Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An accelerated zone 2 trip algorithm for non-pilot distance relays  

Science Conference Proceedings (OSTI)

This paper presents an algorithm able to accelerate the zone 2 trip of non-pilot distance relays by detecting remote breaker operation following a zone 2 fault. It is based on monitoring changes in proposed composite signals. The performance of the proposed ... Keywords: accelerated trip (AT), real time digital simulator (RTDS), sequential accelerated trip (SAT), total fault clearing time (TFCT)

German Rosas Ortiz; Tarlochan S. Sidhu

2007-05-01T23:59:59.000Z

2

Data Processing Procedures and Methodology for Estimating Trip Distances for the 1995 American Travel Survey (ATS)  

SciTech Connect

The 1995 American Travel Survey (ATS) collected information from approximately 80,000 U.S. households about their long distance travel (one-way trips of 100 miles or more) during the year of 1995. It is the most comprehensive survey of where, why, and how U.S. residents travel since 1977. ATS is a joint effort by the U.S. Department of Transportation (DOT) Bureau of Transportation Statistics (BTS) and the U.S. Department of Commerce Bureau of Census (Census); BTS provided the funding and supervision of the project, and Census selected the samples, conducted interviews, and processed the data. This report documents the technical support for the ATS provided by the Center for Transportation Analysis (CTA) in Oak Ridge National Laboratory (ORNL), which included the estimation of trip distances as well as data quality editing and checking of variables required for the distance calculations.

Hwang, H.-L.; Rollow, J.

2000-05-01T23:59:59.000Z

3

My Trip Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator Trip Calculator Benefits Why is fuel economy important? Climate Change Oil Dependence Costs Sustainability Save Money Vehicles produce about half of the...

4

Outdoor science field trips.  

E-Print Network (OSTI)

??The purpose of this study was to assess the cognitive and affective values of an outdoor science field trip. Participants were 28 fifth grade students,ů (more)

Loyd, Kerrie Anne Therese

2004-01-01T23:59:59.000Z

5

Textile - Compressor Trip Investigation  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of an 800 HP, 4160 volt compressor that has been tripping off at a textile manufacturing facility.

2003-12-31T23:59:59.000Z

6

Turbine Overspeed Trip Modernization  

Science Conference Proceedings (OSTI)

This report provides guidance for power plant engineers contemplating modernization of their main turbine overspeed trip systems. When a large power plant turbine suddenly loses its output shaft loading due to a generator or power grid problem, the steam flow driving the turbine must be cut off very quickly to prevent an overspeed event. The overspeed trip system protects personnel and plant systems by preventing missiles that can result when turbines disintegrate at higher than normal rotational speeds....

2006-12-04T23:59:59.000Z

7

School Trips in Autumn  

NLE Websites -- All DOE Office Websites (Extended Search)

in Autumn in Autumn Nature Bulletin No. 465-A October 7, 1972 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation SCHOOL TRIPS IN AUTUMN Autumn is an ideal season for classrooms out-of-doors, when teachers and their pupils enjoy and learn from trips to convenient natural areas such as our forest preserves. The days are usually sunny, the air is cool and invigorating, the fields and woodlands are clothed with tapestries of rich colors, the birds are flocking southward, and it is harvest time in all the land. Field trips, now or at any time in the school year, make real and vivid those subjects studied in the classroom and its textbooks. On field trips, teachers and youngsters explore and discover together. They employ all five senses: they see, hear, smell, taste and feel. Such learning, by the most natural and enjoyable process, is rapid and sticks with them. Inevitably, a field trip will yield a fund of unforgettable experiences and a wealth of specimens for the classroom or pupils' own collections.

8

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

9

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

10

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

11

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

12

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

13

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

14

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

15

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

16

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

17

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

20

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

22

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

23

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

24

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

25

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

26

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

27

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

28

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

29

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

30

Live Theater Wetland Kayak Trip  

E-Print Network (OSTI)

Live Theater Wetland Kayak Trip Adapted from http://water.usgs.gov/outreach/poster2/grade footprints(squish squish) in the mud with every pass. The shore was lined with tall cattails, but we found doused in sun screen, with me in the front and Mrs. Findley doing all the work steering in the back

Texas at Austin, University of

31

Trip Table ?????? #ejdyrki-#ejebnjj  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /5e8f0a852f9c1d454b6df13f1365e4ef/e684451614f1683226855e2b90e1249c.html ... Top page #ejdyrki:?XNHx/Baass #ejdzgey:?maO8DRy4pM #ejdzuzo ...

32

Trip Table ?????? #UFOYMAA-#UFPBHZB  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /7faa9d44500591fbfecedcda9a9d9cf9/72b75372a04495579b32da4524a88ead.html ... Top page #UFOYMAA:?760XFpqqAg #UFOZAUQ:?GiyoPAoyp. #UFOZPPG ...

33

Trip Table ?????? #gopmusbo-#gopmxoap  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /de823d5fcb90885762f4a837a7fa1e4c/8ef5e7522a1014862421869a133710f6.html ... Top page #gopmusbo:?MyJIL5jza2 #gopmvgwe:?AGL/5xDjfA #gopmvvqu ...

34

Trip Table ?????? #PNQTORG-#PNQWKQH  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /57be3958616c440476cf50b429b2476e/a2758b2d3ccf7339fa919b48ba7c1570.html ... Top page #PNQTORG:?oGcbIPIQ/2 #PNQUDLW:?QPKgjR/j7k #PNQUSGM ...

35

Trip Table ?????? #ykccmpk-#ykcfiol  

U.S. Energy Information Administration (EIA)

http://trip-table.com - /ce18e28f19b8a620d092b2a6c9fc0e08/311af50ce0338abff3271747a78d2a6c.html ... Top page #ykccmpk:?Bc4XbewxcY #ykcdbka:?gHgq5mD6d2 #ykcdqeq ...

36

Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is My Trip Calculator? It is an interactive tool that helps you plan a route, pick a car and estimate a fuel costs for your next road trip. Enter your own miles per gallon...

37

Workshops and Field Trips for Teachers  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshops and Field Trips for Teachers Workshops and Field Trips for Teachers Nature Bulletin No. 534-A Septmeber 7, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation WORKSHOPS AND FIELD TRIPS FOR TEACHERS The Forest Preserve District, as a part of the educational program conducted by its Department of Conservation, again is offering a series of three-day workshops and another of one-day field trips, during this school year, for teachers in the schools of Chicago and suburban Cook County. Only a few decades ago, most Illinois people resided on farms or in small towns. They lived close to the soil. From childhood they had been so familiar with the out-of-doors that special schooling in ecology, plant life, wildlife and land management seemed superfluous.

38

EnergyCS Prius Altairnano 2009 Report.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

period: All trips combined Overall gasoline fuel economy (mpg) Overall DC electrical energy consumption (DC Whmi) 2 Total number of trips Total distance traveled (mi) Trips...

39

EnergyCS Prius Valence 2009 Report.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

period: All trips combined Overall gasoline fuel economy (mpg) Overall DC electrical energy consumption (DC Whmi) 2 Total number of trips Total distance traveled (mi) Trips...

40

My Trip to Mongolia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

My Trip to Mongolia My Trip to Mongolia My Trip to Mongolia September 29, 2010 - 10:37am Addthis Deputy Secretary Poneman meets with Mongolia’s Foreign Minister to discuss energy issues. Deputy Secretary Poneman meets with Mongolia's Foreign Minister to discuss energy issues. Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy Last week, I traveled to Mongolia to discuss our shared energy challenges and our shared energy opportunities. The United States and Mongolia enjoy a warm friendship and deepening ties in a number of areas, including energy. The United States is committed to supporting the government and people of Mongolia as they continue to democratize. Although half a world apart, the United States and Mongolia share some common energy features: both our

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

No "big trips" for the universe  

E-Print Network (OSTI)

It has been claimed in several papers that a phantom energy-dominated universe can undergo a ``big trip'', i.e., tunneling through a wormhole that grows faster than the cosmic substratum due to the accretion of phantom energy, and will reappear on the other mouth of the wormhole. We show that such claims are unfounded and contradict the Einstein equations.

Valerio Faraoni

2007-02-27T23:59:59.000Z

42

GEOLOGY FIELD TRIPS IN THE APPALACHIAN MOUNTAINS  

E-Print Network (OSTI)

-- Exploration for Petroleum and Natural Gas (optional laboratory) 87 -- The Obelisk: Revisited 96 -- References recording past events. Rather than letters and words, rock characteristics such as shape, color, composition of answers to questions about the nature of geological data gathered through the field trips and laboratory

Engelder, Terry

43

Probabilistic methods in a study of trip setpoints  

SciTech Connect

Most early vintage Boiling Water Reactors have a high head and high capacity High Pressure Coolant Injection (HPCI) pump to keep the core covered following a loss of coolant accident (LOCA). However, the protection afforded by the HPCI pump for mitigating a LOCA introduces the potential that a spurious start of the HPCI pump could oversupply the reactor vessel and lead to an automatic trip of the main turbine due to high water level. A turbine trip and associated increase in moderator density could challenge the bases of fuel integrity operating limits. To prevent turbine trip during spurious operation of the HPCI pump, the reactor protection system includes instrumentation and logic to sense high water level and automatically trip the HPCI pump prior to reaching the turbine trip setpoint. This paper describes an analysis that was performed to determine if existing reactor vessel water level trip instrumentation, logic and setpoints result in a high probability that the HPCI pump will trip prior to actuation of the turbine trip. Using nominal values for the initial water level and for the HPCI pump and turbine trip setpoints, and using the probability distribution functions for measurement uncertainty in these setpoints, a Monte Carlo simulation was employed to determine probabilities of successfully tripping the HPCI pump prior to tripping of the turbine. The results of the analysis established that the existing setpoints, instrumentation and logic would be expected to reliably prevent a trip of the main turbine. (authors)

Kaulitz, D. E. [Tennessee Valley Authority, LP 4G-C, 1101 Market Street, Chattanooga, TN 37402-2801 (United States)

2012-07-01T23:59:59.000Z

44

Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage  

Science Conference Proceedings (OSTI)

In the companion paper to this one (Part I), the Interactions between Soil, Biosphere, and AtmosphereľTotal Runoff Integrating Pathways (ISBA-TRIP) continental hydrological system of the Centre National de Recherches MÚtÚorologiques is evaluated ...

B. Decharme; R. Alkama; H. Douville; M. Becker; A. Cazenave

2010-06-01T23:59:59.000Z

45

Hunton Group core workshop and field trip  

SciTech Connect

The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

Johnson, K.S. [ed.

1993-12-31T23:59:59.000Z

46

Policy Statement 2, Transmittal of Trip Reports and Other Safety...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: December 31, 1992 Subject Board policy on transmittal of trip reports and other safety information to the Secretary of Energy Summary This policy statement establishes...

47

Optimization Online - Solution Methods for the Multi-trip Elementary ...  

E-Print Network (OSTI)

Mar 11, 2011 ... gmail.com). Abstract: We investigate the multi-trip elementary shortest path problem ... Citation: Technical Report, Laboratory for Computationalá...

48

School Trips & Projects in Spring  

NLE Websites -- All DOE Office Websites (Extended Search)

& Projects in Spring & Projects in Spring Nature Bulletin No. 484 March 9, 1957 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SCHOOL TRIPS & PROJECTS IN SPRINg Spring is the morning of the year when nature reawakens. The days become noticeably longer and warmer. We feel an urge to get out-of- doors and see green growing plants, early wildflowers, and swelling buds on trees and shrubs; see and hear birds returning from their winter homes; hear the mating songs of frogs and toads. The nearest forest preserve, park, meadow or hedgerow -- even a city street or weedy vacant lot -- will have a wealth of plant and animal life. March is a chancy month for field trips but spring can be perking in a classroom before many signs of it appear outdoors. One twig of a forsythia bush, placed in a bottle of water, will soon display its yellow flowers; willow and aspen twigs will develop fat fuzzy catkins; the end of branches from cottonwood, soft maple and elm trees will reveal how some of their winter buds produce flowers and others burst into leaves. The long reddish catkins on a male cottonwood are showy but the small flowers of a maple or an elm are no less beautiful, although seldom noticed on the trees.

49

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 18% 42% 58% DC electrical energy consumption (DC Whmi) 50 6 Trips in Charge Sustaining (CS) mode Distance traveled...

50

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 20% 47% 53% DC electrical energy consumption (DC Whmi) 49 6 Trips in Charge Sustaining (CS) mode Distance traveled...

51

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 12% 52% 48% DC electrical energy consumption (DC Whmi) 47 6 Trips in Charge Sustaining (CS) mode Distance traveled...

52

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 16% 46% 54% DC electrical energy consumption (DC Whmi) 52 6 Trips in Charge Sustaining (CS) mode Distance traveled...

53

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 15% 49% 51% DC electrical energy consumption (DC Whmi) 49 6 Trips in Charge Sustaining (CS) mode Distance traveled...

54

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 20% 48% 52% DC electrical energy consumption (DC Whmi) 48 6 Trips in Charge Sustaining (CS) mode Distance traveled...

55

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 15% 47% 53% DC electrical energy consumption (DC Whmi) 50 6 Trips in Charge Sustaining (CS) mode Distance traveled...

56

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 14% 51% 49% DC electrical energy consumption (DC Whmi) 50 6 Trips in Charge Sustaining (CS) mode Distance traveled...

57

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 13% 51% 49% DC electrical energy consumption (DC Whmi) 54 6 Trips in Charge Sustaining (CS) mode Distance traveled...

58

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 13% 50% 50% DC electrical energy consumption (DC Whmi) 46 6 Trips in Charge Sustaining (CS) mode Distance traveled...

59

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 19% 46% 54% DC electrical energy consumption (DC Whmi) 49 6 Trips in Charge Sustaining (CS) mode Distance traveled...

60

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 16% 46% 55% DC electrical energy consumption (DC Whmi) 50 6 Trips in Charge Sustaining (CS) mode Distance traveled...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 19% 49% 51% DC electrical energy consumption (DC Whmi) 52 6 Trips in Charge Sustaining (CS) mode Distance traveled...

62

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 18% 53% 47% DC electrical energy consumption (DC Whmi) 51 6 Trips in Charge Sustaining (CS) mode Distance traveled...

63

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 15% 48% 52% DC electrical energy consumption (DC Whmi) 49 6 Trips in Charge Sustaining (CS) mode Distance traveled...

64

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 17% 50% 50% DC electrical energy consumption (DC Whmi) 50 6 Trips in Charge Sustaining (CS) mode Distance traveled...

65

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 17% 47% 53% DC electrical energy consumption (DC Whmi) 46 6 Trips in Charge Sustaining (CS) mode Distance traveled...

66

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 17% 50% 50% DC electrical energy consumption (DC Whmi) 48 6 Trips in Charge Sustaining (CS) mode Distance traveled...

67

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

of trips city highway Percent of total distance traveled 17% 52% 48% DC electrical energy consumption (DC Whmi) 49 6 Trips in Charge Sustaining (CS) mode Distance traveled...

68

Validation of River Flows in HadGEM1 and HadCM3 with the TRIP River Flow Model  

Science Conference Proceedings (OSTI)

The Total Runoff Integrating Pathways (TRIP) global river-routing scheme in the third climate configuration of the Met Office Unified Model (HadCM3) and the newer Hadley Centre Global Environmental Model version 1 (HadGEM1) general circulation ...

Pete Falloon; Richard Betts; Andrew Wiltshire; Rutger Dankers; Camilla Mathison; Doug McNeall; Paul Bates; Mark Trigg

2011-12-01T23:59:59.000Z

69

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of trips 46 17088 152906 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 61 9239 47037 Percent of trips city highway Percent of total distance...

70

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of trips 50 8833 73569 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 70 4028 16574 Percent of trips city highway Percent of total distance...

71

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of trips 52 6728 59423 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 67 3472 16226 Percent of trips city highway Percent of total distance...

72

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of trips 47 5791 60007 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 55 2858 14977 Percent of trips city highway Percent of total distance...

73

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Total number of trips 51 15726 143695 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 66 8674 38188 Percent of trips city highway Percent of total distance...

74

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Total number of trips 52 6894 62248 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 68 3685 15315 Percent of trips city highway Percent of total distance...

75

Digital field trip to the Central Nevada Thrust Belt  

SciTech Connect

Hydrocarbon exploration in the Central Nevada Thrust Belt is still in its infancy. However, this thrust belt contains all the elements necessary for hydrocarbon accumulations: thick, organically-rich shales; reefs, regional unconformities, karst surfaces, porous sandstones, and extensive and pervasive fractures; anticlines tens of miles long by miles wide; thrust faults that juxtapose potential source and reservoir rocks; and oil seeps. Along a fairway from Las Vegas to Elko, for example, thick Mississippian shales contain 4-6% total organic carbon and are oil-prone and thermally mature. This presentation from a laptop computer and LCD projector is a multimedia version of our October 12-14, 1995 field trip to document the hydrocarbon potential of the thrust belt in Clark, Lincoln, and Nye Counties. Outcrop images were recorded by a digital camera that has a resolution equivalent to a 14 inch computer screen; these images were then downloaded to the computer. All of the images were processed digitally on location to enhance picture quality and color contrast. Many were annotated on location with our observations, measurements, and interpretations. These field annotations are supplemented in this presentation by laboratory analyses. The presentation includes full-color, annotated outcrop images, sounds, and animations. The results show the viability of the new, inexpensive digital cameras to geologic field work in which a multimedia report, ready for presentation to management, can be generated in the field.

Chamberlain, A.K. (Cedar Strat Corp., Hiko, NV (United States)); Hook, S.C. (Texaco E P Technology Department, Houston, TX (United States)); Frost, K.R. (Texaco Exploration and Production, Inc., Houston, TX (United States))

1996-01-01T23:59:59.000Z

76

Multiscale Modeling of Fracture Resistance in TRIP-Assisted ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The fracture resistance of TRIP-assisted multiphase steels is ... austenite in a matrix of ferrite, bainite and martensite in the multiphase steels. ... Statistical Failure Analysis of Crystallographically Isotropic Porous Materials.

77

Clean Cities: National Clean Fleets Partner: Kwik Trip  

NLE Websites -- All DOE Office Websites (Extended Search)

In addition to the CNG infrastructure, Kwik Trip is developing a liquefied natural gas (LNG) corridor that will run from the Twin Cities to the Wisconsin-Illinois border. Kwik...

78

Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip  

NLE Websites -- All DOE Office Websites (Extended Search)

5: March 22, 5: March 22, 2010 Average Vehicle Trip Length to someone by E-mail Share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Facebook Tweet about Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Twitter Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Google Bookmark Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Delicious Rank Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on Digg Find More places to share Vehicle Technologies Office: Fact #615: March 22, 2010 Average Vehicle Trip Length on AddThis.com... Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip

79

Optimal distance separating halfspace  

E-Print Network (OSTI)

Plastria & Carrizosa / Optimal distance separating halfspace. 2. 1 Gauge Distance to a Hyperplane. Let ? be a gauge on Rd with unit ball B, i.e. B is a compactá...

80

Distance in architecture  

E-Print Network (OSTI)

The document which follows represents an exploration of distance and its connection to architecture. This exploration is threefold. On one level it regards distance as an ontological question, researching for precedent ...

Criparacos, George C

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gov. Granholm, Administration Officials to Preview the President's Trip to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gov. Granholm, Administration Officials to Preview the President's Gov. Granholm, Administration Officials to Preview the President's Trip to Holland, Michigan Gov. Granholm, Administration Officials to Preview the President's Trip to Holland, Michigan July 14, 2010 - 12:00am Addthis WASHINGTON- Today at 4:00 p.m. EDT, Michigan Governor Jennifer Granholm, White House Communications Director Dan Pfeiffer, and Matt Rogers, Senior Advisor to Energy Secretary Chu, will hold a press conference call ahead of the President's trip to Holland, MI, for the official groundbreaking of the new Compact Power plant. As part of the call, they will preview a new Department of Energy report to be released on Thursday that details how Recovery Act investments are creating jobs and helping to build the domestic advanced battery and electric vehicle industry from the ground

82

Readout of Secretary Chu's Middle East trip: Thursday, February 25 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Readout of Secretary Chu's Middle East trip: Thursday, February 25 Readout of Secretary Chu's Middle East trip: Thursday, February 25 Readout of Secretary Chu's Middle East trip: Thursday, February 25 February 25, 2010 - 12:00am Addthis Today, Secretary Chu was in Doha, Qatar, where he began the day by signing a Memorandum of Understanding on Renewable and Alternative Energy with Deputy Prime Minister and Energy & Industry Minister Abdullah bin Hamad Al-Attiyah. The agreement provides a framework for bilateral cooperation with the Ministry and other Qatari institutions on clean energy innovation. He then met with Prime Minister Sheikh Hamad bin Jassim bin Jaber Al Thani. In the afternoon, the Secretary participated in a roundtable focused on renewable energy, hosted by the Qatar National Food Security Program. He then traveled to the Qatar Science and Technology Park (QSTP) where he

83

Assess Employee Awareness of Alternative Commuting and Trip-Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assess Employee Awareness of Alternative Commuting and Assess Employee Awareness of Alternative Commuting and Trip-Reduction Programs for Greenhouse Gas Profile Assess Employee Awareness of Alternative Commuting and Trip-Reduction Programs for Greenhouse Gas Profile October 7, 2013 - 2:19pm Addthis YOU ARE HERE: Step 2 For evaluating a greenhouse gas (GHG) profile, success can be measured by employee awareness and use of commuting alternatives and trip-reduction efforts. Efforts include guaranteed ride home programs, and showers for walkers and bicyclists. Low use or awareness of an option, combined with a high willingness to use an option, such as teleworking, may suggest the need to improve communications about available alternatives. Next Steps For evaluating a GHG emissions profile for employee commuting, also learn

84

Disruption Management with Rescheduling of Trips and Vehicle Circulations  

E-Print Network (OSTI)

This paper introduces a combined approach for the recovery of a timetable by rescheduling trips and vehicle circulations for a rail-based transportation system subject to disruptions. We propose a novel event-based integer programming (IP) model. Features include shifting and canceling of trips as well as modifying the vehicle schedules by changing or truncating the circulations. The objective maximizes the number of recovered trips, possibly with delay, while guaranteeing a conflict-free new timetable for the estimated time window of the disruption. We demonstrate the usefulness of our approach through experiments for real-life test instances of relevant size, arising from the subway system of Vienna. We focus on scenarios in which one direction of one track is blocked, and trains have to be scheduled through this bottleneck. Solving these instances is made possible by contracting parts of the underlying event-activity graph; this allows a significant size reduction of the IP. Usually, the solutions found wi...

Fekete, Sandor P; Lorek, Martin; Pfetsch, Marc

2011-01-01T23:59:59.000Z

85

Secretary Chu Postpones China Trip to Continue Work on BP Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am...

86

New Developments in TRI?P and RIASH at KVI  

Science Conference Proceedings (OSTI)

The status of the TRI?P facility at KVI is reviewed. Recent results on ion catcher devices are described. A thermo?ionizer for use with alkali and earth?alkali elements is close to completion. Concerning the use of superfluid helium as stopping medium

P. Dendooven; TRI?P group; RIASH group

2006-01-01T23:59:59.000Z

87

Globular Cluster Distance Determinations  

E-Print Network (OSTI)

The present status of the distance scale to Galactic globular clusters is reviewed. Six distance determination techniques which are deemed to be most reliable are discussed in depth. These different techniques are used to calibrate the absolute magnitude of the RR Lyrae stars. The various calibrations fall into three groups. Main sequence fitting using Hipparcos parallaxes, theoretical HB models and the RR Lyrae in the LMC all favor a bright calibration, implying a `long' globular cluster distance scale. White dwarf fitting and the astrometric distances yield a somewhat fainter RR Lyrae calibration, while the statistical parallax solution yields faint RR Lyrae stars implying a `short' distance scale to globular clusters. Various secondary distance indicators discussed all favor the long distance scale. The `long' and `short' distance scales differ by (0.31+/-0.16) mag. Averaging together all of the different distance determinations yields Mv(RR) = (0.23+/-0.04)([Fe/H] + 1.6) + (0.56+/-0.12) mag.

Brian Chaboyer

1998-08-19T23:59:59.000Z

88

Real-time trip information service for a large taxi fleet  

Science Conference Proceedings (OSTI)

In this paper, we describe the design, analysis, implementation, and operational deployment of a real-time trip information system that provides passengers with the expected fare and trip duration of the taxi ride they are planning to take. This system ... Keywords: history-based predictions, nearest neighbour queries, partition-based predictions, taxi fleets, trip information service

Rajesh Krishna Balan; Khoa Xuan Nguyen; Lingxiao Jiang

2011-06-01T23:59:59.000Z

89

Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is  

NLE Websites -- All DOE Office Websites (Extended Search)

8: May 21, 2012 8: May 21, 2012 Average Trip Length is Less Than Ten Miles to someone by E-mail Share Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Facebook Tweet about Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Twitter Bookmark Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Google Bookmark Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Delicious Rank Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on Digg Find More places to share Vehicle Technologies Office: Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles on AddThis.com...

90

Trip Report-Produced-Water Field Testing  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

Sullivan, Enid J. [Los Alamos National Laboratory

2012-05-25T23:59:59.000Z

91

Focus on International Cooperation Continues, Secretary Chu Ends Trip with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus on International Cooperation Continues, Secretary Chu Ends Focus on International Cooperation Continues, Secretary Chu Ends Trip with Visit to Russian 'Los Alamos' Focus on International Cooperation Continues, Secretary Chu Ends Trip with Visit to Russian 'Los Alamos' June 10, 2011 - 2:05pm Addthis Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs Secretary Chu wrapped up his week-long visit in Russia today with a special visit to the All Russian Scientific Research Institute of Experimental Physics (VNIIEF). Many consider it to be the Russian equivalent of our Los Alamos National Laboratory. VNIIEF, located in Sarov, has a long scientific tradition in Russia, beginning when it was established in 1946 to design nuclear weapons. It's also where the first Soviet nuclear bomb, the "RDS-1," was created.

92

Focus on International Cooperation Continues, Secretary Chu Ends Trip with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus on International Cooperation Continues, Secretary Chu Ends Focus on International Cooperation Continues, Secretary Chu Ends Trip with Visit to Russian 'Los Alamos' Focus on International Cooperation Continues, Secretary Chu Ends Trip with Visit to Russian 'Los Alamos' June 10, 2011 - 2:05pm Addthis Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs Secretary Chu wrapped up his week-long visit in Russia today with a special visit to the All Russian Scientific Research Institute of Experimental Physics (VNIIEF). Many consider it to be the Russian equivalent of our Los Alamos National Laboratory. VNIIEF, located in Sarov, has a long scientific tradition in Russia, beginning when it was established in 1946 to design nuclear weapons. It's also where the first Soviet nuclear bomb, the "RDS-1," was created.

93

Analysis of a turbine trip test with a plant analyzer  

SciTech Connect

To improve nuclear power plant safety, the Taiwan Power Company is using a plant analyzer developed by Brookhaven National Laboratory (BNL). The BNL boiling water reactor (BWR) plant analyzer program was converted and modified for the Chinshan power station using the ADSIM simulation language. The plant analyzer uses a special-purpose peripheral processor, the AD-100 from the Applied Dynamic International Company, and detailed mathematical models. With the fast-computing features of the AD-100, the plant analyzer can carry out accurate and fast simulations of nuclear power plant transients. To qualify this program, simulation results were benchmarked against power test data. During a power test a Chinshan unit 1, a 1175-MW(thermal) boiling water reactor (BWR), a turbine trip test was performed from a steady-state condition of 83% of rated core power and 80% of rated core flow. It was initiated by a manual trip of the turbine. The purpose of this work is to simulate the turbine trip transient with the plant analyzer and compare the results with plant test data.

Wang, Shih-Jen; Chien, C.S.; Jang, J.Y.

1990-01-01T23:59:59.000Z

94

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was driven (mi) 30.2 Avg...

95

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

96

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

Original Pack) 7 Total number of trips 38 2737 20475 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 40 2104 12131 Percent of trips city highway Percent of...

97

Approximating geodesic tree distance  

Science Conference Proceedings (OSTI)

Billera, Holmes, and Vogtmann introduced an intriguing new phylogenetic tree metric for weighted trees with useful properties related to statistical analysis. However, the best known algorithm for calculating this distance is exponential in the number ... Keywords: Analysis of algorithms, Phylogeny, Tree metric

Nina Amenta; Matthew Godwin; Nicolay Postarnakevich; Katherine St. John

2007-07-01T23:59:59.000Z

98

Nuclear Maintenance Applications Center: Post-Trip Voltage Prediction at Nuclear and Other Generating Stations  

Science Conference Proceedings (OSTI)

The objective of this Electric Power Research Institute (EPRI) project is to investigate the possibility of predicting the switchyard voltage in a nuclear power plant (NPP) following a trip of a nuclear unit. Two methods of post-trip voltage prediction are investigated. The first method, called the V-Q method, uses minimal local plant information (such as unit operating conditionsactive and reactive power output and pre-trip voltage) to predict post-trip voltage based on the sensitivity of voltage to the...

2009-06-30T23:59:59.000Z

99

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

45 45 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 29 Total number of trips 1,839 Total distance traveled (mi) 21,089 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 654 Percent of trips city | highway 66% | 34% Distance traveled (mi) 5,717 Percent of total distance traveled 27% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 57 Number of trips 117 Percent of trips city | highway 39% | 62% Distance traveled (mi) 3,683 Percent of total distance traveled 17% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 1,068 Percent of trips city | highway 71% | 30% Distance traveled (mi)

100

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 18 Total number of trips 1,290 Total distance traveled (mi) 13,023 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 432 Percent of trips city | highway 75% | 25% Distance traveled (mi) 2,835 Percent of total distance traveled 22% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 48 Number of trips 52 Percent of trips city | highway 31% | 69% Distance traveled (mi) 1,613 Percent of total distance traveled 12% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 806 Percent of trips city | highway 73% | 27% Distance traveled (mi)

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

49 49 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 27 Total number of trips 927 Total distance traveled (mi) 9,301 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 66 Number of trips 313 Percent of trips city | highway 68% | 32% Distance traveled (mi) 2,138 Percent of total distance traveled 23% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 63 Number of trips 46 Percent of trips city | highway 30% | 70% Distance traveled (mi) 1,462 Percent of total distance traveled 16% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 568 Percent of trips city | highway 75% | 25% Distance traveled (mi)

102

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

50 50 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 22 Total number of trips 730 Total distance traveled (mi) 9,164 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 40 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 225 Percent of trips city | highway 68% | 32% Distance traveled (mi) 1,768 Percent of total distance traveled 19% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 36 DC electrical energy consumption (DC Wh/mi) 53 Number of trips 40 Percent of trips city | highway 23% | 78% Distance traveled (mi) 1,638 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 35 Number of trips 465 Percent of trips city | highway 70% | 30% Distance traveled (mi)

103

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

53 53 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 34 Total number of trips 1,515 Total distance traveled (mi) 15,617 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 37 DC electrical energy consumption (DC Wh/mi) 65 Number of trips 739 Percent of trips city | highway 74% | 26% Distance traveled (mi) 4,915 Percent of total distance traveled 31% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 93 Percent of trips city | highway 38% | 62% Distance traveled (mi) 2,842 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 683 Percent of trips city | highway 72% | 28% Distance traveled (mi)

104

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

105

The effect of multiple entrances on the elevator round trip time under up-peak traffic  

Science Conference Proceedings (OSTI)

The design of vertical transportation systems relies on the calculation of the interval as an indicator of the quality of service. This in turn involves the accurate calculation of the round trip time of a single elevator. The calculation of the round ... Keywords: Basement, Elevator, Interval, Lift, Round trip time, Up peak traffic

Lutfi Al-Sharif

2010-08-01T23:59:59.000Z

106

Testing of the TriP Chip Running at 132 nsec Using a Modified AFE Board  

SciTech Connect

In this note we describe the first set of tests done with a sample of TriP chips that were mounted on a modified AFE board. The modifications consisted of different firmware and the replacement of one power supply switch. The board used was a standard AFEIc board (red type) on which new MCMs (MCMIIs) were mounted. The new MCMs were designed to support the TriP and emulate the SVX for readout when mounted on an AFEIc board. The TriP and the MCMs are described in Ref. [1]. Two versions of the MCMII were designed and built: one (MCMIIb) supports two TriP chips wirebonded directly to the MCM substrate. The other, (MCMIIc) supports one TriP which can be either wirebonded directly or packaged into a standard TQFP surface mount package. Due to space constraints, this MCM can support only 1 TriP. We tested 6 TriP chips on 3 different MCMIIb (MCMIIb-1, MCMIIb-2 and MCMIIb-3) and 2 other TriPs were tested on MCMIIc, one of them with an unpackaged TriP (MCMIIc-1) and the other with a packaged TriP (MCMIIc-2). A set of 10 programable internal registers control the TriP operation, the description of these registers can be found in [1]. Table 1 shows the values used for the tests described in this note. In Ref. [1] there is a description of the signals that are needed to operate the TriP chip. We implemented in a Field Programable Gate Array (FPGA), also part of the MCM, a set of shift registers that allow us to download via the 1553 interface to the AFE board, any desired timing for the signals that the FPGA has to send to the TriP chip. These registers are run with a 121.21 MHz clock (which is 16x the crossing clock and phase locked to it), which means that each bit corresponds to a time interval of 8.25 nsec. Finer control of timing is possible, but this changing the programing of the FPGA and recompiling. The bits downloaded to these shift registers inside the TriP are listed in Table 2.

Juan Estrada et al.

2003-12-19T23:59:59.000Z

107

Readout of Secretary Chu's Middle East trip: Thursday, February 25 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thursday, February 25 Thursday, February 25 Readout of Secretary Chu's Middle East trip: Thursday, February 25 February 25, 2010 - 12:00am Addthis Today, Secretary Chu was in Doha, Qatar, where he began the day by signing a Memorandum of Understanding on Renewable and Alternative Energy with Deputy Prime Minister and Energy & Industry Minister Abdullah bin Hamad Al-Attiyah. The agreement provides a framework for bilateral cooperation with the Ministry and other Qatari institutions on clean energy innovation. He then met with Prime Minister Sheikh Hamad bin Jassim bin Jaber Al Thani. In the afternoon, the Secretary participated in a roundtable focused on renewable energy, hosted by the Qatar National Food Security Program. He then traveled to the Qatar Science and Technology Park (QSTP) where he

108

Readout of Secretary Chu's Middle East trip: Tuesday, February 23 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tuesday, February 23 Tuesday, February 23 Readout of Secretary Chu's Middle East trip: Tuesday, February 23 February 23, 2010 - 12:00am Addthis Today, Secretary Chu visited King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia, on the Red Sea coast near Jeddah. His host was Saudi Minister of Petroleum and Minerals Ali Al Naimi, who is Chair of the KAUST Board of Trustees. KAUST is an international, graduate-level research university dedicated to science and technology that opened in September of 2009. The Secretary received a briefing on scientific work underway at the university from Professor Choon Fong Shih, President of KAUST, faculty members and students. Secretary Chu emphasized the Administration's commitment to science and to the development of renewable sources of energy. He quizzed members of the

109

Readout of Secretary Chu's Middle East trip: Wednesday, February 24 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wednesday, February 24 Wednesday, February 24 Readout of Secretary Chu's Middle East trip: Wednesday, February 24 February 24, 2010 - 12:00am Addthis Today, Secretary Chu was in Abu Dhabi in the United Arab Emirates, where he affirmed the commitment of the United States to building a close relationship with the UAE on clean energy issues. He began the day with a meeting with the Minister of Energy for UAE, Mohammed bin Dha'en el Hamili. He then signed an Implementing Agreement on nuclear energy and nonproliferation with UAE Minister of State for Foreign Affairs Dr. Anwar Gargash. The Secretary traveled to the offices of the Masdar Initiative to discuss the work the initiative is doing to diversify the UAE economy and develop global leadership in alternative energy. He was hosted by Dr.

110

Smarter outlier detection and deeper understanding of large-scale taxi trip records: a case study of NYC  

Science Conference Proceedings (OSTI)

Outlier detection in large-scale taxi trip records has imposed significant technical challenges due to huge data volumes and complex semantics. In this paper, we report our preliminary work on detecting outliers from 166 millions taxi trips in the New ... Keywords: high-performance, outlier detection, shortest path, taxi trip

Jianting Zhang

2012-08-01T23:59:59.000Z

111

DOE Solar Decathlon: Tuskegee University: Going the Distance  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuskegee University house on the National Mall in Washington, D.C., during Solar Decathlon 2002. Tuskegee University house on the National Mall in Washington, D.C., during Solar Decathlon 2002. Enlarge image The Tuskegee Solar Decathlon team got its inspiration from traditional Southern architecture, which relies on passive cooling strategies such as the dogtrot, a central shaded breezeway that runs through the house. (Credit: Paul Norton/U.S. Department of Energy Solar Decathlon) Who: Tuskegee University What: Solar house Where: Tuskegee University 1200 W. Montgomery Road Tuskegee, AL 36088 Map This House Public tours: Not available Solar Decathlon 2002 Tuskegee University: Going the Distance Tuskegee University students successfully overcame funding and time limitations to make the trip to Washington, D.C., for the U.S. Department of Energy Solar Decathlon 2002. Now, with time back on its side, the

112

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

74 74 Number of trips 399 Distance traveled (mi) 148 Percent of total distance traveled (%) 73% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 6.3 Average Stops per mile 35.5 Percent of Regen Braking Energy Recovery (%) 11% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 423 Number of trips 27 Distance traveled (mi) 54 Percent of total distance traveled (%) 27% Average Trip Distance (mi) 2.0 Average Driving Speed (mph) 20.7 Average Stops per mile 3.5 Percent of Regen Braking Energy Recovery (%) 15% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 0 Number of trips 0 Distance traveled (mi) 0 Percent of total distance traveled (%) 0% Average Trip Distance (mi) 0.0 Average Driving Speed (mph)

113

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Number of trips 493 Distance traveled (mi) 189 Percent of total distance traveled (%) 38% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 4.9 Average Stops per mile 28.7 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 377 Number of trips 67 Distance traveled (mi) 275 Percent of total distance traveled (%) 56% Average Trip Distance (mi) 4.1 Average Driving Speed (mph) 17.9 Average Stops per mile 3.7 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 438 Number of trips 1 Distance traveled (mi) 29 Percent of total distance traveled (%) 6% Average Trip Distance (mi) 28.7 Average Driving Speed (mph)

114

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

505 505 Number of trips 601 Distance traveled (mi) 245 Percent of total distance traveled (%) 62% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 5.4 Average Stops per mile 34.8 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 373 Number of trips 35 Distance traveled (mi) 124 Percent of total distance traveled (%) 31% Average Trip Distance (mi) 3.5 Average Driving Speed (mph) 23.0 Average Stops per mile 3.7 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 319 Number of trips 3 Distance traveled (mi) 25 Percent of total distance traveled (%) 6% Average Trip Distance (mi) 8.5 Average Driving Speed (mph)

115

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

613 613 Number of trips 89 Distance traveled (mi) 9 Percent of total distance traveled (%) 30% Average Trip Distance (mi) 0.1 Average Driving Speed (mph) 7.0 Average Stops per mile 44.5 Percent of Regen Braking Energy Recovery (%) 9% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 487 Number of trips 8 Distance traveled (mi) 5 Percent of total distance traveled (%) 16% Average Trip Distance (mi) 0.6 Average Driving Speed (mph) 25.0 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 6% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 487 Number of trips 7 Distance traveled (mi) 16 Percent of total distance traveled (%) 54% Average Trip Distance (mi) 2.3 Average Driving Speed (mph)

116

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Number of trips 1,610 Distance traveled (mi) 372 Percent of total distance traveled (%) 72% Average Trip Distance (mi) 0.2 Average Driving Speed (mph) 5.2 Average Stops per mile 32.1 Percent of Regen Braking Energy Recovery (%) 13% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 383 Number of trips 114 Distance traveled (mi) 144 Percent of total distance traveled (%) 28% Average Trip Distance (mi) 1.3 Average Driving Speed (mph) 18.3 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 16% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 549 Number of trips 5 Distance traveled (mi) 2 Percent of total distance traveled (%) 0% Average Trip Distance (mi) 0.4 Average Driving Speed (mph)

117

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

530 530 Number of trips 1,308 Distance traveled (mi) 495 Percent of total distance traveled (%) 69% Average Trip Distance (mi) 0.4 Average Driving Speed (mph) 5.6 Average Stops per mile 31.4 Percent of Regen Braking Energy Recovery (%) 15% City Trips ( < 5 stops/mile & <37 mph avg) DC electrical energy consumption (DC Wh/mi) 471 Number of trips 91 Distance traveled (mi) 175 Percent of total distance traveled (%) 24% Average Trip Distance (mi) 1.9 Average Driving Speed (mph) 16.6 Average Stops per mile 3.8 Percent of Regen Braking Energy Recovery (%) 13% Highway Trips ( 37 mph avg) DC electrical energy consumption (DC Wh/mi) 357 Number of trips 2 Distance traveled (mi) 49 Percent of total distance traveled (%) 7% Average Trip Distance (mi) 24.7 Average Driving Speed (mph)

118

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

9 4876 47783 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 59 2317 11750 Percent of trips city highway Percent of total distance traveled 24.59% 81.00%...

119

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

7 3902 45779 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 57 1758 8306 Percent of trips city highway Percent of total distance traveled 18.15% 85.00% 15.00%...

120

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

with battery state of charge below 90% (for charging events with SOC reported) Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

500 79963 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 70 3596 17063 Percent of trips city highway Percent of total distance traveled 21.3% 86.4% 13.6% ...

122

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

731 77160 Distance traveled (mi) Gasoline fuel economy (mpg) Number of trips 69 3809 16711 Percent of trips city highway Percent of total distance traveled 21.7% 86.8% 13.2% ...

123

Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma  

Science Conference Proceedings (OSTI)

The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

NONE

1991-11-17T23:59:59.000Z

124

Trip report for field visit to Fayetteville Shale gas wells.  

Science Conference Proceedings (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

125

U.S. Energy Secretary Bodman Completes Middle East Trip | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Bodman Completes Middle East Trip Secretary Bodman Completes Middle East Trip U.S. Energy Secretary Bodman Completes Middle East Trip November 20, 2005 - 2:51pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman concluded his four-nation swing through the Middle East this weekend, by attending the inauguration of the New Permanent Headquarter Office Building of the International Energy Forum (IEF) Secretariat and participating in a number of bilateral meetings in Riyadh, Saudi Arabia. "This trip allowed me to meet face-to-face with leaders of energy-producing nations and discuss with them the energy goals and needs of the United States," Secretary Bodman said. "Especially in the aftermath of the hurricanes in the Gulf of Mexico this year, we recognize how important it

126

Field trip guide to the Valles Caldera and its geothermal systems  

DOE Green Energy (OSTI)

This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

Goff, F.E.; Bolivar, S.L.

1983-12-01T23:59:59.000Z

127

Turbine-Generator Auxiliary Systems, Volume 5: Main and Feedpump Turbine Trip Systems  

Science Conference Proceedings (OSTI)

This report describes the trip systems for the mechanical hydraulic control (MHC) and electrohydraulic control (EHC) main turbine and feedpump turbines for the General Electric (GE) and Siemens Westinghouse (SW) units in the United States.

2009-12-23T23:59:59.000Z

128

Effects of Forming Induced Phase Transformation on Crushing Behavior of TRIP Steel  

Science Conference Proceedings (OSTI)

In this paper, results of finite element crash simulation are presented for a TRIP steel side rail with and without considering the phase transformation during forming operations. A homogeneous phase transformation model is adapted to model the mechanical behavior of the austenite-to-martensite phase. The forming process of TRIP steels is simulated with the implementation of the material model. The distribution and volume fraction of the martensite in TRIP steels may be greatly influenced by various factors during forming process and subsequently contribute to the behavior of the formed TRIP steels during the crushing process. The results indicate that, with the forming induced phase transformation, higher energy absorption of the side rail can be achieved. The phase transformation enhances the strength of the side rail

Liu, Wenning N.; Choi, Kyoo Sil; Soulami, Ayoub; Sun, Xin; Khaleel, Mohammad A.

2010-04-15T23:59:59.000Z

129

Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Postpones China Trip to Continue Work on BP Oil Spill Postpones China Trip to Continue Work on BP Oil Spill Response Efforts Secretary Chu Postpones China Trip to Continue Work on BP Oil Spill Response Efforts May 21, 2010 - 12:00am Addthis Washington DC -- Energy Secretary Steven Chu will postpone a trip to China, scheduled for next week, at the request of President Obama and stay in the country to continue his work on response efforts to the BP oil spill. "Finding a solution to this crisis is a matter of national importance," Secretary Chu said. "I want to continue to play a role in assisting in the efforts and stopping this leak as soon as possible." Secretary Chu was originally scheduled to visit Beijing and Shanghai and discuss further progress on bilateral clean energy cooperation.

130

Steam Turbine Supervisory Instrumentation Systems, Volume 1: Reducing Spurious Trips While Maintaining Machine Protection  

Science Conference Proceedings (OSTI)

Recently, personnel at a number of utilities operating steam turbine generators have expressed concern with regard to spurious or unnecessary unit trips caused by turbine supervisory instrumentation (TSI). Spurious trips can be costly, and they can cause unnecessary challenges to safety equipment, especially at nuclear units. A better understanding of the function and design basis surrounding TSI as well as how to appropriately use the instrumentation can help the industry to mitigate risks of false ...

2013-11-25T23:59:59.000Z

131

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 148 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 104 Total number of trips 1,212 Total distance traveled (mi) 11,846 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 58 DC electrical energy consumption (DC Wh/mi) 160 Number of trips 823 Percent of trips city | highway 81% | 19% Distance traveled (mi) 5,559 Percent of total distance traveled 47% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 46 DC electrical energy consumption (DC Wh/mi) 85 Number of trips 195 Percent of trips city | highway 40% | 61% Distance traveled (mi) 4,217 Percent of total distance traveled 36% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips

132

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 45 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 22 Total number of trips 1,585 Total distance traveled (mi) 14,910 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 34 DC electrical energy consumption (DC Wh/mi) 49 Number of trips 883 Percent of trips city | highway 81% | 19% Distance traveled (mi) 4,778 Percent of total distance traveled 32%

133

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 64 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 31 Total number of trips 831 Total distance traveled (mi) 7,559 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 35 DC electrical energy consumption (DC Wh/mi) 54 Number of trips 541 Percent of trips city | highway 79% | 21% Distance traveled (mi) 3,402 Percent of total distance traveled 45%

134

United States: Ukraine Technical Exchange II trip report  

Science Conference Proceedings (OSTI)

May 15--21, 1994, the first technical conference was held at Hanford between Ukraine-Chornobyl, Westinghouse Hanford, and SAIC, to exchange technical information and experience gained in cleanup and stabilization of radioactive contamination at Hanford and Chornobyl. Protocol was signed for a second exchange and technology demonstration program in Kiev and near Chornobyl power plants. Technical Exchange No. 2 was held from August 28--September 9, 1994, with 3 focus areas: field demonstration of DOE-Hanford technologies and application to cleanup of contaminated lands resulting from 1986 Chornobyl accident; application of other US DOE-technologies; and observation/evaluation of Ukraine-developed technologies for potential application in USA. Three radiological mapping systems were demonstrated near Chornobyl: man-carried Ultrasonic Ranging and Data System, a mobile radiological data system, and NOMAD field gamma spectroscopy system. The Ukraine-Chornobyl team hosted technical presentations, discussions and field trips for 4.5 days, providing insight on the Chornobyl problem and allowing the US team to present overviews on DOE technologies that may be applicable to the Chornobyl situation. It is concluded that Ukrainian scientists have tremendous talent and expended considerable energy in attempting to tackle such a problem, but economic and cultural conditions with Ukraine have prevented them from acquiring the resources to implement basic aspects of characterization and remediation activities. Most of their publications are in Russian only. Their translation, plus resources to carry out proposals for bench scale and field demonstration projects, could benefit the DOE complex and other nuclear programs. The considerable cultural and economic change occurring in Ukraine, is providing opportunities for private industries to assist in the changes and for DOE, others to apply cleanup technologies, and it is essential that close institutional relations be established.

Moak, D.J.; Wendling, M.A.

1995-02-01T23:59:59.000Z

135

Rural Schools and Distance Education  

Science Conference Proceedings (OSTI)

In 2006, the author began research on current issues in rural education in which teachers recounted narratives of teaching. As deficits, they spoke of an inability to retain teachers, too little diversity in student programming, and lack of access to ... Keywords: Distance Education, Distance Education Technologies, Educational Technology, Rural Schools, Teacher Practices

Barbara G. Barter

2011-01-01T23:59:59.000Z

136

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

18 Overall DC electrical energy consumption (DC Whmi) 84 Total number of trips 1,919 Total distance traveled (mi) 20,128 Trips in Charge Depleting (CD) mode Gasoline fuel...

137

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Overall DC electrical energy consumption (DC Whmi) 72 Total number of trips 14,961 Total distance traveled (mi) 168,067 Trips in Charge Depleting (CD) mode Gasoline fuel...

138

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

03 Overall DC electrical energy consumption (DC Whmi) 65 Total number of trips 959 Total distance traveled (mi) 10,425 Trips in Charge Depleting (CD) mode Gasoline fuel...

139

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Overall DC electrical energy consumption (DC Whmi) 75 Total number of trips 1,394 Total distance traveled (mi) 18,639 Trips in Charge Depleting (CD) mode Gasoline fuel...

140

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

136 Overall DC electrical energy consumption (DC Whmi) 93 Total number of trips 1,476 Total distance traveled (mi) 16,266 Trips in Charge Depleting (CD) mode Gasoline fuel...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Overall DC electrical energy consumption (DC Whmi) 74 Total number of trips 1,027 Total distance traveled (mi) 10,669 Trips in Charge Depleting (CD) mode Gasoline fuel...

142

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Overall DC electrical energy consumption (DC Whmi) 63 Total number of trips 1,388 Total distance traveled (mi) 16,479 Trips in Charge Depleting (CD) mode Gasoline fuel...

143

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

126 Overall DC electrical energy consumption (DC Whmi) 86 Total number of trips 470 Total distance traveled (mi) 4,017 Trips in Charge Depleting (CD) mode Gasoline fuel...

144

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

09 Overall DC electrical energy consumption (DC Whmi) 73 Total number of trips 1,476 Total distance traveled (mi) 17,810 Trips in Charge Depleting (CD) mode Gasoline fuel...

145

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Overall DC electrical energy consumption (DC Whmi) 73 Total number of trips 15,434 Total distance traveled (mi) 172,132 Trips in Charge Depleting (CD) mode Gasoline fuel...

146

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Overall DC electrical energy consumption (DC Whmi) 61 Total number of trips 1,509 Total distance traveled (mi) 19,521 Trips in Charge Depleting (CD) mode Gasoline fuel...

147

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

14 Overall DC electrical energy consumption (DC Whmi) 76 Total number of trips 800 Total distance traveled (mi) 9,275 Trips in Charge Depleting (CD) mode Gasoline fuel economy...

148

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

93 Overall DC electrical energy consumption (DC Whmi) 65 Total number of trips 1,811 Total distance traveled (mi) 24,662 Trips in Charge Depleting (CD) mode Gasoline fuel...

149

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

78 Overall DC electrical energy consumption (DC Whmi) 37 Total number of trips 1,084 Total distance traveled (mi) 9,876 Trips in Charge Depleting (CD) mode Gasoline fuel...

150

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

88 Overall DC electrical energy consumption (DC Whmi) 59 Total number of trips 1,097 Total distance traveled (mi) 15,333 Trips in Charge Depleting (CD) mode Gasoline fuel...

151

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

24 Overall DC electrical energy consumption (DC Whmi) 87 Total number of trips 1,325 Total distance traveled (mi) 15,061 Trips in Charge Depleting (CD) mode Gasoline fuel...

152

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Overall DC electrical energy consumption (DC Whmi) 63 Total number of trips 1,314 Total distance traveled (mi) 19,332 Trips in Charge Depleting (CD) mode Gasoline fuel...

153

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

03 Overall DC electrical energy consumption (DC Whmi) 68 Total number of trips 1,269 Total distance traveled (mi) 13,444 Trips in Charge Depleting (CD) mode Gasoline fuel...

154

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

36 Overall DC electrical energy consumption (DC Whmi) 11 Total number of trips 1,083 Total distance traveled (mi) 12,432 Trips in Charge Depleting (CD) mode Gasoline fuel...

155

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Overall DC electrical energy consumption (DC Whmi) 75 Total number of trips 1,586 Total distance traveled (mi) 16,990 Trips in Charge Depleting (CD) mode Gasoline fuel...

156

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Overall DC electrical energy consumption (DC Whmi) 55 Total number of trips 1,120 Total distance traveled (mi) 13,603 Trips in Charge Depleting (CD) mode Gasoline fuel...

157

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

23 Overall DC electrical energy consumption (DC Whmi) 83 Total number of trips 1,535 Total distance traveled (mi) 17,701 Trips in Charge Depleting (CD) mode Gasoline fuel...

158

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

74 Overall DC electrical energy consumption (DC Whmi) 44 Total number of trips 722 Total distance traveled (mi) 8,574 Trips in Charge Depleting (CD) mode Gasoline fuel economy...

159

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Overall DC electrical energy consumption (DC Whmi) 77 Total number of trips 1,661 Total distance traveled (mi) 14,806 Trips in Charge Depleting (CD) mode Gasoline fuel...

160

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

46 Overall DC electrical energy consumption (DC Whmi) 25 Total number of trips 1,425 Total distance traveled (mi) 15,478 Trips in Charge Depleting (CD) mode Gasoline fuel...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Overall DC electrical energy consumption (DC Whmi) 56 Total number of trips 1,579 Total distance traveled (mi) 20,195 Trips in Charge Depleting (CD) mode Gasoline fuel...

162

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Overall DC electrical energy consumption (DC Whmi) 65 Total number of trips 1,160 Total distance traveled (mi) 11,521 Trips in Charge Depleting (CD) mode Gasoline fuel...

163

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

12 Overall DC electrical energy consumption (DC Whmi) 72 Total number of trips 973 Total distance traveled (mi) 12,099 Trips in Charge Depleting (CD) mode Gasoline fuel...

164

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

03 Overall DC electrical energy consumption (DC Whmi) 73 Total number of trips 1,427 Total distance traveled (mi) 17,582 Trips in Charge Depleting (CD) mode Gasoline fuel...

165

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Overall DC electrical energy consumption (DC Whmi) 36 Total number of trips 700 Total distance traveled (mi) 6,684 Trips in Charge Depleting (CD) mode Gasoline fuel economy...

166

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Overall DC electrical energy consumption (DC Whmi) 65 Total number of trips 1,440 Total distance traveled (mi) 17,617 Trips in Charge Depleting (CD) mode Gasoline fuel...

167

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

35 Overall DC electrical energy consumption (DC Whmi) 21 Total number of trips 1,492 Total distance traveled (mi) 14,935 Trips in Charge Depleting (CD) mode Gasoline fuel...

168

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

85 Overall DC electrical energy consumption (DC Whmi) 54 Total number of trips 813 Total distance traveled (mi) 10,029 Trips in Charge Depleting (CD) mode Gasoline fuel...

169

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Overall DC electrical energy consumption (DC Whmi) 64 Total number of trips 1,266 Total distance traveled (mi) 16,125 Trips in Charge Depleting (CD) mode Gasoline fuel...

170

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

111 Overall DC electrical energy consumption (DC Whmi) 70 Total number of trips 1,023 Total distance traveled (mi) 14,654 Trips in Charge Depleting (CD) mode Gasoline fuel...

171

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Overall DC electrical energy consumption (DC Whmi) 54 Total number of trips 1,830 Total distance traveled (mi) 22,888 Trips in Charge Depleting (CD) mode Gasoline fuel...

172

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

17 Overall DC electrical energy consumption (DC Whmi) 74 Total number of trips 976 Total distance traveled (mi) 12,487 Trips in Charge Depleting (CD) mode Gasoline fuel...

173

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

88 Overall DC electrical energy consumption (DC Whmi) 60 Total number of trips 1,528 Total distance traveled (mi) 18,774 Trips in Charge Depleting (CD) mode Gasoline fuel...

174

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 12,106 Total distance traveled (mi) 110,949 Trips in Charge Depleting (CD)...

175

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Overall DC electrical energy captured from regenerative braking (DC Whmi) 44 Total number of trips 36,749 Total distance traveled (mi) 343,675 Trips in Charge Depleting (CD)...

176

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Overall DC electrical energy consumption (DC Whmi) 74 Total number of trips 14,233 Total distance traveled (mi) 159,409 Trips in Charge Depleting (CD) mode Gasoline fuel...

177

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Overall DC electrical energy consumption (DC Whmi) 75 Total number of trips 10,798 Total distance traveled (mi) 118,394 Trips in Charge Depleting (CD) mode Gasoline fuel...

178

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Overall DC electrical energy consumption (DC Whmi) 76 Total number of trips 13,110 Total distance traveled (mi) 145,669 Trips in Charge Depleting (CD) mode Gasoline fuel...

179

(Discussion of plastic media blasting): Foreign trip report, 1988  

SciTech Connect

The visit to MBB was to see and discuss the plastic media blasting equipment developed and manufactured as a cooperative effort by Schlick and MBB. The Germans emphasized a systematic approach and complete control over most parameters. The goal is to achieve conditions which do not cause damage to the aircraft. To arrive at the goal the air pressure that delivers the air to entrain the media, the flow rate of media, and the media itself are carefully and accurately controlled. Distance of nozzle and angle of blasting were systematically investigated. The wet (freon) cleanup system under development at Schlick was not discussed.

Gat, U.

1988-07-21T23:59:59.000Z

180

U.S. Secretary of Energy Concludes Successful Trip to Trinidad and Tobago |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Trip to Trinidad and Successful Trip to Trinidad and Tobago U.S. Secretary of Energy Concludes Successful Trip to Trinidad and Tobago May 13, 2008 - 12:00pm Addthis Visit continues bilateral efforts to advance energy security WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today concluded a visit to the Republic of Trinidad and Tobago focused on strengthening and expanding the two nations' strategic energy and economic relationship. The United States is Trinidad and Tobago's largest market for liquefied natural gas (LNG), importing nearly 60 percent of the LNG exported from the country. As such, the country plays an integral role in advancing the Bush Administration's strategy to ensure safe, reliable, clean and diverse energy supplies in the United States. "The United States is proud of its relationship with a strong and open

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Secretary Chu to Visit Google Headquarters During Trip to San Francisco |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Google Headquarters During Trip to San Google Headquarters During Trip to San Francisco Secretary Chu to Visit Google Headquarters During Trip to San Francisco October 21, 2010 - 12:00am Addthis Washington, DC - During a visit to San Francisco tomorrow, Friday, Oct. 22, U.S. Energy Secretary Steven Chu will visit Google, Inc. headquarters to participate in a fireside chat with company employees to discuss the Obama Administration's vision for a clean and renewable energy economy. While at Google, Secretary Chu will also participate in a series of briefings with company researchers and scientists to learn more about the company's innovative ventures in the energy sector. WHAT: U.S. Energy Secretary Steven Chu to participate in fireside chat at Google, Inc. WHEN: Friday, October 22, 2010

182

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Google+ virtual field trip: "Vehicle Electrification" (11/18/13) Share Topic Energy Energy efficiency Vehicles Electric drive technology Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ---Reactors -Energy usage --Energy storage ---Batteries ----Lithium-ion batteries ----Lithium-air batteries --Electricity transmission --Smart Grid Environment -Biology --Computational biology --Environmental biology

183

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Overall DC electrical energy consumption (DC Whmi) 66 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 725 Total distance...

184

Iterative method to compute the Fermat points and Fermat distances of multiquarks  

E-Print Network (OSTI)

The multiquark confining potential is proportional to the total distance of the fundamental strings linking the quarks and antiquarks. We address the computation of the total string distance an of the Fermat points where the different strings meet. For a meson (quark-antiquark system) the distance is trivially the quark-antiquark distance. For a baryon (three quark system) the problem was solved geometrically from the onset, by Fermat and by Torricelli. The geometrical solution can be determined just with a rule and a compass, but translation of the geometrical solution to an analytical expression is not as trivial. For tetraquarks, pentaquarks, hexaquarks, etc, the geometrical solution is much more complicated. Here we provide an iterative method, converging fast to the correct Fermat points and the total distances, relevant for the multiquark potentials. We also review briefly the geometrical methods leading to the Fermat points and to the total distances.

P. Bicudo; M. Cardoso

2008-12-03T23:59:59.000Z

185

Random Distances Associated with Rhombuses  

E-Print Network (OSTI)

Parallelograms are one of the basic building blocks in two-dimensional tiling. They have important applications in a wide variety of science and engineering fields, such as wireless communication networks, urban transportation, operations research, etc. Different from rectangles and squares, the coordinates of a random point in parallelograms are no longer independent. As a case study of parallelograms, the explicit probability density functions of the random Euclidean distances associated with rhombuses are given in this report, when both endpoints are randomly distributed in 1) the same rhombus, 2) two parallel rhombuses sharing a side, and 3) two rhombuses having a common diagonal, respectively. The accuracy of the distance distribution functions is verified by simulation, and the correctness is validated by a recursion and a probabilistic sum. The first two statistical moments of the random distances, and the polynomial fit of the density functions are also given in this report for practical uses.

Yanyan Zhuang; Jianping Pan

2011-06-07T23:59:59.000Z

186

System and method for individually testing valves in a steam turbine trip control system  

SciTech Connect

This patent describes a steam turbine power plant. It comprises: a steam generator; a steam turbine adapted to receive steam form the steam generator; a throttle valve for regulating the flow of the steam received by the steam turbine; and an electro-hydraulic trip control system for causing the throttle valve to close when a predetermined condition has been reached.

Hurley, J.D.

1992-07-28T23:59:59.000Z

187

A Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1"  

E-Print Network (OSTI)

Abstract: The growth of our economy is demanding construction of a variety of power plants to generateA Simulated Field Trip: "The Visual Aspects of Power Plant Sitings1" Bill Bottom 2 Alex Young 3 electricity which is having a significant impact on the visual environment. These power plants will consist

Standiford, Richard B.

188

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

189

Acceptance test procedure for removal of CS1K circuit switcher block and trip schemes  

Science Conference Proceedings (OSTI)

This supporting document provides a detailed process to test the functions of the circuit switcher, protective relays, alarms, SCADA and 125VDC control logic of 115kV and 13.8kV systems at B3S4 substation following the removal of trip and blocking schemes to Transformer No.1 Circuit Switcher B594.

HACHE, J.M.

1999-08-25T23:59:59.000Z

190

Water-to-Cement Distance Analysis Software  

Science Conference Proceedings (OSTI)

Water-to-Cement Distance Analysis Software. Description/Summary: ... Type of software: Analysis Software of Water-to-Cement Distance Analysis. ...

2013-06-11T23:59:59.000Z

191

Academic Strategies for Distance Education  

Science Conference Proceedings (OSTI)

Education all over the world is of paramount importance as it provides economies with opportunities for development and growth. Education is important for both-developed and developing economies-for the former to maintain their lead position and for ... Keywords: Academic, Distance Education, Education, Knowledge, Learning, Quality, Standards, Strategies

Neeta Baporikar

2012-07-01T23:59:59.000Z

192

Distance indexing on road networks  

Science Conference Proceedings (OSTI)

The processing of kNN and continuous kNN queries on spatial network databases (SNDB) has been intensively studied recently. However, there is a lack of systematic study on the computation of network distances, which is the most fundamental difference ...

Haibo Hu; Dik Lun Lee; Victor C. S. Lee

2006-09-01T23:59:59.000Z

193

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 111 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 71 Overall DC electrical energy captured from regenerative braking (DC Wh/mi) 61 Total number of trips 1,135 Total distance traveled (mi) 4,408 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 22 DC electrical energy consumption (DC Wh/mi) 296 Number of trips 264 Percent of trips city | highway 100% | 0% Distance traveled (mi) 781 Percent of total distance traveled 18% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 19 DC electrical energy consumption (DC Wh/mi) 141 Number of trips 44 Percent of trips city | highway 96% | 4% Distance traveled CD | CS (mi) 333 | 389 Percent of total distance traveled CD | CS

194

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Overall AC electrical energy consumption (AC Wh/mi)┬╣ 93 Overall DC electrical energy consumption (DC Wh/mi)┬▓ 71 Overall DC electrical energy captured from regenerative braking (DC Wh/mi) 40 Total number of trips 11,047 Total distance traveled (mi) 119,879 Trips in Charge Depleting (CD) mode┬│ Gasoline fuel economy (mpg) 25 DC electrical energy consumption (DC Wh/mi) 208 Number of trips 4,491 Percent of trips city | highway 92% | 8% Distance traveled (mi) 30,376 Percent of total distance traveled 25% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 22 DC electrical energy consumption (DC Wh/mi) 71 Number of trips 1,352 Percent of trips city | highway 69% | 31% Distance traveled CD | CS (mi) 12,772 | 20,001 Percent of total distance traveled CD | CS

195

Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction  

Science Conference Proceedings (OSTI)

TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

2010-05-01T23:59:59.000Z

196

A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment  

E-Print Network (OSTI)

1987) Why do people buy cars? Paper presented at the 5thRegression Model of Private Car Use. Report AE 4/87, FacultyEffects of Income and Car Ownership on Trip Generation: A

Kitamura, Ryuichi

2009-01-01T23:59:59.000Z

197

Effects of Sample Geometry and Loading Rate onTensile Ductility of TRIP800 Steel  

SciTech Connect

The effects of sample geometry and loading rate on the tensile ductility of a commercial grade Transformation Induced Plasticity (TRIP) steel are examined in this paper. Quasistatic tensile tests were performed for the 1.2mm gauge TRIP800 steel sheets with two geometries: sub-sized ASTM E-8 and a custom designed miniature tensile sample. Sample geometry effects on post-uniform elongation are discussed together with other experimental data reported in the open literature. Further discussions on the effects of sample geometry are cast in the context of mesh-size dependent ductility in finite element-based engineering simulations. The quasi-static tensile curve for the miniature sample is then compared with the split Hopkinson bar results at the loading rates of 1700-S-1 and 2650-S-1 with the same sample design. In contrary to the typical strain rate sensitivity results for mild steel where the dynamic strength increase at high strain rate usually occurs at the price of ductility reduction, our results show that the TRIP800 under examination has positive strain rate sensitivity on both strength and ductility. Images of the deformation process captured by high speed camera together with scanning electron microscopy (SEM) near the fracture zone are also used to elucidate the different deformation modes at different loading rates.

Sun, Xin; Soulami, Ayoub; Choi, Kyoo Sil; Guzman, O.; Chen, Weinong W.

2012-04-15T23:59:59.000Z

198

Method and apparatus for optimizing a train trip using signal information  

DOE Patents (OSTI)

One embodiment of the invention includes a system for operating a railway network comprising a first railway vehicle (400) during a trip along track segments (401/412/420). The system comprises a first element (65) for determining travel parameters of the first railway vehicle (400), a second element (65) for determining travel parameters of a second railway vehicle (418) relative to the track segments to be traversed by the first vehicle during the trip, a processor (62) for receiving information from the first (65) and the second (65) elements and for determining a relationship between occupation of a track segment (401/412/420) by the second vehicle (418) and later occupation of the same track segment by the first vehicle (400) and an algorithm embodied within the processor (62) having access to the information to create a trip plan that determines a speed trajectory for the first vehicle (400), wherein the speed trajectory is responsive to the relationship and further in accordance with one or more operational criteria for the first vehicle (400).

Kumar, Ajith Kuttannair; Daum, Wolfgang; Otsubo, Tom; Hershey, John Erik; Hess, Gerald James

2013-02-05T23:59:59.000Z

199

Metrics and methods for social distance  

E-Print Network (OSTI)

Distance measures are important for scientists because they illustrate the dynamics of geospatial topologies for physical and social processes. Two major types of distance are generally used for this purpose: Euclidean ...

Andris, Clio

2011-01-01T23:59:59.000Z

200

Adaptive multi-stage distance join processing  

Science Conference Proceedings (OSTI)

A spatial distance join is a relatively new type of operation introduced for spatial and multimedia database applications. Additional requirements for ranking and stopping cardinality are often combined with the spatial distance join in on-line query ...

Hyoseop Shin; Bongki Moon; Sukho Lee

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Short-distance contribution to the spectrum of Hawking radiation  

E-Print Network (OSTI)

The Hawking effect can be rederived in terms of two-point functions and in such a way that it makes it possible to estimate, within the conventional semiclassical theory, the contribution of ultrashort distances to the Planckian spectrum. For Schwarzschild black holes of three solar masses the analysis shows that Hawking radiation is very robust up to frequencies of 96 T_H or 270 T_H for bosons and fermions, respectively. For primordial black holes (with masses around 10^{15} g) these frequencies turn out to be of order 52T_H and 142 T_H. Only at these frequencies and above do we find that the contribution of Planck distances is of order of the total spectrum itself. Below this scale, the contribution of ultrashort distances to the spectrum is negligible. This suggests that only above these frequencies could an underlying quantum theory of gravity potentially predict significant deviations from Hawking's semiclassical result.

I. Agullo; J. Navarro-Salas; Gonzalo J. Olmo; Leonard Parker

2006-11-30T23:59:59.000Z

202

Normalized Compression Distance of Multiples  

E-Print Network (OSTI)

Normalized compression distance (NCD) is a parameter-free similarity measure based on compression. The NCD between pairs of objects is not sufficient for all applications. We propose an NCD of finite multisets (multiples) of objacts that is metric and is better for many applications. Previously, attempts to obtain such an NCD failed. We use the theoretical notion of Kolmogorov complexity that for practical purposes is approximated from above by the length of the compressed version of the file involved, using a real-world compression program. We applied the new NCD for multiples to retinal progenitor cell questions that were earlier treated with the pairwise NCD. Here we get significantly better results. We also applied the NCD for multiples to synthetic time sequence data. The preliminary results are as good as nearest neighbor Euclidean classifier.

Cohen, Andrew R

2012-01-01T23:59:59.000Z

203

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

through December 2012 Vehicle Usage Overall fuel economy (mpg) 126 Overall electrical energy consumption (AC Whmi) 229 Number of trips 369,118 Total distance traveled (mi)...

204

Local discriminative distance metrics ensemble learning  

Science Conference Proceedings (OSTI)

The ultimate goal of distance metric learning is to incorporate abundant discriminative information to keep all data samples in the same class close and those from different classes separated. Local distance metric methods can preserve discriminative ... Keywords: Distance metrics learning, Local learning

Yang Mu; Wei Ding; Dacheng Tao

2013-08-01T23:59:59.000Z

205

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

206

Trip Report  

Office of Legacy Management (LM)

Department of Energy 2013 Annual Inspection - Piqua, OH, Decommissioned Reactor Site Department of Energy 2013 Annual Inspection - Piqua, OH, Decommissioned Reactor Site June 2013 Page 1 2013 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site Summary The former Piqua Nuclear Power Facility (PNPF), a decommissioned nuclear power demonstration facility, was inspected on April 18, 2013. The site, located on the east bank of the Great Miami River in Piqua, Ohio, is in good physical condition. There is no requirement for a

207

Trip Report  

Office of Legacy Management (LM)

Site A/Plot M, Cook County, Illinois Site A/Plot M, Cook County, Illinois May 2013 Page 1 2013 Inspection and Annual Site Status Report for the Site A/Plot M, Cook County, Illinois Decontamination and Decommissioning Program Site Summary Site A/Plot M was inspected on April 10, 2013. The site, located within a county forest preserve with significant tree and grass cover, was in good condition. No cause for a follow-up inspection was identified. Erosion on top of the grass covered mound at Plot M continues to be a concern. Bike traffic produces ruts which if left unfixed grow and threaten the protectiveness of the soil cover on top of the mound. In 2010 ANL personnel repaired two areas at Plot M by filling in the ruts with clean top soil and re-seeding. In 2012, additional repairs were made by ANL personnel. Three-

208

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

209

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

210

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

211

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

212

EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS June ...  

E-Print Network (OSTI)

Jun 6, 2010 ... part by NSF Grant CCF 0514213 and DOE Grant DESC0002218. REFERENCES . [1] A. Y. Alfakih, On the uniqueness of Euclidean distanceá...

213

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

214

Calibration of the distance scale from galactic Cepheids: I Calibration based on the GFG sample  

E-Print Network (OSTI)

New estimates of the distances of 36 nearby galaxies are presented based on accurate distances of galactic Cepheids obtained by Gieren, Fouque and Gomez (1998) from the geometrical Barnes-Evans method. The concept of 'sosie' is applied to extend the distance determination to extragalactic Cepheids without assuming the linearity of the PL relation. Doing so, the distance moduli are obtained in a straightforward way. The correction for extinction is made using two photometric bands (V and I) according to the principles introduced by Freedman and Madore (1990). Finally, the statistical bias due to the incompleteness of the sample is corrected according to the precepts introduced by Teerikorpi (1987) without introducing any free parameters (except the distance modulus itself in an iterative scheme). The final distance moduli depend on the adopted extinction ratio {R_V}/{R_I} and on the limiting apparent magnitude of the sample. A comparison with the distance moduli recently published by the Hubble Space Telescope Key Project (HSTKP) team reveals a fair agreement when the same ratio {R_V}/{R_I} is used but shows a small discrepancy at large distance. In order to bypass the uncertainty due to the metallicity effect it is suggested to consider only galaxies having nearly the same metallicity as the calibrating Cepheids (i.e. Solar metallicity). The internal uncertainty of the distances is about 0.1 magnitude but the total uncertainty may reach 0.3 magnitude.

G. Paturel; G. Theureau; P. Fouque; J. N. Terry; I. Musella; T. Ekholm

2002-01-21T23:59:59.000Z

215

An innovative method of providing total breaker failure protection  

Science Conference Proceedings (OSTI)

Breaker failure relaying has been generally achieved through the use of a current monitoring relay to determine whether current continues to flow into a fault after a breaker has been instructed to interrupt the circuit. If current continues to flow after a predefined period of time, the circuit breaker is considered to have failed. Steps must then be taken to trip the next set of upstream breakers in the power system to remove the faulted circuit and prevent system damage. However, with industrial power systems, this may be the utility`s breakers on the feeding transmission line. Regardless, breaker failure schemes must be designed to isolate both the faulted circuit and the failed circuit breaker. This paper discusses a new and innovative method of protecting a circuit breaker from the failure described above, plus other failures that go unprotected with conventional schemes, this providing total breaker failure protection.

Stringer, N.T.; Waser, D. [Basler Electric Co., Highland, IL (United States)

1996-09-01T23:59:59.000Z

216

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

217

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

218

Characterizing Walk Trips in communities by Using Data from 2009 National Household Travel Survey, American Community Survey, and Other Sources  

SciTech Connect

Non-motorized travel (i.e. walking and bicycling) are of increasing interest to the transportation profession, especially in context with energy consumption, reducing vehicular congestion, urban development patterns, and promotion of healthier life styles. This research project aimed to identify factors impacting the amount of travel for both walk and bike trips at the Census block group or tract level, using several public and private data sources. The key survey of travel behavior is the 2009 National Household Travel Survey (NHTS) which had over 87,000 walk trips for persons 16 and over, and over 6000 bike trips for persons 16 and over. The NHTS, in conjunction with the Census Bureau s American Community Survey, street density measures using Census Bureau TIGER, WalkScore , Nielsen Claritas employment estimates, and several other sources were used for this study. Stepwise Logistic Regression modeling techniques as well as Discriminant Analysis were applied using the integrated data set. While the models performed reasonably well for walk trips, travel by bike was abandoned due to sparseness of data. This paper discusses data sources utilized and modeling processes conducted under this study. It also presents a summary of findings and addresses data challenges and lesson-learned from this research effort.

Hwang, Ho-Ling [ORNL; Reuscher, Tim [Macrosys; Wilson, Daniel W [ORNL; Murakami, Elaine [FHWA USDOT

2013-01-01T23:59:59.000Z

219

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

220

Optimal expected-distance separating halfspace  

E-Print Network (OSTI)

If a different norm is used for each data set in order to measure distances to ... In practical settings, one usually has a data set D = {(x1,y1),..., (xp,yp)} ?. Rd Î {?1

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sensor fault detection using the Mahalanobis distance  

Science Conference Proceedings (OSTI)

A method is described by which a localized sensor abnormality can be detected using the Mahalanobis distance. The Mahalanobis distance is approximately the weighted distance from the hyperplane formed by the principal components to the particular observation. Qualitatively, the principal components correspond to the physical laws that govern the behavior of the systems and constraints placed on the system. If there are more sensors than principal components, there are redundant measurements. This redundancy can be used to detect abnormalities that are due either to sensor failure or a localized change in the system being measured. The method compares the distribution of the Mahalanobis distance during normal operation with the distribution during the current operation. A likelihood ratio test is then used to determine if a sensor has gone bad or if operations in the reactor are different from normal. The sensor whose value is not normal is identified by comparing Mahalanobis distances computed with one sensor masked. When the abnormal sensor is masked, the Mahalanobis distance for this subset of sensors will be within prespecified bounds. The method is demonstrated on 20 subassembly output thermocouples in the core of Experimental Breeder Reactor II.

White, A.M.; Gross, K.C. (Argonne National Lab., IL (United States)); Kubic, W.L (Los Alamos National Lab., NM (United States))

1993-01-01T23:59:59.000Z

222

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

223

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

224

Shortcut estimation of safety distances of pipelines from explosives  

SciTech Connect

Purposely or accidentally detonating explosives near pressurized gas pipelines may have severe consequences on them, ranging from permanent deformation to gas loss or even violent rupture. Owing to lack of analytical prediction models, a shortcut is proposed in this article by which conservative estimations can be obtained of the safety distance of a pipeline from an explosion source, when explosive quantity is known. Alternatively, the maximum allowable explosive quantity can be calculated, provided distance is given. If both explosive quantity and distance are given, stresses on the pipeline may be estimated. Experimentally determined ratios of circumferential to longitudinal strains found in the literature are used. This ratio depends on soil peak particle velocity in contact with the pipeline. For total stress estimations on the pipeline, either biaxial or Huber-Hencky-Mises stresses are used, the latter being more conservative. Validation of proposed method is obtained against experimental observations and results. In this prediction model the characteristics of the explosion source, of the soil, and of the pipeline are taken into account.

Rigas, F.; Sebos, I. [National Technical Univ. of Athens (Greece)

1998-03-01T23:59:59.000Z

225

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

226

Short-Distance Structure of Nuclei  

Science Conference Proceedings (OSTI)

One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

2011-06-01T23:59:59.000Z

227

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

228

Bounds on distance distributions in codes of known size  

Science Conference Proceedings (OSTI)

We treat the problem of bounding components of the possible distance distributions of codes given the knowledge of their size and possibly minimum distance. Using the Beckner inequality from harmonic analysis, we derive upper bounds on distance distribution ...

A. E. Ashikhmin; G. D. Cohen; M. Krivelevich; S. N. Litsyn

2005-01-01T23:59:59.000Z

229

Treating high pressure zones in one trip in Canyon Reef area of Texas  

Science Conference Proceedings (OSTI)

In the Canyon Reef area near Snyder, Texas, Chevron U.S.A. Inc. is employing ratchet operated, packer type retrievable bridge plugs which have allowed operators to test, treat, or squeeze high pressure zones over a 35-day period on a single trip of the workstring. More zones could have been treated if necessary. The bridge plug was moved and set 31 times while treating the zones. Elapsed time is shown in days starting with T-date being the day tools were first run in for the treatment. The job was run with an average treating pressure of 1,000 psi, and a differential pressure of 2,500 psi that alternated from above the bridge plug to below and back each time the plug was moved to a new zone. The bridge plug used for the job seals by the action of a patented ratcheting mechanism which requires relatively light weight to set. Design of the ratchet enables the sealing elements to hold a seal against the casing wall while the hold-down slips are being set.

Cooley, G.; Mccowen, D.; Fore, M.

1984-03-01T23:59:59.000Z

230

FY94 CAG trip reports, CAG memos and other products: Volume 2. Final report  

SciTech Connect

The Yucca Mountain Site Characterization Project (YMP) of the US DOE is tasked with designing, constructing, and operating an Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada. The purpose of the YMP is to provide detailed characterization of the Yucca Mountain site for the potential mined geologic repository for permanent disposal of high-level radioactive waste. Detailed characterization of properties of the site are to be conducted through a wide variety of short-term and long-term in-situ tests. Testing methods require the installation of a large number of test instruments and sensors with a variety of functions. These instruments produce analog and digital data that must be collected, processed, stored, and evaluated in an attempt to predict performance of the repository. The Integrated Data and Control System (IDCS) is envisioned as a distributed data acquisition that electronically acquires and stores data from these test instruments. IDCS designers are responsible for designing and overseeing the procurement of the system, IDCS Operation and Maintenance operates and maintains the installed system, and the IDCS Data Manager is responsible for distribution of IDCS data to participants. This report is a compilation of trip reports, interoffice memos, and other memos relevant to Computer Applications Group, Inc., work on this project.

NONE

1994-12-15T23:59:59.000Z

231

Solar Decathlon 2013: Going the Distance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Going the Distance Solar Decathlon 2013: Going the Distance September 17, 2013 - 4:26pm Addthis Toggle Routes onoff Return to map Solar Decathlon Journeys Visualizing the...

232

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

233

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. á á á...

234

Semantic distances for technology landscape visualization  

Science Conference Proceedings (OSTI)

This paper presents a novel approach to the visualization of research domains in science and technology. The proposed methodology is based on the use of bibliometrics; i.e., analysis is conducted using information regarding trends and patterns ... Keywords: Clustering, Data mining, Semantic distance, Technology forecasting

Wei Lee Woon; Stuart Madnick

2012-08-01T23:59:59.000Z

235

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

236

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

237

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

238

Long working distance incoherent interference microscope  

DOE Patents (OSTI)

A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

Sinclair, Michael B. (Albuquerque, NM); De Boer, Maarten P. (Albuquerque, NM)

2006-04-25T23:59:59.000Z

239

OFA2013_Storage@Distance.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Storage Systems Group NERSC Storage Systems Group Storage at a Distance --- 1 --- Open F abrics A lliance U ser D ay What is storage at a distance? * Data i s n ot l ocal t o t he u ser/resource * Processing a nd w orkflow n eeds a re n ear r eal---7me - Don't w ant t o w ait u n9l d ata t ransfer i s c omplete - Need t o s ee r esults, m ake a djustments, a nd t ry a gain * Network w ill b ecome p art o f t he i nstruments - Telescopes a nd t heir d ata - Sequencers a nd t heir g enome d ata - Light s ources a nd t heir d ata * Is t here a n a rchitecture/protocol t hat i s n ecessary today for successfully providing storage at a distance? - Ethernet v s. I B - ROCE v s. R DMA v s. I P --- 2 --- Open F abrics A lliance U ser D ay Use case 1: Instruments (beam lines) * ShiB w ork ( 24hr c overage) - Scien9sts fl y i n a nd u se t he i nstrument

240

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

242

DNFSB staff trip report on Y-12 electrical systems at Oak Ridge  

NLE Websites -- All DOE Office Websites (Extended Search)

13, 1993, five Southern transformers failed bringing the total number of Southern transformer failures to nine. Fifty-two units of this manufacturer were installed in 1987 and...

243

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 49 89,494 825,358 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 57 42...

244

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 47 8,056 75,381 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 54 37...

245

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 48 11,690 113,476 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 53 39...

246

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 49 11,977 110,783 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 55 40...

247

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 44 9,485 89,378 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 52 38...

248

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 47 10,148 96,085 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 56 41...

249

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 48 11,151 103,642 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 56 40...

250

MonthlyReportAll  

NLE Websites -- All DOE Office Websites (Extended Search)

(CD) mode Total number of trips 46 9,988 93,994 Total distance traveled (mi) Overall gasoline fuel economy (mpg) Overall AC electrical energy consumption (AC Whmi) 54 40...

251

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Overall AC electrical energy consumption (AC Whmi) 94 Overall DC electrical energy consumption (DC Whmi) 60 Total number of trips 1,077 Total distance traveled (mi) 15,138...

252

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 13,167 Total distance...

253

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

15 Overall DC electrical energy consumption (DC Whmi) 13 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 2,405 Total distance...

254

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 1,225 Total distance...

255

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 28 Total number of trips 2,348 Total distance...

256

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

33 Overall DC electrical energy consumption (DC Whmi) 26 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 6,332 Total distance...

257

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Overall DC electrical energy consumption (DC Whmi) 72 Overall DC electrical energy captured from regenerative braking (DC Whmi) 44 Total number of trips 13,043 Total distance...

258

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Overall DC electrical energy consumption (DC Whmi) 4 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 5,888 Total distance...

259

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Overall DC electrical energy consumption (DC Whmi) 65 Overall DC electrical energy captured from regenerative braking (DC Whmi) 45 Total number of trips 10,555 Total distance...

260

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical energy captured from regenerative braking (DC Whmi) 50 Total number of trips 4,546 Total distance...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Overall DC electrical energy consumption (DC Whmi) 71 Overall DC electrical energy captured from regenerative braking (DC Whmi) 42 Total number of trips 24,834 Total distance...

262

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Overall DC electrical energy consumption (DC Whmi) 54 Overall DC electrical energy captured from regenerative braking (DC Whmi) 47 Total number of trips 6,560 Total distance...

263

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Overall DC electrical energy consumption (DC Whmi) 0 Overall DC electrical energy captured from regenerative braking (DC Whmi) 27 Total number of trips 1,579 Total distance...

264

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Overall DC electrical energy consumption (DC Whmi) 59 Overall DC electrical energy captured from regenerative braking (DC Whmi) 47 Total number of trips 21,661 Total distance...

265

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

33 Overall DC electrical energy consumption (DC Whmi) 74 Overall DC electrical energy captured from regenerative braking (DC Whmi) 33 Total number of trips 5,273 Total distance...

266

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Overall DC electrical energy consumption (DC Whmi) 64 Overall DC electrical energy captured from regenerative braking (DC Whmi) 30 Total number of trips 4,292 Total distance...

267

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Overall DC electrical energy consumption (DC Whmi) 70 Overall DC electrical energy captured from regenerative braking (DC Whmi) 43 Total number of trips 95,019 Total distance...

268

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Overall DC electrical energy consumption (DC Whmi) 69 Overall DC electrical energy captured from regenerative braking (DC Whmi) 44 Total number of trips 88,891 Total distance...

269

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

270

The Protection of Pharmaceutical Patents and Data under TRIPS and US-Jordan FTA: Exploring the Limits of Obligations and Flexibilities: A Study of the Impacts on the Pharmaceutical Sector in Jordan.  

E-Print Network (OSTI)

??In 2000, Jordan signed the Agreement on Trade-related Aspects of Intellectual Property Rights (the TRIPS Agreement) and a free trade agreement with the US (USJFTA).ů (more)

Abughanm, Saad

2012-01-01T23:59:59.000Z

271

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

272

Total Cost Per MwH for all common large scale power generation sources |  

Open Energy Info (EERE)

Total Cost Per MwH for all common large scale power generation sources Total Cost Per MwH for all common large scale power generation sources Home > Groups > DOE Wind Vision Community In the US DOEnergy, are there calcuations for real cost of energy considering the negative, socialized costs of all commercial large scale power generation soruces ? I am talking about the cost of mountain top removal for coal mined that way, the trip to the power plant, the sludge pond or ash heap, the cost of the gas out of the stack, toxificaiton of the lakes and streams, plant decommision costs. For nuclear yiou are talking about managing the waste in perpetuity. The plant decomission costs and so on. What I am tring to get at is the 'real cost' per MWh or KWh for the various sources ? I suspect that the costs commonly quoted for fossil fuels and nucelar are

273

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

274

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

275

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

276

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

277

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

278

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

279

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

280

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

282

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

283

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

284

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

285

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

286

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

287

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

288

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

289

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

290

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

291

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

292

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

293

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

294

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

295

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

296

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

297

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

298

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

299

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

300

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

302

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

303

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

304

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

305

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

306

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

307

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

308

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

309

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

310

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

311

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

312

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

313

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

314

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

315

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

316

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

317

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

318

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

319

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

320

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

322

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

323

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

324

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

325

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

326

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

327

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

328

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

329

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

330

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

331

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

332

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

333

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

334

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

335

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

336

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

337

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

338

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

339

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

340

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

342

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

343

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

344

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

345

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

346

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

347

Assessment of full power turbine trip start-up test for C. Trillo 1 with RELAP5/MOD2. International Agreement Report  

Science Conference Proceedings (OSTI)

C. Trillo I has developed a model of the plant with RELAP5/MOD2/36.04. This model will be validated against a selected set of start-up tests. One of the transients selected to that aim is the turbine trip, which presents very specific characteristics that make it significantly different from the same transient in other PWRs of different design, the main difference being that the reactor is not tripped: a reduction in primary power is carried out instead. Pre-test calculations were done of the Turbine Trip Test and compared against the actual test. Minor problems in the first model, specially in the Control and Limitation Systems, were identified and post-test calculations had been carried out. The results show a good agreement with data for all the compared variables.

Lozano, M.F.; Moreno, P.; de la Cal, C.; Larrea, E.; Lopez, A.; Santamaria, J.G.; Lopez, E.; Novo, M. [Consejo de Seguridad Nuclear, Madrid (Spain)

1993-07-01T23:59:59.000Z

348

2D Euclidean distance transform algorithms: A comparative survey  

Science Conference Proceedings (OSTI)

The distance transform (DT) is a general operator forming the basis of many methods in computer vision and geometry, with great potential for practical applications. However, all the optimal algorithms for the computation of the exact Euclidean DT (EDT) ... Keywords: Dijkstra's algorithm, Distance transform, computational geometry, exact Euclidean distance map, performance evaluation, shape analysis

Ricardo Fabbri; Luciano Da F. Costa; Julio C. Torelli; Odemir M. Bruno

2008-02-01T23:59:59.000Z

349

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

350

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

351

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Overall AC electrical energy consumption (AC Wh/mi) 175 Average Trip Distance 12.2 Total distance traveled (mi) 272,366 Average Ambient Temperature (deg F) 54.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 368 Distance traveled (mi) 129,389 Percent of total distance traveled 47.5% Average driving style efficiency (distance weighted)┬╣ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.0 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 142,977 Percent of total distance traveled 52.4% Average driving style efficiency (distance weighted)┬╣ 77% City┬│ Highway┬│ Percent of miles in EV operation (%) 65.1% 31.1% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

352

MonthlyReport  

NLE Websites -- All DOE Office Websites (Extended Search)

4.8 4.8 Overall AC electrical energy consumption (AC Wh/mi) 185 Average Trip Distance 13.1 Total distance traveled (mi) 208,165 Average Ambient Temperature (deg F) 77.6 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 369 Distance traveled (mi) 104,687 Percent of total distance traveled 50.3% Average driving style efficiency (distance weighted)┬╣ 87% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 37.2 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 103,478 Percent of total distance traveled 49.7% Average driving style efficiency (distance weighted)┬╣ 82% City┬│ Highway┬│ Percent of miles in EV operation (%) 69.8% 33.9% Percent Number of trips 85.0% 15.0% Average trip distance (mi)

353

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2.5 2.5 Overall AC electrical energy consumption (AC Wh/mi) 166 Average Trip Distance 12.1 Total distance traveled (mi) 385,849 Average Ambient Temperature (deg F) 78.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 332 Distance traveled (mi) 193,336 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)┬╣ 85% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.2 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 192,512 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 67.2% 31.5% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

354

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

7.8 7.8 Overall AC electrical energy consumption (AC Wh/mi) 180 Average Trip Distance 12.8 Total distance traveled (mi) 346,409 Average Ambient Temperature (deg F) 51.5 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 384 Distance traveled (mi) 161,982 Percent of total distance traveled 46.8% Average driving style efficiency (distance weighted)┬╣ 74% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.1 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 184,427 Percent of total distance traveled 53.2% Average driving style efficiency (distance weighted)┬╣ 76% City┬│ Highway┬│ Percent of miles in EV operation (%) 63.8% 28.4% Percent Number of trips 85.7% 14.3% Average trip distance (mi)

355

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Overall AC electrical energy consumption (AC Wh/mi) 174 Average Trip Distance 12.6 Total distance traveled (mi) 1,243,988 Average Ambient Temperature (deg F) 63.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 352 Distance traveled (mi) 615,161 Percent of total distance traveled 49.5% Average driving style efficiency (distance weighted)┬╣ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 628,828 Percent of total distance traveled 50.5% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.8% 31.7% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

356

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

71.0 71.0 Overall AC electrical energy consumption (AC Wh/mi) 169 Average Trip Distance 12.5 Total distance traveled (mi) 1,661,080 Average Ambient Temperature (deg F) 67.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 340 Distance traveled (mi) 826,775 Percent of total distance traveled 49.8% Average driving style efficiency (distance weighted)┬╣ 81% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.7 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 834,306 Percent of total distance traveled 50.2% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.9% 31.6% Percent Number of trips 85.8% 14.2% Average trip distance (mi)

357

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.4 Total distance traveled (mi) 2,041,556 Average Ambient Temperature (deg F) 64.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 345 Distance traveled (mi) 1,002,495 Percent of total distance traveled 49.1% Average driving style efficiency (distance weighted)┬╣ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 1,039,061 Percent of total distance traveled 50.9% Average driving style efficiency (distance weighted)┬╣ 78% City┬│ Highway┬│ Percent of miles in EV operation (%) 66.2% 31.0% Percent Number of trips 86.0% 14.0% Average trip distance (mi)

358

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1.1 1.1 Overall AC electrical energy consumption (AC Wh/mi) 182 Average Trip Distance 11.8 Total distance traveled (mi) 355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 416 Distance traveled (mi) 155,080 Percent of total distance traveled 43.7% Average driving style efficiency (distance weighted)┬╣ 69% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 34.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,978 Percent of total distance traveled 56.3% Average driving style efficiency (distance weighted)┬╣ 74% City┬│ Highway┬│ Percent of miles in EV operation (%) 60.5% 27.0% Percent Number of trips 86.3% 13.7% Average trip distance (mi)

359

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6.6 6.6 Overall AC electrical energy consumption (AC Wh/mi) 171 Average Trip Distance 11.9 Total distance traveled (mi) 370,316 Average Ambient Temperature (deg F) 53.8 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 371 Distance traveled (mi) 170,860 Percent of total distance traveled 46.1% Average driving style efficiency (distance weighted)┬╣ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,456 Percent of total distance traveled 53.9% Average driving style efficiency (distance weighted)┬╣ 77% City┬│ Highway┬│ Percent of miles in EV operation (%) 63.2% 28.1% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

360

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi) 157 Average Trip Distance 12.3 Total distance traveled (mi) 407,245 Average Ambient Temperature (deg F) 67.9 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 338 Distance traveled (mi) 189,426 Percent of total distance traveled 46.5% Average driving style efficiency (distance weighted)┬╣ 82% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.5 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 217,819 Percent of total distance traveled 53.5% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 65.2% 28.3% Percent Number of trips 86.5% 13.5% Average trip distance (mi)

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

73.7 73.7 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.6 Total distance traveled (mi) 370,987 Average Ambient Temperature (deg F) 71.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 341 Distance traveled (mi) 185,282 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)┬╣ 83% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 185,705 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)┬╣ 79% City┬│ Highway┬│ Percent of miles in EV operation (%) 68.0% 32.4% Percent Number of trips 85.4% 14.6% Average trip distance (mi)

362

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

363

Distance Is Not Dead: Social Interaction and Geographical Distance in the Internet Era  

E-Print Network (OSTI)

The Internet revolution has made long-distance communication dramatically faster, easier, and cheaper than ever before. This, it has been argued, has decreased the importance of geographic proximity in social interactions, transforming our world into a global village with a borderless society. We argue for the opposite: while technology has undoubtedly increased the overall level of communication, this increase has been most pronounced for local social ties. We show that the volume of electronic communications is inversely proportional to geographic distance, following a Power Law. We directly study the importance of physical proximity in social interactions by analyzing the spatial dissemination of new baby names. Counter-intuitively, and in line with the above argument, the importance of geographic proximity has dramatically increased with the internet revolution.

Goldenberg, Jacob

2009-01-01T23:59:59.000Z

364

MEDICAL CONSENT AGREEMENT If I should require medical treatment because of injury or illness during the trip, I consent to such  

E-Print Network (OSTI)

MEDICAL CONSENT AGREEMENT If I should require medical treatment because of injury or illness during/or accident insurance for trip participants and I agree to be financially responsible for any medical bills incurred as a result of an emergency or other medical treatment I may require while participating

Dyer, Bill

365

Helsinki Journal, Entry 20, December 17, 2006 I am writing this entry on the day we returned to Helsinki from our trip to Norway  

E-Print Network (OSTI)

and Viking Ship Museums ┬ş Norwegians revere their famous explorers. I found each of these sights deeply. #12;One of the major highlights of the trip, however, was that we were able to meet with some distant coursin. It's difficult, at this point, to comment objectively on what it means to meet distant family

Bardsley, John

366

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Usage Overall fuel economy (mpg) 139 Overall electrical energy consumption (AC Wh/mi) 293 Number of trips┬╣ 76,425 Total distance traveled (mi) 609,737 Avg trip distance (mi) 8.0 Avg distance traveled per day when the vehicle was driven (mi) 36.4 Avg number of trips between charging events 3.0 Avg distance traveled between charging events (mi) 24.1 Avg number of charging events per day when the vehicle was driven 1.5

367

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

368

On electric resistances for distance-regular graphs  

E-Print Network (OSTI)

We investigate the behavior of electric potentials on distance-regular graphs, and extend some results of a prior paper. Our main result, Theorem 4, shows(together with Corollary 3) that if distance is measured by the electric resistance between points then all points are close to being equidistant on a distance-regular graph with large valency. A number of auxiliary results are also presented.

Koolen, Jack; Park, Jongyook

2011-01-01T23:59:59.000Z

369

Hazardous Waste Minimum Distance Requirements (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Distance Requirements (Connecticut) Minimum Distance Requirements (Connecticut) Hazardous Waste Minimum Distance Requirements (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste

370

Spatial chemical distance based on atomic property fields  

E-Print Network (OSTI)

009-9316-x Spatial chemical distance based on atomicSimilarity of compound chemical structures often leads tonot always true, as distinct chemical scaffolds can exhibit

Grigoryan, A. V.; Kufareva, I.; Totrov, M.; Abagyan, R. A.

2010-01-01T23:59:59.000Z

371

Consumer Adoption of Online Banking: Does Distance Matter?  

E-Print Network (OSTI)

Adoption of Online Banking: Does Distance Matter? Beethikaand Goolsbee, Austan (2002). "Does the Internet Make Marketsto the closest bank branch does not affect the likelihood of

Khan, Beethika S.

2004-01-01T23:59:59.000Z

372

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

373

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

374

An extreme-distance approach to multiple criteria ranking  

Science Conference Proceedings (OSTI)

A distance approach based on extreme points, or predefined ideal and anti-ideal points, is proposed to improve on the TOPSIS (Technique for Order Performance [or Ordered Preference] by Similarity to Ideal Solution) method of multiple criteria ranking. ... Keywords: Comparative study, Distance-based ranking, Multiple criteria decision analysis, Multiple criteria ranking, TOPSIS

Ye Chen; D. Marc Kilgour; Keith W. Hipel

2011-03-01T23:59:59.000Z

375

Computing the FrÚchet distance between piecewise smooth curves  

Science Conference Proceedings (OSTI)

We consider the Frechet distance between two curves which are given as a sequence of m+n curved pieces. If these pieces are sufficiently well-behaved, we can compute the Frechet distance in O(mnlog(mn)) time. The decision version of the problem can be ... Keywords: Shape matching

GŘnter Rote

2007-08-01T23:59:59.000Z

376

A Novel Distributed Simulation Approach in Adaptive Distance Relaying  

Science Conference Proceedings (OSTI)

In this paper, an adaptive distance relaying strategy based on the global network simulation (GNS) concept is presented. The GNS concept is actually a distributed simulation approach (DSA) for piecewise analysis of large-scale power grids using diakoptics ... Keywords: adaptive distance relaying, coordination rules, diakoptics, distributed simulation approach (DSA), global network simulation (GNS), large change sensitivity (LCS), mutually coupled lines

V. Gohari Sadr; S.M. Kouhsari

2009-03-01T23:59:59.000Z

377

Optimal selection of robots by using distance based approach method  

Science Conference Proceedings (OSTI)

A deterministic quantitative model based on Distance Based Approach (DBA) method has been developed for evaluation, selection and ranking of robots, which is a concept hitherto not employed in selection problem of this kind. As a significant development ... Keywords: Distance based approach, Optimized selection, Ranking, Robots

Rishi Kumar; R. K. Garg

2010-10-01T23:59:59.000Z

378

A Collaborative Case Study System for Distance Learning  

Science Conference Proceedings (OSTI)

Distance Learning from Case Studies involves enabling collaboration between two or more learners at a distance on a case study activity. In this paper we present an empirical qualitative study that simulates a learning scenario in which a pair of subjects ...

Marta C. Rosatelli; John A. Self

2004-01-01T23:59:59.000Z

379

Measuring Dialect Distance Phonetically John Nerbonne and Wilbert Heeringa  

E-Print Network (OSTI)

- tance, both simple (based on atomic char- acters) and complex (based on feature vec- tors). The measurements using feature vec- tors varied according to whether city-block distance, Euclidean distance or (a sensitive, that city-block dis- tance is a good measure of phonetic over- lap of feature vectors

380

Solar Decathlon 2013: Going the Distance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going the Distance Going the Distance Solar Decathlon 2013: Going the Distance September 17, 2013 - 4:26pm Addthis Toggle Routes on/off Return to map Ôćĺ Solar Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are approximate. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Solar Decathlon 2013: In our new blog series, we're going behind the scenes to show you what it takes to compete in the Solar Decathlon. First up: Meet the teams competing this year and learn how they were selected. Part two looks at how the teams must master the art of fundraising. What does it take to design an energy-efficient, solar-powered house? Part three looks at creating a winning design.

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

382

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

383

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

384

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

385

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

386

1993 International conference on nuclear waste management and environmental remediation, Prague, Czech Republic, September 5--11, 1993. Combined foreign trip report  

SciTech Connect

The purpose of the trip was to attend the 1993 International Conference on Nuclear Waste Management and Environmental Remediation. The principal objective of this conference was to facilitate a truly international exchange of information on the management of nuclear wastes as well as contaminated facilities and sites emanating from nuclear operations. The conference was sponsored by the American Society of Mechanical Engineers, the Czech and Slovak Mechanical Engineering Societies, and the Czech and Slovak Nuclear Societies in cooperation with the Commission of the European Communities, the International Atomic Energy Agency, and the OECD Nuclear Agency. The conference was cosponsored by the American Nuclear Society, the Atomic Energy Society of Japan, the Canadian Nuclear Society, the (former USSR) Nuclear Society, and the Japan Society of Mechanical Engineers. This was the fourth in a series of biennial conferences, which started in Hong Kong, in 1987. This report summarizes shared aspects of the trip; however, each traveler`s observations and recommendations are reported separately.

Slate, S.C. [comp.; Allen, R.E. [ed.

1993-12-01T23:59:59.000Z

387

Generic Requirements Specification for Upgrading the Safety-Related Reactor Trip and Engineered Safety Features Actuation Systems in Westinghouse PWR Nuclear Power Plants  

Science Conference Proceedings (OSTI)

To address obsolescence concerns, a generic requirements specification for digital upgrades to existing reactor trip systems and engineered safety features actuation systems in a Westinghouse pressurized water reactor (PWR) was developed. System requirements are based on a 4-loop PWR with a solid-state protection system since this typifies the most advanced capability level. However, the specification is applicable to relay-based 2- and 3-loop plants where some or all of the advances in the newest solid-...

2001-10-19T23:59:59.000Z

388

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

389

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

390

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

391

Distance visualization of ultrascale data with explorable images  

Science Conference Proceedings (OSTI)

This talk presents a new approach to distance visualization of very large data sets output from scientific supercomputing. The processing power of massively parallel supercomputers increases at a rather fast rate, about an order of magnitude faster every ...

Kwan-Liu Ma; Anna Tikhonova; Carlos D. Correa

2010-07-01T23:59:59.000Z

392

Redshift-Independent Distances to Type Ia Supernovae  

E-Print Network (OSTI)

We describe a procedure for accurately determining luminosity distances to Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure, which may be used as an extension of any of the various distance determination methods currently in use, is based on marginalizing over redshift, removing the requirement of knowing $z$ a priori. We demonstrate that the Hubble diagram scatter of distances measured with this technique is approximately equal to that of distances derived from conventional redshift-specific methods for a set of 60 nearby SNe Ia. This indicates that accurate distances for cosmological SNe Ia may be determined without the requirement of spectroscopic redshifts, which are typically the limiting factor for the number of SNe that modern surveys can collect. Removing this limitation would greatly increase the number of SNe for which current and future SN surveys will be able to accurately measure distance. The method may also be able to be used for high-$z$ SNe Ia to determine cosmological density parameters without redshift information.

Brian J. Barris; John L. Tonry

2004-08-04T23:59:59.000Z

393

SBF Distances to Leo and Virgo using the HST  

E-Print Network (OSTI)

We have used archive HST WFPC2 data for three elliptical galaxies (NGC 3379 in the Leo I group, and NGC 4472 and NGC 4406 in the Virgo cluster) to determine their distances using the Surface Brightness Fluctuation (SBF) method as described by Tonry and Schneider (1988). A comparison of the HST results with the SBF distance moduli of Ciardullo et al (1993) shows significant disagreement and suggests that the r.m.s. error on these ground-based distance moduli is actually as large as +-0.25 mag. The agreement is only slightly improved when we compare our results with the HST and ground-based SBF distances from Ajhar et al (1997) and Tonry et al (1997); the comparison suggests that a lower limit on the error of the HST SBF distance moduli is +-0.17 mag. Overall, these results suggest that previously quoted measurement errors may underestimate the true error in SBF distance moduli by at least a factor of 2-3.

P. W. Morris; T. Shanks

1998-02-05T23:59:59.000Z

394

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

395

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

396

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

397

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

398

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

399

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

400

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

402

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

403

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

404

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

405

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

406

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

407

Combination of evidence in recommendation systems characterized by distance functions  

SciTech Connect

Recommendation systems for different Document Networks (DN) such as the World Wide Web (WWW), Digitnl Libarries, or Scientific Databases, often make use of distance functions extracted from relationships among documents and between documents and semantic tags. For instance, documents In the WWW are related via a hyperlink network, while documents in bibliographic databases are related by citation and collaboration networks.Furthermore, documents can be related to semantic tags such as keywords used to describe their content, The distance functions computed from these relations establish associative networks among items of the DN, and allow recommendation systems to identify relevant associations for iudividoal users. The process of recommendation can be improved by integrating associative data from different sources. Thus we are presented with a problem of combining evidence (about assochaons between items) from different sonrces characterized by distance functions. In this paper we summarize our work on (1) inferring associations from semi-metric distance functions and (2) combining evidence from different (distance) associative DN.

Rocha, L. M. (Luis Mateus)

2002-01-01T23:59:59.000Z

408

FastMeasure Distance Measuring Tools | Open Energy Information  

Open Energy Info (EERE)

FastMeasure Distance Measuring Tools FastMeasure Distance Measuring Tools Jump to: navigation, search Logo: FastMeasure Distance Measuring Tools Name FastMeasure Distance Measuring Tools Address 2890 Cherokee Lane Place Riverwoods, Illinois Zip 60015 Sector Vehicles Product Distance Measuring Instrument Year founded 2008 Number of employees 11-50 Phone number (888) 876-6050 Website http://www.fast-measure.com Coordinates 42.181686┬░, -87.898862┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.181686,"lon":-87.898862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

DIRECT Distances to Nearby Galaxies Using Detached Eclipsing Binaries and Cepheids. VI. Variables in the Central Part of M33  

E-Print Network (OSTI)

The DIRECT project aims to determine direct distances to two important galaxies in the cosmological distance ladder - M31 and M33 - using detached eclipsing binaries (DEBs) and Cepheids. We present the results of the first large-scale CCD-based search for variables in M33. We have observed two fields located in the central region of M33 for a total of 95 nights on the F. L. Whipple Observatory 1.2-m telescope and 36 nights on the Michigan-Dartmouth-MIT 1.3-m telescope. We have found a total of 544 variables, including 251 Cepheids and 47 eclipsing binaries. The catalog of variables is available online, along with finding charts and BVI light curve data (consisting of 8.2x10^4 individual measurements). The complete set of CCD frames is available upon request.

Macri, L M; Sasselov, D D; Krockenberger, M; Kaluzny, J

2001-01-01T23:59:59.000Z

410

CAKE Goes 'The Distance' with Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAKE Goes 'The Distance' with Solar CAKE Goes 'The Distance' with Solar CAKE Goes 'The Distance' with Solar February 2, 2011 - 10:00am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs CAKE. Whether it takes the form of cupcakes, birthday cake, the ever-popular cheesecake or even gluten-free - it unfailingly brightens up almost anyone's day. CAKE the band, however, has taken the sweetness to another level with their newest album Showroom of Compassion, which was produced using 100 percent solar energy. The group formed in 1991 and took the Northern California music scene by storm in the mid-nineties. Since then, they've become internationally renowned headliners. Earlier this month, CAKE released their sixth album, recorded in a studio in Sacramento powered entirely by solar power.

411

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

412

Transportation / Field Trips  

Science Conference Proceedings (OSTI)

... In the event that a child misses the transportation, parents may choose the ... their child's class on an outing and possibly transport themselves or their ...

2010-10-05T23:59:59.000Z

413

Trip to China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to China By row boat or by plane... 16 hours later Linda Field Patent Counsel Department of Energy Destination: Wuhan, China Purpose: Innovation Promotion in CERC - IP Clarity &...

414

Slips, Trips and Falls  

NLE Websites -- All DOE Office Websites (Extended Search)

Climb down a ladder one rung at a time Do not climb with tools in hand - use a tool belt Keep your body between the ladder side rails when climbing Do not lean...

415

Winter Field Trips  

NLE Websites -- All DOE Office Websites (Extended Search)

terrarium is merely to put a quart of rich damp soil in a clean wide-mouthed gallon jar, screw the lid on tight and set it near a window. That's all. Soon, dormant seeds...

416

Creating a Virtual HVAC Laboratory for Continuing/Distance Education  

E-Print Network (OSTI)

Facilities engineering is one technical field where lab-based continuing education programs can be delivered in a distance learning format. The widespread use of computer controls for optimizing the efficiency of a building's mechanical and electrical systems has made the "distance" element possible. Rather than traveling to individual buildings to make pressure, temperature, and flow measurements in person, facility engineers routinely access performance data over the Internet. This networking capability has been used in an educational setting to deliver interactive technical training to large numbers of undergraduate students and professional facilities engineers. Many students can access real time data from a single piece of HVAC equipment over the Internet.

William J. Hutzel

2001-01-01T23:59:59.000Z

417

Levenshtein Distance Technique in Dictionary Lookup Methods: An Improved Approach  

E-Print Network (OSTI)

Dictionary lookup methods are popular in dealing with ambiguous letters which were not recognized by Optical Character Readers. However, a robust dictionary lookup method can be complex as apriori probability calculation or a large dictionary size increases the overhead and the cost of searching. In this context, Levenshtein distance is a simple metric which can be an effective string approximation tool. After observing the effectiveness of this method, an improvement has been made to this method by grouping some similar looking alphabets and reducing the weighted difference among members of the same group. The results showed marked improvement over the traditional Levenshtein distance technique.

Haldar, Rishin

2011-01-01T23:59:59.000Z

418

Evidence against correlations between nuclear decay rates and Earth-Sun distance  

E-Print Network (OSTI)

distance of the source to the Sun. This work was supportedNuclear Decay Rates and Earth-Sun Distance Eric B. Normanand 241 Am and the Earth-Sun distance. We find no evidence

Norman, Eric B.

2009-01-01T23:59:59.000Z

419

Total lightning observations of severe convection over North Texas  

E-Print Network (OSTI)

Five severe convective cells over North Texas from three separate dates were examined to determine what three dimensional, or ôtotalö lightning data can add to the understanding of a convective cellĺs intensity, propagation, and severe weather potential. Total lightning data were obtained from Vaisala Inc.ĺs Dallas/Fort Worth (D/FW) Lightning Detection and Ranging (LDAR) network. Radar data from two Weather Surveillance Radar ľ 1988 Doppler (WSR-88D) sites were used for position data and information regarding the intensity and kinematic properties of each cell. Total lightning products used by the National Weather Service Forecast Office in Fort Worth, Texas were compared to total lightning flash rate; a quantity that has been shown to be correlated to changes in cell intensity inferred from other sources, such as radar and satellite data. These products, specifically flash extent density (FED) were also compared to CG flash rate and radar derived measures from the WSR-88D sites. The results of this work show that FED and total flash rate are well correlated, with an average Pearson correlation value of 0.73, indicating that previous total flash rate results may also apply to FED. Lightning hooks, holes, and notches in FED displays indicated likely updraft regions, while appendages were observed to develop prior to deviant motion with two supercells. These results, combined with a greater update frequency provided a useful complement to radar data in the warning decision process. FED jumps were observed prior to several severe weather reports, indicating that total lightning activity may be related to updraft strength as found in past studies. However, FED jumps were sometimes observed without any associated severe event. More work is clearly needed to define what FED changes are of most importance in the short-term prediction of storm severity. The usefulness of the total lightning data on these dates was dependant upon LDAR network status and distance of the cell from the network center. The results of this study suggest that combining total flash rate trends with visual displays of FED provides the greatest added benefit to forecasters in maintaining situational awareness during warning operations.

McKinney, Christopher Michael

2008-08-01T23:59:59.000Z

420

Distance between quantum states in the presence of initial qubit-environment correlations: A comparative study  

Science Conference Proceedings (OSTI)

The time evolution of the trace distance between two states of an open quantum system may increase due to initial system-environment correlations, thus exhibiting a breakdown of distance contractivity of the reduced dynamics. We analyze how the time evolution of the distance depends on the chosen distance measure. Here we elucidate the behavior of the trace distance, the Hilbert-Schmidt distance, the Bures distance, the Hellinger distance, and the quantum Jensen-Shannon divergence for two system-environment setups, namely a qubit bilinearly coupled to an infinite and a finite-size environment with the latter composed of harmonic oscillators.

Dajka, Jerzy; Luczka, Jerzy; Haenggi, Peter [Institute of Physics, University of Silesia, 40-007 Katowice (Poland); Institute of Physics, University of Augsburg, D-86135 Augsburg (Germany)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Auctions by price and distance via cellular phones  

Science Conference Proceedings (OSTI)

We consider e-commerce auctions via cellular phones in which the winner is selected based on two factors: the requested price and the promise to provide a service on time. The auctioneer can verify that the bidder intends to provide the service by tracking ... Keywords: Auctions, Cellular, Distance, Electronic commerce, Multi-attribute, Simulation, Strategies

Yosi Ben Asher; Mohsen Abu Saleh

2011-03-01T23:59:59.000Z

422

A proposal for detecting hidden explosives to high distance  

Science Conference Proceedings (OSTI)

In this paper author describes a proposal for an apparatus utilising o nuclear physics techniques to identify hidden explosives to a distance of several tenth of meters. The apparatus uses a modified PFNA (Pulsed Fast neutron Analysis) with the gamma ... Keywords: application of nuclear physics, electronic instrumentation, explosives detection, security apparatus

Carlo Artemi

2008-07-01T23:59:59.000Z

423

Computing the Edit-Distance between Unrooted Ordered Trees  

Science Conference Proceedings (OSTI)

An ordered tree is a tree in which each node's incident edges are cyclically ordered; think of the tree as being embedded in the plane. Let A and B be two ordered trees. The edit distance between A and B is the minimum cost ...

Philip N. Klein

1998-08-01T23:59:59.000Z

424

Move-to-Front, Distance Coding, and Inversion Frequencies revisited  

Science Conference Proceedings (OSTI)

Move-to-Front, Distance Coding and Inversion Frequencies are three simple and effective techniques used to process the output of the Burrows-Wheeler Transform. In this paper we provide the first complete comparative analyses of these techniques, establishing ... Keywords: Burrows-Wheeler Transform, Data Compression, Empirical entropy

Travis Gagie; Giovanni Manzini

2010-06-01T23:59:59.000Z

425

Free Energy Surfaces from Single-Distance Information Philipp Schuetz,  

E-Print Network (OSTI)

Free Energy Surfaces from Single-Distance Information Philipp Schuetz, Rene┬┤ Wuttke, Benjamin We propose a network-based method for determining basins and barriers of complex free energy surfaces for the iterative determination of individual basins by the minimum-cut-based free energy profile, a barrier

Caflisch, Amedeo

426

Weighted Distance Transforms for Images Using Elongated Voxel Grids  

Science Conference Proceedings (OSTI)

In this paper we investigate weighted distance transforms in 3D images using elongated voxel grids. We use a local neighbourhood of size 3 Î 3 Î 3 and assume a voxel grid with equal resolution along two axes and lower along the third. The weights (local ...

Ida-Maria Sintorn; Gunilla Borgefors

2002-04-01T23:59:59.000Z

427

UHF measurement of breathing and heartbeat at a distance  

Science Conference Proceedings (OSTI)

The detection of breathing and heartbeat from a distance is important for medical triage and mass casualty events as well as routine monitoring of higher-risk patients. Typical approaches include wiring up patients to devices and wearable devices, but ... Keywords: UHF, breathing, heartbeat, radar

Jerry Silvious; David Tahmoush

2010-01-01T23:59:59.000Z

428

Total Cost of Motor-Vehicle Use  

E-Print Network (OSTI)

Grand total social cost of highway transportation Subtotal:of alternative transportation investments. A social-costtransportation option that has These costs will be inefficiently incurred if people do not fully lower total social costs.

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

429

Contractor: Contract Number: Contract Type: Total Estimated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Earned FY2008 2,550,203 FY2009 39,646,446 FY2010 64,874,187 FY2011 66,253,207 FY2012...

430

Total cost model for making sourcing decisions  

E-Print Network (OSTI)

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

431

Fractionally total colouring Gn,p  

Science Conference Proceedings (OSTI)

We study the fractional total chromatic number of G"n","p as p varies from 0 to 1. We also present an algorithm that computes the fractional total chromatic number of a random graph in polynomial expected time. Keywords: Fractional total colouring, Graph colouring, Random graphs

Conor Meagher; Bruce Reed

2008-04-01T23:59:59.000Z

432

Weighted distance transforms generalized to modules and their computation on point lattices  

Science Conference Proceedings (OSTI)

This paper presents the generalization of weighted distances to modules and their computation through the chamfer algorithm on general point lattices. The first part is dedicated to formalization of definitions and properties (distance, metric, norm) ... Keywords: Chamfer algorithm, Distance transform, Non-standard grids, Weighted distance

CÚline Fouard; Robin Strand; Gunilla Borgefors

2007-09-01T23:59:59.000Z

433

Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models  

E-Print Network (OSTI)

The Szekeres inhomogeneous models can be used to model the true lumpy universe that we observe. This family of exact solutions to Einstein's equations was originally derived with a general metric that has no symmetries. In this work, we develop and use a framework to integrate the angular diameter and luminosity distances in the general Szekeres models. We use the affine null geodesic equations in order to derive a set of first-order ordinary differential equations that can be integrated numerically to calculate the partial derivatives of the null vector components. These equations allow the integration in all generality of the distances in the Szekeres models and some examples are given. The redshift is determined from simultaneous integration of the null geodesic equations. This work does not assume spherical or axial symmetry, and the results will be useful for comparisons of the general Szekeres inhomogeneous models to current and future cosmological data.

Anthony Nwankwo; Mustapha Ishak; John Thompson

2010-05-17T23:59:59.000Z

434

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

435

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

436

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

437

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

438

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

439

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

440

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

442

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

443

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

444

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

445

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

446

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

447

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

448

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

449

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

450

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

451

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

452

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

453

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

454

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

455

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

456

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

457

TotalView Parallel Debugger at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

458

Extending the redshift-distance relation in Cosmological General Relativity to higher redshifts  

E-Print Network (OSTI)

The redshift-distance modulus relation, the Hubble Diagram, derived from Cosmological General Relativity has been extended to arbitrarily large redshifts. Numerical methods were employed and a density function was found that results in a valid solution of the field equations at all redshifts. The extension has been compared to 302 type Ia supernova data as well as to 69 Gamma-ray burst data. The latter however do not not truly represent a `standard candle' as the derived distance modulii are not independent of the cosmology used. Nevertheless the analysis shows a good fit can be achieved without the need to assume the existence of dark matter. The Carmelian theory is also shown to describe a universe that is always spatially flat. This results from the underlying assumption of the energy density of a cosmological constant $\\Omega_{\\Lambda} = 1$, the result of vacuum energy. The curvature of the universe is described by a \\textit{spacevelocity} metric where the energy content of the curvature at any epoch is $\\Omega_K = \\Omega_{\\Lambda} - \\Omega = 1-\\Omega$, where $\\Omega$ is the matter density of the universe. Hence the total density is always $\\Omega_K + \\Omega = 1$

John G. Hartnett

2007-05-22T23:59:59.000Z

459

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

460

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

462

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

463

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

464

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

465

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

466

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

467

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

468

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

469

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

470

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

471

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

472

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

473

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

474

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

475

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

476

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

477

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

478

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

479

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

480

Total U.S. Housing Units.......................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Million U.S. Housing Units...

Note: This page contains sample records for the topic "trips total distance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

482

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

483

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

484

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

485

High speed, long distance, data transmission multiplexing circuit  

DOE Patents (OSTI)

A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100 Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit.

Mariotti, Razvan (Boulder, CO)

1991-01-01T23:59:59.000Z

486

A high speed, long distance, data transmission multiplexing circuit  

DOE Patents (OSTI)

A high speed serial data transmission multiplexing circuit, which is operable to accurately transmit data over long distances (up to 3 Km), and to multiplex, select and continuously display real time analog signals in a bandwidth from DC to 100Khz. The circuit is made fault tolerant by use of a programmable flywheel algorithm, which enables the circuit to tolerate one transmission error before losing synchronization of the transmitted frames of data. A method of encoding and framing captured and transmitted data is used which has a low overhead and prevents some particular transmitted data patterns from locking an included detector/decoder circuit. 9 figs.

Mariotti, R.

1990-01-30T23:59:59.000Z

487

Gamma ray burst distances and the timescape cosmology  

E-Print Network (OSTI)

Gamma ray bursts can potentially be used as distance indicators, providing the possibility of extending the Hubble diagram to redshifts ~7. Here we follow the analysis of Schaefer (2007), with the aim of distinguishing the timescape cosmological model from the \\LambdaCDM model by means of the additional leverage provided by GRBs in the range 2 < z < 7. We find that the timescape model fits the GRB sample slightly better than the \\LambdaCDM model, but that the systematic uncertainties are still too little understood to distinguish the models.

Peter R. Smale

2011-07-27T23:59:59.000Z

488

A comparison of standard evasion scenarios at near regional distances  

SciTech Connect

We performed numerical simulations of three nuclear testing evasion scenarios. These calculations were done in two parts. The first part was done near source (within 10 km) with a non-linear weapons effects code. Particle velocity histories from the non-linear code were linked to an elastic linear finite-difference code for the second part. Seismic waveforms from the evasion scenario calculations were compared with the waveforms for a non-evasive explosion calculation at near regional distances. The results of this comparison suggest that it may be important to include realistic stratigraphy in such simulations: the overall wave amplitude in the present simulations is reduced by only a factor of 3-5 in contradiction to factors of 20-100 in {open_quotes}classical{close_quotes} decoupling analyses for ideal (i.e., unlayered) media. Two of the evasion scenarios simulated retain explosive waveform characteristics at near regional distances, while the third scenario indicates that certain source geometries might lead to more non-explosive (i.e., earthquake-like) seismic signals.

Bos, R.; App, F.; Jones, E.; Dey, T.; Kamm, J.

1997-01-01T23:59:59.000Z

489

Obtaining oblique technique source-to-skin distances for irregular field (Clarkson) calculations: The Mayo Off-axis Distance Indicator  

Science Conference Proceedings (OSTI)

Significant dose inhomogeneities may exist between the supraclavicular fossa (SCF) and the internal mammary chain (IMC) regions in the irregular L-shaped (hockey stick) field associated with breast cancer treatments. This dose inhomogeneity exists, in part, because of a positive air gap in the SCF and a negative air gap in the IMC locations. Independent of treatment technique, (i.e., whether anterior-posterior (AP) or oblique fields are used), accurate source-to-skin distance (SSD) values for the SCF, IMC, and axilla are necessary when doing an irregular field (Clarkson) dose calculation. However, when an oblique technique is used to treat the hockey stick field, obtaining non-central-axis SSDs is not as straightforward as when an AP technique is employed. The Mayo Off-axis Distance Indicator was constructed to slide into the blocking tray slot of the simulator or treatment machine. This mechanical measuring device provides quick and accurate SSD measurements for non-central-axis points under either AP or, more importantly, oblique treatment conditions.

Lajoie, W.N. (Mayo Medical Center, Rochester, MN (USA))

1988-09-01T23:59:59.000Z

490

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

491

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

492

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

493

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

494

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

495

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

496

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

497

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

498

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

499

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

500

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0