National Library of Energy BETA

Sample records for triple axis spectrometer

  1. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster University Bertram...

  2. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster University Bertram Brockhouse 'attended the University of British Columbia, from which he graduated in 1947 with first class honours in mathematics and physics. He entered the University of Toronto that same year ... . He obtained his Ph.D. in 1950, with a thesis entitled "The Effect of Stress and Temperature upon the Magnetic Properties of

  3. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  4. Monolithic spectrometer

    DOE Patents [OSTI]

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  5. Monolithic spectrometer

    DOE Patents [OSTI]

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  6. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  7. Correlation spectrometer

    DOE Patents [OSTI]

    Sinclair, Michael B. (Albuquerque, NM); Pfeifer, Kent B. (Los Lunas, NM); Flemming, Jeb H. (Albuquerque, NM); Jones, Gary D. (Tijeras, NM); Tigges, Chris P. (Albuquerque, NM)

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  8. Multidimensional spectrometer

    DOE Patents [OSTI]

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  9. FAST NEUTRON SPECTROMETER

    DOE Patents [OSTI]

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  10. SCINTILLATION SPECTROMETER

    DOE Patents [OSTI]

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  11. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  12. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  13. MASS SPECTROMETER

    DOE Patents [OSTI]

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  14. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  15. Vertical Axis Wind Turbine

    Energy Science and Technology Software Center (OSTI)

    2002-04-01

    Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). VAWT-SAL Vertical Axis Wind Turbine- Stochastic Aerodynamic Loads Ver 3.2 numerically simulates the stochastic (random0 aerodynamic loads of the Vertical-Axis Wind Turbine (VAWT) created by the atomspheric turbulence. The program takes into account the rotor geometry, operating conditions, and assumed turbulence properties.

  16. Triple acting radial seal

    SciTech Connect (OSTI)

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  17. Mergers and obliquities in stellar triples

    SciTech Connect (OSTI)

    Naoz, Smadar; Fabrycky, Daniel C.

    2014-10-01

    Many close stellar binaries are accompanied by a faraway star. The 'eccentric Kozai-Lidov' (EKL) mechanism can cause dramatic inclination and eccentricity fluctuations, resulting in tidal tightening of inner binaries of triple stars. We run a large set of Monte Carlo simulations, including the secular evolution of the orbits, general relativistic precession, and tides, and we determine the semimajor axis, eccentricity, inclination, and spin-orbit angle distributions of the final configurations. We find that the efficiency of forming tight binaries (? 16 days) when taking the EKL mechanism into account is ?21%, and about 4% of all simulated systems ended up in a merger event. These merger events can lead to the formation of blue stragglers. Furthermore, we find that the spin-orbit angle distribution of the inner binaries carries a signature of the initial setup of the system; thus, observations can be used to disentangle close binaries' birth configuration. The resulting inner and outer final orbits' period distributions and their estimated fraction suggest that secular dynamics may be a significant channel for the formation of close binaries in triples and even blue stragglers.

  18. Mobile Ice Nucleus Spectrometer

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Kok, G. L.

    2012-05-07

    This first year report presents results from a computational fluid dynamics (CFD) study to assess the flow and temperature profiles within the mobile ice nucleus spectrometer.

  19. HELIcal Orbit Spectrometer (HELIOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEDLP Awards 2015 Awards 2012 Awards Learn More 2012 HEDLP Awards 2015 HEDLP Awards

    HELIOS: The Helical Orbit Spectrometer at ATLAS B.B.Back Argonne National Laboratory B.B.Back, Argonne National Laboratory PHY Colloquium May 21, 2010 2 Outline: Motivation for studying light-ion reactions in inverse kinematics The HELIOS Spectrometer concept The Argonne implementation of HELIOS Commissioning experiment Planned upgrades Helios elsewhere B.B.Back, Argonne National Laboratory PHY Colloquium May

  20. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  1. Triple helix purification and sequencing

    DOE Patents [OSTI]

    Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.

    1995-01-01

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.

  2. Triple helix purification and sequencing

    DOE Patents [OSTI]

    Wang, R.; Smith, L.M.; Tong, X.E.

    1995-03-28

    Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.

  3. Broad band waveguide spectrometer

    DOE Patents [OSTI]

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  4. Energy Efficient Triple IG Automation EEE (Triple-E)

    SciTech Connect (OSTI)

    McGlinchy, Timothy B

    2013-02-28

    GED Integrated Solutions collaborated with US window and door manufactures to investigate, design and verify technical and cost feasibility for producing high performance, high volume, low material and labor cost window, utilizing a modified window design containing a triple insulating glass unit (IGU). This window design approach when combined with a high volume IGU manufacturing system, can produce R5 rated windows for an approximate additional consumer cost of only $4 per square foot when compared to conventional Low-E argon dual pane IG windows, resulting in a verify practical, reliable and affordable high performance window for public use.

  5. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Laboratory Mass Spectrometer Laboratory A look inside the recently updated Mass Spectrometer Facility managed by Staff Scientish Hao Zhang

  6. 2015 triple e | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Registration Fee: Free Venue: National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236 Phone: 412-386-4824 tripleEinteraction.jpg Agenda Menu This...

  7. Sandia Energy - Experts Call for Triple Bottom Line Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experts Call for Triple Bottom Line Approach to National Energy Policy Home Energy News News & Events Mission VisionMission Experts Call for Triple Bottom Line Approach to...

  8. EECBG Success Story: Police Station Triples Solar Power - and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police ...

  9. Prototype Neutron Energy Spectrometer

    SciTech Connect (OSTI)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  10. Resonant ultrasound spectrometer

    DOE Patents [OSTI]

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  11. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  12. Triple-effect absorption chiller cycles

    SciTech Connect (OSTI)

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  13. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  14. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  15. Vertical axis wind turbine airfoil

    DOE Patents [OSTI]

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  16. Two-axis angular effector

    DOE Patents [OSTI]

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  17. Three axis velocity probe system

    DOE Patents [OSTI]

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  18. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  19. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  20. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  1. Gamma ray spectrometer for ITER

    SciTech Connect (OSTI)

    Gin, D.; Chugunov, I.; Shevelev, A.; Khilkevitch, E.; Doinikov, D.; Naidenov, V.; Pasternak, A.; Polunovsky, I.; Kiptily, V.

    2014-08-21

    Gamma diagnostics is considered to be primary for the confined α-particles and runaway electrons measurements on ITER. The gamma spectrometer will be embedded into a neutron dump of the ITER Neutral Particle Analyzer diagnostic complex. It will supplement NPA measurements on the fuel isotope ratio and confined alphas/fast ions. In this paper an update on ITER gamma spectrometer developments is given. A new geometry of the system is described and detailed analysis of expected signals for the spectrometer is presented.

  2. Method for calibrating mass spectrometers

    DOE Patents [OSTI]

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  3. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  4. Global Nuclear Energy Partnership Triples in Size to 16 Members...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On...

  5. Flexible helical-axis stellarator

    DOE Patents [OSTI]

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  6. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  7. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  8. MICE Spectrometer Magnet System Progress

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  9. Time of flight mass spectrometer

    DOE Patents [OSTI]

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  10. Triple plasmon resonance of bimetal nanoshell

    SciTech Connect (OSTI)

    Shirzaditabar, Farzad; Saliminasab, Maryam; Arghavani Nia, Borhan

    2014-07-15

    In this paper, light absorption spectra properties of a bimetal multilayer nanoshell based on quasi-static approach are investigated. Comparing with silver-dielectric-silver and silver-dielectric-gold nanoshells, gold-dielectric-silver nanoshells have three intense and separated plasmon peaks which are more suitable for multiplex biosensing. Calculations show that relatively small thickness of outer silver shell and large dielectric constant of middle dielectric layer of gold-dielectric-silver nanoshell are suitable to obtain the triple plasmon resonance.

  11. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  12. Dual Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT DARHT Facility: A critical component of stockpile stewardship A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Dominic Tafoya and Dave Honaberger prepare a refurbished DARHT (Dual Axis Radiographic Hydrotest Facility) 2nd axis accelerator cell for magnetic axis alignment measurements. Contact Group Leader Terry Priestley (505) 665-1330 Email Deputy Group Leader Tim

  13. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect (OSTI)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  14. Dual Axis Radiographic Hydrodynamic Test Facility | National...

    National Nuclear Security Administration (NNSA)

    Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national ... radiographic images of the imploding test object, in which materials are moving at ...

  15. Helical axis stellarator with noninterlocking planar coils

    DOE Patents [OSTI]

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  16. Concerning the Spatial Heterodyne Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  17. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    engineering data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): engineering data Atmospheric Sounder Spectrometer for Infrared Spectral ...

  18. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  19. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  20. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ionmore » injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.« less

  1. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadrupole Mass Spectrometry

    SciTech Connect (OSTI)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-06-24

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. Lastly, the sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  2. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadruple Mass Spectrometry

    SciTech Connect (OSTI)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-07-21

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  3. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  4. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer Facility Mass Spectrometer Facility The PARC Mass Spectrometer Facility uses customized instrumentation to directly measure the individual polypeptide mass of different light-harvesting complexes to do assignment to specific gene products and investigate protein processing. Newly developed techniques are also applied to measure the mass of native protein complexes. Structural information of complexes is extracted by combining protein chemical modification and H/D exchange

  5. ARM: Ultrahigh Sensitivity Aerosol Spectrometer (Dataset) | Data...

    Office of Scientific and Technical Information (OSTI)

    Ultrahigh Sensitivity Aerosol Spectrometer Authors: Cynthia Salwen ; Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Annette Koontz ; Annette ...

  6. The Aerodynamic, Dual- Wavelength Optical Spectrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic, Dual- Wavelength Optical Spectrometer James C. Wilson Mechanical and ... 467. * Aerodynamic Particle Sizing - Wilson J.C., Liu B.Y.H., "Aerodynamic Particle ...

  7. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    SciTech Connect (OSTI)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  8. Actuator assembly including a single axis of rotation locking member

    DOE Patents [OSTI]

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  9. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home ... Google + Vimeo Newsletter Signup SlideShare Innovative Offshore Vertical-Axis Wind Turbine ...

  10. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to...

  11. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  12. Modular off-axis solar concentrator

    DOE Patents [OSTI]

    Plesniak, Adam P; Hall, John C

    2015-01-27

    A solar concentrator including a housing defining a vertical axis and including a receiving wall connected to a reflecting wall to define an internal volume and an opening into the internal volume, wherein the reflecting wall defines at least one primary optical element, and wherein at least a portion of the reflecting wall includes a layer of reflective material, the housing further including a cover connected to the receiving wall and the reflecting wall to seal the opening, and at least one receiver mounted on the receiving wall such that a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, the receiver including at least one photovoltaic cell.

  13. Enclosed, off-axis solar concentrator

    DOE Patents [OSTI]

    Benitez, Pablo; Grip, Robert E; Minano, Juan C; Narayanan, Authi A; Plesniak, Adam; Schwartz, Joel A

    2013-11-26

    A solar concentrator including a housing having receiving wall, a reflecting wall and at least two end walls, the receiving, reflecting and end walls defining a three-dimensional volume having an inlet, wherein a vertical axis of the housing is generally perpendicular to the inlet, a receiver mounted on the receiving wall of the housing, the receiver including at least one photovoltaic cell, wherein a vertical axis of the receiver is disposed at a non-zero angle relative to the vertical axis of the housing, at least one clip disposed on the reflecting wall an optical element received within the three-dimensional volume, the optical element including at least one tab, the tab being engaged by the clip to align the optical element with the receiver, and a window received over the inlet to enclose the housing.

  14. Aeroelastically coupled blades for vertical axis wind turbines

    DOE Patents [OSTI]

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  15. Structure of hydrogen triple flames and premixed flames compared

    SciTech Connect (OSTI)

    Owston, Rebecca; Abraham, John

    2010-08-15

    Triple flames consisting of lean, stoichiometric, and rich reaction zones may be produced in stratified mixtures undergoing combustion. Such flames have unique characteristics that differ from premixed flames. The present work offers a direct comparison of the structure and propagation behavior between hydrogen/air triple and premixed flames through a numerical study. Important similarities and differences are highlighted. Premixed flames are generated by spark-igniting initially quiescent homogeneous mixtures of hydrogen and air in a two-dimensional domain. Triple flame results are also generated in a two-dimensional domain by spark-igniting initially quiescent hydrogen/air stratified layers. Detailed flame structure and chemical reactivity information is collected along isocontours of equivalence ratio 0.5, 1.0, and 3.0 in the triple flame for comparison with premixed flames at the same equivalence ratios. Full chemistry and effective binary diffusion coefficients are employed for all computations. (author)

  16. Police Station Triples Solar Power – and Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs.

  17. Two-axis tracking solar collector mechanism

    SciTech Connect (OSTI)

    Johnson, K.C.

    1990-11-06

    This patent describes a tracking solar collector mechanism. It comprises: a stationary base structure which supports the tracking components; two parallel rows of uniformly spaced axial polar bearings attached to the base structure, each row comprising at least one bearing, wherein each member bearing of each row is coaligned with an associated bearing of the other row, the line joining each pair of coaligned polar bearings defining an associated polar tracking axis wherein the pair's polar axes are mutually parallel and are adapted to be aligned with the Earth's axis; at least one tracking module, each of which is supported by and turns on one of the pairs of coaligned polar bearings.

  18. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C.

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  19. TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument...

    Office of Scientific and Technical Information (OSTI)

    TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook Citation Details In-Document Search Title: TSI Model 3936 Scanning Mobility Particle Spectrometer ...

  20. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    394 PPPL- 4394 A Spatially Resolving X-ray Crystal Spectrometer for Measurement of ... Fusion Links A spatially resolving x-ray crystal spectrometer for measurement of ...

  1. Development of a Spatially Resolving X-Ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a Spatially Resolving X-Ray Crystal Spectrometer For Measurement of ... Links Development of a spatially resolving x-ray crystal spectrometer for measurement of ...

  2. Development Of a Spatially Resolving X-ray Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Development Of a Spatially Resolving X-ray Crystal Spectrometer For ... Title: Development Of a Spatially Resolving X-ray Crystal Spectrometer For Measurement Of ...

  3. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    1 data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): channel 1 data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  4. ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology...

    Office of Scientific and Technical Information (OSTI)

    summary data Title: ARM: Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST): summary data Atmospheric Sounder Spectrometer for Infrared Spectral Technology ...

  5. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  6. Predicted thermal performance of triple vacuum glazing

    SciTech Connect (OSTI)

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  7. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  8. High payload six-axis load sensor

    DOE Patents [OSTI]

    Jansen, John F.; Lind, Randall F.

    2003-01-01

    A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

  9. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect (OSTI)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  10. EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ormond Beach Triples Energy Cost Savings Projections EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections July 9, 2013 - 1:42pm Addthis Thanks to funding from the Energy Department's Energy Efficiency and Conservation Block Grant Program, Ormond Beach was able to make energy efficiency upgrades to 16 city-owned buildings and is now saving more than $45,000 a year on its energy costs. | Photo courtesy of the City of Ormond Beach, Florida. Thanks to

  11. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  12. Offshore Ambitions for the Vertical-Axis Wind Turbine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambitions for the Vertical-Axis Wind Turbine - Sandia Energy Energy Search Icon Sandia ... Offshore Ambitions for the Vertical-Axis Wind Turbine HomeEnergy, News, News & Events, ...

  13. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  14. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  15. Three-axis asymmetric radiation detector system

    DOE Patents [OSTI]

    Martini, Mario Pierangelo (Oak Ridge, TN); Gedcke, Dale A. (Oak Ridge, TN); Raudorf, Thomas W. (Oak Ridge, TN); Sangsingkeow, Pat (Knoxville, TN)

    2000-01-01

    A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

  16. Scalable in-memory RDFS closure on billions of triples.

    SciTech Connect (OSTI)

    Goodman, Eric L.; Mizell, David

    2010-06-01

    We present an RDFS closure algorithm, specifically designed and implemented on the Cray XMT supercomputer, that obtains inference rates of 13 million inferences per second on the largest system configuration we used. The Cray XMT, with its large global memory (4TB for our experiments), permits the construction of a conceptually straightforward algorithm, fundamentally a series of operations on a shared hash table. Each thread is given a partition of triple data to process, a dedicated copy of the ontology to apply to the data, and a reference to the hash table into which it inserts inferred triples. The global nature of the hash table allows the algorithm to avoid a common obstacle for distributed memory machines: the creation of duplicate triples. On LUBM data sets ranging between 1.3 billion and 5.3 billion triples, we obtain nearly linear speedup except for two portions: file I/O, which can be ameliorated with the additional service nodes, and data structure initialization, which requires nearly constant time for runs involving 32 processors or more.

  17. Triple effect absorption chiller utilizing two refrigeration circuits

    DOE Patents [OSTI]

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  18. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

    SciTech Connect (OSTI)

    Geisz, J. F.

    2008-11-01

    Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

  19. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  20. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  1. Imaging mass spectrometer with mass tags

    DOE Patents [OSTI]

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  2. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  3. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  4. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  5. Vertical-Axis Wind Turbine Mesh Generator

    SciTech Connect (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitates specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.

  6. Vertical-Axis Wind Turbine Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2014-01-24

    VAWTGen is a mesh generator for creating a finite element beam mesh of arbitrary vertical-axis wind turbines (VAWT). The software accepts input files specifying tower and blade structural and aerodynamic descriptions and constructs a VAWT using a minimal set of inputs. VAWTs with an arbitrary number of blades can be constructed with or without a central tower. Strut connections between the tower and blades can be specified in an arbitrary manner. The software also facilitatesmore » specifying arbitrary joints between structural components and concentrated structural tenns (mass and stiffness). The output files which describe the VAWT configuration are intended to be used with the Offshore Wind ENergy Simulation (OWENS) Toolkit software for structural dynamics analysis of VAWTs. Furthermore, VAWTGen is useful for visualizing output from the OWENS analysis software.« less

  7. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  8. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  9. Two-axis tracking solar collector mechanism

    DOE Patents [OSTI]

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  10. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOE Patents [OSTI]

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  11. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  12. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  13. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  14. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect (OSTI)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  15. Portable gas chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  16. Portable gas chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  17. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  18. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  19. Quench anaylsis of MICE spectrometer superconducting solenoid

    SciTech Connect (OSTI)

    Kashikhin, Vladimir; Bross, Alan; Prestemon, Soren; / /LBL, Berkeley

    2011-09-01

    MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

  20. Characteristic of a triple-cathode vacuum arc plasma source

    SciTech Connect (OSTI)

    Xiang, W.; Li, M.; Chen, L.

    2012-02-15

    In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.

  1. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect (OSTI)

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, ?d?, of ?35 and ?44?nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d???35?nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500?D{sub gb} within the temperature interval from 420?K to 470?K.

  2. Frequency-feedback cavity enhanced spectrometer

    DOE Patents [OSTI]

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  3. Time Dispersive Spectrometer Using Digital Switching Means

    DOE Patents [OSTI]

    Tarver, III, Edward E.; Siems, William F.

    2004-09-07

    Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

  4. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  5. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  6. The GRETINA Spectrometer.docx.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GRETINA Spectrometer GRETINA is a first-generation, HPGe-based, gamma-ray tracking detector. It uses highly segmented Ge crystals to provide position and energy information on each gamma-ray interaction point. This capability enables precise event-by-event Doppler correction of events from the position of the first interaction point, which allows the array to maintain spectroscopic resolution for sources with high recoil velocity. It also allows GRETINA to track the path of the incident

  7. Lab's Impact on Colorado's Economy Triples - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab's Impact on Colorado's Economy Triples NREL expands workforce, campus and contracts over three years February 11, 2011 The presence of the U.S. Department of Energy's National Renewable Energy Laboratory in Colorado is a $714 million annual boost to the state's economy, according to data compiled in a soon to be released analysis by the University of Colorado. That's more than three times what it was just three years ago, when the economic impact was $192 million. NREL is the nation's

  8. Sandia's Algae Nutrient Recycling Project Is a Triple Win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algae Nutrient Recycling Project Is a Triple Win - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  9. Expert overseer for mass spectrometer system

    DOE Patents [OSTI]

    Filby, Evan E.; Rankin, Richard A.

    1991-01-01

    An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

  10. Method of multiplexed analysis using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E. (Richland, WA); Smith, Richard D. (Richland, WA)

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  11. DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT: Dual-Axis Radiographic Hydrodynamic Test Facility DARHT, supports a critical component of LANL's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our nation's stockpile. Los Alamos scientists built DARHT, the world's most powerful x-ray machine, to analyze mockups of nuclear weapons. At the Los Alamos National Laboratory (LANL), the Dual-Axis Radiographic Hydrodynamic Test Facility, or DARHT,

  12. Solasta aka The Eagle Axis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 2458 Sector: Efficiency, Solar Product: Start-up planning to produce high-efficiency solar cells using nanoscale elements. References: Solasta (aka The Eagle Axis)1 This...

  13. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    Open Energy Info (EERE)

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  14. Off-Axis Parabola Inserter - Laboratory for Laser Energetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Axis Parabola Inserter - Laboratory for Laser Energetics Laboratory for Laser Energetics Logo Search Home Around the Lab Past Issues Past Quick Shots About Office of the Director ...

  15. Three-axis particle impact probe

    DOE Patents [OSTI]

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    Three-axis particle impact probes detect particle impact vectors along x-, y-, and z-axes by spherical probe head mounted on the outer end of a shaft that is flexibly mounted in silicone rubber at the top of a housing so as to enable motion imparted to the head upon impact to be transmitted to a grounded electrode secured to the shaft within the housing. Excitable electrodes are mounted in the housing in a fixed position, spaced apart from the ground electrode and forming, with the ground electrode, capacitor pairs. Movement of the ground electrode results in changes in capacitance, and these difference in capacitance are used for measurement or derivation of momentum vectors along each of the three axes. In one embodiment, the ground electrode is mounted at the base of the shaft and is secured to a silicone rubber layer at the top of the housing, providing for cantilevered movement. In another embodiment, the shaft is mounted at its mid point in a flexible bushing so that it undergoes pivotal movement around that point.

  16. Control system for a vertical axis windmill

    DOE Patents [OSTI]

    Brulle, Robert V.

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  17. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  18. Spin-stabilized magnetic levitation without vertical axis of rotation

    DOE Patents [OSTI]

    Romero, Louis; Christenson, Todd; Aaronson, Gene

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  19. DARHT status and preparations for dual-axis hydrotesting (u)

    SciTech Connect (OSTI)

    Bowman, David W

    2010-01-01

    The status of the DARHT facility, including a history of events that have taken place since the end of the DARHT Second Axis Refurbishment Project, is discussed. Technical and operational enhancements that have been made will be addressed, and recent technical challenges, such as the RF noise in the kicker region, are discussed. Historical data on reliability of the second axis is discussed, as well as operational changes made to enhance reliability. In addition, the path forward for integrating the second axis into overall DARHT operations in preparation for a hydrotest is addressed. Timing integration tests are accompanied by a series of tests to evaluate neutron contamination and cross-axis scatter, with attempts being made to provide adequate shielding to minimize the effects of neutrons and cross-beam scatter. The discussion includes results of the testing performed to-date, and concludes with a discussion of the path forward for dual-axis hydrotesting at DARHT.

  20. Compact catadioptric imaging spectrometer utilizing reflective grating

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-27

    An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.

  1. Micro-optical-mechanical system photoacoustic spectrometer

    DOE Patents [OSTI]

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  2. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  3. Lead Slowing Down Spectrometer Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

    2012-06-07

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  4. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  5. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    SciTech Connect (OSTI)

    Dubey, M; Springston, S; Koontz, A; Aiken, A

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instruments manufacturer.

  6. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  7. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1987-05-19

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  8. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1988-05-17

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  9. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, Ray B.

    1988-01-01

    A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

  10. A Wide Field of View Plasma Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; Harper, Ron W.; Kihara, Keith H.; Bower, Jonathan S.

    2016-07-23

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  11. Wide swath imaging spectrometer utilizing a multi-modular design

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  12. OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report Citation Details In-Document Search Title: OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic

  13. Off-axis illumination direct-to-digital holography

    DOE Patents [OSTI]

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  14. Micro-optical-mechanical system photoacoustic spectrometer (Patent...

    Office of Scientific and Technical Information (OSTI)

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, ...

  15. The Results of Tests of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  16. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F.; Leskovar, Branko

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  17. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  18. Solid state NMR spectrometer. Final project report

    SciTech Connect (OSTI)

    Jensen, C.M.

    1997-11-01

    The new Varian Unity INOVA 400 is being utilized on a daily basis. The instrument is available 24 hours a day seven days a week for scheduled experiments. In addition, a limited amount of time is available on a walk-in basis for researchers on the project. The instrument has operated with no down time since the end of the Varian installation process. Minor problems have been corrected by the facility staff (spent fused, malfunctioning boards and components and interrupted data transfers). Most of the initial problems were covered under the warrantee period. Since the end of this period there have been no major operational problems. This report discusses two research projects using the new spectrometer: dynamics of dihydrogen and alkane complexes of iridium and catalytic dehydrogenation by iridium hydride complexes.

  19. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  20. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  1. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect (OSTI)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  2. Roger Road Reservoir Single-Axis Photovoltaic Array

    Broader source: Energy.gov [DOE]

    In this photograph, the Roger Road Reclamation Water Reservoir features a 110-kilowatt (kW) solar array. This system was built on a reservoir deck as its special design allowed for a single-axis...

  3. EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

  4. Ion mobility spectrometer, spectrometer analyte detection and identification verification system, and method

    DOE Patents [OSTI]

    Atkinson, David A.

    2002-01-01

    Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.

  5. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  6. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect (OSTI)

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  7. A triple quantum dot based nano-electromechanical memory device

    SciTech Connect (OSTI)

    Pozner, R.; Lifshitz, E.; Peskin, U.

    2015-09-14

    Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.

  8. Triple inverter pierce oscillator circuit suitable for CMOS

    DOE Patents [OSTI]

    Wessendorf; Kurt O.

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  9. Fact #857 January 26, 2015 Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011 – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Number of Partner Workplaces Offering Electric Vehicle Charging More Than Tripled Since 2011

  10. Multi-element Neutron Energy Spectrometer

    SciTech Connect (OSTI)

    Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff, Stephen Mitchell, Alexis Reed

    2009-09-11

    In the area of nuclear radiological emergency response and preparedness applications, interest in neutron detection stems from several factors. Unlike gamma rays, which are abundant in nature and present serious difficulties in differentiating a signal from a changing background, whose values are location specific, neutrons are rare and nearly homogenous in spatial distribution. Additionally, many special nuclear materials (SNM) emit neutrons either directly by spontaneous fission or produce neutrons indirectly through (α, n) reactions in nearby light elements. Also of importance in detection scenarios is the fact that neutrons are not easily attenuated. Typically neutron detection is done by simply counting the low energy thermal neutrons by employing pressurized helium tubes operated at high voltages. Not much emphasis is put on determining the energy of the incident neutrons. However, critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the detection of an SNM, neutron energy information from an unknown source can be of paramount importance. We have modeled, designed, and prototyped multi-element neutron energy spectrometers that contain three to five pressurized helium tubes of dimensions 2" diam. x 10" in length. Each individual helium tube has a specific amount of high density plastic neutron moderators to slow down the incident energetic neutrons to an accurately estimated energy. A typical spectrometer is a set of moderator cylinders surrounding detectors that have high efficiency for detecting thermal neutrons. The larger the moderator, the higher the energy of incident neutrons for which the detector assembly has matched detection efficiency. If all the detectors are exposed to the same radiation field and the efficiency as a function of energy (response function) of each of the detectors is known, the neutron energy spectrum can be determined from the detector count rates. Monte Carlo simulation

  11. Electrical generation using a vertical-axis wind turbine

    SciTech Connect (OSTI)

    Clark, R.N.

    1982-12-01

    Traditionally, windmills have been of the propeller or multiblade types, both of which have their rotational axis parallel to the flow of the wind. A vertical-axis wind turbine has its rotational axis perpendicular to the flow of wind and requires no orientation to keep the rotor in the windstream. The vertical-axis wind turbine operates on the same principle as an airfoil and produces lift and drag as any airfoil. A newly designed 100-kW vertical-axis wind turbine has been operated for one year at the USDA Conservation and Production Research Laboratory, Bushland, TX. The turbine has an induction generator and supplies power to a sprinkler irrigation system with excess power being sold to the electric utility. The turbine begins producing power at 5.5 m/s windspeed and reaches its rated output of 100-kW at 15 m/s. The unit has obtained a peak efficiency of 48% at a windspeed of 8 m/s or 81% of theoretical maximum. Using 17 years of windspeed data from the National Weather Service, the annual energy output is estimated at 200,000 kWh. The unit has experienced several operational problems during its initial testing. Guy cables were enlarged to provide greater stiffness to reduce blade stress levels, lightning shorted the main contactor, and the brake system required a complete redesign and modification. The turbine was operational about 60% of the time.

  12. Measurement of a part having a known axis misalignment

    SciTech Connect (OSTI)

    Castleton, R.

    1993-05-01

    It has been shown that undetected misalignment of the axis of a part can lead to unacceptable measurement errors. For this technical note, it is assumed that the axis misalignment has been determined, and that polar sweeps are used to measure the part. The proposed polar sweeps run vertically (ignoring the axis misalignment) between a plane that is parallel to the bottom datum surface of the part and a second such plane that is close to the pole of the part. No attempt is made to correct for axis misalignment by rotation of the part during the measurement sweeps. It is apparent that the distance traveled along the measurement sweep is more than the arc length representing the actual change in elevation in the part coordinate system. It is proposed that the measurement of the part on the vertical path be used as the measurement of the part on the base longitude line. This introduces an error, {delta}{theta}, in the sensitive direction that corresponds to the arc length B-S. It is shown that this error is not significant when the axis misalignment is small.

  13. High resolving power spectrometer for beam analysis

    SciTech Connect (OSTI)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs.

  14. Open-split interface for mass spectrometers

    DOE Patents [OSTI]

    Diehl, John W.

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  15. Development of a High Resolution X-Ray Imaging Crystal Spectrometer

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for ...

  16. Development of a High Resolution X-Ray Imaging Crystal Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ... Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of ...

  17. Registration of the rotation axis in X-ray tomography

    SciTech Connect (OSTI)

    Yang, Yimeng; Yang, Feifei; Hingerl, Ferdinand F.; Xiao, Xianghui; Liu, Yijin; Wu, Ziyu; Benson, Sally M.; Toney, Michael F.; Andrews, Joy C.; Pianetta, Piero A.

    2015-01-01

    There is high demand for efficient, robust and automated routines for tomographic data reduction, particularly for synchrotron data. Registration of the rotation axis in data processing is a critical step affecting the quality of the reconstruction and is not easily implemented with automation. Existing methods for calculating the center of rotation have been reviewed and an improved algorithm to register the rotation axis in tomographic data is presented. The performance of the proposed method is evaluated using synchrotron-based microtomography data on geological samples with and without artificial reduction of the signal-to-noise ratio. The proposed method improves the reconstruction quality by correcting both the tilting error and the translational offset of the rotation axis. The limitation of this promising method is also discussed.

  18. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  19. Field Observation GoAmazon Neutral cluster Air Ion Spectrometer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Green Ocean Amazon: Neutral Cluster Air Ion Spectrometer (NAIS) Final Campaign ... DOESC-ARM-15-060 Field Observation of the Green Ocean Amazon: Neutral Cluster Air Ion ...

  20. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  1. A Spatially Resolving X-ray Crystal Spectrometer for Measurement...

    Office of Scientific and Technical Information (OSTI)

    A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and ... Citation Details In-Document Search Title: A Spatially Resolving X-ray Crystal ...

  2. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    SciTech Connect (OSTI)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  3. Mass spectrometer having a derivatized sample presentation apparatus

    DOE Patents [OSTI]

    Nelson, Randall W.

    2000-07-25

    A mass spectrometer having a derivatized sample presentation apparatus is provided. The sample presentation apparatus has a complex bound to the surface of the sample presentation apparatus. This complex includes a molecule which may chemically modify a biomolecule.

  4. A Recoil Mass Spectrometer for the HHIRF facility

    SciTech Connect (OSTI)

    Cole, J.D. ); Cormier, T.M. ); Hamilton, J.H. . Dept. of Physics and Astronomy)

    1989-01-01

    A Recoil Mass Spectrometer (RMS) is to be built that will carry out a broad research program in heavy-ion science. The RMS will make possible the study of otherwise inaccessible exotic nuclei. Careful attention has been given to match the RMS to all the beams available from the HHIRF accelerators, including those beams with the highest energy, as well as massive particles for use in inverse reactions. The RMS is to be a momentum achromat followed by a split electric-dipole mass spectrometer of the type operating at NSRL at the University of Rochester. The RMS is essential for many of the proposed experiments on short-lived and/or low cross-section products. The spectrometer design is discussed, with examples and comparisons with other spectrometers given. Detector arrays to be used with the RMS are also discussed. 21 refs., 4 figs., 1 tab.

  5. ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Spectral Technology govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Abstract Goals of assist were to intercompare radiance spectra and profile retrievals

  6. Tackling the Triple-Threat Genome of Miscanthus x giganteus (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Moose, Steve

    2011-04-25

    Steve Moose from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Tackling the Triple-Threat Genome of Miscanthus x giganteus" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  7. Isotope enrichment by frequency-tripled temperature tuned neodymium laser photolysis of formaldehyde

    DOE Patents [OSTI]

    Marling, John B.

    1977-01-01

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation provided by a frequency-tripled, temperature tuned neodymium laser.

  8. Dual Axis Radiographic Hydrodynamic Test | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Dual Axis Radiographic Hydrodynamic Test NNSA releases Stockpile Stewardship Program quarterly experiments summary WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models

  9. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  10. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect (OSTI)

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  11. Vertical-axis wind turbines -- The current status of an old technology

    SciTech Connect (OSTI)

    Berg, D.E.

    1996-12-31

    Vertical-axis wind turbine technology is not well understood, even though the earliest wind machines rotated about a vertical axis. The operating environment of a vertical-axis wind turbine is quite complex, but detailed analysis capabilities have been developed and verified over the last 30 years. Although vertical-axis technology has not been widely commercialized, it exhibits both advantages and disadvantages compared to horizontal-axis technology, and in some applications, it appears to offer significant advantages.

  12. Method for increasing the dynamic range of mass spectrometers

    DOE Patents [OSTI]

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  13. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  14. VERSATILE TWO-AXIS OPEN-LOOP SOLAR TRACKER CONTROLLER*

    SciTech Connect (OSTI)

    Ward, Christina D; Maxey, L Curt; Evans III, Boyd Mccutchen; Lapsa, Melissa Voss

    2008-01-01

    A versatile single-board controller for two-axis solar tracking applications has been developed and tested on operating solar tracking systems with over two years of field experience. The operating experience gained from the two systems and associated modifications are discussed as representative examples of the practical issues associated with implementing a new two-axis solar tracker design. In this research, open and closed loop control methods were evaluated; however, only the open loop method met the 0.125 tracking accuracy requirement and the requirement to maintain pointing accuracy in hazy and scattered cloudy skies. The open loop algorithm was finally implemented in a microcontroller-based tracking system. Methods of applying this controller hardware to different tracker geometries and hardware are discussed along with the experience gained to date.

  15. Tuning the DARHT Axis-II linear induction accelerator focusing

    SciTech Connect (OSTI)

    Ekdahl, Carl A.

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed

  16. On the spin-axis dynamics of a Moonless Earth

    SciTech Connect (OSTI)

    Li, Gongjie; Batygin, Konstantin

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  17. Sandia vertical axis wind turbines (VAWTs) demonstrate offshore advantages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical axis wind turbines (VAWTs) demonstrate offshore advantages - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  18. X- And y-axis driver for rotating microspheres

    DOE Patents [OSTI]

    Weinstein, Berthold W.

    1979-01-01

    Apparatus for precise control of the motion and position of microspheres for examination of their interior and/or exterior. The apparatus includes an x- and y-axis driver mechanism controlled, for example, by a minicomputer for selectively rotating microspheres retained between a pair of manipulator arms having flat, smooth end surfaces. The driver mechanism includes an apertured plate and ball arrangement which provided for coupled equal and opposite movement of the manipulator arms in two perpendicular directions.

  19. Innovative Offshore Vertical-Axis Wind Turbine Rotors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Vertical-Axis Wind Turbine Rotors - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  20. Flow augmenters for vertical-axis windmills and turbines

    SciTech Connect (OSTI)

    Evans, F.C.

    1981-03-10

    A windmill is disclosed, the windmill including a vertical shaft mounted for rotation about its longitudinal axis, a number of blades spaced circumferentially around the longitudinal axis, and being disposed generally parallel to the axis of rotation of the vertical shaft, and supporting arms extending radially outwardly from the vertical shaft for supporting the blades. The windmill also includes a first member connected to an upper end of one of the blades and defining a first surface having a leading edge with respect to the direction of movement of the blade and a trailing edge rearward of the leading edge, the leading edge being lower than the trailing edge. The first surface also includes an inside lateral edge and an outer lateral edge spaced radially outwardly from the inside lateral edge, the inside lateral edge being higher than the outer lateral edge. A second member is connected to the lower end of the blade and defines a second surface, the second surface having a leading edge with respect to the direction of movement of the blade and a trailing surface rearward of the second surface leading edge, the second surface leading edge being higher than the trailing edge. The second surface also includes an inside lateral edge and an outer lateral edge spaced radially outwardly from the second surface inside lateral edge, the second surface inside lateral edge being lower than the second surface outside lateral edge.

  1. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  2. Calibration techniques for a fast duo-spectrometer

    SciTech Connect (OSTI)

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of the fastest, highest throughput diagnostics of its kind. Typical measurements are presented.

  3. Broadband EUV survey spectrometer for short-timescale experiments

    SciTech Connect (OSTI)

    Chapman, B.E.; Hartog, D.J. Den; Fonck, R.J.

    1993-11-01

    A fast and inexpensive spectrometer system has been developed to record EUV impurity spectra in a magnetic fusion research device. To simplify the vacuum system, light is passed out of the spectrometer`s vacuum to the detector using a sodium-salicylate-coated fiber optic coupler. This coupler is positioned such that the focal field is nearly flat over its aperture. The system`s detector is a microchannel-plate-intensified, linear, self-scanning photodiode array. The 1024-pixel array covers a bandwidth of over 80 nm and is read out once every millisecond. The readout, which is four times faster than the manufacturer`s maximum rating, is fully synchronized to the experiment using a locally-designed control circuit.

  4. Photo-Spectrometer Realized In A Standard Cmos Ic Process

    DOE Patents [OSTI]

    Simpson, Michael L.; Ericson, M. Nance; Dress, William B.; Jellison, Gerald E.; Sitter, Jr., David N.; Wintenberg, Alan L.

    1999-10-12

    A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

  5. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  6. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  7. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  8. Bragg x-ray survey spectrometer for ITER

    SciTech Connect (OSTI)

    Varshney, S. K.; Jakhar, S.; Barnsley, R.; O'Mullane, M. G.

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  9. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y. Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Murata, T.

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  10. Dual-Axis Resonance Testing of Wind Turbine Blades - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Dual-Axis Resonance Testing of Wind Turbine Blades National Renewable ... of time needed to fatigue test wind turbine blades.
    Dual-axis testing can ...

  11. Sandia Vertical-Axis Wind-Turbine Research Presented at Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind ... Twitter Google + Vimeo GovDelivery SlideShare Sandia Vertical-Axis Wind-Turbine Research ...

  12. Sandia and Partners Complete Phase I of a Vertical-Axis Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I of a Vertical-Axis Deep-Water Offshore Turbine Study - Sandia Energy Energy Search Icon ... Sandia and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study ...

  13. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  14. Compact Catadioptric Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A. (Livermore, CA)

    2006-02-28

    An imaging spectrometer comprising an entrance slit for directing light, a lens that receives said light and reflects said light, a grating that defracts said light back onto said lens which focuses said light, and a detector array that receives said focused light. In one embodiment the grating has rulings immersed into a germanium surface.

  15. Optical system for high resolution spectrometer/monochromator

    DOE Patents [OSTI]

    Hettrick, Michael C.; Underwood, James H.

    1988-01-01

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver.

  16. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; Somov, Alexander S.; Somov, S.; Tolstukhin, Ivan

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  17. Optical system for high resolution spectrometer/monochromator

    DOE Patents [OSTI]

    Hettrick, M.C.; Underwood, J.H.

    1988-10-11

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

  18. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  19. The Los Alamos National Laboratory precision double crystal spectrometer

    SciTech Connect (OSTI)

    Morgan, D.V.; Stevens, C.J.; Liefield, R.J.

    1994-03-01

    This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

  20. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national hydrotest program, the DARHT is the world's most powerful x-ray machine. DARHT consists of two electron accelerators oriented at right angles to one another. Each accelerator creates a powerful electron beam that is focused onto a metal target which converts the kinetic energy of the electron beam into high energy x or gamma-rays. The x-ray dose from one DARHT accelerator is

  1. Axis-1 diode simulations I: standard 2-inch cathode

    SciTech Connect (OSTI)

    Ekdahl, Carl [Los Alamos National Laboratory

    2011-01-11

    The standard configuration of the DARHT Axis-I diode features a 5.08-cm diameter velvet emitter mounted in the flat surface of the cathode shroud. The surface of the velvet is slightly recessed {approx}2.5 mm. This configuration produces a 1.75 kA beam when a 3.8-MV pulse is applied to the anode-cathode (AK) gap. This note addresses some of the physics of this diode through the use of finite-element simulations.

  2. Torque ripple in a Darrieus, vertical axis wind turbine

    SciTech Connect (OSTI)

    Reuter, R.C. Jr.

    1980-09-01

    Interaction between a steady wind and a rotating, Darrieus, vertical axis wind turbine produces time periodic aerodynamic loads which cause time dependent torque variations, referred to as torque ripple, to occur in the mechanical link between the turbine and the electrical generator. There is concern for the effect of torque ripple upon fatigue life of drive train components and upon power quality. An analytical solution characterizing the phenomenon of torque ripple has been obtained which is based upon a Fourier expansion of the time dependent features of the problem. Numerical results for torque ripple, some experimental data, determination of acceptable levels and methods of controlling it, are presented and discussed.

  3. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal A New Gap-Opening Mechanism in a Triple-Band Metal Print Wednesday, 23 February 2005 00:00 A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to

  4. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  5. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, Robert C.; Biermann, Wendell J.

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  6. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  7. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  8. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect (OSTI)

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  9. RF generation in the DARHT Axis-II beam dump

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  10. Lifting surface performance analysis for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  11. Eight Pulse Performance of DARHT Axis II - Preliminary Results

    SciTech Connect (OSTI)

    Schulze, Martin E.

    2015-12-08

    The DARHT-II accelerator produces a 1.65-kA, 17-MeV beam in a 1600-ns pulse. Standard operation of the DARHT Axis II accelerator involves extracting four short pulses from the 1.6 us long macro-pulse produced by the LIA. The four short pulses are extracted using a fast kicker in combination with a quadrupole septum magnet and then transported for several meters to a high-Z material target for conversion to x-rays for radiography. The ability of the DARHT Axis 2 kicker to produce more than the standard four pulse format has been previously demonstrated. This capability was developed to study potential risks associated with beam transport during an initial commissioning phase at low energy (8 MeV) and low current (1.0 kA).The ability of the kicker to deliver more than four pulses to the target has been realized for many years. This note describes the initial results demonstrating this capability.

  12. Feasibility and optical performance of one axis three positions sun-tracking polar-axis aligned CPCs for photovoltaic applications

    SciTech Connect (OSTI)

    Tang, Runsheng; Yu, Yamei

    2010-09-15

    A new design concept, called one axis three positions sun-tracking polar-axis aligned CPCs (3P-CPCs, in short), was proposed and theoretically studied in this work for photovoltaic applications. The proposed trough-like CPC is oriented in the polar-axis direction, and the aperture is daily adjusted eastward, southward, and westward in the morning, noon and afternoon, respectively, by rotating the CPC trough, to ensure efficient collection of beam radiation nearly all day. To investigate the optical performance of such CPCs, an analytical mathematical procedure is developed to estimate daily and annual solar gain captured by such CPCs based on extraterrestrial radiation and monthly horizontal radiation. Results show that the acceptance half-angle of 3P-CPCs is a unique parameter to determine their optical performance according to extraterrestrial radiation, and the annual solar gain stays constant if the acceptance half-angle, {theta}{sub a}, is less than one third of {omega}{sub 0,min}, the sunset hour angle in the winter solstice, otherwise decreases with the increase of {theta}{sub a}. For 3P-CPCs used in China, the annual solar gain, depending on the climatic conditions in site, decreased with the acceptance half-angle, but such decrease was slow for the case of {theta}{sub a}{<=}{omega}{sub 0,min}/3, indicating that the acceptance half-angle should be less than one third of {omega}{sub 0,min} for maximizing annual energy collection. Compared to fixed east-west aligned CPCs (EW-CPCs) with a yearly optimal acceptance half-angle, the fixed south-facing polar-axis aligned CPCs (1P-CPCs) with the same acceptance half-angle as the EW-CPCs annually collected about 65-74% of that EW-CPCs did, whereas 3P-CPCs annually collected 1.26-1.45 times of that EW-CPCs collected, indicating that 3P-CPCs were more efficient for concentrating solar radiation onto their coupling solar cells. (author)

  13. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Atomic data for the ITER Core Imaging X-ray Spectrometer Citation Details In-Document Search Title: Atomic data for the ITER Core Imaging X-ray Spectrometer You are accessing a ...

  14. A high-resolution imaging x-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas Citation Details In-Document Search Title: A high-resolution imaging x-ray crystal spectrometer ...

  15. Streaked x-ray spectrometer having a discrete selection of Bragg...

    Office of Scientific and Technical Information (OSTI)

    Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega Citation Details In-Document Search Title: Streaked x-ray spectrometer having a discrete selection ...

  16. X-ray crystal spectrometer for opacity measurements in the 8...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystal spectrometer for opacity measurements in the 8-18 A spectral range at the LULI laser facility Citation Details In-Document Search Title: X-ray crystal spectrometer ...

  17. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Authors: ...

  18. The LCLS variable-energy hard X-ray single-shot spectrometer...

    Office of Scientific and Technical Information (OSTI)

    The LCLS variable-energy hard X-ray single-shot spectrometer Citation Details In-Document Search Title: The LCLS variable-energy hard X-ray single-shot spectrometer The engineering ...

  19. The NIF X-ray Spectrometer (NXS) calibration campaign at Omega...

    Office of Scientific and Technical Information (OSTI)

    The NIF X-ray Spectrometer (NXS) calibration campaign at Omega Citation Details In-Document Search Title: The NIF X-ray Spectrometer (NXS) calibration campaign at Omega You are ...

  20. Dual axis translation apparatus and system for translating an optical beam and related method

    DOE Patents [OSTI]

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  1. Triple product asymmetries in Λb and Ξ0b decays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gronau, Michael; Rosner, Jonathan L.

    2015-07-28

    In this study, the LHCb experiment is capable of studying four-body decays of the b-flavored baryons Λb and Ξ0b to charmless final states consisting of charged pions, kaons, and baryons. We remark on the search in such modes for CP-violating triple product asymmetries and for CP rate asymmetries relative to decays involving charmed baryons.

  2. The Design and Construction of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Wang, Bert; Wahrer, Bob; Taylor, Clyde; Xu, L.; Chen, J. Y.; Wang, M.; Juang, Tiki; Zisman, Michael S.; Virostek, Steve P.; Green, Michael A.

    2008-08-02

    The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.

  3. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  4. Waveguide-integrated photonic crystal spectrometer with camera readout

    SciTech Connect (OSTI)

    Meng, Fan; Shiue, Ren-Jye; Li, Luozhou; Nie, Jing; Harris, Nicholas C.; Chen, Edward H.; Schröder, Tim; Englund, Dirk; Wan, Noel; Pervez, Nadia; Kymissis, Ioannis

    2014-08-04

    We demonstrate an infrared spectrometer based on waveguide-coupled nanocavity filters in a planar photonic crystal structure. The input light is coupled into the waveguide, from which spectral components are dropped into the cavities and radiated off-chip for detection on a commercial InGaAs camera. The spectrometer has a footprint of only 60 μm by 8 μm. The spectral resolution is about 1 nm in the operation bandwidth of 1522–1545 nm. By substituting the membrane material and structure parameters, this design can be easily extended into the visible regime and developed for a variety of highly efficient, miniature photonic applications.

  5. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (520 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  6. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  7. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fbio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  8. Dual-axis resonance testing of wind turbine blades

    SciTech Connect (OSTI)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  9. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A.; Bennett, Charles L.; Bixler, Jay V.; Kuzmenko, Paul J.; Lewis, Isabella T.

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  10. Synchrotron plus Mass Spectrometer equals New Insights Into Combustion

    Office of Science (SC) Website

    Chemistry | U.S. DOE Office of Science (SC) Synchrotron plus Mass Spectrometer equals New Insights Into Combustion Chemistry Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E:

  11. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  12. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  13. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  14. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Handbook C Flynn March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  15. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments [OSTI]

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  16. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR)

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  17. Design and test of magnetic shields for quadrupole mass spectrometers

    SciTech Connect (OSTI)

    Gervasini, G.; De Angeli, M.; Gittini, G.

    2007-03-15

    The use of quadrupole mass spectrometers in plasma experiments with magnetic field confinement presents troublesome problems because of the presence of static magnetic fields. In mass spectrometers, the Lorentz force associated with the magnetic field deflects the ion trajectory in the analyzer section with a subsequent loss of instrument sensitivity. In order to reduce the effect of the externally applied magnetic field in the quadrupole, different magnetic materials have been considered as a shielding structure (iron Fe-37, soft iron Armco{sup TM}, Amumetal{sup TM} sheets). The present work describes a solution to shielding quadrupole mass spectrometers against strong magnetic fields giving an introduction to magnetic shield design, by means of finite element calculations, taking into account many factors such as the material used, the length and thickness of the shield, and the effects of openings. To prove the efficiency of the shielding system, the hydrogen signal from the quadrupole instrument has been monitored. The intensity and the direction of the magnetic field with respect to the quadrupole head axes have been varied. Measurements of the magnetic field have been made in order to validate the calculations and an example of application of the shield design guidelines to a magnetic confined plasma device is presented and tested in situ. The principal aim of the present work is to indicate a possible approach to the problem and how to obtain a practical solution with a worthy compromise between costs and performances.

  18. Phonon mean free path of graphite along the c-axis

    SciTech Connect (OSTI)

    Wei, Zhiyong; Yang, Juekuan; Chen, Weiyu; Bi, Kedong; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096 (China); Li, Deyu, E-mail: deyu.li@vanderbilt.edu [Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1592 (United States)

    2014-02-24

    Phonon transport in the c-axis direction of graphite thin films has been studied using non-equilibrium molecular dynamics (MD) simulation. The simulation results show that the c-axis thermal conductivities for films of thickness ranging from 20 to 500 atomic layers are significantly lower than the bulk value. Based on the MD data, a method is developed to construct the c-axis thermal conductivity as an accumulation function of phonon mean free path (MFP), from which we show that phonons with MFPs from 2 to 2000?nm contribute ?80% of the graphite c-axis thermal conductivity at room temperature, and phonons with MFPs larger than 100?nm contribute over 40% to the c-axis thermal conductivity. These findings indicate that the commonly believed value of just a few nanometers from the simple kinetic theory drastically underestimates the c-axis phonon MFP of graphite.

  19. MHK ISDB/Instruments/AXYS HydroLevel Buoy | Open Energy Information

    Open Energy Info (EERE)

    AXYS HydroLevel Buoy < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  20. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Dual-axis high-data-rate atom interferometer via cold ensemble exchange Citation Details In-Document Search Title: Dual-axis high-data-rate atom interferometer via cold ensemble exchange We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data

  1. Control system for a vertical-axis windmill

    DOE Patents [OSTI]

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  2. Static-stress analysis of dual-axis confinement vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  3. Static-stress analysis of dual-axis safety vessel

    SciTech Connect (OSTI)

    Bultman, D.H.

    1992-11-01

    An 8-ft-diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high-explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the shellto-nozzle interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  4. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    SciTech Connect (OSTI)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-07-20

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.

  5. Perturbation theory for electric-field amplitude and phase ripple transfer in frequency doubling and tripling

    SciTech Connect (OSTI)

    Auerbach, J.M.; Eimerl, D.; Milam, D.; Milonni, P.W.

    1997-01-01

    A theory is presented for the transfer of a perturbation of the electric field from the input to the output of a frequency converter. The transfer relationship for the field ripple is shown to depend on the plane-wave operating parameters of the converter. Predictions of the theory are shown to be in excellent agreement with full numerical simulations of doubling and tripling and experiments measuring ripple transfer in frequency doubling. {copyright} 1997 Optical Society of America

  6. Continuous time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  7. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  8. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)

    SciTech Connect (OSTI)

    Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H.; Barhen, J.

    1997-04-01

    A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

  9. FTIR spectrometer with solid-state drive system

    DOE Patents [OSTI]

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  10. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  11. Characteristics of InGaP/InGaAs pseudomorphic high electron mobility transistors with triple delta-doped sheets

    SciTech Connect (OSTI)

    Chu, Kuei-Yi; Chiang, Meng-Hsueh Cheng, Shiou-Ying; Liu, Wen-Chau

    2012-02-15

    Fundamental and insightful characteristics of InGaP/InGaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with graded and uniform triple {delta}-doped sheets are coomprehensively studied and demonstrated. To gain physical insight, band diagrams, carrier densities, and direct current characteristics of devices are compared and investigated based on the 2D semiconductor simulator, Atlas. Due to uniform carrier distribution and high electron density in the double InGaAs channel, the DCPHEMT with graded triple {delta}-doped sheets exhibits better transport properties, higher and linear transconductance, and better drain current capability as compared with the uniformly triple {delta}-doped counterpart. The DCPHEMT with graded triple {delta}-doped structure is fabricated and tested, and the experimental data are found to be in good agreement with simulated results.

  12. Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model

    SciTech Connect (OSTI)

    Pavese, F.; Steur, P. P. M.; Giraudi, D.

    2013-09-11

    This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model of the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.

  13. Characterization of a multi-axis ion chamber array

    SciTech Connect (OSTI)

    Simon, Thomas A.; Kozelka, Jakub; Simon, William E.; Kahler, Darren; Li, Jonathan; Liu, Chihray

    2010-11-15

    Purpose: The aim of this work was to characterize a multi-axis ion chamber array (IC PROFILER; Sun Nuclear Corporation, Melbourne, FL USA) that has the potential to simplify the acquisition of LINAC beam data. Methods: The IC PROFILER (or panel) measurement response was characterized with respect to radiation beam properties, including dose, dose per pulse, pulse rate frequency (PRF), and energy. Panel properties were also studied, including detector-calibration stability, power-on time, backscatter dependence, and the panel's agreement with water tank measurements [profiles, fractional depth dose (FDD), and output factors]. Results: The panel's relative deviation was typically within ({+-}) 1% of an independent (or nominal) response for all properties that were tested. Notable results were (a) a detectable relative field shape change of {approx}1% with linear accelerator PRF changes; (b) a large range in backscatter thickness had a minimal effect on the measured dose distribution (typically less than 1%); (c) the error spread in profile comparison between the panel and scanning water tank (Blue Phantom, CC13; IBA Schwarzenbruck, DE) was approximately ({+-}) 0.75%. Conclusions: The ability of the panel to accurately reproduce water tank profiles, FDDs, and output factors is an indication of its abilities as a dosimetry system. The benefits of using the panel versus a scanning water tank are less setup time and less error susceptibility. The same measurements (including device setup and breakdown) for both systems took 180 min with the water tank versus 30 min with the panel. The time-savings increase as the measurement load is increased.

  14. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S. Y.; Zheng, S. X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-05-30

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  15. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  16. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, Michael A.; Ricco, Antonio J.; Sinclair, Michael B.; Senturia, Stephen D.

    1999-01-01

    Optical apparatus for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process.

  17. Light ion transfer reactions with the HELIOS spectrometer

    SciTech Connect (OSTI)

    Back, B. B.; Collaboration: HELIOS Collaboration

    2012-10-20

    Light-ion induced transfer and inelastic scattering reactions on stable or long-lived targets have been used extensively to study the structure of nuclei near the line of {beta}-stability, and much of the detailed information on the single-particle structure of nuclei has been derived from such studies. Recently, however, a substantial expansion of the range of isotopes, for which this nuclear structure information can be obtained, has presented itself by using radioactive beams in inverse kinematics reactions. Such beams are now available at a number of facilities around the world, including the in-flight production method and CARIBU facility at ATLAS. The HELIOS spectrometer, which has been used since August 2008 at ATLAS, circumvents many of the problems associated with inverse kinematics. In this talk I will discuss the principle of the spectrometer as well as some of main physics results that have been obtained to date in nuclei ranging from {sup 13}B to {sup 137}Xe using both stable and radioactive beams.

  18. High resolution, high rate X-ray spectrometer

    DOE Patents [OSTI]

    Goulding, Frederick S.; Landis, Donald A.

    1987-01-01

    A pulse processing system (10) for use in an X-ray spectrometer in which a ain channel pulse shaper (12) and a fast channel pulse shaper (13) each produce a substantially symmetrical triangular pulse (f, p) for each event detected by the spectrometer, with the pulse width of the pulses being substantially independent of the magnitude of the detected event and with the pulse width of the fast pulses (p) being substantially shorter than the pulse width of the main channel pulses (f). A pile-up rejector circuit (19) allows output pulses to be generated, with amplitudes linearly related to the magnitude of the detected events, whenever the peak of a main channel pulse (f) is not affected by a preceding or succeeding main channel pulse, while inhibiting output pulses wherein peak magnitudes of main channel pulses are affected by adjacent pulses. The substantially symmetrical triangular main channel pulses (f) are generated by the weighted addition (27-31) of successive RC integrations (24, 25, 26) of an RC differentiated step wave (23). The substantially symmetrical triangular fast channel pulses (p) are generated by the RC integration ( 43) of a bipolar pulse (o) in which the amplitude of the second half is 1/e that of the first half, with the RC time constant of integration being equal to one-half the width of the bipolar pulse.

  19. An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particle Measurements | Department of Energy An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements 2003 DEER Conference Presentation: TSI Incorporated 2003_deer_johnson.pdf (502.83 KB) More Documents & Publications Making Mobile Measurement Using an EEPS Spectrometer Mass Correlation of Engine Emissions with Spectral Instruments Measurement of diesel solid

  20. Spin Spectrometer at the ALS and APS (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and ...

  1. Atomic data for the ITER Core Imaging X-ray Spectrometer (Conference...

    Office of Scientific and Technical Information (OSTI)

    Here, some aspects of the underlying physics are discussed using experimental data and ... L SHELL; MEETINGS; PHYSICS; PLASMA; SIMULATION; SPECTRA; SPECTROMETERS; TUNGSTEN; ...

  2. A high-resolution imaging X-ray crystal spectrometer for intense...

    Office of Scientific and Technical Information (OSTI)

    for intense laser plasma interaction experiments Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal spectrometer for intense laser plasma ...

  3. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOE Patents [OSTI]

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  4. Aerosol beam-focus laser-induced plasma spectrometer device

    DOE Patents [OSTI]

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  5. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect (OSTI)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  6. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  7. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  8. Isotopic response with small scintillator based gamma-ray spectrometers

    DOE Patents [OSTI]

    Madden, Norman W.; Goulding, Frederick S.; Asztalos, Stephen J.

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  9. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect (OSTI)

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  10. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  11. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  12. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  13. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  14. The Role of Anti-Phase Domains in InSb-Based Structures Grown on On-Axis and Off-Axis Ge Substrates

    SciTech Connect (OSTI)

    Debnath, M. C.; Mishima, T. D.; Santos, M. B.; Hossain, K.; Holland, O. W.

    2011-12-26

    Anti-phase domains form in InSb epilayers and InSb/Al{sub 0.20}In{sub 0.80}Sb single quantum wells when grown upon on-axis (001) Ge substrates by molecular beam epitaxy. Domain formation is partially suppressed through growth on Ge substrates with surfaces that are several degrees off the (001) or (211) axis. By using off-axis Ge substrates, room-temperature electron mobilities increased to {approx}60,000 cm{sup 2}/V-s and {approx}14,000 cm{sup 2}/V-s for a 4.0-{mu}m-thick InSb epilayer and a 25-nm InSb quantum well, respectively.

  15. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (OSTI)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  16. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A.

    2009-02-15

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  17. Please join us for a triple-header seminar organized around Modeling RNA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Protein/RNA Complexes | Stanford Synchrotron Radiation Lightsource Please join us for a triple-header seminar organized around Modeling RNA and Protein/RNA Complexes Tuesday, November 13, 2012 - 11:15am SSRL, Bldg. 137-322 Speakers: Julie Bernauer, Debanu Das & Dimitar Pachov Program Description: 11:15-11:45 Julie Bernauer (INRIA AMIB Bioinfo) Multi-scale modeling for RNA structures: a challenge 11:45-12:00 Debanu Das (SSRL JSCG) Progress on HT-SB of Protein/Nucleic Acid complexes at

  18. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  19. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  20. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  1. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  2. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  3. A Triple Coaxial Catheter System for Subselective Visceral Artery Catheterization and Embolization: Preliminary Clinical Experience

    SciTech Connect (OSTI)

    Kaminou, Toshio; Nakamura, Kenji; Matsuo, Ryoichi; Hayashi, Seishou; Matsuoka, Toshiyuki; Takashima, Sumio; Yamada, Ryusaku

    1998-05-15

    We developed a triple coaxial catheter system (TCCS) which consists of a 6.1 Fr outer, a 4.1 Fr intermediate, and a 3.0 Fr inner catheter, all coated with a lubricant. The TCCS was used in seven patients with hepatic tumors, after several attempts to access a targeted vessel with conventional catheters and guidewires failed to reach the targeted vessel. No complications were encountered with the use of this system. TCCS may be a useful device for selective abdominal arteriography.

  4. NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

  5. Triple vector boson production through Higgs-Strahlung with NLO multijet merging

    SciTech Connect (OSTI)

    Hoeche, Stefan; Kraus, Frank; Pozzorini, Stephano; Schoenherr, Marek; Thompson, Jennifer M.; Zapp, Korinna C.

    2014-07-25

    Triple gauge boson hadroproduction, in particular the production of three W-bosons at the LHC, is considered at next-to leading order accuracy in QCD. The NLO matrix elements are combined with parton showers. Multijet merging is invoked such that NLO matrix elements with one additional jet are also included. The studies here incorporate both the signal and all relevant backgrounds for V H production with the subsequent decay of the Higgs boson into W or ?- pairs. They have been performed using SHERPA+OPENLOOPS in combination with COLLIER.

  6. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    SciTech Connect (OSTI)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)] [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  7. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  8. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOE Patents [OSTI]

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  9. Content-based fused off-axis object illumination direct-to-digital holography

    DOE Patents [OSTI]

    Price, Jeffery R.

    2006-05-02

    Systems and methods are described for content-based fused off-axis illumination direct-to-digital holography. A method includes calculating an illumination angle with respect to an optical axis defined by a focusing lens as a function of data representing a Fourier analyzed spatially heterodyne hologram; reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object the object beam incident upon the object at the illumination angle; focusing the reference beam and the object beam at a focal plane of a digital recorder to from the content-based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording the content based off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  10. Axi-dilaton gravity in D{>=}4 dimensional space-times with torsion

    SciTech Connect (OSTI)

    Cebeci, H.; Dereli, T.

    2005-01-15

    We study models of axi-dilaton gravity in space-time geometries with torsion. We discuss conformal rescaling rules in both Riemannian and non-Riemannian formulations. We give static, spherically symmetric solutions and examine their singularity behavior.

  11. Aeroelastic Modeling of Large Off-shore Vertical-axis Wind Turbines...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... K. Dixon, C. Ferreira, C. Hofemann, G. van Bussel, and G. van Kuik, "A 3D unsteady panel method for vertical axis wind turbines," Proceedings of the European Wind Energy ...

  12. Off-axis variable focus and aberration control mirrors and method

    DOE Patents [OSTI]

    Himmer, Phillip A.; Dickensheets, David L.

    2009-02-24

    An optical element with multi-layer composites that deforms to reduce optical aberrations in off-axis optic. Methods are also described in relation to the optical element.

  13. High Current-Carrying Capability in c -Axis-Oriented Superconducting...

    Office of Scientific and Technical Information (OSTI)

    High Current-Carrying Capability in c -Axis-Oriented Superconducting MgBsub 2 Thin Films Citation Details In-Document Search Title: High Current-Carrying Capability in c ...

  14. Characterization of reactively sputtered c-axis aligned nanocrystalline InGaZnO{sub 4}

    SciTech Connect (OSTI)

    Lynch, David M.; Zhu, Bin; Ast, Dieter G.; Thompson, Michael O.; Levin, Barnaby D. A.; Muller, David A.; Greene, Raymond G.

    2014-12-29

    Crystallinity and texturing of RF sputtered c-axis aligned crystal InGaZnO{sub 4} (CAAC IGZO) thin films were quantified using X-ray diffraction techniques. Above 190?C, nanocrystalline films with an X-ray peak at 2??=?30 (009 planes) developed with increasing c-axis normal texturing up to 310?C. Under optimal conditions (310?C, 10% O{sub 2}), films exhibited a c-axis texture full-width half-maximum of 20. Cross-sectional high-resolution transmission electron microscopy confirmed these results, showing alignment variation of 9 over a 15 15?nm field of view and indicating formation of much larger aligned domains than previously reported. At higher deposition temperatures, c-axis alignment was gradually lost as polycrystalline films developed.

  15. Double-exchange selection rule for the c-axis conductivity in...

    Office of Scientific and Technical Information (OSTI)

    Double-exchange selection rule for the c-axis conductivity in layered Lasub 2-2xSrsub 1+2xMnsub 2Osub 7 single crystals below Tsub c Citation Details In-Document Search ...

  16. The Use of a Beryllium Hopkinson Bar to Characterize In-Axis and Cross-Axis Accelerometer Response in Shock Environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1999-01-01

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories in the Mechanical Shock Laboratory. A beryllium Hopkinson bar capability with diameters of 0.75 in. and 2.0 in has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. The in-axis performance of the piezoresistive accelerometer determined from measurements with a beryllium Hopkinson bar and a certified laser doppler vibrometer as the reference measurement is presented. The cross-axis performance of the accelerometer subjected to static compression on a beryllium cylinder, static strain on a steel beam, dynamic strain on a steel beam (ISA-RP 37.2, Paragraph 6.6), and compressive shocks in a split beryllium Hopkinson bar configuration is also presented. The performance of the accelerometer in a combined in-axis and cross-axis shock environment is shown for one configuration. Finally, a failure analysis conducted in cooperation with ENDEVCO gives a cause for the occasional unexplained failures that have occurred in some applications.

  17. Design and analysis of a vertical axis ocean current power plant

    SciTech Connect (OSTI)

    Richard, C.C.; Hartzog, J.R.; Sorge, R.V.; Quigley, J.V.; Adams, G.R.

    1981-01-01

    This paper discusses a calculation of the power generated by a vertical axis ocean current power plant. An analytical model is presented and a computer solution described. Results of the calculation show the optimum angles of the blades about the vertical axis to maximize power output, as well as the total extractable power of the plant for various ocean current velocities. Tow tank tests are described for a scale model of the plant.

  18. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2012-09-11

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  19. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory R; Kaduchak, Gregory; Jett, James H; Graves, Steven W

    2015-01-13

    Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.

  20. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  1. Rotary turret and reusable specimen holder for mass spectrometer

    DOE Patents [OSTI]

    Banar, Joseph C.; Perrin, Richard E.; Ostrenga, Raymond A.

    1988-01-01

    A sample holder for use in a mass spectrometer is provided for heating a sample to discharge ions through an electrostatic field which focuses and accelerates the ions for analysis. Individual specimen holders form a plurality of filaments for heating the sample materials for ion emission. Mounting devices hold the plurality of filaments at regular spaced apart angles in a closed configuration adjacent the electrostatic field elements. A substantially solid ceramic turret is provided with a plurality of electrical contacts which engage the individual holder means for energizing the filaments and forming a corresponding plurality of radially facing, axially extending first conductive surfaces. A substantially solid stationary turret bearing member is mounted about the rotating turret with a plurality of radially biased second electrical conductive surfaces, mounted to electrically contact facing ones of the plurality of radially facing first conductive surfaces. The assembly provides a large thermal mass for thermal stability and large electrical contact areas for repeatable, stable power input for heating the sample materials. An improved sample holder is also provided having a ceramic body portion for removably engaging conductive wires. The conductive wires are compatible with a selected filament element and the sample material to be analyzed.

  2. ASIC for SDD-Based X-ray Spectrometers

    SciTech Connect (OSTI)

    De Geronimo, G.; Fried, J.; Rehak, P.; Ackley, K.; Carini, G.; Chen, W.; Keister, J.; Li, S.; Li, Z.; Pinelli, D.A.; Siddons, D.P.; Vernon, E.; Gaskin, J.A.; Ramsey, B.D.; Tyson, T.A.

    2010-06-16

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.

  3. In-situ droplet monitoring for self-tuning spectrometers

    DOE Patents [OSTI]

    Montaser, Akbar; Jorabchi, Kaveh; Kahen, Kaveh

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  4. Fused off-axis object illumination direct-to-digital holography with a plurality of illumination sources

    DOE Patents [OSTI]

    Price, Jeffery R.; Bingham, Philip R.

    2005-11-08

    Systems and methods are described for rapid acquisition of fused off-axis illumination direct-to-digital holography. A method of recording a plurality of off-axis object illuminated spatially heterodyne holograms, each of the off-axis object illuminated spatially heterodyne holograms including spatially heterodyne fringes for Fourier analysis, includes digitally recording, with a first illumination source of an interferometer, a first off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; and digitally recording, with a second illumination source of the interferometer, a second off-axis object illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis.

  5. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect (OSTI)

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  6. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P.; Bitter, M. E-mail: bitter@pppl.gov; Hill, K. W.; Kerr, S.

    2014-11-15

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  7. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  8. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  9. The use of a beryllium Hopkinson bar to characterize in-axis and cross-axis accelerometer response in shock environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1997-05-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A beryllium Hopkinson bar capability has been developed to extend the understanding of the piezoresistive accelerometer, in two mechanical configurations and with and without mechanical isolation, in the high frequency, high shock environments where measurements are being made. In this paper, recent measurements with beryllium single and split-Hopkinson bar configurations are described. The in axis performance of the piezoresistive accelerometer in mechanical isolation for frequencies of dc-30 kHz and shock magnitudes of up to 6,000 g as determined from measurements with a beryllium Hopkinson bar with a certified laser doppler vibrometer as the reference measurement are presented. Results of characterizations of the accelerometers subjected to cross axis shocks in a split beryllium Hopkinson bar configuration are also presented.

  10. Upgrade of the PNNL TEPC and Multisphere Spectrometer

    SciTech Connect (OSTI)

    Scherpelz, Robert I.; Conrady, Matthew M.

    2008-09-10

    The Pacific Northwest National Laboratory (PNNL) has used two types of instruments, the tissue equivalent proportional counter (TEPC) and the multisphere spectrometer for characterizing neutron radiation fields in support of neutron dosimetry at the Hanford site. The US Department of Energy recently issued new requirements for radiation protection standards in 10 CFR 835 which affect the way that neutron dose equivalent rates are evaluated. In response to the new requirements, PNNL has upgraded the analyses used in conjunction with the TEPC and multisphere. The analysis software for the TEPC was modified for this effort, and a new analysis code was selected for the multisphere. These new analysis techniques were implemented and tested with measurement data that had been collected in previous measurements. In order to test the effectiveness of the changes, measurements were taken in PNNL’s Low Scatter Room using 252Cf sources in both unmoderated and D2O-moderated configurations that generate well-characterized neutron fields. The instruments were also used at Los Alamos National Laboratory (LANL), in their Neutron Free-in-Air calibration room, also using neutron sources that generate well-characterized neutron fields. The results of the software modifications and the measurements are documented in this report. The TEPC measurements performed at PNNL agreed well with accepted dose equivalent rates using the traditional analysis, agreeing with the accepted value to within 13% for both unmoderated and moderated 252Cf sources. When the new analysis was applied to the TEPC measurement data, the results were high compared to the new accepted value. A similar pattern was seen for TEPC measurements at LANL. Using the traditional analysis method, results for all neutron sources showed good agreement with accepted values, nearly always less than 10%. For the new method of analysis, however, the TEPC responded with higher dose equivalent rates than accepted, by as much as 25

  11. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  12. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    SciTech Connect (OSTI)

    Hall, G. N. Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  13. Progress on the Design and Fabircation of the MICE SpectrometerSolenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Lia, D.; Sizman, M.S.

    2007-06-20

    The Muon Ionization Cooling Experiment (MICE) willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. A five-coil, superconducting spectrometer solenoid magnet at each endof the cooling channel will provide a 4 T uniform field region for thescintillating fiber tracker within the magnet bore tubes. The trackermodules are used to measure the muon beam emittance as it enters andexits the cooling channel. The cold mass for the 400 mm warm bore magnetconsists of two sections: a three-coil spectrometer magnet and a two-coilmatching section that matches the uniform field of the solenoid into theMICE cooling channel. The spectrometer solenoid detailed designandanalysis has been completed, and the fabrication of the magnets is wellunder way. The primary features of the spectrometer solenoid magnet andmechanical designs are presented along with a summary of key fabricationissues and photos of the construction.

  14. A simple scanning spectrometer based on a stretchable elastomeric reflective grating

    SciTech Connect (OSTI)

    Ghisleri, C.; Milani, P., E-mail: paolo.milani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); WISE srl, Piazza Duse 2, 20122 Milano (Italy); Potenza, M. A. C.; Bellacicca, A. [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2014-02-10

    We report a scanning optical spectrometer based on the use of a stretchable elastomeric reflective grating. The grating is obtained by supersonic cluster beam implantation of silver nanoparticles on polydimethylsiloxane previously grooved by molding to create a replica of a commercial digital versatile disk grating. The use of a stretchable grating allows the spectrometer spanning the whole optical wavelength range by solely extending the diffraction element by more than 100% of its original dimensions. The stretchable reflective optical grating shows excellent performances and stability upon thousands of stretching cycles. The use of this elastomeric element makes the optical layout and the mechanics of the spectrometer extremely simple and advantageous for those applications where spectral resolution is not a major requirement. As a proof of principle, we present the absorption spectrum of Rhodamine B in solution obtained by our spectrometer and compared to commercial instruments.

  15. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS...

    Office of Scientific and Technical Information (OSTI)

    A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES Citation Details In-Document Search Title: A NOVEL X-RA...

  16. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOE Patents [OSTI]

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  17. Development of a TIM-based, flexible, broadband two-crystal spectromet...

    Office of Scientific and Technical Information (OSTI)

    Title: Development of a TIM-based, flexible, broadband two-crystal spectrometer Authors: Steel, A B ; Dunn, J ; Emig, J ; Beiersdorfer, P ; Brown, G V ; Shepherd, R ; Marley, E V ; ...

  18. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS...

    Office of Scientific and Technical Information (OSTI)

    X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES Citation Details In-Document Search Title: A NOVEL X-RAY ...

  19. A new spectrometer design for the x-ray spectroscopy of laser...

    Office of Scientific and Technical Information (OSTI)

    the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution Citation Details In-Document Search Title: A new spectrometer design for the x-ray ...

  20. A high-resolution imaging X-ray crystal spectrometer for high...

    Office of Scientific and Technical Information (OSTI)

    A high-resolution imaging X-ray crystal spectrometer for high energy density (HED) plasmas Citation Details In-Document Search Title: A high-resolution imaging X-ray crystal ...

  1. A single-shot transmissive spectrometer for hard x-ray free electron...

    Office of Scientific and Technical Information (OSTI)

    Results Journal Article: A single-shot transmissive spectrometer for hard x-ray free electron lasers Citation Details ... We report hard x-ray single-shot spectral measurements of ...

  2. Characterization and calibration of compact array spectrometers in the ultraviolet spectral region

    SciTech Connect (OSTI)

    Shindo, Francois; Woolliams, Emma; Scott, Barry; Harris, Subrena

    2013-05-10

    Array-based spectrometers, with their compact size, low weight, low cost, and fast measurement time, are now frequently used in place of both conventional single-channel scanning monochromators, and broadband meters. Their rapid measurement capability makes them an attractive option for routine solar UV spectral measurements, where shortterm variability in signal is a challenge. However, compactness, portability, low cost and high speed are achieved at the expense of the spectrometer's optical and electronic performance. Thus such spectrometers are more prone to measurement error from environmental changes, and more prone to other intrinsic sources of error such as stray light and detector non-linearity, which significantly affect solar UV measurements, than a scanning monochromator. The effects of stray light and non-linearity can be reduced either by improved optical and detector design or by a detailed spectrometer characterization. We present in this paper our investigation of the performance of three different commercial array spectrometers: two mini-spectrometers, and a more elaborate array spectrometer with an on-board image amplifier device. These were tested for a subset of performance parameters: their wavelength accuracy and stability, electronic linearity, responsivity linearity, stray light sensitivity, and mechanical stability and repeatability. With all three spectrometers we found that these parameters, particularly but not limited to stray light, had a significant impact on the measurement of the incoming optical radiation. This meant that, without characterization, the instruments would be unable to accurately measure the UV component of any source with significant visible radiation. We discuss various simple and low-cost solutions for improving the performance of these instruments, and providing a rigorous calibration using a straightforward set-up including optical filters and the quasi-monochromatic light from a double monochromator.

  3. Heterodyne photomixer spectrometer with receiver photomixer driven at different frequency than source photomixer

    DOE Patents [OSTI]

    Wanke, Michael C; Fortier, Kevin; Shaner, Eric A; Barrick, Todd A

    2013-07-09

    A heterodyne photomixer spectrometer comprises a receiver photomixer that is driven at a different frequency than the source photomixer, thereby maintaining the coherent nature of the detection, eliminating etalon effects, and providing not only the amplitude but also the phase of the received signal. The heterodyne technique can be applied where the source and receiver elements are components of a waveguide thereby forming an on-chip heterodyne spectrometer.

  4. In-Axis and Cross-Axid Accelerometer Response in Shock Environments

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.

    1999-03-10

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

  5. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect (OSTI)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in

  6. Reconstruction of the Electron Density of Molecules with Single-Axis Alignment

    SciTech Connect (OSTI)

    Starodub, Dmitri

    2011-08-12

    Diffraction from the individual molecules of a molecular beam, aligned parallel to a single axis by a strong electric field or other means, has been proposed as a means of structure determination of individual molecules. As in fiber diffraction, all the information extractable is contained in a diffraction pattern from incidence of the diffracting beam normal to the molecular alignment axis. We present two methods of structure solution for this case. One is based on the iterative projection algorithms for phase retrieval applied to the coefficients of the cylindrical harmonic expansion of the molecular electron density. Another is the holographic approach utilizing presence of the strongly scattering reference atom for a specific molecule.

  7. Off-axis sawteeth and double-tearing reconnection in reversed magnetic shear plasmas in TFTR

    SciTech Connect (OSTI)

    Chang, Z.; Park, W.; Fredrickson, E.D.

    1996-06-01

    Off-axis sawteeth are often observed in reversed magnetic shear plasmas when the minimum safety factor q is near or below 2. Fluctuations with m/n = 2/1 (m and n are the poloidal and toroidal mode numbers) appear before and after the crashes. Detailed comparison has been made between the measured T{sub e} profile evolution during the crash and a nonlinear numerical magnetohydrodynamics (MHD) simulation. The good agreement between the observation and simulation indicates that the off-axis sawteeth are due to a double-tearing magnetic reconnection process.

  8. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer

    SciTech Connect (OSTI)

    Maglieri, Robert Evans, Michael; Seuntjens, Jan; Kildea, John; Licea, Angel

    2015-11-15

    Purpose: Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. Methods: The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation–maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. Results: The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors’ measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. Conclusions: The NNS may

  9. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect (OSTI)

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  10. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOE Patents [OSTI]

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  11. A lightweight high performance dual-axis gimbal for space applications

    SciTech Connect (OSTI)

    Pines, D.J.; Hakala, D.B.; Malueg, R.

    1995-05-05

    This paper describes the design, development and performance of a lightweight precision gimbal with dual-axis slew capability to be used in a closed-loop optical tracking system at Lawrence Livermore National Laboratory-LLNL. The motivation for the development of this gimbal originates from the need to acquire and accurately localize warm objects (T{approximately}500 K) in a cluttered background. The design of the gimbal is centered around meeting the following performance requirements: pointing accuracy with control < 35 {mu}rad-(1-{omega}); slew capability > 0.2 rad/sec; mechanical weight < 5 kg. These performance requirements are derived by attempting to track a single target from multiple satellites in low Earth orbit using a mid-wave infrared camera. Key components in the gimbal hardware that are essential to meeting the performance objectives include a nickel plated beryllium mirro, an accurate lightweight capacitive pickoff device for angular measurement about the elevation axis, a 16-bit coarse/fine resolver for angular measurement about the azimuth axis, a toroidally wound motor with low hysteresis for providing torque about the azimuth axis, and the selection of beryllium parts to insure high stiffness to weight ratios and more efficient thermal conductivity. Each of these elements are discussed in detail to illustrate the design trades performed to meet the tracking and slewing requirements demanded. Preliminary experimental results are also given for various commanded tracking maneuvers.

  12. Effect of strain along C-axis NbS{sub 2}

    SciTech Connect (OSTI)

    Singh, Tapender Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    We have studied electronic properties of double layered hexagonal structure of the Niobium Di-Sulphide (2H-NbS{sub 2}) superconductor for various strains introduced along the c-axis using ab-initio calculations. The DFT calculations based on Full Potential Linearized Augmented Plane Wave (FPLAPW) method are performed using the ELK code. The total energy curve (E vs a), Density of States (DOS) and the Band structure calculations obtained in this work are matching with the earlier reports. The Pressure-Volume (P-V) diagram for 2H-NbS{sub 2} was obtained using the Equation of State(EOS) calculations, which provides the relationship between the pressure and strain applied along the c-axis. The band structures for various strains ranging from 0 percent to 10 percent along c-axis in steps of 2 percent are obtained. We note that there are increasing number of bands crossing over the Fermi energy level with increase in strain. Thus, we conclude that with increasing strain along c-axis, number of conduction bands crossing the E{sub F} increases, which gives rise to more conduction states and hence higher conductivity.

  13. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998

    SciTech Connect (OSTI)

    Haagenstad, T.

    1999-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

  14. DC 12m telescope. Preliminary calculations. Investigation of elevation axis position.

    SciTech Connect (OSTI)

    Guarino, V. J.; High Energy Physics

    2009-12-18

    This paper examines some simple calculations of a 2D model of a telescope in order to understand how different design parameters affect the design. For the design of a telescope it is assumed that they need a design that minimizes deflections of the dish and also minimizes the size of the motors and torques needed to rotate in elevation. A common belief is that a lighter dish and minimum counterweight is desirable. However, these calculations show this is not necessarily true. The torque needed for rotation depends on the moment of inertia and if the telescope is balanced about the elevation axis. A light dish with no CW requires that the elevation axis be several meters in front of the dish (8-9m) in order to be balanced. This is not practical from a structural point of view. If the elevation axis is only 2m in front of the dish and there is no counterweight then the telescope will be unbalanced and the toruqes required will be very high - much higher than the torques needed only to overcome inertia. A heavy dish though can act as its own counterweight and the elevation axis only has to be 2-3m in front of the dish in order to achieve a balanced telescope. Also the struts that support the camera from the dish place a load on the dish which will put a bending moment on the dish. This bending moment will deform the dish and require it to be stiffer. A counterweight structure performs two functions. First, it allows the telescope to be balanced about the elevation axis. Second, it applies a force on the dish that opposes the forces from the camera struts, thereby reducing the bending moment and deformations of the dish.

  15. Triple Modulator-Chicane Scheme for Seeding Sub-Nanometer X-Ray Free Electron Lasers

    SciTech Connect (OSTI)

    Xiang, Dao; Stupakov, Gennady; /SLAC

    2011-07-06

    We propose a novel triple modulator-chicane (TMC) scheme to convert external input seed to shorter wavelengths. In the scheme high power seed lasers are used in the first and third modulator while only very low power seed is used in the second modulator. By properly choosing the parameters of the lasers and chicanes, we show that ultrahigh harmonics can be generated in the TMC scheme while simultaneously keeping the energy spread growth much smaller than beam's initial slice energy spread. As an example we show the feasibility of generating significant bunching at 1 nm and below from a low power ({approx} 100 kW) high harmonic generation seed at 20 nm assisted by two high power ({approx} 100 MW) UV lasers at 200 nm while keeping the energy spread growth within 40%. The supreme up-frequency conversion efficiency of the proposed TMC scheme together with its unique advantage in maintaining beam energy spread opens new opportunities for generating fully coherent x-rays at sub-nanometer wavelength from external seeds.

  16. THE CoRoT DISCOVERY OF A UNIQUE TRIPLE-MODE CEPHEID IN THE GALAXY

    SciTech Connect (OSTI)

    Poretti, E.; Baglin, A.; Weiss, W. W.

    2014-11-10

    The exploitation of the CoRoT treasure of stars observed in the exoplanetary field allowed the detection of a unusual triple-mode Cepheid in the Milky Way, CoRoT 0223989566. The two modes with the largest amplitudes and a period ratio of 0.80 are identified with the first (P {sub 1} = 1.29 days) and second (P {sub 2} = 1.03 days) radial overtones. The third period, which has the smallest amplitude but is able to produce combination terms with the other two, is the longest one (P {sub 3} = 1.89 days). The ratio of 0.68 between the first-overtone period and the third period is the unusual feature. Its identification with the fundamental radial or a nonradial mode is discussed with respect to similar cases in the Magellanic Clouds. In both cases, the period triplet and the respective ratios make the star unique in our Galaxy. The distance derived from the period-luminosity relation and the galactic coordinates put CoRoT 0223989566 in the metal-rich environment of the ''outer arm'' of the Milky Way.

  17. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  18. Resonant inelastic X-ray scattering spectrometer with 25meV resolution at the Cu K -edge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ketenoglu, Didem; Harder, Manuel; Klementiev, Konstantin; Upton, Mary; Taherkhani, Mehran; Spiwek, Manfred; Dill, Frank-Uwe; Wille, Hans-Christian; Yavaş, Hasan

    2015-06-27

    An unparalleled resolution is reported with an inelastic X-ray scattering instrument at the CuK-edge. Based on a segmented concave analyzer, featuring single-crystal quartz (SiO2) pixels, the spectrometer delivers a resolution near 25meV (FWHM) at 8981eV. Besides the quartz analyzer, the performance of the spectrometer relies on a four-bounce Si(553) high-resolution monochromator and focusing Kirkpatrick–Baez optics. The measured resolution agrees with the ray-tracing simulation of an ideal spectrometer. The performance of the spectrometer is demonstrated by reproducing the phonon dispersion curve of a beryllium single-crystal.

  19. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect (OSTI)

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  20. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect (OSTI)

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  1. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  2. Quantum states of neutrons in the gravitational and centrifugal potentials in a new GRANIT spectrometer

    ScienceCinema (OSTI)

    None

    2011-10-06

    We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.

  3. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~10% accuracy, and mean neutron energy to ~50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to 15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~25-40 km/s.

  4. Investigations of 2? decay measured by low background HPGe spectrometer OBELIX

    SciTech Connect (OSTI)

    Rukhadze, Ekaterina [Institute of Experimental and Applied Physics, CTU in Prague, Horska 3a Collaboration: OBELIX Collaboration; SuperNEMO Collaboration

    2013-12-30

    A low background high sensitive HPGe spectrometer OBELIX was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.). The detector was designed to measure a contamination of enriched isotopes and radio-impurities in construction materials, to investigate rare nuclear processes such as resonance neutrinoless double electron capture and two-neutrino double beta decay to excited states of daughter nuclei. Spectrometer sensitivity, contamination of NEMO-3 sources and results of 2?2?{sup ?} decay of {sup 100}Mo to the 0{sup +} (1130 keV) and 2{sup +} (540 keV) excited states as well as future plans for OBELIX detector are given.

  5. Hardware and software for ground tests of onboard charged particle spectrometers

    SciTech Connect (OSTI)

    Batischev, A. G. Galper, A. M.; Grishin, S. A.; Naumov, P. Yu.; Niadvetski, N. S.

    2015-12-15

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described.

  6. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-15

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  7. Next-Generation Germanium Spectrometer Background Reduction Techniques at 2 MeV

    SciTech Connect (OSTI)

    Brodzinski, Ronald L.

    2005-04-01

    The Majorana project, a next-generation 76Ge neutrinoless double-beta decay experiment being undertaken by a large international collaboration, has the goal of measuring the neutrinoless double-beta decay rate by observing monochromatic events at 2039 keV in 500 kg of isotopically enriched 76Ge gamma-ray spectrometers. In order to achieve the desired sensitivity limit, the background in the 2037-2041 keV region must be reduced to <1 event per year in the entire germanium array. The effects of various background reduction techniques, and the combination thereof, to produce a huge 76Ge spectrometer array with virtually zero background are discussed.

  8. Axi-symmetrical flow reactor for [sup 196]Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1991-04-30

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, [sup 196]Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired [sup 196]Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith. 10 figures.

  9. Axi-symmetrical flow reactor for .sup.196 Hg photochemical enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an improved photochemical reactor useful for the isotopic enrichment of a predetermined isotope of mercury, especially, .sup.196 Hg. Specifically, two axi-symmetrical flow reactors were constructed according to the teachings of the present invention. These reactors improve the mixing of the reactants during the photochemical enrichment process, affording higher yields of the desired .sup.196 Hg product. Measurements of the variation of yield (Y) and enrichment factor (E) along the flow axis of these reactors indicates very substantial improvement in process uniformity compared to previously used photochemical reactor systems. In one preferred embodiment of the present invention, the photoreactor system was built such that the reactor chamber was removable from the system without disturbing the location of either the photochemical lamp or the filter employed therewith.

  10. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    SciTech Connect (OSTI)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at ?g/ ?Hz and ?rad/s/ ?Hz levels, making this a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.

  11. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  12. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  13. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect (OSTI)

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  14. Tracking formulas and strategies for a receiver oriented dual-axis tracking toroidal heliostat

    SciTech Connect (OSTI)

    Guo, Minghuan; Wang, Zhifeng; Liang, Wenfeng; Zhang, Xiliang; Zang, Chuncheng; Lu, Zhenwu; Wei, Xiudong

    2010-06-15

    A 4 m x 4 m toroidal heliostat with receiver oriented dual-axis tracking, also called spinning-elevation tracking, was developed as an auxiliary heat source for a hydrogen production system. A series of spinning-elevation tracking formulas have been derived for this heliostat. This included basic tracking formulas, a formula for the elevation angle for heliostat with a mirror-pivot offset, and a more general formula for the biased elevation angle. This paper presents the new tracking formulas in detail and analyzes the accuracy of applying a simplifying approximation. The numerical results show these receiver oriented dual-axis tracking formula approximations are accurate to within 2.5 x 10{sup -6} m in image plane. Some practical tracking strategies are discussed briefly. Solar images from the toroidal heliostat at selected times are also presented. (author)

  15. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    SciTech Connect (OSTI)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-05-01

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.

  16. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    SciTech Connect (OSTI)

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.; and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  17. STATISTICAL ANALYSIS OF INTERFEROMETRIC MEASUREMENTS OF AXIS RATIOS FOR CLASSICAL Be STARS

    SciTech Connect (OSTI)

    Cyr, R. P.; Jones, C. E.; Tycner, C.

    2015-01-20

    This work presents a novel method to estimate the effective opening angle of CBe star disks from projected axis ratio measurements, obtained by interferometry using a statistical approach. A Monte Carlo scheme was used to generate a large set of theoretical axis ratios from disk models using different distributions of disk densities and opening angles. These theoretical samples were then compared to observational samples, using a two-sample Kolmogorov-Smirnov test, to determine which theoretical distribution best reproduces the observations. The results suggest that the observed ratio distributions in the K, H, and N band can best be explained by the presence of thin disks, with opening half-angles of the order of 0.°15-4.°0. Results for measurements over the Hα line point toward slightly thicker disks, 3.°7-14°, which is consistent with a flaring disk predicted by the viscous disk model.

  18. Crystal surface symmetry from zone-axis patterns in reflection high-energy-electron diffraction

    SciTech Connect (OSTI)

    Shannon, M.D.; Eades, J.A.; Meichle, M.E.; Turner, P.S.; Buxton, B.F.

    1984-11-26

    New experimental techniques, sensitive to crystal surface symmetry, for reflection high-energy-electron diffraction have been developed and applied to the (001) surface of MgO. The techniques map the variation of the intensity of one or more diffracted beams as a function of the incident-beam orientation. The symmetry of these surface zone-axis patterns has been studied theoretically and confirmed experimentally. The techniques are expected to provide a sensitive means of surface characterization.

  19. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, A.; Boozer, A.

    1984-10-31

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  20. Method and apparatus for maintaining equilibrium in a helical axis stellarator

    DOE Patents [OSTI]

    Reiman, Allan; Boozer, Allen

    1987-01-01

    Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.

  1. Terahertz electron cyclotron maser interactions with an axis-encircling electron beam

    SciTech Connect (OSTI)

    Li, G. D.; Kao, S. H.; Chang, P. C.; Chu, K. R.

    2015-04-15

    To generate terahertz radiation via the electron cyclotron maser instability, harmonic interactions are essential in order to reduce the required magnetic field to a practical value. Also, high-order mode operation is required to avoid excessive Ohmic losses. The weaker harmonic interaction and mode competition associated with an over-moded structure present challenging problems to overcome. The axis-encircling electron beam is a well-known recipe for both problems. It strengthens the harmonic interaction, as well as minimizing the competing modes. Here, we examine these advantages through a broad data base obtained for a low-power, step-tunable, gyrotron oscillator. Linear results indicate far more higher-harmonic modes can be excited with an axis-encircling electron beam than with an off-axis electron beam. However, multi-mode, time-dependent simulations reveal an intrinsic tendency for a higher-harmonic mode to switch over to a lower-harmonic mode at a high beam current or upon a rapid current rise. Methods are presented to identify the narrow windows in the parameter space for stable harmonic interactions.

  2. Annual collectible energy of a two-axis tracking flat-plate solar collector

    SciTech Connect (OSTI)

    Attalage, R.A.; Reddy, T.A. )

    1992-01-01

    A correlation for annual collectible energy of a two-axis tracking flat-plate solar collector has been developed using simulated results based on typical meteorological year (TMY) data for 26 US locations. A preliminary validation of this correlation has been carried out with data from four Australian locations. With the advent of increasing interest in photovoltaic systems, there are a number of advantages of using a two-axis flat-plate collector. Since the tracking system is generally much cheaper than the collector panel, such a mode permits the incident solar radiation to be collected more efficiently. Incidence angle effects are minimized and, moreover, contrary to concentrating collectors, such a mode enables both the diffuse and beam components of solar radiation to be collected. In tropical locations where the diffuse fraction is generally high, this may be a great advantage. The objective of this study was to develop a correlation for the annual collectible energy of a two-axis tracking flat-plate collector.

  3. Progress on the Fabrication and Testing of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, Steve; Green, M.A.; Li, Derun; Zisman, Michael

    2009-05-19

    The Muon Ionization Cooling Experiment (MICE) is an international collaboration that will demonstrate ionization cooling in a section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. At each end of the cooling channel a spectrometer solenoid magnet consisting of five superconducting coils will provide a 4 tesla uniform field region. The scintillating fiber tracker within the magnet bore will measure the muon beam emittance as it enters and exits the cooling channel. The 400 mm diameter warm bore, 3 meter long magnets incorporate a cold mass consisting of two coil sections wound on a single aluminum mandrel: a three-coil spectrometer magnet and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The fabrication of the first of two spectrometer solenoids has been completed, and preliminary testing of the magnet is nearly complete. The key design features of the spectrometer solenoid magnets are presented along with a summary of the progress on the training and testing of the first magnet.

  4. High-resolution Bent-crystal Spectrometer for the Ultra-soft X-ray Region

    DOE R&D Accomplishments [OSTI]

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K. W.; Hulse, R. A.; Walling, R. S.

    1988-10-01

    A multichannel vacuum Brag-crystal spectrometer has been developed for high-resolution measurements of the line emission from tokamak plasmas in the wavelength region between 4 and 25 angstrom. The spectrometer employs a bent crystal in Johann geometry and a microchannel-plate intensified photodiode array. The instrument is capable of measuring high-resolution spectra (lambda/..delta..lambda approx. 3000) with fast time resolution (4 msec per spectrum) and good spatial resolution (3 cm). The spectral bandwidth is ..delta..lambda/lambda{sub 0} = 8 angstrom. A simple tilt mechanism allows access to different wavelength intervals. In order to illustrate the utility of the new spectrometer, time- and space-resolved measurements of the n = 3 to n = 2 spectrum of selenium from the Princeton Large Torus tokamak plasmas are presented. The data are used to determine the plasma transport parameters and to infer the radial distribution of fluorinelike, neonlike, and sodiumlike ions of selenium in the plasma. The new ultra-soft x-ray spectrometer has thus enabled us to demonstrate the utility of high-resolution L-shell spectroscopy of neonlike ions as a fusion diagnostic.

  5. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect (OSTI)

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  6. Sensitivity Upgrades to the Idaho Accelerator Center Neutron Time of Flight Spectrometer

    SciTech Connect (OSTI)

    Thompson, S. J.; Kinlaw, M. T.; Harmon, J. F.; Wells, D. P.; Hunt, A. W.

    2007-10-26

    Past experiments have shown that discrimination between between fissionable and non-fissionable materials is possible using an interrogation technique that monitors for high energy prompt fission neutrons. Several recent upgrades have been made to the neutron time of flight spectrometer at the Idaho Accelerator Center with the intent of increasing neutron detection sensitivity, allowing for system use in nonproliferation and security applications.

  7. Terahertz spectroscopy with a holographic Fourier transform spectrometer plus array detector using coherent synchrotron radiation

    SciTech Connect (OSTI)

    Nikolay I. Agladz, John Klopf, Gwyn Williams, Albert J. Sievers

    2010-06-01

    By use of coherent terahertz synchrotron radiation, we experimentally tested a holographic Fourier transform spectrometer coupled to an array detector to determine its viability as a spectral device. Somewhat surprisingly, the overall performance strongly depends on the absorptivity of the birefringent lithium tantalate pixels in the array detector.

  8. FAST NEUTRON SPECTROMETER USING SPACED SEMICONDUCTORS FOR MEASURING TOTAL ENERGY OF NEUTRONS CAPTURED

    DOE Patents [OSTI]

    Love, T.A.; Murray, R.B.

    1964-04-14

    A fast neutron spectrometer was designed, which utilizes a pair of opposed detectors having a layer of /sup 6/LiF between to produce alpha and T pair for each neutron captured to provide signals, which, when combined, constitute a measure of neutron energy. (AEC)

  9. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOE Patents [OSTI]

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  10. Measurements of isocenter path characteristics of the gantry rotation axis with a smartphone application

    SciTech Connect (OSTI)

    Schiefer, H. Peters, S.; Plasswilm, L.; Ingulfsen, N.; Kluckert, J.

    2015-03-15

    Purpose: For stereotactic radiosurgery, the AAPM Report No. 54 [AAPM Task Group 42 (AAPM, 1995)] requires the overall stability of the isocenter (couch, gantry, and collimator) to be within a 1 mm radius. In reality, a rotating system has no rigid axis and thus no isocenter point which is fixed in space. As a consequence, the isocenter concept is reviewed here. It is the aim to develop a measurement method following the revised definitions. Methods: The mechanical isocenter is defined here by the point which rotates on the shortest path in the room coordinate system. The path is labeled as “isocenter path.” Its center of gravity is assumed to be the mechanical isocenter. Following this definition, an image-based and radiation-free measurement method was developed. Multiple marker pairs in a plane perpendicular to the assumed gantry rotation axis of a linear accelerator are imaged with a smartphone application from several rotation angles. Each marker pair represents an independent measuring system. The room coordinates of the isocenter path and the mechanical isocenter are calculated based on the marker coordinates. The presented measurement method is by this means strictly focused on the mechanical isocenter. Results: The measurement result is available virtually immediately following completion of measurement. When 12 independent measurement systems are evaluated, the standard deviations of the isocenter path points and mechanical isocenter coordinates are 0.02 and 0.002 mm, respectively. Conclusions: The measurement is highly accurate, time efficient, and simple to adapt. It is therefore suitable for regular checks of the mechanical isocenter characteristics of the gantry and collimator rotation axis. When the isocenter path is reproducible and its extent is in the range of the needed geometrical accuracy, it should be taken into account in the planning process. This is especially true for stereotactic treatments and radiosurgery.

  11. Testing appropriateness of small scale vertical axis windmills. Final progress report

    SciTech Connect (OSTI)

    Dengler, T.

    1984-04-26

    A comparative evaluation was performed on three vertical axis windmills; Darrieus, rotating bucket and flexible, to determine which of the three was the most practical for the homeowner to construct and use to supplement electric consumption. The design and construction of the windmills are summarized. Visual observations were made on the behavior of the windmills and an anemometer was installed for the purpose of collecting data on windmill performance in different wind velocities. Results showed that the Darrieus windmill performed best, followed closely by the flexible vane. The rotating bucket was found to be a poor performer.

  12. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect (OSTI)

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  13. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    SciTech Connect (OSTI)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    2014-04-30

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studies on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.

  14. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual

  15. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOE Patents [OSTI]

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  16. Simulation of winds as seen by a rotating vertical axis wind turbine blade

    SciTech Connect (OSTI)

    George, R.L.

    1984-02-01

    The objective of this report is to provide turbulent wind analyses relevant to the design and testing of Vertical Axis Wind Turbines (VAWT). A technique was developed for utilizing high-speed turbulence wind data from a line of seven anemometers at a single level to simulate the wind seen by a rotating VAWT blade. Twelve data cases, representing a range of wind speeds and stability classes, were selected from the large volume of data available from the Clayton, New Mexico, Vertical Plane Array (VPA) project. Simulations were run of the rotationally sampled wind speed relative to the earth, as well as the tangential and radial wind speeds, which are relative to the rotating wind turbine blade. Spectral analysis is used to compare and assess wind simulations from the different wind regimes, as well as from alternate wind measurement techniques. The variance in the wind speed at frequencies at or above the blade rotation rate is computed for all cases, and is used to quantitatively compare the VAWT simulations with Horizontal Axis Wind Turbine (HAWT) simulations. Qualitative comparisons are also made with direct wind measurements from a VAWT blade.

  17. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect (OSTI)

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  18. Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating

    DOE Patents [OSTI]

    Pushkarsky, Michael; Amone, David F.

    2010-06-08

    A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.

  19. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect (OSTI)

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J. [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Plasma Research Laboratory, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-09-15

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jimnez-Gmez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvn eigenmodes, which could be a serious issue for future fusion reactors.

  20. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect (OSTI)

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  1. A new compact soft x-ray spectrometer for resonant inelastic x-ray scattering studies at PETRA III

    SciTech Connect (OSTI)

    Yin, Z. E-mail: simone.techert@desy.de; Peters, H. B.; Hahn, U.; Viefhaus, J.; Agåker, M.; Nordgren, J.; Hage, A.; Reininger, R.; Siewert, F.; Techert, S. E-mail: simone.techert@desy.de

    2015-09-15

    We present a newly designed compact grating spectrometer for the energy range from 210 eV to 1250 eV, which would include the Kα{sub 1,2} emission lines of vital elements like C, N, and O. The spectrometer is based on a grazing incidence spherical varied line spacing grating with 2400 l/mm at its center and a radius of curvature of 58 542 mm. First, results show a resolving power of around 1000 at an energy of 550 eV and a working spectrometer for high vacuum (10{sup −4} mbar) environment without losing photon intensity.

  2. FABSOAR--A Fabry-Perot Spectrometer for Oxygen A-band Research Final Technical Report

    SciTech Connect (OSTI)

    Watchorn, Steven

    2010-09-10

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalons into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.

  3. A Compact, Backscattering Deplolarization Cloud Spectrometer for Ice and Water Discrimination

    SciTech Connect (OSTI)

    Thomson, David

    2014-05-15

    This project was to develop a compact optical particle spectrometer, small enough for operation on UAVS, that measures the optical diameter of cloud hydrometeors and differentiates their water phase (liquid or solid). To reach this goal, a work plan was laid out that would complete three objectives: 1) Evaluation of designs for an optical particle spectrometer that measures the component of light backscattered at two polarization angles. 2) Testing of selected designs on an optical bench. 3) Construction and preliminary testing of a prototype instrument based on the selected, optimum design. A protoype instrument was developed and tested in an icing wind tunnel where the results showed good measurement of cloud droplets and ice particles.

  4. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    SciTech Connect (OSTI)

    Steel, A. B. Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V.; Hoarty, D. J.

    2014-11-15

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1–2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4–2.5, 1.85–3.15, or 3.55–5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  5. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect (OSTI)

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  6. Determination of chemical concentration with a 2 dimensional CCD array in the Echelle grating spectrometer

    SciTech Connect (OSTI)

    Lewis, D.K.; Stevens, C.G.

    1994-11-15

    The Echelle grating spectrometer (EGS) uses a stepped Echelle grating, prisms and a folded light path to miniaturize an infrared spectrometer. Light enters the system through a slit and is spread out along Y by a prism. This light then strikes the grating and is diffracted out along X. This spreading results in a superposition of spectral orders since the grating has a high spectral range. These orders are then separated by again passing through a prism. The end result of a measurement is a 2 dimensional image which contains the folded spectrum of the region under investigation. The data lies in bands from top to bottom, for example, with wavenumber increments as small as 0.1 lying from left to right such that the right end of band N is the same as the left end of band N+1. This is the image which must be analyzed.

  7. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  8. Quantification of the spin-Hall anti-damping torque with a resonance spectrometer

    SciTech Connect (OSTI)

    Emori, Satoru Nan, Tianxiang; Oxholm, Trevor M.; Boone, Carl T.; Sun, Nian X.; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Budil, David E.

    2015-01-12

    We present a simple technique using a cavity-based resonance spectrometer to quantify the anti-damping torque due to the spin Hall effect. Modification of ferromagnetic resonance is observed as a function of small DC current in sub-mm-wide strips of bilayers, consisting of magnetically soft FeGaB and strong spin-Hall metal Ta. From the detected current-induced linewidth change, we obtain an effective spin Hall angle of 0.08–0.09 independent of the magnetic layer thickness. Our results demonstrate that a sensitive resonance spectrometer can be a general tool to investigate spin Hall effects in various material systems, even those with vanishingly low conductivity and magnetoresistance.

  9. Calculation of the Johann error for spherically bent x-ray imaging crystal spectrometers

    SciTech Connect (OSTI)

    Wang, E.; Beiersdorfer, P.; Gu, M.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Reinke, M.; Rice, J. E.; Podpaly, Y.

    2010-10-15

    New x-ray imaging crystal spectrometers, currently operating on Alcator C-Mod, NSTX, EAST, and KSTAR, record spectral lines of highly charged ions, such as Ar{sup 16+}, from multiple sightlines to obtain profiles of ion temperature and of toroidal plasma rotation velocity from Doppler measurements. In the present work, we describe a new data analysis routine, which accounts for the specific geometry of the sightlines of a curved-crystal spectrometer and includes corrections for the Johann error to facilitate the tomographic inversion. Such corrections are important to distinguish velocity induced Doppler shifts from instrumental line shifts caused by the Johann error. The importance of this correction is demonstrated using data from Alcator C-Mod.

  10. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  11. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  12. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  13. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    SciTech Connect (OSTI)

    Poletto, L. Frassetto, F.; Miotti, P.; Di Cicco, A.; Iesari, F.; Finetti, P.; Grazioli, C.; Kivimäki, A.; Stagira, S.; Coreno, M.

    2014-10-15

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  14. Probing triple-Higgs productions via 4b2γ decay channel at a 100 TeV hadron collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Chien-Yi; Yan, Qi-Shu; Zhao, Xiaoran; Zhao, Zhijie; Zhong, Yi-Ming

    2016-01-11

    We report that the quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or International Linear Collider (ILC) at a few TeV because of its extremely small production rate. In this paper, we present a detailed Monte Carlo simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel HHH →more » $$b\\bar{b}$$$$b\\bar{b}$$γγ, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that, in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than 1.8×104 ab₋1. We also explore the dependence of the cross section upon the trilinear (λ3) and quartic (λ4) self-couplings of the Higgs. Ultimately, we find that, through a search in the triple-Higgs production, the parameters λ3 and λ4 can be restricted to the ranges [₋1,5] and [₋20,30], respectively. We also examine how new physics can change the production rate of triple-Higgs events. For example, in the singlet extension of the Standard Model, we find that the triple-Higgs production rate can be increased by a factor of O(10).« less

  15. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity

    SciTech Connect (OSTI)

    Xue Qingsheng

    2011-04-01

    A low-cost, broadband, astigmatism-corrected Czerny-Turner arrangement with a fixed plane grating is proposed. A wedge cylindrical lens is used to correct astigmatism over a broadband spectral range. The principle and method of astigmatism correction are described in detail. We compare the performance of this modified Czerny-Turner arrangement with that of the traditional Czerny-Turner arrangement by using a practical Czerny-Turner imaging spectrometer example.

  16. Aberration-corrected Czerny-Turner imaging spectrometer with a wide spectral region

    SciTech Connect (OSTI)

    Xue Qingsheng; Wang Shurong; Lu Fengqin

    2009-01-01

    A modified asymmetrical Czerny-Turner arrangement with a fixed plane grating is proposed to correct aberrations over a wide spectral region by analysis of the dependence of aberration correction for different wavelengths. The principle and method of aberration correction are described in detail. We compare the performance of this modified Czerny-Turner arrangement with that of the existing Czerny-Turner arrangement by using a practical Czerny-Turner imaging spectrometer example.

  17. DOE SC ARM TR 160 Proton Transfer Time of Flight Mass Spectrometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Proton Transfer Time-of-Flight Mass Spectrometer Instrument Handbook TB Watson March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

  18. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    DOE Patents [OSTI]

    Haas, Jeffrey S.; Bushman, John F.; Howard, Douglas E.; Wong, James L.; Eckels, Joel D.

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  19. Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer

    DOE Patents [OSTI]

    Chastgner, P.

    1991-05-08

    This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

  20. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOE Patents [OSTI]

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  1. High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics

    SciTech Connect (OSTI)

    Cirrone, G. A. P.; Schillaci, F.; Carpinelli, M.; Maggiore, M.; Ter-Avetisyan, S.; Tramontana, A.; Velyhan, A.

    2013-07-26

    Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

  2. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    SciTech Connect (OSTI)

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. This reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.

  3. GeMini: The Next Generation Mechanically-Cooled Germanium Spectrometer

    SciTech Connect (OSTI)

    Burks, M

    2008-06-13

    The next-generation mechanically-cooled germanium spectrometer has been developed. GeMini (GErmanium MINIature spectrometer) has been designed to bring high-resolution gamma-ray spectroscopy to a range of demanding field environments. Intended applications include short-notice and surprise inspections where positive nuclide identification of radioactive materials is required. GeMini weighs 2.75 kg (6 lbs) total including the detector, cryostat, cryocooler, batteries, electronics and readout. It is very low power allowing it to operate for 10 hours on a single set of rechargeable batteries. This instrument employs technology adapted from the gamma-ray spectrometer currently flying on NASA's Mercury MESSENGER spacecraft. Specifically, infrared shielding techniques allow for a vast reduction of thermal load. This in turn allows for a smaller, lighter-weight design, well-suited for a hand-held instrument. Two working prototypes have been built and tested in the lab. The target energy resolution is 3 keV fwhm or better for 1332 keV gamma-rays. The detectors currently achieve around 4.5 keV resolution, which is slightly higher than our goal due to microphonic noise. Our present work focuses on improving the resolution through mechanical and electronic means of reducing the microphonic noise. This paper will focus on the performance of the instrument and its applicability for inspectors in the field.

  4. The Astro-E2 XRS/EBIT Microcalorimeter XC-ray Spectrometer

    SciTech Connect (OSTI)

    Porter, F S; Brown, G V; Boyce, K R; Kelley, R L; Kilbourne, C A; Beiersdorfer, P; Chen, H; Terracol, S; Kahn, S M; Szymkowiak, A E

    2004-04-16

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare XRS microcalorimeter spectrometer at the EBIT-I and SuperEBIT facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolving power. The XRS microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully engineering the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration 'library' for the Astro-E2 observatory.

  5. A simple, low-cost, versatile CCD spectrometer for plasma spectroscopy

    SciTech Connect (OSTI)

    Den Hartog, D. J.; Holly, D. J.

    1996-06-01

    The authors have constructed a simple, low-cost CCD spectrometer capable of both high resolution ({Delta}{lambda} {le} 0.015 nm) and large bandpass (110 nm with {Delta}{lambda} {approximately}0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the MST Reversed-Field Pinch. The spectrometer is a modified Jarrell-Ash 0.5 m Ebert-Fastie monochromator. Light is coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electromechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh{reg_sign} computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use.

  6. Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay

    SciTech Connect (OSTI)

    Chen, Jianwei; Lineberry, Michael

    2007-07-01

    Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)

  7. What Caused the Lead burn-out in Spectrometer Magnet 2B

    SciTech Connect (OSTI)

    Green, Michael A

    2010-11-29

    The spectrometer solenoids are supposed to be the first magnets installed in the MICE Cooling Channel. The results of the test of Spectrometer Magnet 2B are reported in a previous MICE Note. Magnet 2B was tested with all five coils connected in series. The magnet failed because a lead to coil M2 failed before it could be trained to its full design current of 275 A. First, this report describes the condition of the magnet when the lead failure occurred. The lead that failed was between the cold mass feed-through and the heavy lead that connected to coil M2 and the quench protection diodes. It is believed that the lead failed because the minimum propagation zone (MPZ) length was too short. The quench was probably triggered by lead motion in the field external to the magnet center coil. The effect of heat transfer on quench propagation and MPZ length is discussed. The MPZ length is compared for a number of cases that apply to the spectrometer solenoid 2B as built and as it has been repaired. The required heat transfer coefficient for cryogenic stability and the quench propagation velocity along the leads are compared for various parts of the Magnet leads inside the cold mass cryostat. The effect of the insulation on leads on heat transfer is and stability is discussed.

  8. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm thatmore » is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.« less

  9. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer

    SciTech Connect (OSTI)

    Ko, Phyllis; Scott, Jill R.; Jovanovic, Igor

    2015-09-05

    To fully take advantage of a low-cost, small footprint hybrid interferometric/dispersive spectrometer, a math- ematical reconstruction technique was developed to accurately capture the high-resolution and relative peak intensities from complex patterns. A Fabry-Perot etalon was coupled to a Czerny-Turner spectrometer, in- creasing spectral resolution by an order of magnitude without the commensurate increase in spectrometer size. Measurement of the industry standard Hg 313.1555/313.1844 nm doublet yielded a ratio of 0.682 with 1.8%error, which agreed well with an independent measurement and literature values. The doublet separation (29 pm), is similar to the U isotope shift (25 pm) at 424.437 nm that is of interest to monitoring nuclear nonpro-liferation activities. Additionally, the technique was applied to a LIBS measurement of the mineral cinnabar (HgS) and resulted in a ratio of 0.681. In addition, this reconstruction method could enable significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting a variety of spectroscopic applications.

  10. A RAPIDLY-TUNABLE ACOUSTO-OPTIC SPECTROMETER FOR A SPACE ENVIRONMENT

    SciTech Connect (OSTI)

    D. THOMPSON; C. HEWITT; C. WILSON

    2000-08-01

    As a complement to our work developing rapidly-tunable ({approximately}10-100 kHz) CO{sub 2} lasers for differential absorption lidar (DIAL) applications,l we have developed a rapidly-tunable spectrometer. A rapid spectral diagnostic is critical for a high speed DIAL system, since analysis of the return signals depends on knowing the spectral purity of the transmitted beam. The spectrometer developed for our lidar system is based on a double-passed large- (75 mm) aperture acousto-optic deflector, a grating, and a fast single-element room temperature mercury-cadmium-telluride detector. The spectrometer has a resolution of {approximately}0.5 cm{sup {minus}1}, a tuning range of 9.0-11.4 pm, a random-access tuning speed of greater than 80 kHz and a S/N ratio of greater than 100:1. We describe the design and performance of this device, as well as of future devices featuring improved resolution, higher speed and easier and more robust alignment. We will also briefly discuss the applications and limitations of the technique in a space environment.

  11. Toluene diisocyanate: Induction of the autotaxin-lysophosphatidic acid axis and its association with airways symptoms

    SciTech Connect (OSTI)

    Broström, Julia M.; Ye, Zhi-wei; Axmon, Anna; Littorin, Margareta; Tinnerberg, Håkan; Lindh, Christian H.; Zheng, Huiyuan; Ghalali, Aram; Stenius, Ulla; Jönsson, Bo A.G.; Högberg, Johan

    2015-09-15

    Diisocyanates are industrial chemicals which have a wide range of applications in developed and developing countries. They are notorious lung toxicants and respiratory sensitizers. However, the mechanisms behind their adverse effects are not adequately characterized. Autotaxin (ATX) is an enzyme producing lysophosphatidic acid (LPA), and the ATX-LPA axis has been implicated in lung related inflammatory conditions and diseases, including allergic asthma, but not to toxicity of environmental low-molecular-weight chemicals. We investigated effects of toluene diisocyanate (TDI) on ATX induction in human lung epithelial cell models, and we correlated LPA-levels in plasma to biomarkers of TDI exposure in urine collected from workers exposed to < 5 ppb (parts per billion). Information on workers' symptoms was collected through interviews. One nanomolar TDI robustly induced ATX release within 10 min in vitro. A P2X7- and P2X4-dependent microvesicle formation was implicated in a rapid ATX release and a subsequent protein synthesis. Co-localization between purinergic receptors and ATX was documented by immunofluorescence and confocal microscopy. The release was modulated by monocyte chemoattractant protein-1 (MCP-1) and by extracellular ATP. In workers, we found a dose–response relationship between TDI exposure biomarkers in urine and LPA levels in plasma. Among symptomatic workers reporting “sneezing”, the LPA levels were higher than among non-symptomatic workers. This is the first report indicating induction of the ATX-LPA axis by an environmental low-molecular-weight chemical, and our data suggest a role for the ATX-LPA axis in TDI toxicity. - Highlights: • Human epithelial cells release autotaxin in response to 1 nM toluene diisocyanate (TDI). • The release involves P2X4 and P2X7 receptors and is modulated by ATP and MCP-1. • Lysophosphatidic acid (LPA) was measured in workers exposed to < 5 ppb TDI. • LPA in plasma correlated to TDI exposure biomarkers in

  12. Effect of the size of experimental channels of the lead slowing-down spectrometer SVZ-100 (Institute for Nuclear Research, Moscow) on the moderation constant

    SciTech Connect (OSTI)

    Latysheva, L. N.; Bergman, A. A.; Sobolevsky, N. M.; Ilic, R. D.

    2013-04-15

    Lead slowing-down (LSD) spectrometers have a low energy resolution (about 30%), but their luminosity is 10{sup 3} to 10{sup 4} times higher than that of time-of-flight (TOF) spectrometers. A high luminosity of LSD spectrometers makes it possible to use them to measure neutron cross section for samples of mass about several micrograms. These features specify a niche for the application of LSD spectrometers in measuring neutron cross sections for elements hardly available in macroscopic amounts-in particular, for actinides. A mathematical simulation of the parameters of SVZ-100 LSD spectrometer of the Institute for Nuclear Research (INR, Moscow) is performed in the present study on the basis of the MCNPX code. It is found that the moderation constant, which is the main parameter of LSD spectrometers, is highly sensitive to the size and shape of detecting volumes in calculations and, hence, to the real size of experimental channels of the LSD spectrometer.

  13. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. IV. THE TRIPLE STAR SYSTEMS 63 Gem A AND HR 2896

    SciTech Connect (OSTI)

    Muterspaugh, Matthew W.; Fekel, Francis C.; Williamson, M.; Lane, Benjamin F.; Hartkopf, William I.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M. E-mail: blane@draper.co E-mail: maciej@ncac.torun.p

    2010-12-15

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known {approx}<2 day subsystem in the triple system 63 Gem A and have detected a previously unknown two-year Keplerian wobble superimposed on the visual orbit of the much longer period (213 years) binary system HR 2896. 63 Gem A was already known to be triple from spectroscopic work, and absorption lines from all three stars can be identified and their individual Doppler shifts measured; new velocities for all three components are presented to aid in constraining the orbit and measuring the stellar masses. In fact, 63 Gem itself is a sextuple system: the hierarchical triple (Aa1-Aa2)-Ab (in which Aa1 and Aa2 orbit each other with a rapid period just under 2 days, and Ab orbits these every two years), plus three distant common proper motion companions. The very small astrometric perturbation caused by the inner pair in 63 Gem A stretches the limits of current astrometric capabilities, but PHASES observations are able to constrain the orientation of the orbit. The two bright stars comprising the HR 2896 long-period (213 year) system have a combined spectral type of K0III and the newly detected object's mass estimate places it in the regime of being an M dwarf. The motion of the stars are slow enough that their spectral features are always blended, preventing Doppler studies. The PHASES measurements and radial velocities (when available) have been combined with lower precision single-aperture measurements covering a much longer time frame (from eyepiece measurements, speckle interferometry, and adaptive optics) to improve the characterization of the long-period orbits in both binaries. The visual orbits of the short- and long-period systems are presented for both systems and used to calculate two possible values of the mutual inclinations between inner and outer orbits of 152{sup 0} {+-} 12

  14. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  15. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  16. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  17. DND-CAT;s new triple area detector system for simultaneous data collection at multiple length scales

    SciTech Connect (OSTI)

    Weigand, Steven J.; Keane, Denis T.

    2011-11-17

    The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditional WAXS and SAXS ranges.

  18. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; Brugamyer, E.; Bryson, S. T.; Buchhave, L. A.; Cochran, W. D.; Endl, M.; Fabrycky, D C.; Ford, E. B.; et al

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017Mcircle-dot) and the orbital parameters ofmore » the binary about the central star.« less

  19. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    SciTech Connect (OSTI)

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; Brugamyer, E.; Bryson, S. T.; Buchhave, L. A.; Cochran, W. D.; Endl, M.; Fabrycky, D C.; Ford, E. B.; Holman, M. J.; Jenkins, J.

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017Mcircle-dot) and the orbital parameters of the binary about the central star.

  20. Calculation of contact angles at triple phase boundary in solid oxide fuel cell anode using the level set method

    SciTech Connect (OSTI)

    Sun, Xiaojun; Hasegawa, Yosuke; Kohno, Haruhiko; Jiao, Zhenjun; Hayakawa, Koji; Okita, Kohei; Shikazono, Naoki

    2014-10-15

    A level set method is applied to characterize the three dimensional structures of nickel, yttria stabilized zirconia and pore phases in solid oxide fuel cell anode reconstructed by focused ion beam-scanning electron microscope. A numerical algorithm is developed to evaluate the contact angles at the triple phase boundary based on interfacial normal vectors which can be calculated from the signed distance functions defined for each of the three phases. Furthermore, surface tension force is estimated from the contact angles by assuming the interfacial force balance at the triple phase boundary. The average contact angle values of nickel, yttria stabilized zirconia and pore are found to be 143156, 83138 and 82123, respectively. The mean contact angles remained nearly unchanged after 100 hour operation. However, the contact angles just after reduction are different for the cells with different sintering temperatures. In addition, standard deviations of the contact angles are very large especially for yttria stabilized zirconia and pore phases. The calculated surface tension forces from mean contact angles were close to the experimental values found in the literature. Slight increase of surface tensions of nickel/pore and nickel/yttria stabilized zirconia were observed after operation. Present data are expected to be used not only for the understanding of the degradation mechanism, but also for the quantitative prediction of the microstructural temporal evolution of solid oxide fuel cell anode. - Highlights: A level set method is applied to characterize the 3D structures of SOFC anode. A numerical algorithm is developed to evaluate the contact angles at the TPB. Surface tension force is estimated from the contact angles. The average contact angle values are found to be 143o-156o, 83o-138o and 82o-123o. Present data are expected to understand degradation and predict evolution of SOFC.

  1. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  2. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect (OSTI)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  3. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  4. Passive Electrostatic Recycling Spectrometer of Desk-Top Size for Charged Particles of Low Kinetic Energy

    SciTech Connect (OSTI)

    Tessier, D. R.; Niu, Y.; Seccombe, D. P.; Reddish, T. J.; Alderman, A. J.; Birdsey, B. G.; Hammond, P.; Read, F. H.

    2007-12-21

    A passive electrostatic recycling spectrometer for charged particles is described and demonstrated to store electrons with typical kinetic energies of tens of eV. The design of the charged particle optics and the basic operating characteristics of the storage ring are discussed. The storage lifetime achieved is {approx}50 {mu}s, which is target gas pressure limited and corresponds to {approx}200 orbits of the 0.65 m orbital circumference. The storage ring also has controllable energy dispersive elements enabling it to operate as a spectroscopic device.

  5. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect (OSTI)

    Tomita, H. Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.; Cheon, M. S.; Isobe, M.; Ogawa, K.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  6. A radial collimator for a time-of-flight neutron spectrometer

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-15

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  7. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect (OSTI)

    Thorn, D B

    2008-11-03

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  8. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOE Patents [OSTI]

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  9. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry- Perot optical system M. M. Baltzer, D. Craig, D. J. Den Hartog, T. Nishizawa, and M. D. Nornberg Citation: Review of Scientific Instruments 87, 11E509 (2016); doi: 10.1063/1.4955491 View online: http://dx.doi.org/10.1063/1.4955491 View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/87/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Development of a tunable

  10. Solid Phase Microextraction and Miniature Time-of-Flight Mass Spectrometer

    SciTech Connect (OSTI)

    Hiller, j.m.

    1999-01-26

    A miniature mass spectrometer, based on the time-of-flight principle, has been developed for the detection of chemical warfare agent precursor molecules. The instrument, with minor modifications, could fulfill many of the needs for sensing organic molecules in various Defense Programs, including Enhanced Surveillance. The basic footprint of the instrument is about that of a lunch box. The instrument has a mass range to about 300, has parts-per-trillion detection limits, and can return spectra in less than a second. The instrument can also detect permanent gases and is especially sensitive to hydrogen. In volume, the device could be manufactured for under $5000.

  11. Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe

    DOE Patents [OSTI]

    Bono, Matthew J.; Hibbard, Robin L.

    2008-03-04

    A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.

  12. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect (OSTI)

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  13. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect (OSTI)

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  14. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect (OSTI)

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  15. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect (OSTI)

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  16. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Arnold, C. W.; Tovesson, F.; Meierbachtol, K.; Bredeweg, T.; Jandel, M.; Jorgenson, H. J.; Laptev, A.; Rusev, G.; Shields, D. W.; White, M.; et al

    2014-07-09

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEtermination in fission Research (SPIDER) is a 2E–2v spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with α-particles from 229Th and its decay chain and α-particles and spontaneous fission fragments from 252Cf. Each detector module is comprised of thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flightmore » times were measured with 250 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to a precision of 0.5%. As a result, an ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.« less

  17. Imaging x-ray crystal spectrometers for the National Spherical Torus Experiment

    SciTech Connect (OSTI)

    Bitter, M.; Hill, K.W.; Roquemore, A.L.; Beiersdorfer, P.; Kahn, S.M.; Elliott, S.R.; Fraenkel, B.

    1999-01-01

    A new type of high-resolution x-ray imaging crystal spectrometers is described for implementation on the National Spherical Torus Experiment (NSTX) to provide spatially and temporally resolved data on the ion temperature, toroidal and poloidal plasma rotation, electron temperature, impurity ion-charge state distributions, and impurity transport. These data are derived from observations of the satellite spectra of heliumlike argon, ArthinspXVII, which is the dominant charge state for electron temperatures in the range from 0.4 to 3.0 keV and which is accessible to NSTX. Experiments at the Torus Experiment for Technology Oriented Research (TEXTOR) demonstrate that a throughput of 2{times}10{sup 5}thinspphotons/s (corresponding to the count-rate limit of the present detectors) can easily be obtained with small, nonperturbing argon gas puffs of less than 1{times}10{sup {minus}3}thinspTorrthinspscr(l)/s, so that it is possible to record spectra with a small statistical error and a good time resolution (typically 50 and 1 ms in some cases). Employing a novel design, which is based on the imaging properties of spherically bent crystals, the spectrometers will provide spectrally and spatially resolved images of the plasma for all experimental conditions, which include ohmically heated discharges as well as plasmas with rf and neutral-beam heating. The conceptual design, experimental results on the focusing properties, and relevant spectral data from TEXTOR are presented. {copyright} {ital 1999 American Institute of Physics.}

  18. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect (OSTI)

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris; Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette ; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris ; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio; Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05; CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  19. Total internal reflection fluorescence spectrometer to study dynamic adsorption phenomena at liquid/liquid interfaces

    SciTech Connect (OSTI)

    Tupy, M.J.; Blanch, H.W.; Radke, C.J.

    1998-08-01

    Adsorption at oil/water interfaces affects the performance of many industrial systems including oil recovery, extraction processes, cosmetic products, and food technology. However, no technique currently available can monitor adsorption dynamics using molecularly sensitive methods. The authors have constructed a novel total internal reflection fluorescence spectrometer (TIRFS) to follow dynamic adsorption events at the oil/water interface. The TIRFS monitors changes in fluorescence intensity and fluorescence spectra over time by maintaining an optical focus on the fluid interface during adsorption and desorption processes. Kinetic adsorption phenomena are examined by altering the composition of the aqueous phase and recording surface fluorescence response without mechanically disturbing the fluid/fluid interface. The spectrometer captures changes in the fluorescence intensity over tenths of seconds and maintains optical focus for periods of days. Mass transport of fluorescing surface-active material to and from the oil/water interface is accurately modeled using the simple one-dimensional diffusion equation. The geometry designed for this apparatus can be applied to other light-based techniques studying adsorption at liquid/liquid interfaces. Here, the authors apply the TIRFS apparatus to the study of {beta}-casein adsorption and desorption at an aliphatic oil/water interface. The observed increase in interfacial fluorescence due to {beta}-casein adsorption is slower than the diffusive flux, and desorption is found to be very slow if not irreversible. The TIRF spectrum indicates interaction of sorbed {beta}-casein with the oil phase and subsequent rearrangement of the native structure.

  20. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  1. Four Pulse Drive System for the Beam Induction Cells for DARHT Axis 2

    SciTech Connect (OSTI)

    Downing, J.; Carlson, R.; Melton, J.; Fockler, J.

    1999-06-28

    The proposed drive system allows for the generation of up to four (4) high-quality radiographic pulses along one line-of-sight, having arbitrary pulse spacing ({approximately}500 ns), using demonstrated technologies. This concept uses a four-pulse drive system to drive both a 16-MeV ensemble of 250-kV, 4-kA induction cells and a four-pulse, 4-MeV injector. The key to this approach lies in the method used to combine four pulses from different generators in a manner that does not compromise the voltage flatness requirement of {+-} 1%. The induction cells use core material for only a single pulse. A simple reverse bias circuit is used to reset the cores between pulses, and the insulator has been redesigned to withstand the reverse reset voltage. This approach can be installed in stages so that the facility can be used for dual axis radiography while implementing the multi-pulsing capability. A dual double-pulse format has been identified which provides a sequence of two pulses along one line-of-sight within a 2-{micro}sec window. The 2-{micro}sec windows can be separated by arbitrary time intervals of 2- to 10-{micro}sec.

  2. LayTracks3D: A new approach for meshing general solids using medial axis transform

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less

  3. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    SciTech Connect (OSTI)

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  4. Compact focusing spectrometer: Visible (1 eV) to hard x-rays (200 keV)

    SciTech Connect (OSTI)

    Baronova, E. O.; Stepanenko, A. M.; Pereira, N. R.

    2014-11-15

    A low-cost spectrometer that covers a wide range of photon energies can be useful to teach spectroscopy, and for simple, rapid measurements of the photon spectrum produced by small plasma devices. The spectrometer here achieves its wide range, nominally from 1 eV to 200 keV, with a series of spherically and cylindrically bent gratings or crystals that all have the same shape and the same radius of curvature; they are complemented by matching apertures and diagnostics on the Rowland circle that serves as the circular part of the spectrometer's vacuum vessel. Spectral lines are easily identified with software that finds their positions from the dispersion of each diffractive element and the known energies of the lines.

  5. Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector

    SciTech Connect (OSTI)

    Kleymenov, Evgeny; Bokhoven, Jeroen A. van; David, Christian; Janousch, Markus; Studer, Marco; Willimann, Markus; Bergamaschi, Anna; Henrich, Beat; Nachtegaal, Maarten; Glatzel, Pieter; Alonso-Mori, Roberto

    2011-06-15

    A Johann-type spectrometer with five spherically bent crystals and a pixel detector was constructed for a range of hard x-ray photon-in photon-out synchrotron techniques, covering a Bragg-angle range of 60 deg. - 88 deg. The spectrometer provides a sub emission line width energy resolution from sub-eV to a few eV and precise energy calibration, better than 1.5 eV for the full range of Bragg angles. The use of a pixel detector allows fast and easy optimization of the signal-to-background ratio. A concentration detection limit below 0.4 wt% was reached at the Cu K{alpha}{sub 1} line. The spectrometer is designed as a modular mobile device for easy integration in a multi-purpose hard x-ray synchrotron beamline, such as the SuperXAS beamline at the Swiss Light Source.

  6. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    SciTech Connect (OSTI)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  7. IONIZATION SOURCE OF A MINOR-AXIS CLOUD IN THE OUTER HALO OF M82

    SciTech Connect (OSTI)

    Matsubayashi, K.; Taniguchi, Y.; Kajisawa, M.; Shioya, Y.; Sugai, H.; Shimono, A.; Hattori, T.; Ozaki, S.; Yoshikawa, T.; Nagao, T.; Bland-Hawthorn, J.

    2012-12-10

    The M82 ''cap'' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well-known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, H{alpha}, [N II]{lambda}6583/H{alpha}, and [S II]{lambda}{lambda}6716,6731/H{alpha} maps were obtained with subarcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright H{alpha} emitting clouds within the cap. The emission line widths ({approx}< 100 km s{sup -1} FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v{sub shock} 40-80 km s{sup -1}) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f{sub esc} > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.

  8. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    SciTech Connect (OSTI)

    Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J.; Blundell, S. J.; Lancaster, T.; Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S.; Scheuermann, R.; Salman, Z.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  9. Efficient enhancement of hydrogen production by Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrochemical cell

    SciTech Connect (OSTI)

    Liu, Ying; Ren, Feng Chen, Chao; Liu, Chang; Xing, Zhuo; Liu, Dan; Xiao, Xiangheng; Wu, Wei; Zheng, Xudong; Liu, Yichao; Jiang, Changzhong; Shen, Shaohua; Fu, Yanming

    2015-03-23

    Highly efficient semiconductor photoelectrodes for solar hydrogen production through photocatalytic water splitting are a promising and challenge solution to solve the energy problems. In this work, Ag/Cu{sub 2}O/ZnO tandem triple-junction photoelectrode was designed and prepared. An increase of 11 times of photocurrent is achieved in the Ag/Cu{sub 2}O/ZnO photoelectrode comparing to that of the Cu{sub 2}O film. The high performance of the Ag/Cu{sub 2}O/ZnO film is due to the optimized design of the tandem triple-junction structure, where the localized surface Plasmon resonance of Ag and the hetero-junctions efficiently absorb solar energy, produce, and separate electron-hole pairs in the photocathode.

  10. Development of 1.25 eV InGaAsN for triple junction solar cells

    SciTech Connect (OSTI)

    LI,N.Y.; SHARPS,P.R.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Development of next generation high efficiency space monolithic multifunction solar cells will involve the development of new materials lattice matched to GaAs. One promising material is 1.05 eV InGaAsN, to be used in a four junction GaInP{sub 2}/GaAs/InGaAsN/Ge device. The AMO theoretical efficiency of such a device is 38--42%. Development of the 1.05 eV InGaAsN material for photovoltaic applications, however, has been difficult. Low electron mobilities and short minority carrier lifetimes have resulted in short minority carrier diffusion lengths. Increasing the nitrogen incorporation decreases the minority carrier lifetime. The authors are looking at a more modest proposal, developing 1.25 eV InGaAsN for a triple junction GaInP{sub 2}/InGaAsN/Ge device. The AMO theoretical efficiency of this device is 30--34%. Less nitrogen and indium are required to lower the bandgap to 1.25 eV and maintain the lattice matching to GaAs. Hence, development and optimization of the 1.25 eV material for photovoltaic devices should be easier than that for the 1.05 eV material.

  11. Microstructural and chemical evolution near anode triple phase boundary in Ni/YSZ solid oxide fuel cells

    SciTech Connect (OSTI)

    Chen, Yun; Chen, Song; Hackett, Gregory; Finklea, Harry; Song, Xueyan; Gerdes, Kirk

    2011-12-12

    In this study, we report the micro-structural and chemical evolution of anode grain boundaries and triple phase boundary (TPB) junctions of Ni/YSZ anode supported solid oxide fuel cells. A NiO phase was found to develop along the Ni/YSZ interfaces extending to TPBs in the operated cells. The thickness of the NiO ribbon phase remains constant at ~ 5 nm in hydrogen for operating durations up to 540 h. When operating on synthesis gas, an increase in interphase thickness was observed from ~ 11 nm for 24 h of operation to ~ 51 nm for 550 h of operation. YSZ phases are observed to be stable in H{sub 2} over 540 h of operation. However, for the cell operated in syngas for 550 h, a 510 nm tetragonal YSZ (t-YSZ) interfacial layer was identified that originated from the Ni/YSZ interfaces. Yttrium species seem to segregate to the interfaces during operation, leading to the formation of t-YSZ in the Y-depleted regions.

  12. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    SciTech Connect (OSTI)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-08-14

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields.

  13. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  14. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, M.W.; Evans, R.

    1991-11-26

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the [sup 196]Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of [+-]0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour. 8 figures.

  15. Manifold and method of batch measurement of Hg-196 concentration using a mass spectrometer

    DOE Patents [OSTI]

    Grossman, Mark W.; Evans, Roger

    1991-01-01

    A sample manifold and method of its use has been developed so that milligram quantities of mercury can be analyzed mass spectroscopically to determine the .sup.196 Hg concentration to less than 0.02 atomic percent. Using natural mercury as a standard, accuracy of .+-.0.002 atomic percent can be obtained. The mass spectrometer preferably used is a commercially available GC/MS manufactured by Hewlett Packard. A novel sample manifold is contained within an oven allowing flow rate control of Hg into the MS. Another part of the manifold connects to an auxiliary pumping system which facilitates rapid clean up of residual Hg in the manifold. Sample cycle time is about 1 hour.

  16. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect (OSTI)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  17. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms

  18. A conceptual design of an electron spectrometer for ELI-NP

    SciTech Connect (OSTI)

    Balascuta, S. Turcu, I. C. E.

    2015-02-24

    We present the geometry and field parameters of an Electron Spectrometer (ES) with two dipole magnets, considered for electron energy measurements at the High Fields QED experimental area at ELI-NP. The first magnet is a 2 meter long permanent magnet, placed inside the Interaction Chamber (IC). The second magnet is a 1.5 meters long electromagnet, placed outside IC. The pulsed electron beam will be produced by the 10 PW pulsed Laser, ‘pump-beam’, focused into one meter long capillary low density plasma cell. A second 10 PW pulsed Laser, ‘probe-beam’, will interact with the relativistic electron bunch providing the strong electromagnetic field. The ES will measure the subtle changes in the electron energy spectrum as a result of the electron beam interaction with the probe-beam field.

  19. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E.

    2014-11-15

    A high-throughput spectrometer for the 400820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup ?1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ?0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  20. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect (OSTI)

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  1. A. pi. /sup 0/ spectrometer for low-energy heavy-ion reactions

    SciTech Connect (OSTI)

    Young, G.R.

    1987-01-01

    A spectrometer composes of SF5 and F2 lead-glass blocks has been constructed for detection of neutral pi mesons emitted in low energy heavy-ion reactions. A geometric acceptance of nearly 10% of 4..pi.. is possible; the ..pi../sup 0/ detection efficiency varies between this value at T/sub ..pi../ approx. = O MeV and 2% for T/sub ..pi../ approx.100 MeV. Integrated cross sections as low as 300 pb have been measured. A few comments on the spectra observed are presented. In particular, evidence is seen for pion reabsorption. The total yields are apparently too large to interpret in single nucleon collision or statistical models. 18 refs., 7 figs.

  2. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    SciTech Connect (OSTI)

    Jacobsen, A. S. Salewski, M.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Eriksson, J.; Ericsson, G.; Hjalmarsson, A.

    2014-11-15

    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

  3. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    SciTech Connect (OSTI)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  4. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOE Patents [OSTI]

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  5. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  6. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  7. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  8. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  9. A Dual Channel X-ray Spectrometer for Fast Ignition Research

    SciTech Connect (OSTI)

    Akli, K U; Patel, P K; Van Maren, R; Stephens, R B; Key, M H; Higginson, D P; Westover, B; Chen, C D; Mackinnon, A J; Bartal, T; Beg, F N; Chawla, S; Fedosejevs, R; Freeman, R R; Hey, D S; Kemp, G E; LePape, S; Link, A; Ma, T; MacPhee, A G; McLean, H S; Ping, Y; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Yabuuchi, T

    2010-04-19

    A new Dual Channel Highly Ordered Pyrolytic Graphite (DC-HOPG) x-ray spectrometer was developed to study laser-generated electron beam transport. The instrument uses a pair of graphite crystals and has the advantage of simultaneously detecting self emission from low-Z materials in first diffraction order and high-Z materials in second order. The emissions from the target are detected using a pair of parallel imaging plates positioned in a such way that the noise from background is minimized and the mosaic focusing is achieved. Initial tests of the diagnostic on Titan laser (I {approx} 10{sup 20} W/cm{sup 2}, {tau} = 0.7 ps) show excellent signal-to-noise ratio (SNR) > 1000 for the low energy channel and SNR > 400 for the high energy channel.

  10. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  11. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    SciTech Connect (OSTI)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-09-15

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.

  12. Focusing, in-chamber spectrometer triplet for high resolution measurements on the Sandia Z facility

    SciTech Connect (OSTI)

    Wenger, D. F.; Sinars, D. B.; Rochau, G. A.; Bailey, J. E.; Porter, J. L.; Faenov, A. Ya.; Pikuz, T. A.; Pikuz, S. A.

    2006-10-15

    An early prototype of a focusing spectrometer with one-dimensional (1D) spatial resolution (FSSR) instrument was previously developed for use in the vacuum chamber of the Sandia Z facility [Sinars et al., J. Quant. Spectrosc. Radiat. Transf. 99, 595 (2006)]. This instrument used a single, spherically bent crystal to measure time-integrated Ar spectra from 0.295-0.378 nm with {lambda}/{delta}{lambda}>2000 and a 1D axial spatial resolution of {approx}50 {mu}m. We present the design of a final version of this instrument that improves the shielding, can be aligned more accurately, and uses three crystals instead of one. The last change enables coverage of multiple spectral ranges if different crystals are used, or multiple times if identical crystals and time-gated detectors are used. We also present results from initial prototyping tests on the Z facility using two crystals in a time-integrated mode.

  13. A versatile medium-resolution x-ray emission spectrometer for diamond anvil cell applications

    SciTech Connect (OSTI)

    Mortensen, D. R.; Seidler, G. T.; Bradley, J. A.; Lipp, M. J.; Evans, W. J.; Chow, P.; Xiao, Y.-M.; Boman, G.; Bowden, M. E.

    2013-08-15

    We present design and performance details for a polycapillary-coupled x-ray spectrometer that provides very high collection efficiency at a moderate energy resolution suitable for many studies of nonresonant x-ray emission spectroscopy, especially for samples of heavy elements under high pressures. Using a single Bragg analyzer operating close to backscattering geometry so as to minimize the effect of the weak divergence of the quasicollimated exit beam from the polycapillary optic, this instrument can maintain a typical energy resolution of 5 eV over photon energies from 5 keV to 10 keV. We find dramatically improved count rates as compared to a traditional higher-resolution instrument based on a single spherically bent crystal analyzer.

  14. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, Matthew B; Niedziela, Jennifer L; Abernathy, Douglas L; Debeer-Schmitt, Lisa M; Garlea, Vasile O; Granroth, Garrett E; Graves-Brook, Melissa K; Ehlers, Georg; Kolesnikov, Alexander I; Podlesnyak, Andrey A; Winn, Barry L

    2014-04-01

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments is not exclusive and overlaps significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  15. A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L.; Ehlers, G.; Garlea, O.; Podlesnyak, A.; Winn, B.; Niedziela, J. L.; DeBeer-Schmitt, L.; Graves-Brook, M.; Granroth, G. E.; Kolesnikov, A. I.

    2014-04-15

    The Spallation Neutron Source at Oak Ridge National Laboratory now hosts four direct geometry time-of-flight chopper spectrometers. These instruments cover a range of wave-vector and energy transfer space with varying degrees of neutron flux and resolution. The regions of reciprocal and energy space available to measure at these instruments are not exclusive and overlap significantly. We present a direct comparison of the capabilities of this instrumentation, conducted by data mining the instrument usage histories, and specific scanning regimes. In addition, one of the common science missions for these instruments is the study of magnetic excitations in condensed matter systems. We have measured the powder averaged spin wave spectra in one particular sample using each of these instruments, and use these data in our comparisons.

  16. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  17. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect (OSTI)

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  18. Analysis of Superconducting Dipole Coil of 11 GeV Super High Momentum Spectrometer

    SciTech Connect (OSTI)

    Sun, Eric; Cheng, Gary; Lassiter, Steve R.; Brindza, Paul D.; Fowler, Michael J.

    2015-06-01

    Jefferson Lab is constructing five Super High Momentum Spectrometer (SHMS) superconducting magnets for the 12 GeV Upgrade. This paper reports measured coil material properties and the results of the extensive finite element analysis (FEA) for the dipole coil. To properly define the smeared orthotropic material of the coil, a detailed coil model is set up to compute material parameters because not all parameters were measured. Stress and strain acceptance criteria are discussed. Eight load steps are defined. The preheat temperature of the force collar is optimized under two loading scenarios so that the positive pressure between the inner coil and central spacer is maintained while there is not too much squeeze to the coil.

  19. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  20. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)