National Library of Energy BETA

Sample records for trillion btu note

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  3. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  4. DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Information Resources » Energy Analysis » DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) About the Energy Data Use this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of British thermal units (TBtu). The 15 manufacturing subsectors together consume 95% of all

  5. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  6. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  7. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  8. Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P 0.0 14.3 4.2 .0 .0 .0 .0 .0 (s) .0 .1 .0 18.6 Natural Gas 5 2003 1.4 76.6 7.0 7.6 3.7 1.3 8.6 2.9 10.4 .7 15.6 4.2

  9. Trillion Particles,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero IO Run on Hopper Surendra Byna , Andrew Uselton , Prabhat , David Knaak , and Yun...

  10. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  12. Contemplating 10 Trillion Digits of ?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for calculating digits of stands at about 10 trillion. Alexander J. Yee and Shigeru Kondo used a custom made desktop computer and a program called Y- Cruncher. The calculation...

  13. Sifting Through a Trillion Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sifting Through a Trillion Electrons Sifting Through a Trillion Electrons Berkeley researchers design strategies for extracting interesting data from massive scientific datasets June 26, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 VPIC1.jpg After querying a dataset of approximately 114,875,956,837 particles for those with Energy values less than 1.5, FastQuery identifies 57,740,614 particles, which are mapped on this plot. Image by Oliver Rubel, Berkeley Lab. Modern research tools like

  14. First BTU | Open Energy Information

    Open Energy Info (EERE)

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  15. First trillion particle cosmological simulation completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First trillion particle cosmological simulation completed First trillion particle cosmological simulation completed A team of astrophysicists and computer scientists has created high-resolution cyber images of our cosmos. January 8, 2015 Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total simulation volume. Simulation of the cosmic web of the dark matter mass distribution. This region represents about 1/10,000 of the total

  16. Trillion Particle Simulation on Hopper Honored with Best Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trillion Particle Simulation on Hopper Honored with Best Paper Trillion Particle Simulation on Hopper Honored with Best Paper Berkeley Lab Researchers Bridge Gap to Exascale May...

  17. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes Live Media Streaming via RealPlayer Media streaming of these lectures will be provided via RealPlayer. Users of Windows- or Macintosh-based computers will be able to...

  18. Trillion Particle Simulation on Hopper Honored with Best Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trillion Particle Simulation on Hopper Honored with Best Paper Trillion Particle Simulation on Hopper Honored with Best Paper Berkeley Lab Researchers Bridge Gap to Exascale May 31, 2013 Contact: Linda Vu, lvu@lbl.gov, (510) 495-2402 VPIC1.jpg Image by Oliver Rubel, Berkeley Lab. An unprecedented trillion-particle simulation, which utilized more than 120,000 processors and generated approximately 350 terabytes of data, pushed the performance capability of the National Energy Research Scientific

  19. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes Notes Why the June 1995 ERSUG Meeting is Important Bill McCurdy describes below a competitive process through which a decision will be made by MICS Division (formerly the OSC) in the June, 1995 timeframe to: (1) possibly move NERSC to Lawrence Berkeley National Laboratory, and (2) redefine to some extent the mission of the Center. All of this would be effected within a significantly reduced cost envelope. The LLNL proposal to keep NERSC where it is and the LBL proposal may soon be

  20. DYNAMIC MANUFACTURING ENERGY FLOWS TOOL (2010, UNITS: TRILLION...

    Broader source: Energy.gov (indexed) [DOE]

    this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of...

  1. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  2. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide...

  3. Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned from a Hero IO Run on Hopper Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero IO Run on Hopper May 23, 2013 byna Suren Byna Berkeley...

  4. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for...

  5. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: 1. The Btu conversion factors used...

  6. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  7. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  8. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:00:20 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  9. Microfabricated BTU monitoring device for system-wide natural gas

    Office of Scientific and Technical Information (OSTI)

    monitoring. (Technical Report) | SciTech Connect Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide natural gas monitoring. The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will

  10. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  11. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  12. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  13. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  14. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  15. C3DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) NEW...

  16. Released: Dec 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per Square Foot (thousand Btu)","per Worker (million Btu)" "All Buildings* ...",4645...

  17. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  18. Blue Note

    SciTech Connect (OSTI)

    Murray Gibson

    2007-04-27

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  19. Blue Note

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  20. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  1. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  2. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2004 through 2014 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks Period Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu) Average Cost (Dollars per MMBtu) Receipts (Trillion Btu)

  3. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Major Fuel, 1995 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) Primary Electricity (trillion Btu) RSE Row Factor Number of...

  4. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  5. OTS NOTE

    Office of Legacy Management (LM)

    c3 Alexander Williams FROM: Ed Mitchellcm SUBJECT: Babcock and Wilcox Elimination Recommendation The purpose of this note is to provide you with certain inf regarding the recommendation to eliminate Babcock and Wilco Products Division, Beaver Falls, Pennsylvania, from conside under FUSRAP. I 01 k, A pmation Tubular 1tion as a site Enclosed is a memo dated July 9, 1990: FUSRAP Considered Site Recommendation, for Babcock and Wilcox. It recommends elimjnation in accordance with FUSRAP protocol.

  6. OTS NOTE

    Office of Legacy Management (LM)

    941 OTS NOTE DATE: July 2, 1990 TO: W. Alexander Williams FROM : Don Mackenzie d%? SUBJECT: Elimination of 3 Facilities from NSRAP ./ + 9 Enclosed are elimination recommendations for Vitro Chemical Co., Chattanooga TN Englehard Industries, Newark NJ, and Vapofier Corp., Blue Island IL. >&,a,- Ad on the information referenced in the enclosed memoranda, elimination /us13 of the above sites is recommended at this time. J. Wagoner II OTS File .\3 NSRAP Files (TN.4, N;, IL.25

  7. OTS NOTE

    Office of Legacy Management (LM)

    @ 'Alexander Williams FROM: Ed Mitchellqm SUBJECT: W.R. Grace Elimination Recommendation The purpose of this note is to provide you with certain information regarding the recommendation to eliminate W.R. Grace Company (the former Heavy Minerals Company), Chicago,Illinois, from consideration as a site under FUSRAP. Enclosed is a memo dated July 9, 1990: FUSRAP Considered Site Recommendation, for W.R. Grace Company. It recommends elimination in accordance with FUSRAP protocol. Also enclosed is

  8. OTS NOTE

    Office of Legacy Management (LM)

    * pp4 r G- .2- OTS NOTE DATE: April 24, 1991 TO: Alexander Williams FROM: Dan Stou tF L SUBJECT: American Potash and Chemical Company Elimination Recommendation The attached memorandum and supporting documents are the basis for our recommendation to eliminate the former American Potash and Chemical Company site from further consideration under FUSRAP. The site is located in West Hanover, Massachusetts. Documents discovered to date indicating use or handling of radioactive material by American

  9. EDITORS NOTE:

    Office of Environmental Management (EM)

    EDITORS NOTE: This Strategic Plan covers the Department of Energy including the National Nuclear Security Administration, the Energy Information Administration, and the Power Marketing Administrations. As an independent regulatory agency, the Federal Energy Regulatory Commission (FERC) prepares separate documents. See their web page at: http://www.ferc.gov/about/strat-docs.asp. This document is also available on the Department of Energy's web site: http://www.energy.gov. This Strategic Plan was

  10. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  11. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    SciTech Connect (OSTI)

    Stewart, Jeffrey S.

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  12. TECHNICAL NOTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOTE Broadband extreme-ultraviolet survey spectrometer for short-time-scale experiments B. E. Chapman, D. J. Den Hartog, and R. J. Fonck A fast and inexpensive spectrometer system has been developed to record extreme-UV impurity spectra in a magnetic-fusion-research device. To simplify the vacuum system, light is passed out of the spectrom- eter's vacuum to the detector with a sodium-salicylate-coated, fiber-optic coupler. This coupler is positioned so that the focal field is nearly flat over

  13. OTS NOTE

    Office of Legacy Management (LM)

    March 22, 1991 TO: A. Williams FROM: 0. Sto> Attached is a revised site summary for the Exxon Company in Linden, New Jersey. The summary incorporates new information from a file search and from a conversation with.an NRC inspector. The specific locations of AEC/MED operations have not been identified. .I." -:;1 5':' :?iv,::.;& & had been decontami "ated. The NRC inspector did note that the kC.Mackenzie E. Mitchell C. Young .c. FUSRAP NJ.18 Exxon Research and Engineering

  14. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 1,023 1,021 1,020 1,018 1,017 2015 1,017 1,026 1,029 1,026 1,049 1,027 1,027 1,026 1,026 1,028 1,027 1,026 - = No Data Reported; -- = Not Applicable;

  20. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 - = No Data Reported; -- = Not Applicable; NA = Not

  1. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    U.S. Energy Information Administration (EIA) Indexed Site

    per Cubic Foot) Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,025 1,028 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016

  2. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages:

  3. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 - = No Data Reported; -- = Not Applicable;

  4. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 1,025 1,027 1,025 1,028 1,025 2015 1,033 1,034 1,035 1,036 1,044 1,039 1,040 1,042 1,039 1,037 1,035 1,031 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  10. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 - = No Data Reported; -- = Not Applicable;

  11. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 1,039 1,023 1,016 1,025 1,027 2015 1,033 1,035 1,030 1,025 1,022 1,020 1,020 1,018 1,019 1,026 1,025 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 - = No Data Reported; -- = Not

  16. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels ADVANCED MANUFACTURING OFFICE Enabling Clean Combustion of Low-Btu and Reactive Fuels in Gas Turbines By enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels, this unique, fuel- fexible catalytic combustor for gas turbines can reduce natural gas consumption in industry. Introduction Gas turbines are commonly used in industry for onsite power and heating needs because of their high

  18. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  19. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  20. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  1. Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation

    SciTech Connect (OSTI)

    Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

    2012-10-23

    A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 µm and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 W•cm-1/Hz1/2.

  2. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  3. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  4. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  5. Calculation note review

    SciTech Connect (OSTI)

    Ramble, A.L.

    1996-09-30

    This document contains a review of the calculation notes which were prepared for the Tank Waste Remediation System Basis for Interim Operation.

  6. Powered by 500 Trillion Calculations

    Broader source: Energy.gov [DOE]

    Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications.

  7. Sifting Through a Trillion Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    57,740,614 particles, which are mapped on this plot. Image by Oliver Rubel, Berkeley Lab. Modern research tools like supercomputers, particle colliders, and telescopes are...

  8. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  9. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  10. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare...

  11. Meeting Notes and Presentations

    Office of Environmental Management (EM)

    Corporate Board Notes and Slides Notes from EM Corporate QA Board Tele-Conference - February 22, 2010 1 of 2 General: Attendance of voting board members was documented. All members were present or had a representative present on the call. Previous 5 Focus Areas: Dave Tuttel presented the proposed closeout of the previous 5 focus areas for the EM Corporate Board. * Focus Area 1 (Requirements Flow Down) - Board voted to close the focus area (unanimous) * Focus Area 2 (Adequate NQA-1 Suppliers) -

  12. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water

  14. VOL2NOTE.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    B Explanatory Notes The following Explanatory Notes are provided to assist in understanding and interpreting the data presented in this publication. * Note 1. Petroleum Supply Reporting System * Note 2. Monthly Petroleum Supply Reporting System * Note 3. Technical Notes for Detailed Statistics Tables * Note 4. Domestic Crude Oil Production * Note 5. Export Data * Note 6. Quality Control and Data Revision * Note 7. Frames Maintenance * Note 8. Descriptive Monthly Statistics * Note 9. Practical

  15. Template:Note | Open Energy Information

    Open Energy Info (EERE)

    search Note Note: Usage Method 1 The following displays the note icon and the word 'Note:'. You can follow this with whatever textimagesmarkup you like, and it works...

  16. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  17. Notes and Definitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes and Definitions This report tracks U.S. natural gas inventories held in underground storage facilities. The weekly stocks generally are the volumes of working gas as of the report date. The "net change" in reported stock levels reflects all events affecting working gas in storage, including injections, withdrawals, and reclassifications between base and working gas. The "implied flow" estimate represents movements of working natural gas into or out of underground

  18. Meeting Summary Notes

    Office of Environmental Management (EM)

    National Transportation Stakeholders Forum (NTSF) May 26, 2010 Meeting Summary Notes Opening Remarks - Steve O'Connor, DOE Office of Packaging and Transportation Steve O'Connor, DOE/EM Office of Packaging and Transportation welcomed the group to this first National Transportation Stakeholders Forum (NTSF) and thanked the planning committee and the dedication of the Midwest Council of State Government for hosting the meeting. The NTSF will focus on transportation across the DOE complex. Mr.

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  20. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  1. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    5 Table C10. Energy Consumption Estimates by End-Use Sector, Ranked by State, 2013 Rank Residential Sector Commercial Sector Industrial Sector a Transportation Sector Total Consumption a State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,685.9 Texas 1,609.9 Texas 6,574.8 Texas 3,073.5 Texas 12,944.1 2 California 1,480.0 California 1,483.8 Louisiana 2,562.0 California 2,907.8 California 7,684.1 3 Florida 1,168.3 New York 1,134.2 California

  2. Manhattan Project: Sources and Notes

    Office of Scientific and Technical Information (OSTI)

    SOURCES AND NOTES Resources > Sources Below are the collected specific notes for the text and images used on the pages of this web site. For a discussion of the most important works on the Manhattan Project, see the "Suggested Readings." For a general discussion of the use of sources in this web site, see "A Note on Sources." To scan the sources and notes for various categories, choose from the list below. To view the sources and notes for a specific web page, see the

  3. Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972 .45 .68 1.22

  4. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  5. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  6. PIC Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Workshop" versus "meeting" Could provide someone to take verbal comments Page 5 PIC Transcribed Flip Chart Notes Wednesday, October 31, 2012 300 Area Public Involvement...

  7. Meeting Summary Notes | Department of Energy

    Office of Environmental Management (EM)

    Notes Meeting Summary Notes Summary Notes for the NTSF Meeting on May 26, 2010. PDF icon Meeting Summary Notes More Documents & Publications NTSF 2014 Meeting Agenda NTSF Spring 2010 Final Agenda NTSF Spring 2014 Preliminary Agenda

  8. Research Notes and Information References

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The RNS (Research Notes System) is a set of programs and databases designed to aid the research worker in gathering, maintaining, and using notes taken from the literature. The sources for the notes can be books, journal articles, reports, private conversations, conference papers, audiovisuals, etc. The system ties the databases together in a relational structure, thus eliminating data redundancy while providing full access to all the information. The programs provide the means for access andmore » data entry in a way that reduces the key-entry burden for the user. Each note has several data fields. Included are the text of the note, the subject classification (for retrieval), and the reference identification data. These data are divided into four databases: Document data - title, author, publisher, etc., fields to identify the article within the document; Note data - text and page of the note; Sublect data - subject categories to ensure uniform spelling for searches. Additionally, there are subsidiary files used by the system, including database index and temporary work files. The system provides multiple access routes to the notes, both structurally (access method) and topically (through cross-indexing). Output may be directed to a printer or saved as a file for input to word processing software.« less

  9. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  10. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  11. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  12. GETEM Manuals and Revision Notes

    Broader source: Energy.gov [DOE]

    Please refer to these manuals and revision notes prior to downloading and running the Geothermal Electricity Technology Evaluation Model (GETEM). Because this is a beta version, you are urged to...

  13. OpenEI Community - notes

    Open Energy Info (EERE)

    more

    http:en.openei.orgcommunityblognotes-callcomments notes Linked Open Data Workshop in Washington, D.C. Fri, 28 Sep 2012 00:57:30 +0000 Jweers 521 at...

  14. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  15. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heat Content of Natural Gas Consumed Definitions Key Terms Definition British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Delivered to Consumers (Heat Content) Heat content of residential, commercial, industrial, vehicle fuel and electric power deliveries to consumers. Electric Power (Heat Content) Heat content of

  17. First trillion particle cosmological simulation completed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    public data release. A paper describes the research and data release. Significance of the research The Dark Sky Simulations are an ongoing series of cosmological simulations...

  18. Team B: The trillion dollar experiment

    SciTech Connect (OSTI)

    Cahn, A.H.; Prados, J.

    1993-04-01

    Team B was an experiment in competetive threat assessments approved by the director of the CIA at that time, George Bush. Teams of experts were to make independent assessments of highly classified data used by the intelligence community to assess Soviet strategic forces in the yearly National Intelligence Estimates. In this article, two experts report on how a group of Cold War outside experts were invited to second-guess the policies of the CIA. The question explored here is whether or not these outside experts of the 1970s contributed to the military buildup of the 1980s.

  19. AIRMaster+ Release Notes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.2.7) Release Notes PDF icon Release Notes (Version 1.2.7) More Documents & Publications AIRMaster+ Software Tool Brochure AIRMaster+ User Manual AIRMaster+ Tool Introduction...

  20. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these lectures will be provided via RealPlayer. Users of Windows- or Macintosh-based computers will be able to see and hear the presentation by way of the following procedures. 1....

  1. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Argonne The Argonne contact person for the NUG Meeting is Mike Minkoff of the Mathematics and Computer Science Division. His phone number is (630) 252-7234. Last edited:...

  2. Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a primary topic of discussion was the issue of the processing capabilities of the PVP cluster. Since the upgrade of the batch system processors to SV1s, some concern has been...

  3. Topic A Note: Includes STEPS Subtopic

    Energy Savers [EERE]

    Topic A Note: Includes STEPS Subtopic 33 Total Projects Developing and Enhancing Workforce Training Programs

  4. Lecture Notes - Summer 2016 Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REU Lecture Notes (links to notes will be provided when they become available) -->

  5. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    E3A. Electricity Consumption (Btu) by End Use for All Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  6. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu)...

  7. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of Buildings...

  8. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels for Mercantile and Office Buildings, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  9. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  10. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  11. C15DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) NEW ENGLAND ... 45...

  12. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  13. U.S. Energy Information Administration | State Energy Data 2013...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4: Wood and Biomass Waste Consumption Estimates, 2013 State Wood Wood and Biomass Waste a Residential Commercial Industrial Electric Power Total b Thousand Cords Trillion Btu...

  14. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.2. Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of...

  15. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    (trillion Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  16. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting Cooking...

  17. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    Table B4. Consumption of Electricity by End Use, 1989 Electricity Consumption (trillion Btu) Office Space Ventil- Water Refrig- Equip- Total Heating Cooling ation Heating Lighting...

  18. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  19. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  20. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  1. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  2. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    (trillion Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  3. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 10.4 Biodiesel Overview, 2001-2011 Year Feedstock 1 Losses and Co-products 2 Production Trade Stocks, End of Year Stock Change 4 Balancing Item 5 Consumption Imports Exports Net Imports 3 Trillion Btu Trillion Btu Thousand Barrels Million Gallons Trillion Btu Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Million Gallons Trillion Btu 2001 1 (s) 204 9 1 78 39 39 NA NA NA 243 10 1 2002 1 (s) 250 10 1 191 56 135 NA NA

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  6. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  7. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  8. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  9. Property:ExplorationNotes | Open Energy Information

    Open Energy Info (EERE)

    the property "ExplorationNotes" Showing 1 page using this property. R RAPIDOverviewGeothermalExplorationCalifornia + The Geothermal Resources Prospecting Permit (PRC...

  10. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending...

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  12. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  13. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  14. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2. Fossil fuel sales of production from Indian lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 10 59 0.5% 2 6 0.3% 283 291 1.5% 30 616 2.8% 972 1.7% 2004 10 58

  15. Table Definitions, Sources, and Explanatory Notes

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Note: Dry natural gas is also known as consumer-grade natural gas. The parameters for measurement are cubic feet at 60 degrees Fahrenheit and 14.73 pounds per square inch...

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Information Query System > Definitions, Sources, & Notes Definitions, Sources, and Explanatory Notes The EIA-176 form contains responses submitted from an identified universe of pipelines, local distribution companies, and operators of fields, wells or gas processing plants, who distribute gas to end users or transport gas across State borders; or underground natural gas storage operators. The EIA 191 collects information on working and base gas in reservoirs, injections,

  17. Manhattan Project: A Note on Sources

    Office of Scientific and Technical Information (OSTI)

    A NOTE ON SOURCES Resources > Note on Sources The text for this web site is a combination of original material and adaptations from previous publications of the Department of Energy (including contractors), its predecessor agencies (primarily the Atomic Energy Commission and the Manhattan Engineer District), and other government agencies. Adaptations run the gamut from summaries to close paraphrases to text being taken directly. This material was gathered and adapted for use by the DOE's

  18. Application Note: Power Grid Modeling With Xyce.

    SciTech Connect (OSTI)

    Sholander, Peter E.

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  19. RAP Meeting Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flip Chart Notes February 15, 2012 Site-wide Permit Workshop May 3 1. Have "post-workshop" session to discuss HAB next steps 2. Recommend Ecology sponsors & facilitates Workshop - Ecology captures notes, but HAB members track issues of concern, too. 3. Web-ex for public when it fits 4. Pre-workshop meeting with HAB issue leaders (potential speakers) Page 1 300 Area HAB next steps... IM & Pam 1. Issue managers meet to review potential issues for HAB/committees 2. Bring back to

  20. Xyce parallel electronic simulator release notes.

    SciTech Connect (OSTI)

    Keiter, Eric Richard; Hoekstra, Robert John; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Rankin, Eric Lamont; Coffey, Todd Stirling; Pawlowski, Roger Patrick; Santarelli, Keith R.

    2010-05-01

    The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.

  1. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  2. Notes on beam dynamics in linear accelerators

    SciTech Connect (OSTI)

    Gluckstern, R.L.

    1980-09-01

    A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.

  3. The MicroBooNE Experiment - Public Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MicroBooNE Public Notes Page Back to the Publications Page

  4. LLW notes, Vol. 11, No. 2

    SciTech Connect (OSTI)

    1996-03-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  5. LLW notes. Volume 11, No.8

    SciTech Connect (OSTI)

    1996-12-01

    `LLW Notes` is distributed by Afton Associates, Inc. to Low-Level Radioactive Waste Forum Participants and other state, and compact officials identified by those Participants to receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low-Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  6. labNotes | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LabNotes March 2016 Three NETL Science and Engineering Ambassadors to Participate in Spring Course Three NETL employees, Ale Hakala, Paul Ohodnicki, and Steven Bossart will participate as Science and Engineering Ambassadors for the 2016 spring semester course, "Energy: Science, Society and, Communication," presented by Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt) as part of the Science and Engineering Ambassadors program, developed by the National Academies

  7. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Exports Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

  8. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Exports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels

  9. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Area of Entry Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short

  10. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    PAD District Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for

  11. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Imports by Country of Origin Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is

  12. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Imports by Destination Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels

  13. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Receipts by Pipeline, Tanker, and Barge Between PAD Districts Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The

  14. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline, Tanker, and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for

  15. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Tanker and Barge Between PADDs Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5

  16. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Shell Storage Capacity at Operable Refineries Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for

  17. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Working Storage Capacity at Operable Refineries Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor

  18. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Yield Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short ton.

  19. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per short

  20. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    & Blender Net Production Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5

  1. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Product Prices by Sales Type Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm,

  2. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Refinery Stocks Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5 barrels per

  3. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Prices, Sales Volumes & Stocks by State Definitions Key Terms Definition Aviation Gasoline (Finished) A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifications are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on finished aviation gasoline. Gas Plant Operator Any firm,

  4. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Supply and Disposition Balance Definitions Key Terms Definition Asphalt A dark-brown-to-black cement-like material containing bitumens as the predominant constituent obtained by petroleum processing; used primarily for road construction. It includes crude asphalt as well as the following finished products: cements, fluxes, the asphalt content of emulsions (exclusive of water), and petroleum distillates blended with asphalt to make cutback asphalts. Note: The conversion factor for asphalt is 5.5

  5. HSEP Committee Meeting - Transcribed Flip Chart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flip Chart Notes November 14, 2013 Emergency Preparedness: Observations from August Drill * Observation that EOC, JIC and public process release info. not always the same * How social media contributes to info. flow (could be helpful or problematic) Page 1 Emergency Preparedness: Suggestions 1. Quickly determine and use a consistent name for the incident 2. Reinforce website use 3. Engage and train workers on site 4. Share siren info. / other info. with the community 5. Film an incident/ drill

  6. HSEP Committee Meeting - Transcribed Flipchart Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipchart Notes August 8, 2013 Safety Culture Next Steps 1. Continue to get periodic briefings from SCIPT - progress on action items, contractor engagement, etc. 2. Get update on HSS review Page 1 DS Tanks/Flammable Gas - Next Steps 1. Update after DOE report on tank flow rate monitoring is available (Jan/Feb) 2. Tom w/follow up with concerns about pressurization alarms Page 2 Emergency Preparedness/Response: Input - Strategies for Awareness 1. Use real examples when trying to increase

  7. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Shale Gas Production Definitions Key Terms Definition Shale Gas Natural gas produced from organic (black) shale formations. For definitions of related energy terms, refer to the EIA Energy Glossary. Sources Energy Information Administration, Office of Oil and Gas Explanatory Notes Shale Gas production data collected in conjunction with proved reserves data on Form EIA-23 are unofficial. Official Shale Gas production data from Form EIA-895 can be found in Natural Gas Gross Withdrawals and

  8. EM QA Working Group September 2011 Notes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Management Champions Workshop Quality Assurance Working Group (Video Conference) Hanford, WA - September 13, 2011 Page 1 of 8 Introduction Bob Murray provided an introduction and addressed the expectations for the meeting. He noted this is not an EM QA Corporate Board Meeting; therefore, the topics should be discussed as a group and not presented by only one person. Audience participation is needed to make the working group successful. Potential Revision to the Performance Indicator and

  9. eNews Note of Appreciation

    National Nuclear Security Administration (NNSA)

    3 Issue 25 ASC eNews Quarterly Newsletter September 2013 A Note of Appreciation Reeta Garber The ASC Program would like to recognize Reeta Garber for her leadership in designing and developing programmatic communications tools and activities and to wish her the very best as she retires (again) to begin a new phase in her life. Since 1998 Reeta has supported the ASC Program as an important member of the core team responsible for spreading the word about DOE/NNSA laboratory and Federal efforts in

  10. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 16,510 1,410 16,357

  11. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    45 Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu

  12. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  13. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  14. Meeting Notes re NOI for Convention on Supplementary Compensation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Notes re NOI for Convention on Supplementary Compensation Meeting Notes re NOI for Convention on Supplementary Compensation notes from meeting on Convention on Supplementary Compensation PDF icon Meeting Notes re NOI for Convention on Supplementary Compensation More Documents & Publications Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation Public comment re Convention on Supplementary Compensation on Nuclear Damage Contingent Cost

  15. DOE Durability Working Group October 2011 Meeting Notes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 Meeting Notes DOE Durability Working Group October 2011 Meeting Notes Meeting notes from the Fall 2011 Durability Working Group (DWG) Meeting sponsored by the U.S. Department of Energy (DOE) Fuel Cell Technologies Program. Notes also include a summary of progress on action items from the Spring 2011 DWG meeting. PDF icon durability_working_group_minutes_oct_2011.pdf More Documents & Publications DOE Durability Working Group October 2010 Meeting Minutes DOE Durability Working

  16. PIA - Savannah River Operations Office Lotus Domino/Notes System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lotus Domino/Notes System PIA - Savannah River Operations Office Lotus Domino/Notes System PIA - Savannah River Operations Office Lotus Domino/Notes System PDF icon PIA - Savannah River Operations Office Lotus Domino/Notes System More Documents & Publications PIA - DOE Savannah River Operations Office PRISM System PIA - GovTrip (DOE data) PIA - HSPD-12 Physical and Logical Access System

  17. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  18. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  19. BNL ALARA Center: ALARA Notes, No. 9

    SciTech Connect (OSTI)

    Khan, T.A.; Xie, J.W.; Beckman, M.C.

    1994-02-01

    This issue of the Brookhaven National Laboratory`s Alara Notes includes the agenda for the Third International Workshop on ALARA and specific instructions on the use of the on-line fax-on-demand service provided by BNL. Other topics included in this issue are: (1) A discussion of low-level discharges from Canadian nuclear plants, (2) Safety issues at French nuclear plants, (3) Acoustic emission as a means of leak detection, (4) Replacement of steam generators at Doel-3, Beaznau, and North Anna-1, (5) Remote handling equipment at Bruce, (6) EPRI`s low level waste program, (7) Radiation protection during concrete repairs at Savannah River, (8) Reactor vessel stud removal/repair at Comanche Peak-1, (9) Rework of reactor coolant pump motors, (10) Restoration of service water at North Anna-1 and -2, (11) Steam generator tubing problems at Mihama-1, (12) Full system decontamination at Indian Point-2, (13) Chemical decontamination at Browns Ferry-2, and (14) Inspection methodolody in France and Japan.

  20. Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Memorandum to Reactivate a Directive Placed on Hold (NOTE: Per Office of Executive Secretariat procedures, please use Calibri, 12 point font for this memorandum.) (Effective...

  1. PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies - "Big Data at the Pittsburgh Supercomputing Center" Professor Ralph Roskies Pittsburgh...

  2. Summary Notes from 22 July 2008 Generic Technical Issue Discussion...

    Office of Environmental Management (EM)

    performance. * NRC staff noted that model support should be commensurate with the natural attributes of the site. For example, at a site that exhibits significant erosion, it...

  3. Publisher's Note: Phase effects from the general neutrino Yukawa...

    Office of Scientific and Technical Information (OSTI)

    Phase effects from the general neutrino Yukawa matrix on lepton flavor violation Phys. Rev. D 72, 055012 (2005) Citation Details In-Document Search Title: Publisher's Note: Phase ...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  5. EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey...

  6. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  7. Table 1c. Off-Site Produced Energy (Site Energy)For Selected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  8. EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS...

  9. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  10. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    End Use for Non-Mall Buildings, 2003 Total Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  11. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    of District Heat by End Use, 1989 District Heat Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  12. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Consumption of Fuel Oil by End Use, 1989 Fuel Oil Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  13. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (trillion Btu)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water Heat- ing","Light- ing","Cook- ing","Refrig- eration","Office Equip- ment","Com-...

  14. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    of Natural Gas by End Use, 1989 Natural Gas Consumption (trillion Btu) Space Water a Total Heating Heating Cooking Other RSE Building Row Characteristics Factor 1.0 NF...

  15. Word Pro - Untitled1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Years 1975-2011 (Trillion Btu) Year Coal Natural Gas 1 Petroleum Electricity Purchased Steam and Other 6 Total Aviation Gasoline Fuel Oil 2 Jet Fuel LPG 3 and Other 4 Motor...

  16. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    6 Table C11. Energy Consumption Estimates by Source, Ranked by State, 2013 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,597.4 Texas 4,137.4 Texas 6,259.5 Texas 1,292.5 2 Indiana 1,198.6 California 2,483.5 California 3,370.7 California 892.3 3 Pennsylvania 1,126.1 Louisiana 1,501.1 Louisiana 1,714.7 Florida 757.2 4 Ohio 1,104.5 New York 1,321.6 Florida 1,592.7 Ohio 512.8 5 Illinois 1,026.9

  17. Industrial Technical Assistance

    Broader source: Energy.gov (indexed) [DOE]

    10 years. As of August 2013, Partners have saved about 190 trillion Btu and 1 billion. vi Partners are implementing cost-effective, energy efficiency im- provements that save...

  18. U.S. Energy Information Administration | State Energy Data 2013...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8: Solar Energy Consumption Estimates, 2013 State Electric Power Residential a Commercial b Industrial b Electric Power Total Million Kilowatthours Trillion Btu Alabama 0 0.1 0.0 ...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  20. How Much Energy Does Each State Produce? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems

  1. EM QA Working Group September 2011 Notes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meeting minutes and notes from the EM QA Working Group video conference meeting held in September 2011. PDF icon EM QA Working Group September 2011 Notes More Documents & Publications QA Corporate Board Meeting - February 2014 QA Corporate Board Meeting - September 2010 QA Corporate Board Meeting - February 2011

  2. EIA-906 & EIA-920, and EIA-923 Database Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-906 & EIA-920, and EIA-923 Database Notes" ,"Date","Subject","Notes" ,38086,"Excel File Documentation","The documentation included with the Excel file has been updated to include the year to date columns at the end (far right) of the file. In addition, the documentation now clearly notes that the total consumption numbers include fuel consumed at combined heat and power plants for the purpose of producing process steam."

  3. Note: Using fast digitizer acquisition and flexible resolution to enhance

    Office of Scientific and Technical Information (OSTI)

    noise cancellation for high performance nanosecond transient absorbance spectroscopy (Journal Article) | SciTech Connect Note: Using fast digitizer acquisition and flexible resolution to enhance noise cancellation for high performance nanosecond transient absorbance spectroscopy Citation Details In-Document Search This content will become publicly available on June 24, 2016 Title: Note: Using fast digitizer acquisition and flexible resolution to enhance noise cancellation for high

  4. Notes on Newton-Krylov based Incompressible Flow Projection Solver

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Notes on Newton-Krylov based Incompressible Flow Projection Solver Citation Details In-Document Search Title: Notes on Newton-Krylov based Incompressible Flow Projection Solver The purpose of the present document is to formulate Jacobian-free Newton-Krylov algorithm for approximate projection method used in Hydra-TH code. Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the auspices of the Consortium for Advanced Simulation of

  5. Notes on Newton-Krylov based Incompressible Flow Projection Solver

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Notes on Newton-Krylov based Incompressible Flow Projection Solver Citation Details In-Document Search Title: Notes on Newton-Krylov based Incompressible Flow Projection Solver × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  6. Notes on the Lumped Backward Master Equation for the Neutron

    Office of Scientific and Technical Information (OSTI)

    Extinction/Survival Probability (Technical Report) | SciTech Connect Technical Report: Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability Citation Details In-Document Search Title: Notes on the Lumped Backward Master Equation for the Neutron Extinction/Survival Probability The expected or mean neutron number (or density) provides an adequate characterization of the neutron population and its dynamical excursions in most neutronic applications, in

  7. Publisher's Note: Measurement of the Positive Muon Lifetime and

    Office of Scientific and Technical Information (OSTI)

    Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] (Journal Article) | SciTech Connect Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev. Lett. 106, 041803 (2011)] Citation Details In-Document Search Title: Publisher's Note: Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision [Phys. Rev.

  8. Decrease Noted in LM Records Information Requests | Department of Energy

    Energy Savers [EERE]

    Decrease Noted in LM Records Information Requests Decrease Noted in LM Records Information Requests July 2, 2015 - 10:50am Addthis What does this project do? Goal 2. Preserve, protect, and share records and information. The U.S. Department of Energy Office of Legacy Management (LM) experienced a slight decrease in records information requests. The decline is due in large part to reduced claims filed by former Rocky Flats, Colorado, Site workers. LM responds to stakeholder Freedom of Information

  9. Federal Utility Partnership Working Group Meeting Notes | Department of

    Energy Savers [EERE]

    Energy Utility Partnership Working Group Meeting Notes Federal Utility Partnership Working Group Meeting Notes PDF icon Spring 2013 Meeting Report PDF icon Fall 2012 Meeting Report PDF icon Spring 2012 Meeting Report PDF icon Fall 2011 Meeting Report PDF icon Spring 2011 Meeting Report PDF icon Fall 2010 Meeting Report PDF icon Spring 2009 Meeting Report PDF icon Fall 2008 Meeting Report PDF icon Fall 2007 Meeting Report PDF icon Spring 2007 Meeting Report PDF icon Fall 2006 Meeting Report

  10. Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Federal Agency Progress Toward the Renewable Energy Goal (Trillion Btu) (1) Total Renewable Energy Usage DOD EPA (2) DOE GSA NASA DOI Others All Agencies Note(s): Source(s): Total Facility RE as % of Electricity Use Electricity Use 5.6 101.2 6% 0.7 0.4 154% 0.7 16.7 4% 0.8 10.0 8% 0.2 5.5 4% 0.4 2.1 18% 1.1 56.5 2% 9.5 192.8 5% 1) In July 2000, in accordance with Section 503 of Executive Order 13123, the Secretary of Energy approved a goal that the equivalent of 2.5 percent of electricity

  11. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  12. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  13. Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  14. Table 3.1 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  15. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  16. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  17. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  18. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  19. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed

  20. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  1. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  2. table2.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1

  3. table4.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  4. table5.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total

  5. table5.5_02

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE

  6. table7.6_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  7. Publisher's Note: "Chiral symmetry restoration at large chemical

    Office of Scientific and Technical Information (OSTI)

    potential 2 in strongly coupled SU(N) gauge theories" [J. Math. Phys. 54, 122301 (2013)] (Journal Article) | SciTech Connect Publisher's Note: "Chiral symmetry restoration at large chemical potential 2 in strongly coupled SU(N) gauge theories" [J. Math. Phys. 54, 122301 (2013)] Citation Details In-Document Search Title: Publisher's Note: "Chiral symmetry restoration at large chemical potential 2 in strongly coupled SU(N) gauge theories" [J. Math. Phys. 54, 122301

  8. Microsoft Word - UEC Town_Hall_Meeting_notes.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/2013 CNMS User Group Town Hall meeting notes Open meeting held in Rooms 202A/B/C of ORNL Conference Center Convened 12:30pm Note: Slides presented at the meeting are attached following p.2. 1. Tony Hmelo, UEC Chair, opened the meeting and introduced the UEC members to the audience. 2. Tony provided an update on UEC activities in 2013 that covered: a. Role of the UEC: We are the link between users and management and influence CNMS activities. b. Telecons: The minutes are archived and available

  9. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  10. Tribal Consultation and Stakeholder Outreach Meeting Notes and Analysis

    Energy Savers [EERE]

    Strategy on the Arctic Region (NSAR) - Ten Year Renewable Energy Strategy Tribal Consultation and Stakeholder Outreach Meeting Notes and Analysis Prepared by Denali Daniels and Associates, Inc. Fall 2014 Office of Indian Energy Table o f C ontents Executive S ummary .............................................................................................................................................. 2 --- 6 Background

  11. EnPI V4.0 Release Notes and Known Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Release Notes and Known Issues EnPI V4.0 Release Notes and Known Issues Release notes and known issues for the Energy Performance Indicator (EnPI) Tool v4.0. PDF icon EnPI Release Notes and Known Issues More Documents & Publications EnPI V4.0 User Manual

  12. LLW Notes, Volume 9, Number 6. October 1994

    SciTech Connect (OSTI)

    1994-10-01

    LLW Notes is distributed to Low-Level Radioactive Waste Forum Participants and other state and compact officials identified by those Participants to receive LLW Notes. The Low-Level Radioactive Waste Forum is an association of state and compact representatives appointed by governors and compact commissions, established to facilitate state and compact commission implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The Forum provides an opportunity for states and compacts to share information with one another and to exchange views with officials of federal agencies and other interested parties.

  13. Application note : using open source schematic capture tools with Xyce.

    SciTech Connect (OSTI)

    Russo, Thomas V.

    2013-08-01

    The development of the XyceTM Parallel Electronic Simulator has focused entirely on the creation of a fast, scalable simulation tool, and has not included any schematic capture or data visualization tools. This application note will describe how to use the open source schematic capture tool gschem and its associated netlist creation tool gnetlist to create basic circuit designs for Xyce, and how to access advanced features of Xyce that are not directly supported by either gschem or gnetlist.

  14. State Energy Data System 2013 Consumption Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Technical Notes U.S. Energy Information Administration | State Energy Data 2013: Consumption 3 Purpose All of the estimates contained in the state energy consumption data tables are developed using the State Energy Data System (SEDS), which is main- tained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as

  15. State Energy Data System 2013 Price and Expenditure Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Price and Expenditure Technical Notes U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures 3 Purpose The State Energy Data System (SEDS) was developed and is maintained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as consistently as possible over time and across sectors. SEDS exists for two

  16. State Energy Data System 2013 Production Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Production Technical Notes Contents Section 1. Introduction 1 Section 2. Coal 3 Section 3. Crude Oil 5 Section 4. Natural Gas (Marketed Production) 7 Section 5. Renewable Energy and Nuclear Energy 11 U.S. Energy Information Administration | State Energy Data 2013: Production 1 Section 1. Introduction The U.S. Energy Information Administration's (EIA) State Energy Data System (SEDS) provides Members of Congress, federal and state agencies, and the general public with comparable state-level data

  17. EIA - Greenhouse Gas Emissions - Table-Figure Notes and Sources

    Gasoline and Diesel Fuel Update (EIA)

    A1. Notes and Sources Tables Chapter 1: Greenhouse gas emissions overview Table 1. U.S. emissions of greenhouse gases, based on global warming potential, 1990-2009: Sources: Emissions: EIA estimates. Data in this table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008, DOE/EIA-0573(2008) (Washington, DC, December 2009). Global warming potentials: Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical

  18. NETL LabNotes | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL LabNotes Archive SEPTEMBER 2014 Advanced Manufacturing Builds a Better Fuel Cell AUGUST 2014 Researchers Use Waste Slag to Create Energy and Cut Emissions JULY 2014 Corrosion Testing using Oxy-Fuel Combustion for Ultra-Supercritical Steam Boilers NETL's Corrosion Erosion Facility Tests Materials in Severe Environments JUNE 2014 Deepwater Oil Production through Thick and Thin May 2014 NETL-Boston Scientific Coronary Stent Alloy Applications Expand Surface Science: Cleaning up Syngas to Reach

  19. Notes from Financial and Physical Oil Market Linkages

    Gasoline and Diesel Fuel Update (EIA)

    Workshop Summary Notes Financial and Physical Oil Market Linkages II September 27, 2012 Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Session 1: 9:15 a.m. - 10:45 a.m. Paper Title: Physical Market Conditions, Paper Market Activity, and the Brent-WTI Spread Presenter: Michel Robe, American University Discussant: Lutz Kilian, University of Michigan Presentation: [Presentation materials link in here] Paper Abstract We document that, starting in the Fall of 2008, the

  20. NOTES AND COMMENTS REVERE COPPER AR! BRASS DETROIT, MICHIGAN

    Office of Legacy Management (LM)

    * .t-* . * * - -. _ _ ,.. .I AIT. 4 NOTES AND COMMENTS REVERE COPPER AR! BRASS DETROIT, MICHIGAN A preliminary (screening) survey was conducted in several areas of the Revere Copper and Brass Facility, 5851 W. Jefferson Street, Detroit, Michigan. The survey was conducted by the ANL Radiological Survey Group on April 22, 1981. The Survey Group, consisting of W. Smith, R. Mundis, K. Flynn (all of ANI), and E. Jascewsky (DOE-CH) met on site with J. Evans (Safety Engineer), D. Tratt (Asst.

  1. Microsoft Word - Final TEC Notes_April 2005.doc

    Office of Environmental Management (EM)

    S. DEPARTMENT OF ENERGY (D0E) TRANSPORTATION EXTERNAL COORDINATION WORKING GROUP (TEC) MEETING April 4-5, 2005 Phoenix, Arizona Meeting Notes Part I - Opening Remarks (April 4) Welcome and Meeting Overview Introduction Judith Holm, DOE Office of National Transportation (ONT), Office of Civilian Radioactive Waste Management (OCRWM), called the meeting to order and welcomed the participants. She reviewed the agenda and called special attention to the plenary sessions being held in the afternoon.

  2. Notes from Financial and Physical Oil Market Linkages

    Gasoline and Diesel Fuel Update (EIA)

    Notes from Financial and Physical Oil Market Linkages August 24, 2011 Session 1: 9:30 a.m. - 11:00 a.m. Paper Title: Does 'Paper Oil' Matter? Presenter: Michel Robe, American University Discussant: James Smith, Southern Methodist University Paper Abstract We construct a uniquely detailed, comprehensive dataset of trader positions in U.S. energy futures markets. We find considerable changes in the make-up of the open interest between 2000 and 2010 and show that these changes impact asset pricing.

  3. COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability of the New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    York/New Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy 2012 | Princeton Plasma Physics Lab February 28, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: NOTE SPECIAL DATE - THURSDAY: Unique Vulnerability of the New York/New Jersey Metro Region to Hurricane Destruction - A New Perspective Based on Recent Research on Irene 2011 and Sandy 2012 Professor Nicholas K. Coch Queens College CUNY In the last two years. the

  4. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August ... Addthis Related Articles V-211: IBM iNotes Multiple Vulnerabilities U-198: IBM Lotus ...

  5. V-147: IBM Lotus Notes Mail Client Lets Remote Users Execute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: IBM Lotus Notes Mail Client Lets Remote Users Execute Java Applets V-147: IBM Lotus Notes Mail Client Lets Remote Users Execute Java Applets May 2, 2013 - 6:00am Addthis...

  6. PVMRW2013 Discussion notes. Tues. Feb. 26, 5:30 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    notes. Tues. Feb. 26, 5:30 PVMRW2013 Discussion notes. Tues. Feb. 26, 5:30 We do see some bad diodes going into the field... PDF icon discussionnotes_tues_530.pdf More Documents & Publications PVMRW2013 Discussion notes: Tues. Feb. 26: 10:45 PVMRW2013 Discussion notes Tues. Feb. 26 2013, 2:30 On the Occurrence of Thermal Runaway in Diode in the J-Box

  7. PVMRW2013 Wed., Feb. 27, 10:00 Discussion notes: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0:00 Discussion notes: PVMRW2013 Wed., Feb. 27, 10:00 Discussion notes: We hear that the dampl heat test causes failures that are not representative of field failure... PDF icon discussionnotes_weds_1000.pdf More Documents & Publications PVMRW2013 Discussion notes: Tues. Feb. 26: 10:45 PVMRW2013 Wed., Feb. 27, 1:45 Discussion notes PVMRW2013 Wed., Feb. 27, 3:00 Final Discussion

  8. U.S. Department of Energy Onboard Storage Tank Workshop Notes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Onboard Storage Tank Workshop Notes U.S. Department of Energy Onboard Storage Tank Workshop Notes These notes and action items were derived from the Onboard Storage Tank Workshop on April 29, 2010. PDF icon workshop_notes_ostw.pdf More Documents & Publications DOE Vehicular Tank Workshop Agenda Hydrogen Tank Testing R&D Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)

  9. PVMRW2013 Discussion notes Tues. Feb. 26 2013, 2:30 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    notes Tues. Feb. 26 2013, 2:30 PVMRW2013 Discussion notes Tues. Feb. 26 2013, 2:30 Some participants felt that modules should not be walked on... PDF icon discussionnotes_tues_230.pdf More Documents & Publications PVMRW2013 Discussion notes: Tues. Feb. 26: 10:45

  10. PVMRW2013 Discussion notes: Tues. Feb. 26: 10:45 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    notes: Tues. Feb. 26: 10:45 PVMRW2013 Discussion notes: Tues. Feb. 26: 10:45 If the mechanical properties of the parts of the module... PDF icon discussionnotes_tues_1045.pdf More Documents & Publications PVMRW2013 Discussion notes Tues. Feb. 26 2013, 2:30

  11. V-211: IBM iNotes Multiple Vulnerabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: IBM iNotes Multiple Vulnerabilities V-211: IBM iNotes Multiple Vulnerabilities August 5, 2013 - 6:00am Addthis PROBLEM: Multiple vulnerabilities have been reported in IBM Lotus iNotes PLATFORM: IBM iNotes 9.x ABSTRACT: IBM iNotes has two cross-site scripting vulnerabilities and an ActiveX Integer overflow vulnerability REFERENCE LINKS: Secunia Advisory SA54436 IBM Security Bulletin 1645503 CVE-2013-3027 CVE-2013-3032 CVE-2013-3990 IMPACT ASSESSMENT: High DISCUSSION: 1) Certain input related

  12. V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attacks | Department of Energy 9: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks V-229: IBM Lotus iNotes Input Validation Flaws Permit Cross-Site Scripting Attacks August 28, 2013 - 6:00am Addthis PROBLEM: Several vulnerabilities were reported in IBM Lotus iNotes PLATFORM: IBM Lotus iNotes 8.5.x ABSTRACT: IBM Lotus iNotes 8.5.x contains four cross-site scripting vulnerabilities REFERENCE LINKS: Security Tracker Alert ID 1028954 IBM Security Bulletin 1647740

  13. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    Gasoline and Diesel Fuel Update (EIA)

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  14. table1.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 *

  15. PVMRW2013 Wed., Feb. 27, 1:45 Discussion notes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1:45 Discussion notes PVMRW2013 Wed., Feb. 27, 1:45 Discussion notes It could be useful to mix UVA and UVB and test the effects of both at the same time... PDF icon discussionnotes_weds_145.pdf More Documents & Publications PVMRW2013 Wed., Feb. 27, 10:00 Discussion notes: PVMRW2013 Wed., Feb. 27, 3:00 Final Discussion

  16. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740

  17. Word Pro - S7

    Gasoline and Diesel Fuel Update (EIA)

    19 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    7: Coal Consumption Estimates and Imports and Exports of Coal Coke, 2013 State Coal Coal Coke Residential a Commercial Industrial Electric Power Total Residential a Commercial Industrial Electric Power Total Imports Exports Imports Exports Thousand Short Tons Trillion Btu Thousand Short Tons Trillion Btu Alabama - 0 2,834 24,400 27,235 - 0.0 76.4 488.6 565.1 - - - - Alaska - 585 1 400 986 - 8.9 (s) 5.9 14.8 - - - - Arizona - 0 181 23,298 23,479 - 0.0 4.3 450.5 454.9 - - - - Arkansas - 0 215

  19. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  20. Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 | Department of Energy Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 These notes provide information about the Compressed

  1. U.S. Energy Information Administration (EIA) - Residential

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based

  2. Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration (EIA) Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the

  3. Microsoft Word - table_07.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    Notes: Totals may not equal sum of components due to independent rounding. Other includes coke oven gas, blast furnace gas, and air injection for Btu stabilization. Source: Energy ...

  4. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  5. Calculation notes that support accident scenario and consequence determination of a waste tank criticality

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for criticality consequences for the Tank Farm Safety Analysis Report (FSAR). Criticality scenario is developed and details and description of the analysis methods are provided.

  6. Calculation notes that support accident scenario and consequence determination of a waste tank criticality

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-08-02

    The purpose of this calculation note is to provide the basis forcriticality consequences for the Tank Farm Safety Analysis Report(FSAR). Criticality scenario is developed and details and description of the analysis methods are provided.

  7. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  8. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  9. Publisher's Note: New mechanism for the top-bottom mass hierarchy...

    Office of Scientific and Technical Information (OSTI)

    New mechanism for the top-bottom mass hierarchy Phys. Rev. D 70, 055006 (2004) Citation Details In-Document Search Title: Publisher's Note: New mechanism for the top-bottom mass ...

  10. Microsoft Word - QER Resilience June 10 Tech Workshop MTG NOTES_FINAL

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Notes U.S. Department of Energy Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure Offices of Electricity Delivery and Energy Reliability (OE) and Energy Policy and Systems Analysis (EPSA) Tuesday, June, 10th, 2014 Brookhaven National Lab These notes are intended to be an accurate representation of the presentations and discussions occurring during this workshop. Purpose The purpose of this workshop was to seek

  11. Meeting Notes U.S. Department of Energy Quadrennial Energy Review

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Notes U.S. Department of Energy Quadrennial Energy Review Technical Workshop on AMR Lessons Learned on Alternative Transportation Refueling Infrastructure Office of Energy Policy and Systems Analysis June 20, 2014 Washington Marriott Wardman Park 2660 Woodley Rd NW Washington, D.C. 20008 This summary of meeting notes reports the discussion as it occurred. The Department of Energy (DOE) does not endorse the content summarized within. Contents Purpose

  12. Microsoft Word - VERA 3.3 Release Notes - DRAFT 2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-000 VERA 3.3 Release Notes Matt Sieger Oak Ridge National Laboratory April 20, 2015 VERA 3.3 Release Notes Consortium for Advanced Simulation of LWRs ii CASL-U-2015-0042-000 REVISION LOG Revision Date Affected Pages Revision Description 0 All Initial Release Document pages that are: Export Controlled _____None_____________________________________________ IP/Proprietary/NDA Controlled____None_____________________________________________ Sensitive

  13. United States Environmental Protection Agency Radiation Office of Radiation Programs Technical Note

    Office of Legacy Management (LM)

    Environmental Protection Agency Radiation Office of Radiation Programs Technical Note Las Vegas Facility ORP/LV-78-3 P.O. Box 15027 October 1978 Las Vegas NV 89114 &EPA Levels and Distribution of Environmental Plutonium Around the Trinity Site Technical Note ORP/LV-78-3 LEVELS AND DISTRIBUTION OF ENVIRONMENTAL PLUTONIUM AROUND THE TRINITY SITE Richard L. Douglas October 1978 OFFICE OF RADIATION PROGRAMS - LAS VEGAS FACILITY U.S. ENVIRONMENTAL PROTECTION AGENCY LAS VEGAS, NEVADA 89114

  14. Geothermal Industry Ends 2012 on a High Note | Department of Energy

    Energy Savers [EERE]

    Industry Ends 2012 on a High Note Geothermal Industry Ends 2012 on a High Note December 18, 2012 - 12:14pm Addthis Year-end highlights include new domestic projects, international development and policy benchmarks Washington, D.C. - The past 12 months saw continued economic challenges for many American industries, including those in the renewable energy field, but the country's geothermal community witnessed a year of growth, both domestically and abroad. The Geothermal Energy Association (GEA)

  15. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    SciTech Connect (OSTI)

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach`s interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time.

  16. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  17. Global Insight Energy Group

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Overview -4,000 -2,000 0 2,000 4,000 6,000 8,000 1990-2000 2000-2008 2008-2030 Residential Commercial Industrial Transportation Pow er Losses Energy Demand by Sector (Trillion Btu) ...

  18. A note from Howard H. Baker, Jr. | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A note from Howard H. ... A note from Howard H. Baker, Jr. Posted: February 11, 2013 - 3:49pm | Y-12 Report | Volume 9, Issue 2 | 2013 "I remember visiting Oak Ridge at the height of its construction. The town had grown up out of corn fields in super secrecy. My dad and I didn't know its purpose, but we knew it involved important, vital work. That vitally important work continues today. For 70 years Y-12, in particular, has served the nation as a reservoir of talent and insight. The very

  19. Publisher's Note: High-spin lifetime measurements in the N=Z nucleus {sup

    Office of Scientific and Technical Information (OSTI)

    72}Kr [Phys. Rev. C 75, 041301(R) (2007)] (Journal Article) | SciTech Connect Publisher's Note: High-spin lifetime measurements in the N=Z nucleus {sup 72}Kr [Phys. Rev. C 75, 041301(R) (2007)] Citation Details In-Document Search Title: Publisher's Note: High-spin lifetime measurements in the N=Z nucleus {sup 72}Kr [Phys. Rev. C 75, 041301(R) (2007)] No abstract prepared. Authors: Andreoiu, C. ; Svensson, C. E. ; Afanasjev, A. V. ; Austin, R. A. E. ; Carpenter, M. P. ; Dashdorj, D. ; Finlay,

  20. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  2. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  3. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  4. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  5. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  6. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  7. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  8. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  9. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  10. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 03 NATURAL GAS; COMBUSTION; EFFICIENCY; FEEDBACK; ...

  11. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  12. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  13. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  14. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  15. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  16. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  17. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021...

  18. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  19. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Daily","3212016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  20. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","22016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdm.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  1. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to ...

  2. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 0110 3.79 0117 4.19 0124 2.98 0131 2.91 ...

  3. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  4. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  5. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494...

  6. Explanatory Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    data at a State level on 14 petroleum products for various retail and wholesale marketing categories. The Form EIA-782B collects resellerretailer monthly price and volume...

  7. Explanatory Notes

    U.S. Energy Information Administration (EIA) Indexed Site

    complete enumera- tion has the same nonsampling errors as the sample survey. The sampling error, or standard error of the estimate, is a measure of the variability among the...

  8. OTS NOTE

    Office of Legacy Management (LM)

    August 4, 1992 TO: Alexander Williams FROM: Ed Mitchell, Steve Fieser ' 565 SUBJECT: Revised Designation Package for Baker Brothers Site We have prepared the Designation Summary you requested for Baker Brothers Site, in Toledo, Ohio. This package supersedes the previous one provided on May 1, 1992, to reflect the documents that have since been finalized. The designationpackage consists of the following: o Designation Summary (8/4/92) o Authority Review (7/16/92) o Radiological Survey (3/92) A

  9. OTS NOTE

    Office of Legacy Management (LM)

    February 19, 1991 TO: FROM: Alexander Williams Dan Stou ta' SUBJECT: Baker-Perkins Company Consideration Recommendation The attached memorandum and supporting documents are the basis for our recommendation to eliminate the former Baker-Perkins Company site from further consideration under FUSRAP. The current occupant of the site, located in Saginaw, Michigan, is the APV Chemical Company. Documents discovered to date indicating use or handling of radioactive material by the Baker-Perkins Company

  10. OTS NOTE

    Office of Legacy Management (LM)

    January 15, 1991 TO: Alexander Williams FROM: Dan Stout@ SUBJECT: Gruen Watch Company Consideration Recommendation Attached for your review is a consideration recommendation for the Gruen Watch Co. in Norwood, Ohio. The company was identified by an NLO radiological survey report. Gruen appears to have participated in brief test operations using their 60 ton mechanical press to shave and stamp washers. Small quantities of uranium appear to be involved, and the 1956 radiological surveys do not

  11. OTS NOTE

    Office of Legacy Management (LM)

    5, 1991 TO: Alexander Williams FROM: .B Dan Stout SUBJECT: Processes Research Elimination Recommendation The attached memorandum and supporting documents are the basis for our recommendation to eliminate the Processes Research, Incorporated site from further consideration under FUSRAP. The site is located in Cincinnati, Ohio. No documents have been discovered to date which specifically indicate use or handling of radioactive material by Processes Research. The principal record discovered is a

  12. OTS NOTE

    Office of Legacy Management (LM)

    2, 1990 TO: W. Alexander Williams FROM: Don Mackenzie &d> SUBJECT: Elimination of 3 Facilities from FUSRAP Enclosed are elimination recommendations for Vitro Chemical Co., Chattanooga TN, Englehard Industries, Newark NJ, and Vapofier Corp., Bluk Island IL. Based on the information referenced in the enclosed memorandA, elimination of the above sites is recommended at this time. CC: J. Wagoner II OTS File .I3 FUSRAP Files (TN.4, N;, IL.25)

  13. Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes

    Energy Savers [EERE]

    [Read-Only] | Department of Energy DOE O 413 3B Brief v9 with key points in notes [Read-Only] Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes [Read-Only] PDF icon Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes [Read-Only] More Documents & Publications Example BCP Template Microsoft PowerPoint - DOE O 413 3B Brief v9 with key points in notes [Read-Only] CD-2, Approve Performance Baseline External Independent Review (EIR) Standard Operating

  14. Coal Markets

    Gasoline and Diesel Fuel Update (EIA)

    Coal Markets Release date: March 14, 2016 | Next release date: March 21, 2016 | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown

  15. Microsoft Word - QER Resilience April 29 Tech Workshop MTG NOTES_v2

    Broader source: Energy.gov (indexed) [DOE]

    Meeting Notes U.S. Department of Energy Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure April, 29th, 2014 777 North Capitol St NE Ste 300, Washington, DC Purpose The purpose of this technical workshop, "Resilience Metrics for Energy Transmission and Distribution Infrastructure," is to explore existing technical research and modeling on resilience metrics, discuss the applicability of existing metrics to energy

  16. Publisher's Note: New mechanism for the top-bottom mass hierarchy [Phys.

    Office of Scientific and Technical Information (OSTI)

    Rev. D 70, 055006 (2004)] (Journal Article) | SciTech Connect New mechanism for the top-bottom mass hierarchy [Phys. Rev. D 70, 055006 (2004)] Citation Details In-Document Search Title: Publisher's Note: New mechanism for the top-bottom mass hierarchy [Phys. Rev. D 70, 055006 (2004)] No abstract prepared. Authors: Hashimoto, Michio ; Kanemura, Shinya Publication Date: 2004-12-01 OSTI Identifier: 20698190 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review. D,

  17. Publisher's Note: Phase effects from the general neutrino Yukawa matrix on

    Office of Scientific and Technical Information (OSTI)

    lepton flavor violation [Phys. Rev. D 72, 055012 (2005)] (Journal Article) | SciTech Connect Phase effects from the general neutrino Yukawa matrix on lepton flavor violation [Phys. Rev. D 72, 055012 (2005)] Citation Details In-Document Search Title: Publisher's Note: Phase effects from the general neutrino Yukawa matrix on lepton flavor violation [Phys. Rev. D 72, 055012 (2005)] No abstract prepared. Authors: Kanemura, Shinya ; Matsuda, Koichi ; Ota, Toshihiko ; Shindou, Tetsuo ; Takasugi,

  18. PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies - "Big Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Pittsburgh Supercomputing Center" | Princeton Plasma Physics Lab May 23, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium PLEASE NOTE THURSDAY DATE - COLLOQUIUM: Professor Ralph Roskies - "Big Data at the Pittsburgh Supercomputing Center" Professor Ralph Roskies Pittsburgh Supercomputing Center I will review the history of large data challenges and achievements at the Pittsburgh Supercomputing Center. Recently these have exploited three unique systems- Blacklight, with

  19. COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory: Underpinning Critical National Missions | Princeton Plasma Physics Lab May 15, 2013, 3:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM - NOTE SPECIAL TIME OF 3:15PM: Savannah River National Laboratory: Underpinning Critical National Missions Dr. Jeff Griffin Savannah River National Laboratory The Cold War mission of the Savannah River Site in South Carolina was to produce nuclear materials for the national defense. Since the Cold War ended, SRS has continued to ensure United

  20. COLLOQUIUM - PLEASE NOTE SPECIAL DATE/TIME: The Magnetospheric MultiScale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Investigation of Magnetic Reconnection | Princeton Plasma Physics Lab February 21, 2013, 10:30am to 12:00pm Colloquia MBG Auditorium COLLOQUIUM - PLEASE NOTE SPECIAL DATE/TIME: The Magnetospheric MultiScale Mission Investigation of Magnetic Reconnection Professor Roy Torbert University of New Hampshire Presentation: File TC21FEB2013_RBTorbert_COMPRESSED.pptx In late fall 2014, NASA will launch the Magnetospheric Multiscale (MMS) mission to study the kinetic physics of magnetic

  1. DOE Challenge Home Program A Note From Sam Rashkin: Goodbye Challenge,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Note From Sam Rashkin: Goodbye Challenge, Hello Zero The DOE Challenge Home is changing its name to DOE Zero Energy Ready Home. This is a big deal! We are taking on the exhaustive process of rebranding after working so hard to establish awareness of this cutting edge new program; after developing an impressive internal infrastructure (e.g., logos, brochures, website, and extensive program documentation); and after integrating the name in external initiatives (e.g., green MLS's, regional

  2. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect (OSTI)

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  3. Hanford Advisory Board FY2014 Work Plan - "A" List - Facilitator notes o

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilitator notes on midyear status for RAP-lead topics (updated 4/30/14) These are the priority topics that the Board is expected to take action on in FY2014, as agreed to by the TPA and the Board. The timing of these topics drives the need for committee meetings. Their status may change to "topics of interest" if they are delayed or deferred, and if there is agreement to do so among the EIC and Agency Liaisons. Adopted by Consensus, September 6, 2013 Page 1 of 12 Priority Topics -

  4. Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance

    Office of Environmental Management (EM)

    6, 2008 Page 1 of 6 Summary Notes from 5 March 2008 Generic Technical Issue Discussion on Long-Term Grout Performance Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 5 March 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Idaho (DOE-ID), Department of Energy-Richland (DOE-RL), Department of Energy-River Protection

  5. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    SciTech Connect (OSTI)

    Bo, Zheng; Qian, Jiajing; Duan, Liangping; Qiu, Kunzan Yan, Jianhua; Cen, Kefa; Han, Zhao Jun; Ostrikov, Kostya

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  6. Neutron Physics. A Revision of I. Halpern's notes on E. Fermi's lectures in 1945

    DOE R&D Accomplishments [OSTI]

    Beckerley, J.G.

    1951-10-16

    In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University. The course consisted of thirty lectures most of which were given by Fermi. In his absence R.F. Christy and E. Segre gave several lectures. The present revision is based upon class notes prepared by I. Halpern with some assistance by B.T. Feld and issued first as document LADC 255 and later with wider circulation as MDDC 320.

  7. Word Pro - S2.lwp

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation, 2006 By Selected End Use¹ By Energy Source 48 U.S. Energy Information Administration / Annual Energy Review 2011 1 Excludes inputs of unallocated energy sources (5,820 trillion Btu). 2 Heating, ventilation, and air conditioning. Excludes steam and hot water. 3 Excludes coal coke and breeze. 4 Liquefied petroleum gases. 5 Natural gas liquids. (s)=Less than 0.05 quadrillion Btu. Source: Table 2.3. 3.3 1.7 0.7 0.2 0.2

  8. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Kerosene Consumption, Price, and Expenditure Estimates, 2014 State Consumption Prices Expenditures Residential Commercial Industrial Total Residential Commercial Industrial Total Residential and Commercial Industrial Total Residential Commercial Industrial Total Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 4 3 4 11 (s) (s) (s) 0.1 25.33 20.88 23.77 0.6 0.4 0.4 1.4 Alaska 6 3 (s) 9 (s) (s) (s) 0.1 31.05 25.59 30.88 1.0 0.5 (s) 1.6 Arizona (s) (s) (s) (s) (s)

  9. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    7 Table C12. Total Energy Consumption Estimates, Real Gross Domestic Product (GDP), Energy Consumption Estimates per Real Dollar of GDP, Ranked by State, 2013 Rank Total Energy Consumption Real Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2009) Dollars State Thousand Btu per Chained (2009) Dollar 1 Texas 12,944.1 California 2,055.2 Louisiana 18.1 2 California 7,684.1 Texas 1,395.4 Wyoming 15.0 3 Florida 4,077.9 New York 1,248.4

  10. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  11. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect (OSTI)

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  12. EPICS release 3.11 specific documentation -- EPICS release notes for 3.11

    SciTech Connect (OSTI)

    1994-01-19

    EPICS release 3.11 is now ready for user testing. A person who wants to set up a simplified application environment to boot an IOC and create databases using R3.11 should follow the directions in Appendix B, page 27, of the EPICS Source/Release Control Manual, Sept. 20, 1993. The R3.11 EPICS path at ANL/APS is /net/phebos/epics/R3.11 so the command to get the new release is /net/phebos/epics/R3.11/Unix/share/bin/getrel /net/phebos/epics/R3.11. An existing R3.8 short form report can be copied to this new directory and used to create a database. ANL/APS is currently testing an Application Developers Source/Release control system. It is not yet ready for general distribution. Attached are the EPICS R3.11 release notes.

  13. Meeting notes of the High Flux Isotope Reactor (HFIR) futures group

    SciTech Connect (OSTI)

    Houser, M.M.

    1995-08-01

    This report is a compilation of the notes from the ten meetings. The group charter is: (1) to identify and characterize the range of possibilities and necessities for keeping the HFIR operating for at least the next 15 years; (2) to identify and characterize the range of possibilities for enhancing the scientific and technical utility of the HFIR; (3) to evaluate the benefits or impacts of these possibilities on the various scientific fields that use the HFIR or its products; (4) to evaluate the benefits or impacts on the operation and maintenance of the HFIR facility and the regulatory requirements; (5) to estimate the costs, including operating costs, and the schedules, including downtime, for these various possibilities; and one possible impact of proposed changes may be to stimulate increased pressure for a reduced enrichment fuel for HFIR.

  14. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect (OSTI)

    Clifton B. Higdon III

    2011-01-07

    Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

  15. Millisecond Oxidation of Alkanes

    Broader source: Energy.gov [DOE]

    This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

  16. Development of Real-Time, Gas Quality Sensor Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real-Time, Gas Quality Sensor Technology Introduction Landfll gas (LFG), composed largely of methane and carbon dioxide, is used in over 645 operational projects in 48 states. These projects convert a large source of greenhouse gases into a fuel that currently provides approximately 51 trillion Btu of electricity and supplies 108 billion cubic feet of LFG annually to direct use applications and natural gas pipelines. However, there is still a signifcant resource base for new projects, with over

  17. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    0 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Total Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Motor Gasoline b Petroleum Coke Residual Fuel Oil Total 1950 Total ........................ 829 347 146 1,322 262 47 39 100 NA 424 872 1955 Total

  18. Word Pro - S3

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / Monthly Energy Review February 2016 Table 3.8c Heat Content of Petroleum Consumption: Transportation and Electric Power Sectors (Trillion Btu) Transportation Sector Electric Power Sector a Aviation Gasoline Distillate Fuel Oil b Jet Fuel c Liquefied Petroleum Gases Lubri- cants Motor Gasoline d Residual Fuel Oil Total Distillate Fuel Oil e Petro- leum Coke Residual Fuel Oil f Total 1950 Total ........................ 199 480 c ( ) 3 141 4,664 1,201

  19. Level: National Data;

    Gasoline and Diesel Fuel Update (EIA)

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,433 Natural Gas 5,911 Net Electricity 2,851 Purchases 2,894 Transfers In 20 Onsite Generation from Noncombustible Renewable Energy 4 Sales and Transfers Offsite 67 Coke and Breeze 272

  20. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0 107

  1. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208

  2. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One

  3. " Generation by Program Sponsorship, Industry Group, Selected"

    U.S. Energy Information Administration (EIA) Indexed Site

    A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  6. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural

  10. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  11. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  12. Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," ","

  13. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  14. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  15. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  16. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  17. Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  18. Originally Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars"

  19. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG

  20. Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  1. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG

  2. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," "

  3. Released: May 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  4. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  5. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  6. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  7. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  8. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  9. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  10. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374

  11. How Much Energy Does Your State Produce? | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Does Your State Produce? How Much Energy Does Your State Produce? November 10, 2014 - 2:52pm Addthis Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it produces Source: EIA State Energy Data Systems Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs More Energy Maps Interested in learning more about national energy trends? Learn how much you spend on energy and how much energy you consume. Here

  12. Commercial Buildings Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Integration Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL 2 Strategic Fit within Building Technologies Office 3 4 In the U.S., packaged units: * condition 40 billion square feet of the commercial building floor space * consume 2,100 trillion Btu of primary energy annually Many RTUs are past their typical life span, functioning at much lower efficiency levels than new units, and are ready to be replaced.

  13. Wisconsin Save Energy Now Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Map of Midwest U.S. with Wisconsin highlighted Among Wisconsin's economic sectors, the industrial sector represents the highest level of energy consumption. In 2007, this sector consumed approximately 623.5 trillion British thermal units (Btu). Wisconsin's industrial sector includes energy-intensive industries, such as food processing, chemical manufacturing, plastics, and forest products. The Wisconsin Office of Energy Independence, along with its project partners, expanded the Wisconsin Save

  14. D-Zero Central Calorimeter Pressure Vessel and Vacuum Vessel Safety Notes

    SciTech Connect (OSTI)

    Rucinski, R.; Luther, R.; /Fermilab

    1990-10-25

    The relief valve and relief piping capacity was calculated to be 908 sefm air. This exceeds all relieving conditions. The vessel also has a rupture disc with a 2640 scfm air stamped capacity. In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K. The average temperature of the module mass for any of the three cryostats can be as high as 290 K prior to filling that particular cryostat. This should not be confused with the average temperature of a single type or location which is useful in protecting the modules-not necessarily the vessel itself. A few modules of each type and at different elevations should be used in an average which would account for the different weights of each module. Note that at 290 K, the actual flow of argon through the relief valve and the rupture disk was under the maximum theoretical flows for each relief device. This means that the bulk temperature could actually have been raised to flow argon through the reliefs at their maximum capacity. Therefore, the temperature of 290 K is a conservative value for the calculated flow rate of 12.3 gpm. Safeguards in addition to and used in conjunction with operating procedures shall be implemented in such a way so that the above temperature limitation is not exceeded and such that it is exclusive of the programmable logic controller (PLC). One suggestion is using a toggle switch for each cryostat mounted in the PLC I/O box which would maintain control of the signals to open the cold fill valves of each cryostat. With the safeguards in place while carefully monitoring the temperatures during a cooldown cycle in each cryostat, the set pressure in the argon storage dewar can safely be increased to 20 psig.

  15. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A13. Natural gas supply, disposition, and prices (trillion cubic feet per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A13. Natural gas supply, disposition, and prices (trillion cubic feet, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Supply Dry gas production

  16. Technical Note: Modeling a complex micro-multileaf collimator using the standard BEAMnrc distribution

    SciTech Connect (OSTI)

    Kairn, T.; Kenny, J.; Crowe, S. B.; Fielding, A. L.; Franich, R. D.; Johnston, P. N.; Knight, R. T.; Langton, C. M.; Schlect, D.; Trapp, J. V.

    2010-04-15

    Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have trifaceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module. Methods: That this simple collimator model can produce spatially and dosimetrically accurate microcollimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms. Results: Monte Carlo dose calculations for on-axis and off-axis fields are shown to produce good agreement with experimental values, even on close examination of the penumbrae. Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.

  17. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflageration

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09

    The purpose of this calculation note is to provide the basis for In-Tank Fuel fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  18. Calculation notes that support accident scenario and consequence of the in-tank fuel fire/deflagration

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27

    The purpose of this calculation note is to provide the basis for In-Tank Fuel Fire/Deflageration consequence for the Tank Farm Safety Analysis Report (FSAR). Tank Fuel Fire/Deflageration scenario is developed and details and description of the analysis methods are provided.

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5.30 5.91 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6.42 6.02 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  1. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5.30 5.91 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  2. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6.26 6.48 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  3. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5.65 5.67 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  4. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6.26 6.48 Note: Prices were converted from per Mcf to per MMBtu using an average heat content of 1,027 Btu per cubic foot as published in Table A4 of the Annual Energy...

  5. MU Eneg

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  6. Ordering Information

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  7. AA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  8. DOE/EI-003595/10

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  9. Ordering Information

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  10. 1) E/ L I

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  11. DOE/EIA-0035(94/01) Ener Revie

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  12. DOE/ELIA-0035(95/105), Monthly

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  13. II IIE

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  14. II Now Available State Energy Data Report 1992

    Gasoline and Diesel Fuel Update (EIA)

    is included, but an estimated 3.4 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  15. I.

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    is included, but an estimated 3.0 quadrillion Btu of renewable Note 8; and Table A8. * Geothermal Energy and Other: Section 2, energy used by other sectors is not included....

  16. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Btu (MMBtu). The NEB noted the contrast of this forecast to the market prices of last summer, when natural gas prices peaked at more than 13 per MMBtu and crude oil reached a...

  17. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Btu (MMBtu). The NEB noted the contrast of this forecast to the market prices of last summer, when natural gas prices peaked at more than 13 per MMBtu and crude oil reached a...

  18. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    A-3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Energy consumption Residential Propane

  19. Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

    Office of Environmental Management (EM)

    8, 2008 Page 1 of 8 Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization Attendees: Representatives from Department of Energy-Headquarters (DOE-HQ) and the U.S. Nuclear Regulatory Commission staff (NRC) met at the DOE offices in Germantown, Maryland on 28 May 2008. Representatives from Department of Energy- Savannah River (DOE-SR), Department of Energy-Richland (DOE-RL), and Department of Energy-River Protection (DOE-ORP)

  20. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  1. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  2. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,023 1,029 2010's 1,010 1,010 1,019 1,015 1,033

  3. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,016 1,029 1,031

  4. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,020 1,008 1,007 2010's 1,007 1,010 1,012 1,014 1,015

  5. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,028 1,026 1,029

  6. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  7. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,031 1,032 1,033 1,036 1,035 1,029 1,032 1,038 1,040 1,041 1,036 2014 1,034 1,034 1,037 1,043 1,043 1,047 1,051 1,052 1,050 1,053 1,049 1,052 2015 1,052 1,054 1,053 1,057 1,061 1,063 1,068 1,071 1,068 1,060 1,055 1,053

  8. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  9. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 1,035 1,033 1,036 1,036 1,037 2015 1,040 1,040 1,041 1,043 1,043 1,045 1,044 1,043 1,044 1,043 1,043 1,042

  10. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032 1,031

  11. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,033 1,029 1,028 1,029 1,030 1,030 1,027 1,028 1,031 1,033 1,030 1,030 2014 1,037 1,033 1,031 1,031 1,032 1,038 1,033 1,030 1,027 1,028 1,028 1,030 2015 1,037 1,041 1,033 1,029 1,028 1,028 1,027 1,028 1,028 1,029 1,029 1,030

  12. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  13. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,043 1,043 1,043 1,042 1,043 1,046 1,044 1,042 1,045 1,047 1,048 1,050 2014 1,050 1,047 1,045 1,040 1,035 1,037 1,040 1,038 1,039 1,039 1,044 1,045 2015 1,050 1,050 1,050 1,043 1,043 1,043 1,043 1,042 1,041 1,041 1,044 1,044

  14. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,026 1,027 1,027 1,033 1,031 1,026 1,032 1,032 1,034 1,028 1,034 1,032 2014 1,030 1,029 1,027 1,028 1,030 1,033 1,041 1,046 1,041 1,039 1,037 1,037 2015 1,038 1,038 1,034 1,034 1,038 1,039 1,038 1,049 1,040 1,048 1,042 1,046

  15. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,018

  16. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,014 1,014 1,012 1,010 1,010 1,010 1,011 1,012 1,012 1,015 1,014 2014 1,016 1,018 1,017 1,015 1,016 1,014 1,017 1,024 1,022 1,025 1,028 1,029 2015 1,030 1,028 1,030 1,035 1,035 1,033 1,038 1,037 1,038 1,040 1,033

  17. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  18. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112

  19. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,06

  20. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 1,052 1,052 1,054 1,057 1,060 2015 1,065 1,062 1,062 1,073 1,072 1,068 1,069 1,068 1,071 1,071 1,077 1,07

  1. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040 1,047

  2. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050

  3. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  4. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 1,035 1,033 1,029 1,028 1,028 2015 1,031 1,031 1,032 1,035 1,039 1,042 1,039 1,039 1,038 1,036 1,035 1,036

  5. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  6. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046

  7. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020 1,027

  8. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054 1,050

  9. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,021 1,024

  10. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  11. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  12. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  13. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029

  14. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,021 1,036

  15. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038 1,052

  16. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  17. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,027 1,035 1,036 2010's 1,030 1,027 1,030 1,028 1,028 1,025

  18. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,034 1,035 1,029 2010's 1,024 1,019 1,015 1,014 1,030 1,032

  19. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  20. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,035 1,037 2010's 1,027 1,027 1,037 1,051 1,050 1,055

  1. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,021 1,032 2010's 1,035 1,033 1,035 1,033 1,031

  2. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,017 1,021 1,031

  3. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017 1,025 1,030

  4. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029

  5. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  6. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 1,001 1,001 1,001 1,001 1,001 2015 1,000 1,000 1,001 1,002 1,001 1,002 1,002 1,002 1,001 1,001 1,001 1,000

  7. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029 1,039

  8. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,029 1,023 1,021 1,030 1,027 1,025 1,028 1,025 1,023 1,022 1,024 1,024 2014 1,024 1,025 1,026 1,031 1,028 1,028 1,030 1,032 1,032 1,033 1,032 1,032 2015 1,038 1,038 1,036 1,040 1,038 1,036 1,038 1,038 1,040 1,042 1,041 1,044

  9. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,015 1,024 1,028

  10. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,016 1,016 1,016 1,017 1,018 1,016 1,016 1,014 1,012 1,012 1,015 2014 1,017 1,015 1,015 1,018 1,017 1,019 1,021 1,021 1,019 1,018 1,011 1,017 2015 1,021 1,023 1,023 1,025 1,022 1,020 1,023 1,022 1,019 1,029 1,014 1,015

  11. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,028 1,028 1,035

  12. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037

  13. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  14. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,026 1,022 1,023 2010's 1,017 1,020 1,031 1,032 1,029

  15. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028

  16. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,034 1,034 2010's 1,026 1,026 1,023 1,019 1,024

  17. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030

  18. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,023 1,035 1,051

  19. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058

  20. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,021 1,026 1,027

  1. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,012 1,016 1,019 1,018 1,021 1,023 1,028 1,028 1,025 1,024 1,022 2014 1,020 1,020 1,021 1,027 1,032 1,031 1,032 1,020 1,024 1,027 1,029 1,028 2015 1,028 1,029 1,029 1,027 1,025 1,025 1,027 1,023 1,025 1,032 1,031 1,034

  2. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  3. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 1,036 1,033 1,033 1,031 1,030 2015 1,026 1,028 1,029 1,034 1,036 1,036 1,036 1,035 1,036 1,036 1,033 1,030

  4. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030 1,037

  5. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1,026 1,026 1,026 1,026 1,027 1,027 1,027 1,027 1,027 1,027 1,028 1,028 2014 1,029 1,028 1,029 1,029 1,030 1,030 1,032 1,033 1,033 1,033 1,034 1,035 2015 1,036 1,036 1,036 1,037 1,037 1,037 1,037 1,036 1,037 1,037 1,038 1,038

  6. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"3/16/2016 12:55:36 PM"

  7. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"3/16/2016

  8. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,025 1,026 2010's 1,018 1,018 1,016 1,017 1,025 1,030

  9. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  10. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,027 1,021 2010's 1,016 1,015 1,021 1,025 1,029 1,039

  11. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,014 1,015 1,016 2010's 1,012 1,017 1,015 1,015 1,024 1,028

  12. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,028 1,028 1,035

  13. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  14. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,019 1,018 1,019 2010's 1,022 1,026 1,031 1,030 1,020 1,027

  15. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,033 1,030 2010's 1,023 1,025 1,027 1,043 1,054 1,050

  16. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,029 1,025 2010's 1,019 1,015 1,015 1,016 1,021 1,024

  17. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  18. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  19. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  20. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029