given in Wesselink. We calibrate this standardization using SNe II with host galaxy distances measured using Cepheids, and a well-constrained shock breakout epoch and extinction due to the host galaxy. We estimate the reddening with an analysis of the B V versus V I color-color curves, similar to that of Natali et al. With four SNe II meeting the above requirements, we build a photospheric magnitude versus color diagram (similar to an H-R diagram) with a dispersion of 0.29 mag. We also show that when using time since shock breakout instead of color as the independent variable, the same standardization gives a dispersion of 0.09 mag. Moreover, we show that the above time-based standardization corresponds to the generalization of the standardized candle method of Hamuy and Pinto for various epochs throughout the photospheric phase. To test the new tool, we construct Hubble diagrams for different subsamples of 50 low-redshift (cz < 10{sup 4} km s{sup 1}) SNe II. For 13 SNe within the Hubble flow (cz {sub CMB} > 3000 km s{sup 1}) and with a well-constrained shock breakout epoch we obtain values of 68-69 km s{sup 1} Mpc{sup 1} for the Hubble constant and a mean intrinsic scatter of 0.12 mag or 6% in relative distances.

  13. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    SciTech Connect (OSTI)

    Haario, Heikki; Kalachev, Leonid; Hakkarainen, Janne

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. We modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.

  14. Minnesota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.52 2.65 2.72 2.59 2.44 2.52 2000's 2.60 2.62 2.77 2.72 2.73 2.66 2.68 2.73 2.85 2.79 2010's 2.57 2.66 2.63 2.86 2.88 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.56 0.56 0.58 0.55 0.55 0.52 2000's 0.54 0.59 0.54 0.52 0.50 0.51 0.49 0.47 0.49 0.49 2010's 0.57 0.52 0.47 0.51 0.56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Missouri Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Missouri Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.71 2.53 2.58 2.62 2.56 2.45 2.37 2000's 2.31 2.44 2.34 2.26 2.25 2.21 2.18 2.15 2.33 2.22 2010's 2.25 2.18 2.00 2.17 2.27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.41 0.39 0.41 0.42 0.42 0.42 0.42 2000's 0.40 0.42 0.44 0.40 0.41 0.41 0.45 0.42 0.44 0.46 2010's 0.44 0.46 0.46 0.42 0.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Nebraska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nebraska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.97 0.92 0.93 0.94 0.95 0.90 0.86 2000's 0.85 0.98 0.90 0.83 0.79 0.79 0.82 0.82 0.87 0.84 2010's 0.84 0.84 0.75 0.84 0.83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Nevada Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nevada Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.42 0.44 0.43 0.43 0.51 0.66 0.61 2000's 0.60 0.68 0.65 0.65 0.75 0.75 0.87 0.81 0.79 0.81 2010's 0.82 0.86 0.89 0.85 0.69 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. New Hampshire Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Hampshire Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.13 0.14 0.13 0.13 0.14 0.14 0.14 2000's 0.15 0.14 0.14 0.16 0.15 0.16 0.15 0.16 0.14 0.15 2010's 0.14 0.15 0.15 0.15 0.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. New Jersey Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.95 4.47 4.01 4.25 4.35 4.35 4.43 2000's 4.40 4.51 4.29 4.80 4.77 4.79 4.51 4.83 4.51 4.73 2010's 4.58 4.53 4.61 4.62 4.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  2. New Mexico Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.64 0.64 0.59 0.64 0.74 0.79 0.75 2000's 0.72 0.73 0.69 0.62 0.71 0.69 0.70 0.71 0.69 0.68 2010's 0.74 0.73 0.78 0.74 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Ohio Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.14 7.08 7.38 7.15 7.11 6.56 6.73 2000's 6.88 6.47 6.57 6.75 6.59 6.69 6.23 6.34 6.27 6.12 2010's 5.93 6.07 6.05 6.07 6.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  4. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.58 1.43 1.42 1.46 1.44 1.47 1.30 2000's 1.34 1.35 1.37 1.29 1.22 1.23 1.21 1.27 1.35 1.30 2010's 1.37 1.30 1.18 1.35 1.36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. Oregon Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oregon Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.60 0.60 0.58 0.63 0.65 0.76 0.82 2000's 0.78 0.80 0.79 0.73 0.79 0.82 0.94 0.91 0.92 0.94 2010's 0.85 0.99 1.04 0.94 0.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Pennsylvania Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Pennsylvania Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.43 5.54 5.40 5.32 5.27 4.82 5.11 2000's 5.26 5.01 4.89 5.22 5.09 5.08 4.71 4.90 4.69 4.76 2010's 4.68 4.66 4.76 4.73 5.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Colorado Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.14 2.05 2.15 2.12 2.32 2.45 2.37 2000's 2.33 2.59 2.64 2.45 2.48 2.57 2.73 2.77 2.74 2.70 2010's 2.74 2.76 2.79 2.76 2.60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.18 0.18 0.19 0.18 0.17 0.19 2000's 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.20 0.21 2010's 0.21 0.21 0.21 0.21 0.22 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. District of Columbia Natural Gas % of Total Residential Deliveries

    Gasoline and Diesel Fuel Update (EIA)

    (Percent) % of Total Residential Deliveries (Percent) District of Columbia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.34 0.33 0.32 0.33 0.32 0.29 0.30 2000's 0.31 0.27 0.29 0.30 0.29 0.29 0.26 0.28 0.27 0.28 2010's 0.28 0.26 0.27 0.27 0.28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Florida Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Florida Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.29 0.30 0.31 0.26 0.31 0.29 2000's 0.30 0.33 0.31 0.31 0.33 0.33 0.36 0.32 0.32 0.32 2010's 0.39 0.35 0.35 0.31 0.33 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Georgia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Georgia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.33 2.18 2.36 2.42 2.30 2.38 2.09 2000's 2.82 2.51 2.59 2.56 2.60 2.58 2.52 2.37 2.44 2.48 2010's 2.90 2.40 2.35 2.48 2.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2000's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2010's 0.01 0.01 0.01 0.01 0.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.27 0.29 0.31 0.35 0.38 2000's 0.38 0.40 0.42 0.37 0.42 0.45 0.51 0.50 0.56 0.53 2010's 0.50 0.57 0.58 0.56 0.48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  14. Illinois Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.99 9.77 10.33 10.28 9.98 9.07 9.42 2000's 9.35 8.95 9.40 9.32 9.11 9.07 9.12 9.17 9.52 9.21 2010's 8.71 8.87 8.70 9.24 9.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Indiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Indiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.31 3.25 3.32 3.43 3.39 3.10 3.21 2000's 3.23 3.09 3.21 3.10 3.05 3.08 2.92 3.02 3.12 2.92 2010's 2.89 2.80 2.78 2.95 3.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Iowa Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Iowa Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.68 1.61 1.70 1.68 1.64 1.52 1.51 2000's 1.48 1.49 1.46 1.46 1.40 1.39 1.42 1.43 1.54 1.47 2010's 1.43 1.42 1.35 1.48 1.51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  17. Kansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 1.53 1.56 1.63 1.39 1.55 1.44 2000's 1.41 1.47 1.45 1.39 1.34 1.35 1.31 1.34 1.44 1.49 2010's 1.40 1.39 1.22 1.39 1.40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.35 1.29 1.36 1.34 1.33 1.23 1.25 2000's 1.29 1.19 1.21 1.22 1.16 1.16 1.08 1.09 1.12 1.08 2010's 1.14 1.08 1.04 1.11 1.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.14 1.09 1.09 1.08 1.06 1.05 0.95 2000's 1.00 1.03 1.01 0.93 0.88 0.85 0.77 0.79 0.76 0.76 2010's 0.95 0.84 0.77 0.79 0.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  1. Maine Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2000's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 2010's 0.03 0.03 0.04 0.04 0.05 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  2. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 1.58 1.58 1.63 1.56 1.51 1.58 2000's 1.68 1.48 1.64 1.79 1.77 1.78 1.63 1.77 1.66 1.73 2010's 1.75 1.65 1.70 1.70 1.78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Massachusetts Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Massachusetts Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.45 2.47 2.18 2.18 2.25 2.26 2.24 2000's 2.28 2.24 2.24 2.48 2.32 2.46 2.38 2.44 2.71 2.78 2010's 2.63 2.74 2.78 2.39 2.49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Michigan Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.46 7.52 7.84 7.62 7.62 7.07 7.42 2000's 7.36 7.20 7.52 7.59 7.44 7.43 7.23 6.95 6.99 6.84 2010's 6.36 6.75 6.67 6.82 6.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  8. Arizona Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.61 0.55 0.53 0.62 0.80 0.70 2000's 0.70 0.76 0.72 0.71 0.78 0.74 0.83 0.81 0.79 0.73 2010's 0.79 0.82 0.84 0.81 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.92 0.86 0.85 0.88 0.85 0.85 0.77 2000's 0.85 0.78 0.80 0.75 0.71 0.70 0.72 0.69 0.73 0.70 2010's 0.76 0.72 0.63 0.71 0.75 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. California Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.11 10.75 9.85 9.03 9.61 12.17 12.03 2000's 10.34 10.75 10.45 9.80 10.52 10.02 11.26 10.43 10.00 10.06 2010's 10.35 10.87 11.52 9.84 7.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  11. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  12. Rhode Island Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Rhode Island Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.40 0.36 0.36 0.36 0.36 0.36 0.35 2000's 0.37 0.38 0.36 0.40 0.40 0.40 0.39 0.37 0.36 0.37 2010's 0.35 0.36 0.38 0.37 0.39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. South Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.49 0.48 0.52 0.56 0.52 0.56 0.54 2000's 0.58 0.58 0.56 0.57 0.60 0.59 0.57 0.53 0.55 0.57 2010's 0.68 0.57 0.55 0.58 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.26 0.27 0.27 0.26 0.25 2000's 0.25 0.26 0.26 0.26 0.25 0.25 0.26 0.26 0.28 0.28 2010's 0.27 0.27 0.26 0.28 0.28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Tennessee Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Tennessee Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.19 1.18 1.24 1.34 1.29 1.31 1.28 2000's 1.37 1.43 1.42 1.37 1.34 1.37 1.40 1.29 1.41 1.38 2010's 1.55 1.43 1.30 1.45 1.54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  17. AGA Producing Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116

  18. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Kentucky Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 227,931 205,129 218,399 2000's 225,168 208,974 227,920 223,226 225,470 234,080 211,049 229,799 225,295 206,833 2010's 232,099 223,034 225,924 229,983 254,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  19. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Louisiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,661,061 1,569,190 1,495,478 2000's 1,536,725 1,219,013 1,341,444 1,233,505 1,281,428 1,254,370 1,217,871 1,289,421 1,238,661 1,189,744 2010's 1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Maine Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 44,779 95,733 101,536 70,832 72,565 57,835 49,605 63,183 70,146 70,334 2010's 77,575 71,690 68,266 64,091 60,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Maryland Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Maryland Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 212,017 188,552 196,350 2000's 212,133 178,376 196,276 197,024 194,725 202,509 182,294 201,053 196,067 196,510 2010's 212,020 193,986 208,946 197,356 207,527 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  2. Massachusetts Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Massachusetts Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 402,629 358,846 344,790 2000's 343,314 349,103 393,194 403,991 372,532 378,068 370,664 408,704 406,719 395,852 2010's 432,297 449,194 416,350 421,001 418,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  3. Michigan Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Michigan Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 994,342 876,444 951,143 2000's 963,136 906,001 966,354 924,819 916,629 913,827 803,336 798,126 779,602 735,340 2010's 746,748 776,466 790,642 814,635 850,974 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  4. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 354,092 330,513 344,591 2000's 362,025 340,911 371,583 371,261 359,898 367,825 352,570 388,335 425,352 394,136 2010's 422,968 420,770 422,263 467,874 473,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  5. Mississippi Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Mississippi Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 255,475 241,342 306,733 2000's 300,652 332,589 343,890 265,842 282,051 301,663 307,305 364,067 355,006 364,323 2010's 438,733 433,538 494,016 420,594 412,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  6. Missouri Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Missouri Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 283,294 258,652 265,798 2000's 284,763 283,793 275,629 262,529 263,945 268,040 252,697 272,536 296,058 264,867 2010's 280,181 272,583 255,875 276,967 296,605 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  7. Montana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Montana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 59,851 59,840 62,129 2000's 67,955 65,051 69,532 68,473 66,829 68,355 73,879 73,822 76,422 75,802 2010's 72,025 78,217 73,399 79,670 78,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Nebraska Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Nebraska Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 132,221 130,730 121,487 2000's 126,962 121,984 120,333 118,922 115,011 119,070 129,885 150,808 171,005 163,474 2010's 168,944 171,777 158,757 173,376 172,749 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  9. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Nevada Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 132,128 148,539 154,689 2000's 189,170 176,835 176,596 185,846 214,984 227,149 249,608 254,406 264,596 275,468 2010's 259,251 249,971 273,502 272,965 252,097 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  10. New Hampshire Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) New Hampshire Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,848 19,127 20,313 2000's 24,950 23,398 24,901 54,147 61,172 70,484 62,549 62,132 71,179 59,950 2010's 60,378 69,978 72,032 54,028 57,017 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  11. California Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,146,211 2,309,883 2,339,521 2000's 2,508,797 2,464,565 2,273,193 2,269,405 2,406,889 2,248,256 2,315,721 2,395,674 2,405,266 2,328,504 2010's 2,273,128 2,153,186 2,403,494 2,415,571 2,344,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Colorado Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 314,486 330,259 333,085 2000's 367,920 463,738 459,397 436,253 440,378 470,321 450,832 504,775 504,783 523,726 2010's 501,350 466,680 443,750 467,798 480,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  13. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  14. District of Columbia Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) District of Columbia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,105 30,409 32,281 2000's 33,468 29,802 32,898 32,814 32,227 32,085 29,049 32,966 31,880 33,177 2010's 33,251 32,862 28,561 32,743 34,057 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  15. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 522,116 503,844 559,366 2000's 541,847 543,143 689,337 689,986 734,178 778,209 891,611 917,244 942,699 1,055,340 2010's 1,158,452 1,217,689 1,328,463 1,225,676 1,231,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  16. Georgia Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Georgia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 371,376 368,579 337,576 2000's 413,845 351,109 383,546 379,761 394,986 412,560 420,469 441,107 425,043 462,799 2010's 530,030 522,897 615,771 625,283 652,230 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  17. Hawaii Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Hawaii Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,774 2,795 2,783 2,850 2,702 2,607 2010's 2,627 2,619 2,689 2,855 2,928 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  18. Idaho Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Idaho Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 68,669 69,277 70,672 2000's 72,697 80,279 71,481 69,868 75,335 74,540 75,709 81,937 88,515 85,197 2010's 83,326 82,544 89,004 104,783 91,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Illinois Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Illinois Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,077,139 957,254 1,004,281 2000's 1,030,604 951,616 1,049,878 998,486 953,207 969,642 893,997 965,591 1,000,501 956,068 2010's 966,678 986,867 940,367 1,056,826 1,092,999 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. Indiana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Indiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 556,624 521,748 556,932 2000's 570,558 501,711 539,034 527,037 526,701 531,111 496,303 535,796 551,424 506,944 2010's 573,866 630,669 649,921 672,751 710,838 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  1. Iowa Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Iowa Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 254,489 232,057 230,691 2000's 232,565 224,336 226,457 230,161 226,819 241,340 238,454 293,274 325,772 315,186 2010's 311,075 306,909 295,183 326,140 330,433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  2. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Kansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 338,231 326,674 302,932 2000's 312,369 272,500 304,992 281,346 256,779 255,123 264,253 286,538 282,904 286,973 2010's 275,184 279,724 262,316 283,177 285,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  3. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,716,587 2,715,888 2,717,255 2,718,087 2,718,087 - = No Data Reported; -- = Not Applicable;

  4. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 - = No Data Reported; -- =

  5. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Liquids Extracted (Thousand Barrels) U.S. Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 569,968 599,518 584,160 571,256 587,502 594,306 569,913 1990's 573,054 602,734 626,320 634,481 635,983 649,149 689,314 690,999 668,011 686,862 2000's 721,895 682,873 681,646 622,291 657,032 619,884 637,635 658,291 673,677 720,612 2010's 749,095 792,481 873,563 937,591 1,124,416 - = No Data Reported; -- = Not

  6. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.05 1.01 1.01 1.04 1.17 1.26 1.17 2000's 1.11 1.15 1.21 1.08 1.24 1.20 1.37 1.28 1.35 1.36 2010's 1.38 1.49 1.44 1.44 1.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  7. Vermont Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.05 0.05 0.05 0.05 0.05 0.05 0.05 2000's 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 2010's 0.06 0.07 0.07 0.07 0.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.32 1.34 1.42 1.45 1.48 1.40 1.46 2000's 1.60 1.47 1.54 1.68 1.70 1.77 1.64 1.71 1.63 1.77 2010's 1.84 1.68 1.70 1.75 1.82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Washington Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.08 1.10 1.09 1.20 1.24 1.37 1.52 2000's 1.44 1.77 1.50 1.40 1.46 1.53 1.73 1.70 1.73 1.76 2010's 1.58 1.81 1.93 1.70 1.55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. Wisconsin Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.63 2.64 2.80 2.82 2.73 2.57 2.70 2000's 2.70 2.63 2.81 2.80 2.78 2.72 2.76 2.78 2.87 2.79 2010's 2.58 2.75 2.71 2.92 2.96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.26 0.24 0.25 0.26 0.26 0.28 0.26 2000's 0.24 0.23 0.27 0.24 0.25 0.24 0.27 0.26 0.27 0.26 2010's 0.27 0.28 0.28 0.28 0.26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Alabama Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 324,158 329,134 337,270 2000's 353,614 332,693 379,343 350,345 382,367 353,156 391,093 418,512 404,157 454,456 2010's 534,779 598,514 666,712 615,407 634,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  13. Alaska Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Alaska Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 425,393 434,871 422,816 2000's 427,288 408,960 419,131 414,234 406,319 432,972 373,850 369,967 341,888 342,261 2010's 333,312 335,458 343,110 332,298 327,428 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  14. Arizona Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Arizona Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 134,706 158,355 165,076 2000's 205,235 240,812 250,734 272,921 349,622 321,584 358,069 392,954 399,188 369,739 2010's 330,914 288,802 332,068 332,073 307,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  15. Arkansas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Arkansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 260,113 266,485 252,853 2000's 251,329 227,943 242,325 246,916 215,124 213,609 233,868 226,439 234,901 244,193 2010's 271,515 284,076 296,132 282,120 268,453 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  16. Tennessee Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Tennessee Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 282,395 279,070 278,841 2000's 270,658 255,990 255,515 257,315 231,133 230,338 221,626 221,118 229,935 216,945 2010's 257,443 264,231 277,127 279,441 303,996 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 418,474 760,566 1980's 949,177 1,010,772 1,120,830 992,041 1,021,260 942,413 1,169,038 1,330,604 1,376,093 1,457,841 1990's 1,555,568 1,494,494 1,411,147 1,355,333 1,392,727 1,346,674 1,401,753 1,351,067 1,241,264 1,206,045 2000's 1,177,257 53,649 57,063 53,569 44,946 36,932 24,785

  18. New Jersey Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) New Jersey Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 717,011 679,619 715,630 2000's 605,275 564,923 598,602 612,890 620,806 602,388 547,206 618,965 614,908 620,790 2010's 654,458 660,743 652,060 682,247 762,200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  19. New Mexico Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) New Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 256,464 245,823 236,264 2000's 266,469 266,283 235,098 221,021 223,575 220,717 223,636 234,236 246,665 241,194 2010's 241,137 246,418 243,961 245,502 246,178 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  20. North Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 56,179 49,541 56,418 2000's 56,528 60,819 66,726 60,907 59,986 53,050 53,336 59,453 63,097 54,564 2010's 66,395 72,463 72,740 81,593 83,330 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: