Powered by Deep Web Technologies
Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Trillion Particles,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

2

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

3

Powered by 500 Trillion Calculations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations April 15, 2011 - 5:31pm Addthis Blood flow visualization | Photo Courtesy of Argonne National Laboratory Blood flow visualization | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications. With the power of 500 trillion calculations per second, a team of scientists from the Department of Energy's Argonne National Laboratory (ANL) and Brown University are mapping the movement of red blood cells -- hoping this will lead to better diagnoses and treatments for patients with

4

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

5

cautious pipeline trench blasting  

Science Journals Connector (OSTI)

cautious pipeline trench blasting, pipeline trench blasting (with)in built-up areas...n in bebauten Gebieten

2014-08-01T23:59:59.000Z

6

Trillion Cubic Feet Billion Cubic Meters Residential Commercial  

Gasoline and Diesel Fuel Update (EIA)

2 2 4 6 8 10 0 50 100 150 200 250 Trillion Cubic Feet Billion Cubic Meters Residential Commercial Industrial Electric Utilities 1930 1935 1940 1945 1950 1955 1960 1965 1970 1980 1985 1990 1995 1975 2000 Note: In 1996, consumption of natural gas for agricultural use is classified as industrial use. In 1995 and earlier years, agricultural use was classified as commercial use. Sources: 1930-1975: Bureau of Mines, Minerals Yearbook, "Natural Gas" chapter. 1976-1978: Energy Information Administration (EIA), Energy Data Reports, Natural Gas Annual. 1979: EIA, Natural Gas Production and Consumption, 1979. 1980-1996: Form EIA- 176, "Annual Report of Natural and Supplemental Gas Supply and Disposition" and Form EIA-759, "Monthly Power Plant Report." 23. Natural Gas Delivered to Consumers in the United States, 1930-1996 Figure

7

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

8

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

9

December News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

December News Blast December News Blast December News Blast december2013newsblast.pdf More Documents & Publications November 2013 News Blast April 2014 Monthly News Blast January...

10

October 2013 News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 2013 News Blast October 2013 News Blast October 2013 News Blast october2013newsblast.pdf More Documents & Publications September 2013 News Blast BETO Monthly News Blast,...

11

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

12

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

13

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

14

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

15

ThermonucleotideBLAST  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. October 10, 2013 software Given two samples of sequences, for which the user provides an input file with corresponding genetic distances (pairwise), the program performs a t-test to see whether the two mean genetic distances are significantly different. Available for thumbnail of Feynman Center (505) 665-9090 Email ThermonucleotideBLAST ThermonucleotideBLAST is a software program for searching a target database of nucleic acid sequences using an assay specific query. Licensing Status: Available for Express Licensing (?). This software is open source. To download, please visit ThermonucleotideBLAST website. For more

16

November 2013 News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

November 2013 News Blast November 2013 News Blast November 2013 News Blast november2013newsblast.pdf More Documents & Publications BETO Monthly News Blast, August 2013r January...

17

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

18

Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multimedia Corner Monthly News Blast July 2013 Secretaries Moniz and Vilsack Speaking at Biomass 2013 Secretary of Energy Ernest Moniz and Secretary of Agriculture Tom Vilsack...

19

Lightweight blast shield  

DOE Patents [OSTI]

A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

Mixon, Larry C. (Madison, AL); Snyder, George W. (Huntsville, AL); Hill, Scott D. (Toney, AL); Johnson, Gregory L. (Decatur, AL); Wlodarski, J. Frank (Huntsville, AL); von Spakovsky, Alexis P. (Huntsville, AL); Emerson, John D. (Arab, AL); Cole, James M. (Huntsville, AL); Tipton, John P. (Huntsville, AL)

1991-01-01T23:59:59.000Z

20

February 2014 News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 News Blast February 2014 News Blast February 2014 News Blast february2014newsblast.pdf More Documents & Publications March 2014 Monthly News Blast April 2014 Monthly News Blast...

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manhattan Project: Blast  

Office of Scientific and Technical Information (OSTI)

Blast (Animation) Blast (Animation) Yucca Flat, Nevada (March 17, 1953) Resources > Photo Gallery Blast Animation The eight images above are a sequence of photographs of a house constructed 3,500 feet from "ground zero" at the Nevada Test Site being destroyed by the Annie test shot. The only source of light was the blast itself, detonated on March 17, 1953. The final image is two-and-one-third seconds after detonation. In the second image the house is actually on fire, but in the third image the fire has already been blown out by the blast. Annie, part of the "Upshot-Knothole" test series, had a yield of 16 kilotons, roughly the same size as the Trinity, Hiroshima, and Nagasaki explosions. Two photographs of the Annie mushroom cloud are at the bottom of this page.

22

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

23

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

24

April 2013 Monthly News Blast  

Broader source: Energy.gov [DOE]

The monthly news blast for April 2013 highlights the Project Peer Review, upcoming events, BETO blog posts, and more.

25

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

26

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

27

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell

1982-01-01T23:59:59.000Z

28

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer

1982-09-01T23:59:59.000Z

29

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

30

Monthly News Blast: January 2013  

Broader source: Energy.gov [DOE]

In the January 2013 Monthly News Blast, read about two new funding opportunities, the latest MYPP update, upcoming events, and more.

31

Monthly News Blast: February 2013  

Broader source: Energy.gov [DOE]

In the February 2013 Monthly News Blast, read about recent blog posts, the monthly staff spotlight video, upcoming events, and more.

32

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

33

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

34

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

35

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

36

Portable convertible blast effects shield  

DOE Patents [OSTI]

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler,; Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A (Livermore, CA)

2010-10-26T23:59:59.000Z

37

Portable convertible blast effects shield  

DOE Patents [OSTI]

A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.

Pastrnak, John W. (Livermore, CA); Hollaway, Rocky (Modesto, CA); Henning, Carl D. (Livermore, CA); Deteresa, Steve (Livermore, CA); Grundler, Walter (Hayward, CA); Hagler, Lisle B. (Berkeley, CA); Kokko, Edwin (Dublin, CA); Switzer, Vernon A. (Livermore, CA)

2011-03-15T23:59:59.000Z

38

Monthly News Blast: March 2013  

Broader source: Energy.gov [DOE]

In the March 2013 Monthly News Blast, read about two upcoming webinars, two recently announced BETO events, recent blog posts, the monthly staff spotlight video, upcoming events, and more.

39

May 2013 Monthly News Blast  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's May 2013 Monthly News Blast highlights the upcoming Biomass 2013 conference, a webinar on ionic liquids, the new Multi-Year Program Plan, and more.

40

June 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Monthly News Blast June 2014 Monthly News Blast June 2014 Monthly News Blast from the Bioenergy Technologies Office. june2014newsblast.pdf More Documents & Publications July...

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

April 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2014 Monthly News Blast April 2014 Monthly News Blast April 2014 Monthly News Blast from the Bioenergy Technologies Office. april2014newsblast.pdf More Documents &...

42

September 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 2014 Monthly News Blast September 2014 Monthly News Blast September 2014 Monthly News Blast from the Bioenergy Technologies Office. september2014newsblast.pdf More...

43

July 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2014 Monthly News Blast July 2014 Monthly News Blast July 2014 Monthly News Blast from the Bioenergy Technologies Office. july2014newsblast.pdf More Documents & Publications...

44

Biomass Program Monthly News Blast, October 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast, October 2012 Biomass Program Monthly News Blast, October 2012 Copy of the Biomass Program Monthly News Blast from October 2012. october2012newsblast.pdf More Documents &...

45

February 2012 Biomass Program News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

February 2012 Biomass Program News Blast February 2012 Biomass Program News Blast News Blast from the February 2012 Biomass Program. february2012newsblast.pdf More Documents &...

46

Biomass Program December Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December Monthly News Blast Biomass Program December Monthly News Blast The December News Blast from the Biomass Program's monthly newsletter contains important past and upcoming...

47

Biomass Program September 2012 News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

September 2012 News Blast Biomass Program September 2012 News Blast September 2012 Biomass Program monthly news blast. september2012newsblast.pdf More Documents & Publications...

48

April 2012 Biomass Program News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 2012 Biomass Program News Blast April 2012 Biomass Program News Blast April 2012 monthly news blast from the Biomass Program, highlighting news items, funding opportunities,...

49

August 2014 Monthly News Blast | Department of Energy  

Office of Environmental Management (EM)

News Blast August 2014 Monthly News Blast August 2014 Monthly News Blast from the Bioenergy Technologies Office. august2014newsblast.pdf More Documents & Publications June...

50

Monthly News Blast: July 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News Blast: July 2013 Monthly News Blast: July 2013 July 2013 Monthly News Blast july2013newsblast.pdf More Documents & Publications Monthly News Blast: March 2013 BETO Monthly...

51

BETO Monthly News Blast, June 2013  

Broader source: Energy.gov [DOE]

The June 2013 monthly news blast covers Biomass 2013, the Program Management Review, upcoming industry events, and more.

52

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

53

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

54

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

55

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

56

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

57

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

58

Report blasts Patent Office automation  

Science Journals Connector (OSTI)

Report blasts Patent Office automation ... The Department of Commerce is moving quickly to implement a report highly critical of the Patent & Trademark Office's efforts to fully automate its patent search and retrieval operations. ... An Industry Review Panel found that the current automated patent system is over-designed and as a result needs a redundant communications network and redundant storage of all patent images at high resolution. ...

JANICE LONG

1988-05-30T23:59:59.000Z

59

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

60

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

62

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

63

BETO Monthly News Blast, August 2013r | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

BETO Monthly News Blast, August 2013r BETO Monthly News Blast, August 2013r Copy of the BETO Monthly News Blast from August 2013 august2013newsblast.pdf More Documents &...

64

May 2014 Monthly News Blast | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 Monthly News Blast May 2014 Monthly News Blast May 2014 Monthly News Blast from the Bioenergy Technologies Office. may2014newsblast.pdf More Documents & Publications April 2014...

65

Biomass Program Monthly News Blast January 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast January 2012 Biomass Program Monthly News Blast January 2012 This is a copy of the Biomass Program's monthly news blast from January 2012. january2012newsblast.pdf More...

66

Biomass Program Monthly News Blast - May 2012 | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 2012 Biomass Program Monthly News Blast - May 2012 Biomass Program monthly news blast from May 2012 may2012newsblast.pdf More Documents & Publications June 2012 News Blast:...

67

March 2014 Monthly News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2014 Monthly News Blast March 2014 Monthly News Blast BETO Gets Innovative with New Interactive Tool march2014newsblast.pdf More Documents & Publications April 2014 Monthly...

68

Biomass Program Monthly News Blast: May | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blast: May Biomass Program Monthly News Blast: May News and updates from the Biomass Program in May 2011. maynewsblast.pdf More Documents & Publications Biomass Program Monthly...

69

August 2012 Biomass Program Monthly News Blast | Department of...  

Broader source: Energy.gov (indexed) [DOE]

August 2012 Biomass Program Monthly News Blast August 2012 Biomass Program Monthly News Blast Monthly newsletter for August 2012 from the Department of Energy's Biomass Program....

70

Biomass Program News Blast: September | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News Blast: September Biomass Program News Blast: September News and updates from the Biomass Program in September 2011. septembernewsblast.pdf More Documents & Publications...

71

July 2012 Biomass Program Monthly News Blast | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2012 Biomass Program Monthly News Blast July 2012 Biomass Program Monthly News Blast July 2012 monthly newsletter from the Department of Energy's Biomass Program....

72

Biomass Program Monthly News Blast: November | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monthly News Blast: November Biomass Program Monthly News Blast: November News and Updates from the Biomass Program in November 2011. novembernewsblast.pdf More Documents &...

73

Biomass Program Monthly News Blast: August | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biomass Program Monthly News Blast: August Biomass Program Monthly News Blast: August News and updates from the Biomass Program in August 2011. augustnewsblast.pdf More Documents...

74

Existing and prospective blast-furnace conditions  

SciTech Connect (OSTI)

Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk [Ukrainian Academy of Sciences, Dnepropetrovsk (Ukraine). Institute of Ferrous Metallurgy

2009-07-15T23:59:59.000Z

75

Highly concentrated foam formulation for blast mitigation  

DOE Patents [OSTI]

A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

2010-12-14T23:59:59.000Z

76

Green Destiny + mpiBLAST = Bioinfomatics  

E-Print Network [OSTI]

Green Destiny + mpiBLAST = Bioinfomatics Wu-chun Feng feng@lanl.gov For more on Green Destiny, go-6651 #12;Green Destiny + mpiBLAST = Bioinfomagic Wu-chun Feng feng@lanl.gov For more on Green Destiny, go The Components of "Bioinfomagic" · Green Destiny ­ A 240-node supercomputer in a "telephone booth" · Footprint: 6

Feng, Wu-chun

77

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

78

LTC vacuum blasting machine (concrete): Baseline report  

SciTech Connect (OSTI)

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

79

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

80

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Testing and analysis of structural steel columns subjected to blast loads  

E-Print Network [OSTI]

with four blast generators distributed over the height ofwith four blast generators distributed over the height of

Stewart, Lauren K.

2010-01-01T23:59:59.000Z

82

Blast overpressure relief using air vacated buffer medium  

E-Print Network [OSTI]

Blast waves generated by intense explosions cause damage to structures and human injury. In this thesis, a strategy is investigated for relief of blast overpressure resulting from explosions in air. The strategy is based ...

Avasarala, Srikanti Rupa

2009-01-01T23:59:59.000Z

83

Combat-related blast injuries : injury types and outcomes  

E-Print Network [OSTI]

blast and PTSD diagnosis as covariates. The interaction of PTSD and injury severity was initially assessed prior to model

Eskridge, Susan Lindsay

2011-01-01T23:59:59.000Z

84

Blast-induced phenotypic switching in cerebral vasospasm  

E-Print Network [OSTI]

of the cerebrovasculature is a common manifestation of blast-induced traumatic brain injury (bTBI) reported among combat is not required for vasospasm in bTBI, which suggests that the unique mechanics of blast injury could potentiate. These results suggest that an acute, blast-like injury is sufficient to induce a hypercontraction

Parker, Kevin Kit

85

Blast injuries to the lung: epidemiology and management  

Science Journals Connector (OSTI)

...Medicine, College of Medical and Dental Sciences, University of Birmingham...blast injuries|blast lung|radiology of blast lung injury|conventional...context, clinical symptoms and radiology. Symptoms may include respiratory...patients (67%) for whom role 3 radiology was available and given that...

2011-01-01T23:59:59.000Z

86

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

87

Microsoft Word - Blast Energy.112706.DOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

partnership successfully tests new, less expensive drilling technology partnership successfully tests new, less expensive drilling technology Casper, Wyo. - Nov. 28, 2006 - The Rocky Mountain Oilfield Testing Center (RMOTC) and its partner Blast Energy Services Inc. have successfully tested an innovative new oil and gas drilling technology that when commercialized should facilitate lower production costs and increased access to reserves. "It's our mission to partner with industry to help bring new ideas to the marketplace that can ensure clean, reliable and affordable supplies of oil and natural gas for American consumers," said Clarke Turner, RMOTC director. The new technology is expected to provide oil and gas producers with an alternative to existing well stimulation services at a lower cost, while having the ability to access previously uneconomical reserves. Blast's

88

A Phased Array Approach to Rock Blasting  

SciTech Connect (OSTI)

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01T23:59:59.000Z

89

Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation  

SciTech Connect (OSTI)

A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 m and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 Wcm-1/Hz1/2.

Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

2012-10-23T23:59:59.000Z

90

Centrifugal shot blasting. Innovative technology summary report  

SciTech Connect (OSTI)

At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

Not Available

1999-07-01T23:59:59.000Z

91

Biomass Program Monthly News Blast: October | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October Biomass Program Monthly News Blast: October News and updates from the Biomass Program in October 2011. octobernewsblast.pdf More Documents & Publications Biomass Program...

92

Biomass Program Monthly News Blast: July | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July Biomass Program Monthly News Blast: July News and updates from the Biomass Program in July 2011. julynewsblast.pdf More Documents & Publications Biomass Program Monthly News...

93

Biomass Program Monthly News Blast - March 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2012 Biomass Program Monthly News Blast - March 2012 Monthly updates from the Biomass Program in March 2012. march2012newsblast.pdf More Documents & Publications Biomass...

94

Biomass Program Monthly News Blast: June | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June Biomass Program Monthly News Blast: June News and updates from the Biomass Program in June 2011. junenewsblast.pdf More Documents & Publications Biomass Program Monthly News...

95

Traumatic Brain Injury Protection: Blast Pressure Sensors in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Find More Like This Return to Search Traumatic Brain Injury Protection: Blast Pressure Sensors in Helmets Lawrence Livermore National Laboratory Contact LLNL About This Technology...

96

Remark on the energy content of a blast wave  

Science Journals Connector (OSTI)

In this note a comment is made on the total energy content of a blast wave in a stellar...et al. (1951).

G. Deb Ray

97

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009" August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,,"Furnace/Coke",,,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total",,"Oven Gases","Waste Gas",,"Coke","Black Liquor","Bark","Materials"

98

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010;" 5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

99

Biologic response to complex blast waves  

SciTech Connect (OSTI)

Small, bare charges were detonated inside an M59 armored personnel carrier (APC) in an attempt to simulate the complex blast waves generated by the jets from shaped-charge warheads penetrating into armored vehicles. Anesthetized sheep were placed inside the APC at 92- and 122-cm ranges from 57- or 113-g pentolite charges. Pressure-time was measured by pressure transducers either mounted on the animals or free standing at comparable ranges on the opposite side of the vehicle. In general, the waveforms were characterized by an initial shock wave of less than 1-msec duration followed by repeated reflections of decreasing magnitude. No deaths nor lung hemorrhages were observed, but all the animals sustained severe ear injury. Animals subjected to peak overpressures of 1.2 to 2.3 bar from the 113-g explosions also received slight non-auditory blast injuries to the upper respiratory and gastrointestinal tracts; those exposed to peak overpressures of just under 1 bar from the 57-g charges did not. The non-auditory blast injuries inside the APC were more severe than those sustained by sheep at comparable distances from 113-g charges in the open. The results suggested that the biological consequences of a complex wave of the type encountered in this study can be equated approximately to a Friedlander wave with a peak overpressure equal to that of the complex wave and with a total impulse equal to the impulse over the first 2 to 3 msec of the complex wave. 9 refs., 7 figs., 1 tab.

Richmond, D.R.; Yelverton, J.T.; Fletcher, E.R.; Phillips, Y.Y.

1985-01-01T23:59:59.000Z

100

Development of coke properties during the descent in the blast furnace.  

E-Print Network [OSTI]

??The efficiency in use of reducing agents in blast furnace (BF) ironmaking has been significantly improved over the years. At most blast furnaces, auxiliary fuels (more)

Maria Lundgren

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Processing automotive shredder fluff for a blast furnace injection  

E-Print Network [OSTI]

1 Processing automotive shredder fluff for a blast furnace injection S. GUIGNOT* , M. GAMET, N. *Corresponding author: s.guignot@brgm.fr, (+33)238643485 Abstract Automotive shredder fluff is a byproduct. Keywords: automotive shredder residues, fluff, iron recovery, process, blast furnace hal-01017129

Boyer, Edmond

102

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel...

103

Sifting Through a Trillion Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science, Hopper Linda Vu, lvu@lbl.gov, +1 510 495 2402 VPIC1.jpg After querying a dataset of approximately 114,875,956,837 particles for those with Energy values less than...

104

The Blast Energy Efficiency of GRBs  

E-Print Network [OSTI]

Using data mostly assembled by previous authors, we consider the linear correlation between the apparent radiative efficiency $\\epsilon_{\\gamma}$ (defined as the ratio of isotropic equivalent radiative output to inferred isotropic equivalent kinetic energy of the blast) and $E_{peak}^{\\alpha}$ where $1.4<\\alpha<2$, for 17 of 22 GRBs (Lloyd-Ronning and Zhang, 2004). We note in a quantitative manner that this is consistent with the hypothesis that $\\epsilon_{\\gamma}$ and $E_{peak}$ are influenced by viewing angle. We suggest a more general theoretically derived expression for this correlation that could be tested with a richer data set. If the reduction in both $\\epsilon_{\\gamma}$ and $E_{peak}$ is due to viewing angle effects, then the actual radiative efficiency is $\\sim 7$. We also find preliminary evidence (with a small sample) for a separate class of weak GRB afterglows.

David Eichler Daniel Jontof-Hutter

2005-03-24T23:59:59.000Z

105

Blast mitigation capabilities of aqueous foam.  

SciTech Connect (OSTI)

A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

2006-02-01T23:59:59.000Z

106

LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)  

SciTech Connect (OSTI)

The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

107

Rat injury model under controlled field-relevant primary blast conditions: Acute response to a wide  

E-Print Network [OSTI]

1 1 Rat injury model under controlled field-relevant primary blast conditions: Acute response.edu Keywords: Traumatic Brain Injury, Primary Blast, Mortality, Cellular Membrane Permeability, Lung Injury the risk of sustaining blast induced injury by military personnel and civilians. The blast injury

Farritor, Shane

108

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect (OSTI)

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

109

Characterising the acceleration phase of blast wave formation  

SciTech Connect (OSTI)

Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

Fox, T. E., E-mail: tef503@york.ac.uk; Pasley, J. [York Plasma Institute, University of York, York YO10 5DD (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

2014-10-15T23:59:59.000Z

110

Kablammo: an interactive, web-based BLAST results visualizer  

Science Journals Connector (OSTI)

......brief-report Applications Note Kablammo: an interactive, web-based BLAST results visualizer Jeff A. Wintersinger 1 * James...Associate Editor: Dr. John Hancock Motivation: Kablammo is a web-based application that produces interactive, vector-based......

Jeff A. Wintersinger; James D. Wasmuth

2014-12-01T23:59:59.000Z

111

Analysis of blast mitigation strategies exploiting fluid-structure interaction  

E-Print Network [OSTI]

Blast attacks have become the most pervasive threat in both civil and military contexts. However, there is currently a limited understanding of the mechanisms of loading, damage and failure of structures, and injury to ...

Kambouchev, Nayden Dimitrov, 1980-

2007-01-01T23:59:59.000Z

112

Energy expenditures and carbon-dioxide emissions at blast furnaces  

Science Journals Connector (OSTI)

Thermodynamic analysis of the reduction of iron and the material balances of carbon shows that the CO2 levels in the blast-furnace gas may be maintained by lowering the carbon consumption in the direct reduction ...

G. V. Korshikov; V. N. Titov; V. G. Mikhailov

2013-07-01T23:59:59.000Z

113

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

114

LTC 1073 vacuum blasting (concrete) human factors assessment -- Baseline (summary)  

SciTech Connect (OSTI)

The LTC 1073 Vacuum Blasting Machine uses a high capacity, direct pressure blasting system incorporating a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast head. A vacuum system removes dust and debris from the surfaces as it is blasted. After cleaning the surface, the abrasive, together with the rust or coating that was removed from the surface, is vacuumed into the machine through the suction hose. The dust separator contains angled steel collision pads, working with the force of gravity, to allow any reusable abrasive to fall back into the pressure vessel. The filters are manually back flushed to prevent clogging. After back flushing, dust is dumped from the dust chamber into the dust collection bag or drum by operation of the bellows valve. The safety and health evaluation during the testing demonstration focused on dust and noise exposure. Dust exposure was found to be minimal, but noise exposure was potentially significant. Further testing for each of these exposures is recommended because the outdoor environment where the testing demonstration took place may cause the results to be inapplicable to indoor settings. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other safety and health issues found were ergonomics, heat stress, tripping hazards, lockout/tagout, and arm-hand vibration.

NONE

1997-07-31T23:59:59.000Z

115

Modeling and Simulating Blast Effects on Electric Substations  

SciTech Connect (OSTI)

A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

2009-05-01T23:59:59.000Z

116

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

117

In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury  

E-Print Network [OSTI]

Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal ...

Nyein, Michelle K.

118

The BLAST 250 ?m-selected galaxy population in GOODS-South  

Science Journals Connector (OSTI)

......provided by the Balloon-borne Large Aperture Submillimetre Telescope (BLAST). BLAST is a 1.8-m diameter stratospheric balloon telescope that operates at an altitude of approximately 35 km, above most of the atmospheric water vapour which......

J. S. Dunlop; P. A. R. Ade; J. J. Bock; E. L. Chapin; M. Cirasuolo; K. E. K. Coppin; M. J. Devlin; M. Griffin; T. R. Greve; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; R. J. Ivison; J. Klein; A. Kovacs; G. Marsden; P. Mauskopf; C. B. Netterfield; L. Olmi; E. Pascale; G. Patanchon; M. Rex; D. Scott; C. Semisch; I. Smail; T. A. Targett; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; F. Walter; J. L. Wardlow; A. Weiss; D. V. Wiebe

2010-11-11T23:59:59.000Z

119

Continuum modeling of a neuronal cell under blast loading Antoine Jrusalem a,  

E-Print Network [OSTI]

2012 Keywords: Continuum model Neuron Blast Cell damage Traumatic brain injury a b s t r a cContinuum modeling of a neuronal cell under blast loading Antoine Jérusalem a, , Ming Dao b by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm

Suresh, Subra

120

The influence of heterogeneous meninges on the brain mechanics under primary blast loading  

E-Print Network [OSTI]

/interphase C. Finite element analysis Blast wave a b s t r a c t In the modeling of brain mechanics subjected mismatch. ? 2012 Elsevier Ltd. All rights reserved. 1. Introduction Blast-related traumatic brain injury, 88% of those injuries were caused by expo- sure to blasts resulting from improvised explosive devices

Farritor, Shane

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measurement and analysis of near-field blast vibration and damage  

Science Journals Connector (OSTI)

Blast vibration and its attenuation within the rock mass immediately adjacent to a blast hole (215 m) were monitored for a blast hole diameter of 100 mm and a 2.4 m column of an emulsion explosive charge. Pea...

R. L. Yang; P. Rocque; P. Katsabanis; W. F. Bawden

1994-09-01T23:59:59.000Z

122

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect (OSTI)

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

123

STANDARD OF CARE FOR BLASTING Timothy D. Stark1  

E-Print Network [OSTI]

STANDARD OF CARE FOR BLASTING NEGLIGENCE By Timothy D. Stark1 ABSTRACT: Blasters are usually but should be liable only if their conduct is proven to be negligent. This change in legal standard be related to the level of care exercised by the blaster. It is anticipated that a negligence standard

124

Coke mineral transformations in the experimental blast furnace  

SciTech Connect (OSTI)

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

125

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect (OSTI)

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

126

Time series of a CME blasting out from the Sun  

E-Print Network [OSTI]

#12;Time series of a CME blasting out from the Sun Composite image of the Sun in UV light with the naked eye, the Sun seems static, placid, constant. From the ground, the only notice- able variations in the Sun are its location (where will it rise and set today?) and its color (will clouds cover

Christian, Eric

127

The Balloon-borne Large Aperture Submillimeter Telescope: BLAST  

Science Journals Connector (OSTI)

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 ?m. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30 -->'' at 250 ?m. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of ~30 -->''; postflight pointing reconstruction to 5 -->'' rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. In this paper we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hr flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hr, circumpolar flight from McMurdo Station, Antarctica, in 2006 December.

E. Pascale; P. A. R. Ade; J. J. Bock; E. L. Chapin; J. Chung; M. J. Devlin; S Dicker; M. Griffin; J. O. Gundersen; M. Halpern; P. C. Hargrave; D. H. Hughes; J. Klein; C. J. MacTavish; G. Marsden; P. G. Martin; T. G. Martin; P. Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; M. Rex; D. Scott; C. Semisch; N. Thomas; M. D. P. Truch; C. Tucker; G. S. Tucker; M. P. Viero; D. V. Wiebe

2008-01-01T23:59:59.000Z

128

Simulation of the Reflected Blast Wave froma C-4 Charge  

SciTech Connect (OSTI)

The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

Howard, W M; Kuhl, A L; Tringe, J W

2011-08-01T23:59:59.000Z

129

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

SciTech Connect (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

130

Airblast and ground vibration generation and propagation from contour mine blasting. Report of investigations/1984  

SciTech Connect (OSTI)

The Bureau of Mines studied airblast and ground vibrations produced by surface coal mine blasting in Appalachia to determine the topographic or other region-specific effects on generation and propagation. Arrays of seismographs were used to measure blast effects in both rolling-terrain and steep-slope contour coal mining areas. Comparisons were then made with previous blasting data from studies of midwest coal mines located in flat areas.

Stachura, V.J.; Siskind, D.E.; Kopp, J.W.

1984-01-01T23:59:59.000Z

131

Characterization of Coke Properties at Tuyere Level of an Operating Blast Furnace.  

E-Print Network [OSTI]

??Coke performance in an operating blast furnace is often empirically related to popular bench-scale tests, which are performed at relative much lower temperatures. Due to (more)

Ye, Zhuozhu

2014-01-01T23:59:59.000Z

132

Investigation of Primary Blast Injury and Protection using Sagittal and Transverse Finite Element Head Models.  

E-Print Network [OSTI]

??The prevalence of blast related mild traumatic brain injury (mTBI) in recent military conflicts, attributed in part to an increased exposure to improvised explosive devices (more)

Singh, Dilaver

2015-01-01T23:59:59.000Z

133

Mathematical modelling of the flow and combustion of pulverized coal injected in ironmaking blast furnace.  

E-Print Network [OSTI]

??Pulverized coal injection (PCI) technology is widely practised in blast furnace ironmaking due to economic, operational and environmental benefits. High burnout of pulverized coal in (more)

Shen, Yansong

2008-01-01T23:59:59.000Z

134

Blasting of the Twin Creek`s highwall failure  

SciTech Connect (OSTI)

On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

Gray, C.J.; Bachmann, J.A. [Santa Fe Pacific Gold Corp., Winnemucca, NV (United States). Twin Creeks Mine

1996-12-01T23:59:59.000Z

135

Effectiveness of advanced coating systems for mitigating blast effects on steel components  

E-Print Network [OSTI]

Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 tool for steel components. The response of polyurea coated steel components under blast loading of polyurea onto armor grade steel plates and an examination of resulting failure modes and governing design

136

Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate  

E-Print Network [OSTI]

Computational Blast Injury Model Aravind Sundaramurthy, Aaron Alai, Shailesh Ganpule, Aaron Holmberg, Erwan head injuries. This has led to an increased number of blast studies of animal models, head surrogates traumatic brain injury (TBI) in soldiers and civilians. In vivo animal models that use shock tubes

Farritor, Shane

137

Quantification and characterization of regional seismic signals from cast blasting in mines: a linear elastic model  

Science Journals Connector (OSTI)

......detonalions that sometimes accompany standard blasting operations. The models...past signal character. We also plan to study the effects of imperfect...pulse with, xf.A thorough review by Michael Hedlin is also appreciated...explosions from simultaneous mining blasts, Bull. seism. Soc......

Sridhar Anandakrishnan; Steven R. Taylor; Brian W. Stump

1997-10-01T23:59:59.000Z

138

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network [OSTI]

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

Polly, David

139

A METHOD FOR RAPID VULNERABILITY ASSESSMENT OF STRUCTURES LOADED BY OUTSIDE BLASTS  

E-Print Network [OSTI]

the structural reliability information for the vulnerability analysis. 1 Corresponding Author: Jamova 39, SI-1000 , Matjaz Leskovar, Marko Cepin, Borut Mavko "Jozef Stefan" Institute, Reactor Engineering Division Keywords blast loads, buildings, rapid assessment, structural reliability ABSTRACT The blast loads have in most

Cizelj, Leon

140

The Utilization and Recovery of Energy from Blast Furnaces and Converters  

E-Print Network [OSTI]

THE UTILIZATION AND RECOVERY OF ENERGY FROM BLAST FURNACES AND CONVERTERS Dr.-Ing. Rolf-D. Baare, Ober-Ing. Karl-Rudolf Hegemann and Ing. (grad.) Theodor Niess Gottfried Bischoff GmbH &Co. KG Essen, W. Germany ABSTRACT The Bischoff Blast...

Hegemann, K. R.; Niess, T.; Baare, R. D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Incineration of Residue from Paint Stripping Operations Using Plastic Media Blasting  

E-Print Network [OSTI]

i INCINERATION OF RESIDUE FROH PAINT STRIPPING OPERATIONS USING PLASTIC MEDIA BLASTING J. E. HELT N. MALLYA Group Leader Chemist Chemical Technology Division Chemical Technology Division Argonne National Laboratory Argonne National... Laboratory Argonne, Illinois Argonne, Illinois ABSTRACT A preliminary investigation has been performed on the environmental consequences of incinerating plastic-media-blasting (PHB) wastes from paint removal operations. PHB is similar to sandblasting...

Helt, J. E.; Mallya, N.

142

Blast furnace coke quality in relation to petroleum coke addition  

SciTech Connect (OSTI)

The incorporation of petroleum coke as an additive in industrial coking coal blends is a practice often used by steel companies. A suitable blast furnace coke produced by replacing part of the coking coal blend with a suitable petroleum coke (addition of 5 to 15%), was made by Great Lakes Carbon Corporation and successfully tested at several blast furnaces. This coke had lower reactivity, less ash and slightly higher sulfur content than coke made without the addition of petroleum coke. In contrast with these results, it has been reported in a BCRA study that additions of petroleum coke to a strong coking coal, above 5 wt%, increased coke reactivity. These differences may be explained on the basis of the coal or blend characteristics to which petroleum coke is added. Petroleum coke addition seems to give better results if the coal/blend has high fluidity. The present situation in Spain is favorable for the use of petroleum coke. So, a study of laboratory and semi-industrial scale was made to assess the possibility of using petroleum coke as an additive to the typical industrial coal blend coked by the Spanish Steel Company, ENSIDESA. The influence of the petroleum coke particle size was also studied to semi-industrial scale.

Alvarez, R.; Diez, M.A.; Menendez, J.A.; Barriocanal, C.; Pis, J.J. [CSIC, Oviedo (Spain). Inst. Nacional del Carbon; Sirgado, M. [ENSIDESA, Aviles (Spain)

1995-12-01T23:59:59.000Z

143

Air movement as an energy efficient means toward occupant comfort  

E-Print Network [OSTI]

only by electrical lighting (481 trillion BTU vs. 1340only by electrical lighting (141 billion kWh vs. 393 billion

Arens, Edward; Zhang, Hui; Pasut, Wilmer; Zhai, Yongchao; Hoyt, Tyler; Huang, Li

2013-01-01T23:59:59.000Z

144

Innovative Process and Materials Technologies | Department of...  

Broader source: Energy.gov (indexed) [DOE]

110 trillion Btu per year. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets (Massachusetts Institute of Technology (MIT) - Cambridge, MA) A...

145

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

146

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

147

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

148

New Jersey Industrial Energy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

452.1 trillion British thermal units (Btu). As part of an initiative to reduce the energy intensity of the American manufacturing sector, the United States Department of...

149

Leading the Way in Energy Best Practices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

fleet efficiency, which ultimately saves taxpayers money. This year's Federal Energy and Water Management Award winners saved a total of 1.9 trillion British thermal units (Btu)...

150

Drilling and blasting techniques and costs for strip mines in Appalachia  

SciTech Connect (OSTI)

On-site investigations of blasting techniques were conducted at twenty surface coal mining operations in the steep slopes of Appalachia. The mine sites represented a range of mountain mining methods and annual coal production levels; all sites used similar techniques and equipment for the removal of fragmented waste rock. Hole loading characteristics and constraints limiting blast designs were observed at each mine site. This report summarizes technical blasting data and geological conditions which require special design considerations. Three mine sites were selected for future research in fragmentation efficiency. Detailed economic data on drilling and blasting were gathered from the three research sites and are reported herein. A great deal of fragmentation difficulties stem from tough, unpredictable geology with specific bedding characteristics and local zones of defined structural weaknesses such as jointing and vertical seams. Exceptionally hard bedrock, existing as a caprock or as the basal layer above the coal seam, persists as the cause of oversize rock breakage or, in the latter case, damage to the coal unless special precautions are taken. Federal blasting regulations strictly control the amount of explosives used as well as throw of the fragmented rock. This requires that blasting modifications be employed. The nature and extent of blast modifications were observed to be related to terrain and demographic conditions around the mine site. Drilling and blasting costs reported for the three mine sites averaged $0.21 per cubic yard of material blasted. Drilling costs varied widely, as drilling time was indicative of geologies and often, drilling costs remained the greatest percentage of total blasting and drilling costs.

Aimone, C.T.

1980-06-01T23:59:59.000Z

151

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast-induced brain white-matter damage  

E-Print Network [OSTI]

Multidiscipline Modeling in Materials and Structures Emerald Article: A study of the blast, (2012),"A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury Abstract Purpose ­ Blast-induced traumatic brain injury (TBI) is a signature injury of the current military

Grujicic, Mica

152

Computational Modeling of Human Head Under Blast Shailesh Ganpule, Dr. Linxia Gu, Dr. Guoxin Cao, Dr.Namas Chandra  

E-Print Network [OSTI]

Computational Modeling of Human Head Under Blast Loading Shailesh Ganpule, Dr. Linxia Gu, Dr;Presentation Objective: To understand role of helmet in blast induced Traumatic Brain Injury (TBI: To understand underlying mechanisms of blast induced Traumatic Brain Injury (TBI) and develop mitigation

Farritor, Shane

153

First trillion particle cosmological simulation completed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

high-resolution cyber images of our cosmos. December 3, 2014 Simulation of the cosmic web of the dark matter mass distribution. This region represents about 110,000 of the...

154

DOE Joint Genome Institute: Breaking down cellulose without blasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2011 4, 2011 Breaking down cellulose without blasting lignin: "Dry rot" genome offers lessons for biofuel pretreatment WALNUT CREEK, Calif.-Feared by realtors and homeowners alike, dry rot due to the fungus Serpula lacrymans causes millions of dollars worth of damage to homes and buildings around the world. This brown rot fungus' capacity to break down the cellulose in wood led to its selection for sequencing by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) in 2007, with the goal of identifying the enzymes involved in the degradation process and using the information to improve cellulosic biofuels production. Photo: A variant of Serpula lacrymans causes dry rot. (Dave Brown via Flickr/Creative Commons Attribution 2.0) As reported online July 14 in Science Express, an international team of

155

A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves  

E-Print Network [OSTI]

The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

Courtney, Amy; 10.1016/j.mehy.2008.08.015

2008-01-01T23:59:59.000Z

156

Theoretical and experimental foundations for preparing coke for blast-furnace smelting  

SciTech Connect (OSTI)

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the -36 mm fraction, the separation of nut coke of the 15-36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2-4.1%.

A.L. Podkorytov; A.M. Kuznetsov; E.N. Dymchenko; V.P. Padalka; S.L. Yaroshevskii; A.V. Kuzin [Enakievo Metallurgical Plant, Enakievo (Ukraine)

2009-05-15T23:59:59.000Z

157

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

158

Blast-furnace smelting with the injection of natural gas and coke-oven gas  

Science Journals Connector (OSTI)

A multizone mathematical model developed at Nekrasov Institute of Ferrous Metallurgy reveals the internal relations between the processes in a blast furnace. Using this model, the smelting processes and parameter...

I. G. Tovarovskii; A. E. Merkulov

2011-06-01T23:59:59.000Z

159

Quantification of dilatory resistance in four rice cultivars to rice blast  

E-Print Network [OSTI]

Dilatory resistance of two rice Cultivars, Jackson and Maybelle, to rice blast was expressed as decreases in different components of resistance. Incubation period was found to be more important in determining dilatory resistance than the other...

Katsar, Catherine Susan

1993-01-01T23:59:59.000Z

160

Coal-oil mixture combustion program: injection into a blast furnace  

SciTech Connect (OSTI)

A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

1982-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The design and retrofit of buildings for resistance to blast-induced progressive collapse  

E-Print Network [OSTI]

In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed in compliance with conventional building codes ...

Abbott Galvo Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

162

Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects  

E-Print Network [OSTI]

Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

Courtney, Michael

2011-01-01T23:59:59.000Z

163

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

164

LTC vacuum blasting machine (metal): Baseline report; Summary  

SciTech Connect (OSTI)

The LTC coating removal system consists of several hand tools such as a Roto Peen scaler and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The PTC-6 is a vacuum system designed to be used with surface decontamination equipment. Dust and debris are captured by a high efficiency particulate filter (HEPA) vacuum system that deposits the waste directly into an on-board 23-gallon waste drum. The PTC-6 utilizes compressed air delivered from a source via an air hose connected to the air inlet to drive the hand held power tools. The control panel regulated the air pressure delivered to the tool. A separate compressed air flow powers the vacuum generator. The vacuum hoses connect the power tools to the dust chamber, returning paint chips and dust from the surface. A third compressed air flow is used to clean filters by pulsing air through a pipe with slots. The blasts of air shake dust and debris from the filter fabric.

NONE

1997-07-31T23:59:59.000Z

165

On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts  

E-Print Network [OSTI]

It has been suggested that relativistic blast waves may power the jets of AGN and gamma-ray bursts (GRB). We address the important issue how the kinetic energy of collimated blast waves is converted into radiation. It is shown that swept-up ambient matter is quickly isotropised in the blast wave frame by a relativistic two-stream instability, which provides relativistic particles in the jet without invoking any acceleration process. The fate of the blast wave and the spectral evolution of the emission of the energetic particles is therefore solely determined by the initial conditions. We compare our model with existing multiwavelength data of AGN and find remarkable agreement.

Martin Pohl; Reinhard Schlickeiser

1999-11-24T23:59:59.000Z

166

Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

Seaman, John

2013-01-14T23:59:59.000Z

167

A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace  

SciTech Connect (OSTI)

This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

2002-01-21T23:59:59.000Z

168

Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

Crelling, J.C.

1993-12-31T23:59:59.000Z

169

DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE  

Broader source: Energy.gov (indexed) [DOE]

5 5 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 FINAL ENVIRONMENTAL ASSESSMENT FOR THE BLAST FURNACE GAS FLARE CAPTURE PROJECT AT THE ARCELORMITTAL USA, INC. INDIANA HARBOR STEEL MILL, EAST CHICAGO, INDIANA U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1745 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Final Environmental Assessment for the Blast Furnace Gas Flare Capture Project at the ArcelorMittal USA, Inc. Indiana Harbor Steel Mill, East Chicago, Indiana

170

A Multicellular Basis for the Origination of Blast Crisis in Chronic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicellular Basis for the Origination of Blast Crisis in Chronic Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia Philip Hahnfeldt Tufts University School of Medicine Abstract Among radiation-induced cancers, some leukemias, including chronic myeloid leukemia (CML) have especially high excess relative risks. CML, sporadic or radiogenic, is also thought to be comparatively very well understood. Accordingly, CML is considered an important model for assessing radiogenic cancer risk. CML is characterized by a specific chromosome translocation, the BCR-ABL fusion gene, and it has been widely postulated that an advanced stage, CML blast crisis originates mainly via cell-autonomous mechanisms such as secondary mutations or genomic instability. However, there is growing evidence that intercellular interactions can play a critical role

171

Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design  

SciTech Connect (OSTI)

Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

Moss, W C; King, M J; Blackman, E G

2009-04-14T23:59:59.000Z

172

soft X-ray background as a supernova blast wave viewed from inside: solar abundance models  

SciTech Connect (OSTI)

A model of the soft X-ray background is presented in which the Sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approx. 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 6 K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

Edgar, R.J.

1984-01-01T23:59:59.000Z

173

Performance testing of lead free primers: blast waves, velocity variations, and environmental testing  

E-Print Network [OSTI]

Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

Courtney, Elya; Summer, Peter David; Courtney, Michael

2014-01-01T23:59:59.000Z

174

Planar blast scaling with condensed-phase explosives in a shock tube  

SciTech Connect (OSTI)

Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.

Jackson, Scott L [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

175

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

176

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

177

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

178

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

179

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

180

Computational Modeling and Optimization of a Novel Shock Tube to Study Blast Induced Traumatic Brain Injury  

E-Print Network [OSTI]

. Various 2D models to simulate the shock wave propagation in a shock tube to see the effects of varying shock tube geometry and working fluid on the blast profiles were developed. Ranges of different parameters evaluated are: tube length - 5ft to 25ft; tube...

Anumolu, Pratima

2014-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Material Modeling and Development of a Realistic Dummy Testing Blast Induced Traumatic Brain Injury  

E-Print Network [OSTI]

Material Modeling and Development of a Realistic Dummy Head for Testing Blast Induced Traumatic Brain Injury S. G. M. Hossain1, C. A. Nelson1, T. Boulet2, M. Arnoult2, L. Zhang2, A. Holmberg2, J. Hein occurrence rate of traumatic brain injury (TBI) ­ 1.4 million people in US per year ­ 50,000 deaths ­ 235

Farritor, Shane

182

Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel  

E-Print Network [OSTI]

Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

Courtney, Elijah; Courtney, Michael

2015-01-01T23:59:59.000Z

183

Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands  

E-Print Network [OSTI]

#12;#12;#12;#12;Blasting Attenuation Study Crystal Ridge, MacDonald Ranch and MacDonald Highlands Ridge, MacDonald Ranch, and MacDonald Highlands. The purpose of this study was to · evaluate seismograph recorded in the Crystal Ridge, MacDonald Ranch, and MacDonald Highlands areas from 2/25/05 to 3

184

MICRO-METER MEASUREMENT OF CRACKS TO COMPARE BLAST AND ENVIRONMENTAL EFFECTS.  

E-Print Network [OSTI]

to development of a new approach to vibration monitoring called autonomous crack measurement (ACM vibration time histories. Measurements reported herein show that weather- induced response of cracksMICRO-METER MEASUREMENT OF CRACKS TO COMPARE BLAST AND ENVIRONMENTAL EFFECTS. Charles H Dowding

185

Underwater blast loading of sandwich beams: Regimes of behaviour M.T. Tilbrook 1  

E-Print Network [OSTI]

, with a time constant h on the order of millisec- onds. The magnitude of the shock wave peak pressure and decay are charted on maps using axes of blast impulse and core strength. The simulations indicate that continued (1948) and Swisdak (1978) and are repeated briefly here in order to underpin the current study

Fleck, Norman A.

186

Investigation of the activity level and radiological impacts of naturally occurring radionuclides in blast furnace slag  

Science Journals Connector (OSTI)

......material such as iron ore, coal and limestone in steel production...road construction can bring economic and environmental advantages...properties of concrete incorporating coal bottom ash and granulated blast...fly ashes produced in Turkish coal-burning thermal power plants......

F. A. Ugur; S. Turhan; H. Sahan; M. Sahan; E. Gren; F. Gezer; Z. Yegingil

2013-03-01T23:59:59.000Z

187

Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact  

SciTech Connect (OSTI)

A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target response description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.

Hatch-Aguilar, T; Najjar, F; Szymanski, E

2011-03-24T23:59:59.000Z

188

Diagnosing and modifying off-site blast effects by seismic means -- A case study  

SciTech Connect (OSTI)

A series of complaints were received from the owners of a 130 year-old farmhouse that had been converted into a bed and breakfast establishment. It was determined that blast effects were most noticeable on the third floor of the farmhouse. A vibration study was proposed aimed at isolating the actual cause of the perceived vibration. To aid in this determination, a customized, split-cable seismograph utilizing three single component transducers was deployed both in the interior and exterior of the farmhouse for two primary blasts. By utilizing a monitoring technique involving both interior and exterior sensors from a single seismograph, vibration time-histories from the three locations could be time-linked, providing an accurate assessment as to the actual mechanism responsible for the complaints. In this case, the split-cable array provided data indicating a low frequency ground vibration effect. Amplification of structure vibration due to the matching of the natural frequency of the farmhouse and the transmitted ground vibration was identified as the probable cause of the complaints. Given the potential impact of low frequency energy with surrounding properties, an analytical approach based on the concept of linear superpositioning was used to determine optimum delay intervals to reduce the off-site impact of future production blasts. Single-hole test blast data was recorded with traditional seismographs and analyzed using vibration control software. Utilization of recommended blasthole sequencing, combined with a change in blast orientation, resulted in the elimination of complaints at the farmhouse, in reduced vibration values at other neighboring properties and in a reduction in the overall liability exposure.

Brashear, S.; Brush, R.; Cook, B.

1995-12-31T23:59:59.000Z

189

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

190

Investigation of sonic/subsonic air-blast atomization using Rayleigh- and Mie-scattering visualization techniques  

E-Print Network [OSTI]

To examine the jet mixing in air-blast twin fluid atomization, the sonic and supersonic air jet developments have been exclusively visualized using the Rayleigh scattering principle and the development of liquid spray has been separately visualized...

Kim, Tae-Kyun

2012-06-07T23:59:59.000Z

191

Confined blasts, and the impact of shock wave reflections on a human head and the related traumatic brain injury  

Science Journals Connector (OSTI)

We examine the effects of blast waves in a confined space on a human head model. A finite element human model (FEHM) is exposed to blast waves from explosions, as well as, to the reflected waves from the confinement walls. The intensity of the travelling blast shock waves is measured computationally and compared with experimental results. We monitor the mechanical response of the brain of the FEHM at different stand-off positions, either close to, or away from the surrounding walls in interaction with the travelling blast waves. The skull pressure, brain intracranial pressure (ICP), acceleration, shear stress, and principal stresses and strains are measured as the biomechanical parameters for injury diagnosis and compared for all the situations and stand-off positions considered. The results illustrate that the additional reflected shock waves due to the surrounding walls can dramatically change the brain biomechanical parameters.

Asghar Rezaei; Mehdi Salimi Jazi; Samad Javid; Ghodrat Karami; Mariusz Ziejewski

2014-01-01T23:59:59.000Z

192

Genes encoding multiples forms of phospholipase A2 are expressed in immature forms of human leukemic blasts  

E-Print Network [OSTI]

leukemic blasts Letter to the Editor Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position, quantitative polymerase chain reaction (Q-PCR) was utilized to determine which of PLA2 mRNAs were expressed

Boyer, Edmond

193

Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations  

SciTech Connect (OSTI)

Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

Shuifer, M. I.; Argal, E. S. [JSC 'SPII Gidroproekt' (Russian Federation)

2011-11-15T23:59:59.000Z

194

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

195

A Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicellular Basis for the Origination of Blast Crisis in Multicellular Basis for the Origination of Blast Crisis in Chronic Myeloid Leukemia Philip Hahnfeldt 1 , Lynn Hlatky 1 , Rainer Sachs 2 1 Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA; and 2 Department of Mathematics, University of California, Berkeley, CA Among radiation-induced cancers, some leukemias, including chronic myeloid leukemia (CML) have especially high excess relative risks. CML, sporadic or radiogenic, is also thought to be comparatively very well understood. Accordingly, CML is considered an important model for assessing radiogenic cancer risk. CML is characterized by a specific chromosome translocation, the BCR-ABL fusion gene, and it has been widely postulated that an advanced

196

An Integrated Model of Coal/Coke Combustion in a Blast Furnace  

Science Journals Connector (OSTI)

A three?dimensional integrated mathematical model of the combustion of pulverized coal and coke is developed. The model is applied to the region of lance?blowpipe?tuyere?raceway?coke bed to simulate the operation of pulverized coal injection in an ironmaking blast furnace. The model integrates two parts: pulverized coal combustion model in the blowpipe?tuyere?raceway?coke bed and the coke combustion model in the coke bed. The model is validated against the measurements in terms of coal burnout and gas composition respectively. The comprehensive in?furnace phenomena are simulated in the raceway and coke bed in terms of flow temperature gas composition and coal burning characteristics. In addition underlying mechanisms for the in?furnace phenomena are analyzed. The model provides a cost?effective tool for understanding and optimizing the in?furnace flow?thermo?chemical characteristics of the PCI process in full?scale blast furnaces.

Y. S. Shen; B. Y. Guo; A. B. Yu; P. Austin; P. Zulli

2010-01-01T23:59:59.000Z

197

Thermal-destruction products of coal in the blast-furnace gas-purification system  

SciTech Connect (OSTI)

The lean, poorly clinkering coal and anthracite used to replace coke in blast furnaces has a considerable content of volatile components (low-molecular thermaldestruction products), which enter the water and sludge of the blast-furnace gas-purification system as petroleum products. Therefore, it is important to study the influence of coal on the petroleum-product content in the water and sludge within this system. The liberation of primary thermal-destruction products is investigated for anthracite with around 4 wt % volatiles, using a STA 449C Jupiter thermoanalyzer equipped with a QMC 230 mass spectrometer. The thermoanalyzer determines small changes in mass and thermal effects with high accuracy (weighing accuracy 10{sup -8} g; error in measuring thermal effects 1 mV). This permits experiments with single layers of coal particles, eliminating secondary reactions of its thermal-destruction products.

A.M. Amdur; M.V. Shibanova; E.V. Ental'tsev [Russian Academy of Sciences, Yekaterinburg (Russian Federation). Russia Institute of Metallurgy

2008-10-15T23:59:59.000Z

198

Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993  

SciTech Connect (OSTI)

A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology; Case, E.R. [Armco, Inc., Middletown, OH (United States). Research and Technology Div.

1993-09-01T23:59:59.000Z

199

Beryl Bravo -- Blast wells conversion: Development and testing of steel/carbon fiber composite  

SciTech Connect (OSTI)

Preparation of the Safety Case for Mobil`s Beryl B platform indicated that 2 non-structural fire walls required to be converted to blast walls be able to withstand overpressures from hydrocarbon explosions. Mobil has adopted a novel and innovative reinforcement using high strength, high modulus carbon fibers. The background to the project is described, together with the selection of the solution, the properties of the composite materials and the derivation of the application process.

Galbraith, D.N.; Barnes, F.

1995-12-31T23:59:59.000Z

200

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

SciTech Connect (OSTI)

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Using coal-dust fuel in Ukrainian and Russian blast furnaces  

SciTech Connect (OSTI)

Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin [Donetsk National Technical University, Donetsk (Russian Federation)

2008-02-15T23:59:59.000Z

202

AISI/DOE Technology Roadmap Program Hot Oxygen Injection Into The Blast Furnace  

SciTech Connect (OSTI)

Increased levels of blast furnace coal injection are needed to further lower coke requirements and provide more flexibility in furnace productivity. The direct injection of high temperature oxygen with coal in the blast furnace blowpipe and tuyere offers better coal dispersion at high local oxygen concentrations, optimizing the use of oxygen in the blast furnace. Based on pilot scale tests, coal injection can be increased by 75 pounds per ton of hot metal (lb/thm), yielding net savings of $0.84/tm. Potential productivity increases of 15 percent would yield another $1.95/thm. In this project, commercial-scale hot oxygen injection from a ''thermal nozzle'' system, patented by Praxair, Inc., has been developed, integrated into, and demonstrated on two tuyeres of the U.S. Steel Gary Works no. 6 blast furnace. The goals were to evaluate heat load on furnace components from hot oxygen injection, demonstrate a safe and reliable lance and flow control design, and qualitatively observe hot oxygen-coal interaction. All three goals have been successfully met. Heat load on the blowpipe is essentially unchanged with hot oxygen. Total heat load on the tuyere increases about 10% and heat load on the tuyere tip increases about 50%. Bosh temperatures remained within the usual operating range. Performance in all these areas is acceptable. Lance performance was improved during testing by changes to lance materials and operating practices. The lance fuel tip was changed from copper to a nickel alloy to eliminate oxidation problems that severely limited tip life. Ignition flow rates and oxygen-fuel ratios were changed to counter the effects of blowpipe pressure fluctuations caused by natural resonance and by coal/coke combustion in the tuyere and raceway. Lances can now be reliably ignited using the hot blast as the ignition source. Blowpipe pressures were analyzed to evaluate ht oxygen-coal interactions. The data suggest that hot oxygen increases coal combustion in the blow pipe and tuyere by 30, in line with pilot scale tests conducted previously.

Michael F. Riley

2002-10-21T23:59:59.000Z

203

Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.  

SciTech Connect (OSTI)

The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

2008-02-01T23:59:59.000Z

204

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

205

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

206

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of

207

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

3 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2.'Total' includes all energy sources listed below and all other energy that was purchased or transferred in. 3.'Electricity' consists of quantities of electricity that were purchased or transferred in, and is equivalent

208

Energy Information Administration - Energy Efficiency-Table 3.  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total2 NA 950 749 Net Electricity3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

209

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009 August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 * 311221 Wet Corn Milling 5 0 * 0 0 4 0 31131 Sugar Manufacturing 1 0 0 0 0 1 0 3114 Fruit and Vegetable Preserving and Specialty Food Q 0 * 0 0 0 Q 3115 Dairy Product * 0 * 0 0 0 0 3116 Animal Slaughtering and Processing 1 0 1 0 0 * * 312 Beverage and Tobacco Products

210

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

211

Suppressor for reducing the muzzle blast and flash of a firearm  

SciTech Connect (OSTI)

Disclosed are several examples of apparatuses for suppressing the blast and flash produced as a projectile is expelled by gases from a firearm. In some examples, gases are diverted away from the central chamber to an expansion chamber by baffles. The gases are absorbed by the expansion chamber and desorbed slowly, thus decreasing pressure and increasing residence time of the gases. In other examples, the gases impinge against a plurality of rods before expanding through passages between the rods to decrease the pressure and increase the residence time of the gases.

Klett, James W

2014-09-30T23:59:59.000Z

212

Delayed-blasting tests to improve highwall stability - a final report. Report of Investigations/1986  

SciTech Connect (OSTI)

The Bureau of Mines conducted a series of delayed-blasting experiments at a Barbour County, WV, contour coal mine that resulted in smoother highwalls. The highwalls were smoother due to reduced overbreak (excessive rock breakage beyond the excavation limit) and were inherently safer due to reduced likelihood of rockfall. The experiments were directed at reducing overbreak without special drilling or significant additional cost. Reduced overbreak was accomplished by increasing the highwall hole delays, which changed the effective delay-pattern geometry and the direction of burden movement.

Stachura, V.J.; Fletcher, L.R.; Peltier, M.A.

1986-01-01T23:59:59.000Z

213

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect (OSTI)

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

214

Blast wave radiation source measurement experiments on the Z Z-pinch facility  

SciTech Connect (OSTI)

The Dynamic Hohlraum (DH) radiation on the Z facility at Sandia National Laboratories [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceeding of the 11th International Pulsed Power Conference, Baltimore, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] is a bright source of radiant energy that has proven useful for high energy density physics experiments. But the radiation output from a DH on Z needs to be well known. In this paper, a new method is presented for measuring the radiation fluence deposited in an experiment, specifically, an experiment driven by a Z DH. This technique uses a blast wave produced in a SiO{sub 2} foam, which starts as supersonic but transitions to subsonic, producing a shock at the transition point that is observable via radiography. The position of this shock is a sensitive measure of the radiation drive energy from the Z DH. Computer simulations have been used to design and analyze a Z foam blast wave experiment.

Peterson, R.R.; Peterson, D.L.; Watt, R.G.; Idzorek, G.; Tierney, T.; Lopez, M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2006-05-15T23:59:59.000Z

215

Production and blast-furnace smelting of boron-alloyed iron-ore pellets  

SciTech Connect (OSTI)

Industrial test data are presented regarding the production (at Sokolovsk-Sarbaisk mining and enrichment enterprise) and blast-furnace smelting (at Magnitogorsk metallurgical works) of boron-alloyed iron-ore pellets (500000 t). It is shown that, thanks to the presence of boron, the compressive strength of the roasted pellets is increased by 18.5%, while the strength in reduction is doubled; the limestone consumption is reduced by 11%, the bentonite consumption is halved, and the dust content of the gases in the last section of the roasting machines is reduced by 20%. In blast-furnace smelting, the yield of low-sulfur (<0.02%) hot metal is increased from 65-70 to 85.1% and the furnace productivity from 2.17-2.20 to 2.27 t/(m{sup 3} day); coke consumption is reduced by 3-8 kg/t of hot metal. The plasticity and stamping properties of 08IO auto-industry steel are improved by microadditions of boron.

A.A. Akberdin; A.S. Kim [Abishev Chemicometallurgical Institute, Abishev (Kazakhstan)

2008-08-15T23:59:59.000Z

216

Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN  

SciTech Connect (OSTI)

Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

Chipman, V D

2011-09-20T23:59:59.000Z

217

Word Pro - S8  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Flow, 2013 (Quadrillion Btu) 1 Blast furnace gas and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased...

218

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

219

Army Energy Initiatives Task Force  

Broader source: Energy.gov (indexed) [DOE]

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

220

Wisconsin Save Energy Now Program  

Broader source: Energy.gov [DOE]

Among Wisconsins economic sectors, the industrial sector represents the highest level of energy consumption. In 2007, this sector consumed approximately 623.5 trillion British thermal units (Btu)....

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CA is particularly vulnerable to the costs associated with unmitigated climate change. A warming climate would generate more smoggy days, ozone, and foster more large brush  

E-Print Network [OSTI]

-acid-methyl-ester (FAME)) · Renewable diesel and gasoline (e.g., "drop-in" fuels or hydrocarbons, biomass-to-liquid (BTL% Forestry, 242 TBtu, 41% Agriculture, 137 TBtu, 24% Potential Feedstock Energy in Biomass 507 Trillion Btu

California at Davis, University of

222

How Much Energy Does Each State Produce? | Department of Energy  

Office of Environmental Management (EM)

Much Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it...

223

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1...

224

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

225

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

226

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

227

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

228

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

229

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

230

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

4 Federal Agency Progress Toward the Renewable Energy Goal (Trillion Btu) (1) Total Renewable Energy Usage DOD EPA (2) DOE GSA NASA DOI Others All Agencies Note(s): Source(s):...

231

Decontamination of surfaces by blasting with crystals of H{sub 2}O and CO{sub 2}  

SciTech Connect (OSTI)

A major mission of the US Department of Energy during the 1990s is site and environmental cleanup. In pursuit of this mission, numerous remediation projects are under way and many others are being planned at Oak Ridge National Laboratory (ORNL). In this report, tests using two proposed methods for decontaminating surfaces one using water ice crystals [Crystalline Ice Blast (CIB)], the other using dry ice crystals (CO{sub 2} Cleanblast{trademark}) -- are described. Both methods are adaptations of the commonly used sand blasting technology. The two methods tested differ from sand blasting in that the particles are not particularly abrasive and do not accumulate as particles in the wastes. They differ from each other in that the CO{sub 2} particles sublime during and after impact and the ice particles melt. Thus, the two demonstrations provide important information about two strong candidate decontamination methodologies. Each process was tested at ORNL using contaminated lead bricks and contaminated tools and equipment. Demonstrations with the prototype Crystalline Ice Blast and the CO{sub 2} Cleanblast systems showed that paint, grease, and oil can be removed from metal, plastic, asphalt, and concrete surfaces. Furthermore, removal of contamination from lead bricks was highly effective. Both processes were found to be less effective, under the conditions tested, with contaminated tools and equipment that had chemically bonded contamination or contamination located in crevices since neither technology abrades the substrates or penetrates deeply into crevices to remove particulates. Some process improvements are recommended.

Benson, C.E.; Parfitt, J.E.; Patton, B.D.

1995-02-01T23:59:59.000Z

232

A MANUAL FOR THE PREDICTION OF BLAST AND FRAGMENT LOADINGS ON STRUCTURES  

Office of Scientific and Technical Information (OSTI)

A MANUAL FOR THE A MANUAL FOR THE PREDICTION OF BLAST AND FRAGMENT LOADINGS ON STRUCTURES U. S. DEPARTMENT OF ENERGY ALBUQUERQUE OPERATIONS OFFICE AMARILLO AREA OFFICE AMARILLO, TEXAS DOE/TIC-11268 Change 1 , ' - 15 August 1981 \ \ DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

233

Study of radiative blast waves generated on the Z-beamlet laser.  

SciTech Connect (OSTI)

This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.

Edens, Aaron D.; Schwarz, Jens

2012-02-01T23:59:59.000Z

234

Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace  

SciTech Connect (OSTI)

Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

Dr. Chenn Zhou

2008-10-15T23:59:59.000Z

235

Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Blast Furnace Granulated Coal Injection System Demonstration Project: A DOE Assessment June 2000 U. S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein

236

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect (OSTI)

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

237

Improved tribo-mechanical behavior of CaP-containing TiO2 layers produced on titanium by shot blasting and micro-arc oxidation  

Science Journals Connector (OSTI)

The combination of shot blasting (SB) and micro-arc oxidation (or anodic oxidationAO) in titanium surfaces was shown to...2 layers were produced on AO and SB+AO. The latter presented small pore size and inhomo...

Eduardo M. Szesz; Gelson B. de Souza

2014-10-01T23:59:59.000Z

238

Reply to Moss et al.: Military and medically relevant models of blast-induced traumatic brain injury vs. ellipsoidal heads and helmets  

E-Print Network [OSTI]

Moss et al. (1) acknowledge the second main conclusion of Nyein et al. (2): that a face shield may significantly mitigate blast-induced traumatic brain injury (TBI). However, they obviate the first and most important ...

Nyein, Michelle K.

239

The Hobbling of Coal: Policy and Regulatory Uncertainties  

Science Journals Connector (OSTI)

...use coal and that, after 1 January 1990, gas use...arid then providing tax rebates equal to the amount of...reduction that is set at $1.05 in 1979, falls to...Those us-ing less than 500 billion Btu would be ex-empt...larger users and those using 1.5 trillion Btu or more...

Richard L. Gordon

1978-04-14T23:59:59.000Z

240

Survey of blasting effects on ground water supplies in Appalachia. Part 2. Open file report, August 1980-August 1982  

SciTech Connect (OSTI)

This report covers an 18-month study of the performance of a 300-ft-deep test water well located at the Ayrshire Mine of the AMAX Coal Co. near Evansville, IN. Well performance, as characterized by 10-hr drawdown tests, was monitored as the strip mining operation approached the well site from distances of 2,000 to 15 ft (overburden removal). Blast-induced ground motion was measured at the surface next to the test well, and peak particle velocities in excess of 4 in/s were obtained. No evidence of changes in water quantity or quality could be directly attributed to the blasts. However, some lowering of the static water level in the observation well, and a simultaneous increase in the adjusted specific capacity of the test well, suggest that overburden removal caused lateral stress relief with consequent opening of vertical fractures.

Berger, P.R.; Froedge, D.T.; Gould, J.A.; Kreps, L.F.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mechanism of physical transformations of mineral matter in the blast furnace coke with reference to its reactivity and strength  

SciTech Connect (OSTI)

Examinations of polished and dry cut sections of feed and tuyere coke revealed some possible mechanisms for the physical influence of mineral compounds on the reactivity and strength of coke. It was observed that rounded particles of mineral phases that are exposed to the pore walls and surface of coke at high temperature create an inorganic cover, thus reducing the surface available for gas-solid reactions. The particles of mineral matter that have a low melting point and viscosity can affect the coke at earlier stages in the blast furnace process, acting in the upper parts of the blast furnace (BF). The temperature-driven redistribution of mineral phases within the coke matrix probably leads to the creation of weak spots and in general to anisotropy in its properties, thus reducing its strength. 9 refs., 2 figs., 1 tab.

Stanislav S. Gornostayev; Jouko J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2006-12-15T23:59:59.000Z

242

Thermodynamics of TiO{sub x} in blast furnace-type slags  

SciTech Connect (OSTI)

Equilibrium studies between CaO-SiO{sub 2}-10 pct MgO-Al{sub 2}O{sub 3}-TiO{sub 1.5}-TiO{sub 2} slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO{sub 1.5} and TiO{sub 2} in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO{sub x} content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO{sub 2}, 7 to 22 pct Al{sub 2}O{sub 3}, and 10 pct MgO, the activity coefficients of TiO{sub 1.5} and TiO{sub 2} relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical TiO{sub 2}, i.e., total titanium in the slag expressed as TiO{sub 2}, and using the values of the activity coefficients of TiO{sub 1.5} and TiO{sub 2} determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct TiO{sub 2}) ranges from 0.1 to 0.2.

Morizane, Y.; Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1999-02-01T23:59:59.000Z

243

An example of alkalization of SiO{sub 2} in a blast furnace coke  

SciTech Connect (OSTI)

Scanning electron microscopy and an electron-microprobe analysis of a sample of blast furnace (BF) coke have revealed alkalization (5.64 wt % Na{sub 2}O + K{sub 2}O) and Al saturation (17.28 wt % Al{sub 2}O{sub 3}) of SiO{sub 2} by BF gases. The K/Na{sub at} value of 1.15 in the new phase (alteration zone) reflects close atomic proportions of the elements and suggests that the abilities to incorporate K and Na during the process are almost equal. This Al saturation and alkalization of SiO{sub 2} indicates an active role for Al along with alkali metals in BF gases. The average width of the altered area in the SiO{sub 2} grain is about 10 m, which suggests that SiO{sub 2} particles of that size can be transformed fully to the new phase, provided that at least one of their faces is open to an external pore (surface of the coke) or internal pore with circulating BF gases. The grains that exceed 10 {mu}m can only be partly altered, which means that smaller SiO{sub 2} grains can incorporate more alkali metals and Al (during their transformation to the Al and alkali-bearing phase) than a similar volume of SiO{sub 2} concentrated in larger grains. Thermodynamic calculations for 100 g{sub solid}/100 g{sub gas} and temperatures 800-1800{sup o}C have shown that the BF gases have very little or no effect on the alkalization of SiO{sub 2}. If the alteration process described in this paper proves to be a generalized phenomenon in blast furnace cokes, then the addition of fine-grained quartz to the surface of the coke before charging a BF can be useful for removing of some of the Al and alkali from the BF gases and reduce coke degradation by alkalis, or at least improve its properties until the temperature reaches approximately 2000{sup o}C. 22 refs., 5 figs., 1 tab.

S.S. Gornostayev; P.A. Tanskanen; E.-P. Heikkinen; O. Kerkkonen; J.J. Haerkki [University of Oulu, Oulu (Finland). Laboratory of Process Metallurgy

2007-09-15T23:59:59.000Z

244

Experimental study on the effects of blast-cap configurations and charge patterns on coke descending in CDQ cooling shaft  

SciTech Connect (OSTI)

The coke descending behavior in a CDQ cooling shaft is studied experimentally by means of a tracing method with a digital camera. For three different blast-caps, the law of coke flow is studied under five conditions of coke charge. The experimental results show that, for the sake of the uniformity of the coke burden descending, a blast-cap with elliptical cross-section is a better choice than that with circular cross-section regardless of high or low placement. A coke charge pattern with a flat top burden surface is preferable to that with peak-valley surface, a double-peak superior to a one-peak. Trajectory and average velocity distribution of coke behavior depend weakly on whether the coke is continuously fed or not as the discharging began. The blast-caps have local effects on the descending coke and hardly affect whether the cokes flow smoothly or not in the case of coke burden with enough depth.

Y.H. Feng; X.X. Zhang; M.L. Wu [University of Science & Technology, Beijing (China). School of Mechanical Engineering

2008-08-15T23:59:59.000Z

245

Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts  

SciTech Connect (OSTI)

The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

2012-03-01T23:59:59.000Z

246

Dofasco`s No. 4 blast furnace hearth breakout, repair and rescue  

SciTech Connect (OSTI)

On May 5, 1994, after producing 9.5 million metric tons of iron, Dofasco`s No. 4 Blast Furnace experienced a hearth breakout 250 millimeters below the west taphole. The hot metal spill caused a fire resulting in severe damage and 33 days of lost production. During a 26-day period, electrical wiring, water drainage systems and both tapholes were repaired. Recovery from an unprepared furnace stop of this length, with the deadman depleted is difficult. To aid with the rescue Hoogovens-designed oxygen/fuel lances were commissioned. The furnace recovery began with a lance in each taphole and all tuyeres plugged. Six days after startup the furnace was casting into torpedo cars, and after nine days operation had returned to normal. This incident prompted Dofasco to expand the hearth monitoring system to detect and prevent similar occurrences. During the repair, 203 new thermocouples were installed in the hearth, concentrating on the tapholes and elephant foot areas. These thermocouples were installed at various depths and locations to allow heat flux calculations. This hearth monitoring system has already identified other problem areas and provided valuable information about hearth drainage patterns. This information has allowed them to develop control strategies to manage localized problem areas.

Donaldson, R.J.; Fischer, A.J.; Sharp, R.M.; Stothart, D.W. [Dofasco Inc., Hamilton, Ontario (Canada)

1995-12-01T23:59:59.000Z

247

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

248

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

249

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

250

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

251

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

252

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

253

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel Oil(b)","(billion",,"NGL(d)",,"(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)",,"short tons)","short tons)","(trillion Btu)"

254

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

255

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

256

Overview of Commercial Buildings, 2003 - Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings Sector-1979 to 2003 Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial buildings increased from 3.8 million to 4.9 million (Figure 3). The amount of commercial floorspace increased from 51 billion to 72 billion square feet (Figure 4). Total energy consumed increased from less than 5,900 trillion to more than 6,500 trillion Btu (Figure 5). Electricity and natural gas consumption, nearly equal in 1979, diverged; electricity increased to more than 3,500 trillion Btu by 2003 while natural gas declined to 2,100 trillion Btu. Figure 3. The number of commercial buildings increased from 1979 to 2003. Figure 3. The number of commercial buildings increased from 1979 to 2003.

257

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 Useful Thermal Output at Combined-Heat-and-Power Plants 3 Useful Thermal Output at Combined-Heat-and-Power Plants Total (All Sectors), 1989-2011 Total (All Sectors) by Source, 2011 By Sector, 1989-2011 By Sector, 2011 228 U.S. Energy Information Administration / Annual Energy Review 2011 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). Sources: Tables 8.3a-8.3c. 543 522 296 103 37 36 16 Wood Natural Coal Other Waste Petroleum Other² 0 100 200 300 400 500 600 Trillion Btu 1989 1992 1995 1998 2001 2004 2007 2010 0.0 0.5 1.0 1.5 2.0 2.5 Quadrillion Btu Gases¹ 1.2 0.3 0.1 Industrial Electric Power Commercial 0.0 0.6

258

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

259

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

260

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Blast Wave Fits to Elliptic Flow Data at $\\sqrt{s_{\\rm NN}} =$ 7.7--2760 GeV  

E-Print Network [OSTI]

We present blast wave fits to elliptic flow ($v_{2}(p_{\\rm T})$) data in minimum bias collisions from the $\\sqrt{s_{\\rm NN}} =$ 7.7--200 GeV at RHIC, and 2.76 TeV at LHC. The fits are performed separately for particles and corresponding anti-particles. The mean transverse velocity parameter $\\beta$ shows an energy dependent difference between particles and corresponding anti-particles, which increases as the beam energy decreases. Possible effects of feed down, baryon stopping, anti-particle absorption, and early production times for anti-particles are discussed.

Sun, X; Poskanzer, A M; Schmah, A

2014-01-01T23:59:59.000Z

262

TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates  

SciTech Connect (OSTI)

Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

Veena Sahajwalla; Sushil Gupta

2005-04-15T23:59:59.000Z

263

Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

264

Management of post-mining large-scale ground failures: blast swarms field experiment for calibration of permanent microseismic early-warning systems  

E-Print Network [OSTI]

Management of post-mining large-scale ground failures: blast swarms field experiment. To ensure post-mining risk management and public safety, wherever remediation is not possible, numerous real of the water level in the underground working caused by the halt of the de-watering system (Didier, 2008

Paris-Sud XI, Université de

265

Production of Kaon and $?$ in nucleus-nucleus collisions at ultra-relativistic energy from a blast wave model  

E-Print Network [OSTI]

The particle production of Kaon and $\\Lambda$ are studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and $\\Lambda$ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature ($T_{kin}$) and radial flow parameter $\\rho_{0}$ are presented for the FOPI, RHIC and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage.

Song Zhang; Yu-Gang Ma; Jin-Hui Chen; Chen Zhong

2014-11-06T23:59:59.000Z

266

Production of Kaon and $\\Lambda$ in nucleus-nucleus collisions at ultra-relativistic energy from a blast wave model  

E-Print Network [OSTI]

The particle production of Kaon and $\\Lambda$ are studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and $\\Lambda$ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature ($T_{kin}$) and radial flow parameter $\\rho_{0}$ are presented for the FOPI, RHIC and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage.

Zhang, Song; Chen, Jin-Hui; Zhong, Chen

2014-01-01T23:59:59.000Z

267

Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

NONE

1995-08-01T23:59:59.000Z

268

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

269

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

270

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

271

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

272

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

273

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

274

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

275

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

276

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

277

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

278

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

279

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

280

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

282

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

283

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

284

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

285

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

286

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

287

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

288

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

289

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

290

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

291

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

292

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

293

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

294

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

295

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

296

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

297

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

298

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

299

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

300

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

302

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

303

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

304

Independent Oversight Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant, December 2013  

Broader source: Energy.gov (indexed) [DOE]

Targeted Review of the Targeted Review of the Safety Significant Blast Door and Personnel Door Interlock Systems and Review of Federal Assurance Capability at the Pantex Plant December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 2

305

Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned  

SciTech Connect (OSTI)

Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

2012-05-15T23:59:59.000Z

306

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

307

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

308

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1, 2006;" 1 Relative Standard Errors for Table 4.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

309

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 5.5;" 5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)" "End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu

310

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 3.1, 2006;" 1 Relative Standard Errors for Table 3.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

311

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

312

Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10{sup 15} atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten of these pieces were fielded at the equator and one was fielded on the pole. The shields were analyzed using a combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF), neutron activation analysis (NAA) and chemical leaching followed by mass spectrometry. On each shield, gold debris originating from the gold hohlraum was observed, as well as large quantities of debris that were present in the center of the target chamber at the time of the shot (i.e., stainless steel, indium, copper, etc.) Debris was visible in the SEM as large blobs or splats of material that had encountered the surface of the aluminum and stuck. The aluminum itself had obviously melted and condensed, and some of the large debris splats arrived after the surface had already hardened. Melt depth was determined by cross sectioning the pieces and measuring the melted surface layers via SEM. After the SEM analysis was completed, the pieces were sent for NAA at the USGS reactor and were analyzed by U. Greife at the Colorado School of Mines. The NAA showed that the majority of gold mass present on the shields was not in the form of large blobs and splats, but was present as small particulates that had most likely formed as condensed vapor. Further analysis showed that the gold was entrained in the melted aluminum surface layers and did not extend down into the bulk of the aluminum. Once the gold mass was accounted for from the NAA, it was determined that the aluminum fielded at the equator was collecting a fraction of the total gold hohlraum mass equivalent to 120% {+-} 10% of the solid angle subtended by the shield. The attached presentation has more information on the results of the aluminum blast shield analysis. In addition to the information given in the presentation, the surfaces of the shields have been chemically leached and submitted for mass spectrometric analysis. The results from that analysis are expected to arrive after the due date of this report and will be written up at a later time. Based on the results of the aluminum b

Shaughnessy, D A; Gostic, J M; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D

2011-11-21T23:59:59.000Z

313

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

314

CONGRESS BLASTS OIL INDUSTRY  

Science Journals Connector (OSTI)

IN PACKED HEARINGS last week before angry members of Congress, the heads of BP, ExxonMobil, Chevron, ConocoPhillips, and Shell Oil defended their industry in light of the April 20 BP oil rig explosion in the Gulf of Mexico, which has led to the worst ...

JEFF JOHNSON

2010-06-21T23:59:59.000Z

315

January 2014 News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and accomplishments on the BETO blog and the EERE blog. Past and Upcoming Events with Bioenergy Office Representation * BIO Pacific Rim Summit; December 8-11, 2013; Jim Spaeth;...

316

June 2014 News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22nd European Biomass Conference and Exhibition; June 23-26, 2014; Hamburg, Germany 11th Renewable Energy Finance Forum Wall Street; June 25-26, 2014; New York, New...

317

November 2013 News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Montreal, Canada * 7th International Algae Congress; December 3-4, 2013; Hamburg, Germany * 11th International Conference on Biofuels: Fuels of the Future 2014; January 20-21,...

318

December News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biofuels Initiatives The Bioenergy Technologies Office (BETO) recently launched a new Web page that houses information about all of the Office's research and development efforts...

319

January 2014 News Blast  

Broader source: Energy.gov [DOE]

Congratulations Jonathan Male, Valerie Reed, and Joynce Yang of the Bioenergy Technologies Office (BETO) for being voted into the "Top 100 People in the Bioeconomy." In December 2013, the readers and editors of Biofuels Digest announced BETO's own staff members as the 15th most influential leaders in the bioeconomy for 2013-2014, outranking Members of Congess, leaders of large trade associations, and international bioenergy companies.

320

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

322

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

323

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2010;" 3 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

324

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

325

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

326

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

327

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

328

Table E1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

329

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

330

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," ",," ",," "," "," ",," ",," "," "," " " "," "," ",,,," "," ",,," ",," ",," ",,"Shipments" "NAICS"," ",,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke and"," ",,"of Energy Sources"

331

Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

332

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010;" 3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

333

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

334

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

335

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 10.4 Biodiesel Overview, 2001-2011 Year Feedstock 1 Losses and Co-products 2 Production Trade Stocks, End of Year Stock Change 4 Balancing Item 5 Consumption Imports Exports Net Imports 3 Trillion Btu Trillion Btu Thousand Barrels Million Gallons Trillion Btu Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Thousand Barrels Million Gallons Trillion Btu 2001 1 (s) 204 9 1 78 39 39 NA NA NA 243 10 1 2002 1 (s) 250 10 1 191 56 135 NA NA NA 385 16 2 2003 2 (s) 338 14 2 94 110 -16 NA NA NA 322 14 2 2004 4 (s) 666 28 4 97 124 -26 NA NA NA 640 27 3 2005 12 (s) 2,162 91 12 207 206 1 NA NA NA 2,163 91 12 2006 32 (s) 5,963 250 32 1,069 828 242 NA NA NA 6,204 261 33 2007 63 1 11,662 490 62 3,342 6,477 -3,135 NA NA NA 8,528 358 46 2008 88 1 16,145 678 87 7,502 16,128 -8,626 NA NA NA 7,519

336

Cool energy savings opportunities in commercial refrigeration  

SciTech Connect (OSTI)

The commercial sector consumes over 13 quads of primary energy annually. Most of this consumption (two-thirds) meets the energy needs of lighting and heating, ventilation, and air-conditioning. The largest consuming group of the remaining one-third is commercial refrigeration at about one quad annually (990 trillion Btu), valued at over $7 billion per year to the commercial sector consumer. Potential energy savings are estimated to be about 266 trillion Btu, with consumer savings valued at about $2 billion. This study provides the first known estimates of these values using a bottom-up approach. The authors evaluated numerous self-contained and engineered commercial refrigeration systems in this study, such as: supermarket central systems, beverage merchandisers, ice machines, and vending machines. Typical physical characteristics of each equipment type were identified at the component level for energy consumption. This information was used to form a detailed database from which they arrived at the estimate of 990 trillion Btu energy consumption for the major equipment types used in commercial refrigeration. Based on the implementation of the most cost-effective technology improvements for the seven major equipment types, they estimated an annual potential energy savings of 266 trillion Btu. Much of the savings can be realized with the implementation of high-efficiency fan motors and compressors. In many cases, payback can be realized within three years.

Westphalen, D.; Brodrick, J.; Zogg, R.

1998-07-01T23:59:59.000Z

337

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide served those electric space and water heating systems. After netting out the 21 trillion BTU decrease away from electric resistance where natural gas is already in the home for space heating. However

338

Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

339

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006;" 3.3 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

340

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources"

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

342

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

343

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

344

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for primary electricity are 10,197 Btu/KWh, 10,173 Btu/KWh, and 9,919 Btu/KWh for 1998, 2002, and 2006, respectively. Sources: Energy Information Administration, Form EIA-846, Manufacturing Energy Consumption Surveys, 1998, 2002, and 2006. and Monthly Energy Review November 2005, and September 2009 DOE/EIA-0035(2005, 2009),Table A6. MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14

345

In vitro testing of blast transformation, immune rosette formation, and IF-detectable IgG-positive cell counts indicated a 40-50 p. 100 decrease of immunological responsiveness  

E-Print Network [OSTI]

highlands or in dry, hot areas provided that management is good. In hot, humid areas, European-type cattleIn vitro testing of blast transformation, immune rosette formation, and IF-detectable Ig of GSH-Px types revealed that they are controlled by a pair of autosomal genes, the genes for GSH-Px high

Paris-Sud XI, Université de

346

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

347

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

348

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

349

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

350

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

351

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

352

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

353

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

354

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

355

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

356

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

357

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

358

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

359

Establish the multi-source data fusion model of the shape of blast furnace burden surface based on co-universal kriging estimation method  

Science Journals Connector (OSTI)

This paper presents a multi-source data fusion model method which could improve the blast furnace (BF) burden surface model accuracy. First, the three sections of straight line are used to describe the cross section of BF burden surface, and apply the motion law of the furnace burden to constrain the specific parameters of the three sections of straight line. Secondly, a multi-source data fusion method based on co-universal kriging estimation method is proposed. The temperature and height data are combined to build the unbiased estimation for the burden surface shape. Finally, an example of surface shape model using our proposed method in a 2500 m BF of a steel plant is discussed. The application shows that, contrasted with the traditional model, the model accuracy has arisen by 8%, and the resolution of surface shape has arisen by 0.32. The novel method can provide necessary guidance for energy saving and emission reduction in operation of the BF.

Liangliang Miao; Xianzhong Chen; Shilong Zhao; Zhenlong Bai

2014-01-01T23:59:59.000Z

360

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

362

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

363

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

364

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

365

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Commercial Buildings Electricity Consumption by End Use, 2003 1 Commercial Buildings Electricity Consumption by End Use, 2003 By End Use By Principal Building Activity 64 U.S. Energy Information Administration / Annual Energy Review 2011 1,340 481 436 381 167 156 88 69 24 418 Lighting Cooling Ventilation Refrigeration Space Computers Water Office Cooking Other¹ 0 500 1,000 1,500 Trillion Btu Heating Heating Equipment and Storage Assembly 733 719 371 248 244 235 217 208 167 149 267 Mercantile Office Education Health Care Warehouse Lodging Food Service Food Sales Public Service Other² 0 200 400 600 800 Trillion Btu (Cumulative) All Other End Uses Cooling Lighting 1 Examples of "other" include medical, electronic, and testing equipment; conveyors, wrappers, hoists, and compactors; washers, disposals, dryers, and cleaning equipment; escalators, eleva- tors, dumb waiters, and window washers; shop tools and electronic testing equipment; sign

366

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

367

FINAL_2013_Blast-Email  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

send an email to all your building tenants, colleagues, or stakeholders to let them know send an email to all your building tenants, colleagues, or stakeholders to let them know about the competition and how they can help. Subject Line: We're competing in the 2013 ENERGY STAR National Building Competition! Dear , Our [building/space] has been selected to participate in the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR National Building Competition: Battle of the Buildings! For the next several months, we'll battle it out against more than 3,200 buildings and tenants nationwide to see who can reduce their energy waste the most. Last year, the top 15 finishers all reduced their energy use by more than 30%, so we have our work cut out for us! What are we doing to take home the prize? [Insert details about your green team's efforts]

368

A blast from the past  

Science Journals Connector (OSTI)

......energy in the neutral atmosphere through collision...latitudes. The local plasma frequency, and...Earth's upper atmosphere long before the...meteor showers, atmospheric waves and long-term...from about 1 to 15 MHz and detects the...positive photographic prints, after which they......

Chris Davis; Sarah James; Kate Clements; Ben Clarke

2013-08-01T23:59:59.000Z

369

A blast from the past  

Science Journals Connector (OSTI)

......in the solar atmosphere. The effects...within the upper atmosphere. Around 17...resulted in large areas being without...the neutral atmosphere through collision...The local plasma frequency...about 1 to 15 MHz and detects......

Chris Davis; Sarah James; Kate Clements; Ben Clarke

2013-08-01T23:59:59.000Z

370

Monthly News Blast: February 2013  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

April 15-17, 2013; Zia Haq; Washington, D.C. Upcoming Industry Events Canadian Biogas Conference and Exhibition; March 4-6, 2013; London, Ontario, Canada Biomass...

371

March 2014 Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

March 2014 BETO Gets Innovative with New Interactive Web Tool Bioenergy Technologies Office (BETO) website visitors can view the updated Integrated Biorefineries (IBR) Map, which...

372

Sample H-Blast Doomed  

Science Journals Connector (OSTI)

Reasoning that personal experience is more vivid than propaganda, Murray proposes to give representatives of all nations a closeup view of the awesome power of a thermonuclear explosion. ...

1955-11-28T23:59:59.000Z

373

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE"

374

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

375

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.3 Offsite-Produced Fuel Consumption, 2006;" 4.3 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

376

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

377

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

378

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

379

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

380

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

382

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

383

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010;" 4 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

384

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

385

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0 107

386

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," " " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1328 "Natural Gas",5725 "Net Electricity",2437 " Purchases",2510 " Transfers In",33 " Onsite Generation from Noncombustible Renewable Energy",7

387

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

388

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

389

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

390

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

391

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

392

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

393

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

394

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

395

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

396

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006;" 4 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

397

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

398

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

399

Released: May 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and"," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

400

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related"

402

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Consumption Estimates 1960 Through 2008 2008 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2008 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural

403

Awarded ESPC Projects  

Broader source: Energy.gov [DOE]

Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 325 DOE ESPC projects have been awarded. More than $3.41 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 398 trillion Btu life cycle energy savings and more than $8.53 billion of cumulative energy cost savings for the Federal Government.

404

Terry Sharp, P.E. Building Performance Benchmarking  

E-Print Network [OSTI]

source energy use in trillion Btu) R2 = 0.7816 0 1 2 3 4 5 6 0 5 10 15 20 25 Gross Square Feet (millionsTerry Sharp, P.E. Building Performance Benchmarking 3rd U.S. Army Energy Workshop January 25-26, 2007 EPA Energy Star Program and Energy Data Normalization Oak Ridge National Laboratory #12;Why You

Oak Ridge National Laboratory

405

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

406

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

407

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

408

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

409

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE",," " "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

410

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

411

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

412

43Exploring the Cosmos with Supercomputers Supercomputers can do trillions of calculations each second, and follow the  

E-Print Network [OSTI]

of Chicago used supercomputer simulations to investigate how dark matter. Dark matter is an invisible matter. Astrophysicists believe that dark matter may have herded luminous matter in the universe from its initial smooth state into the cosmic web of galaxies and galaxy clusters that populate the universe today

413

Location Efficiency as the Missing Piece of The Energy Puzzle: How Smart Growth Can Unlock Trillion Dollar Consumer Cost Savings  

E-Print Network [OSTI]

of a comparable magnitude after ten years to other major building energy efficiency policies, such as construction in Section II. We discuss in Section III a methodology for applying these results towards the evaluation. We apply this methodology in Section IV to real world examples of smart growth that are being

Kammen, Daniel M.

414

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

415

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu Electricity-Only Plants 11 1989 767,378 25,574 241,960 3 517 270,125 2,790,567 - 59 111 - 1990 774,213 14,956 181,231 17 1,008 201,246 2,794,110 (s) 87 162 - 1995 832,928 16,169 86,584 133 1,082 108,297 3,287,571 (s)

416

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

44 44 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 639 120 1,471 1 - 1,591 81,670 3 24 6 1 1990 1,266 173 1,630 2 - 1,805 97,330 5 23 8 (s) 1991 1,221 104 995 1 - 1,101 99,868 5 21 11 1 1992 1,704 154 1,045 10 4 1,229 122,908 6 21 10 2 1993 1,794 290 1,074 27 40 1,591 128,743 4 21 10 2 1994 2,241

417

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 * 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 0 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 0 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 0 3115 Dairy Product 121 10,079 * * 80 * * 0 1 0 3116 Animal Slaughtering and Processing 226 17,545 1 1 141 * 0 0 12 0 312 Beverage and Tobacco Products 107

418

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

419

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect (OSTI)

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

420

Sulfidation-oxidation of advanced metallic materials in simulated low-Btu coal-gasifier environments  

Science Journals Connector (OSTI)

The corrosion behavior of structural alloys in complex multicomponent gas environments is of considerable interest for their effective utilization in coal conversion schemes. Little understanding...

T. C. Tiearney Jr.; K. Natesan

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Policy: Independence by 1985 My Be Unreachable Without Btu Tax  

Science Journals Connector (OSTI)

...domestic oil production and the diffi-culties...Countries (OPEC). The decontrol...the Earth Day move-ment...indeed-high enough per-haps to...about by OPEC in late 1973 and early...of oil a day less than...18 miles per gallon by...of oil a day (mbd...consumption in 1973. The added...domestic production of energy...

LUTHER J. CARTER

1976-02-13T23:59:59.000Z

422

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network [OSTI]

:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...

Phillips, J. N.

423

c3.xls  

Gasoline and Diesel Fuel Update (EIA)

trillion trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* .................................. 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................... 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 ................................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................... 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................... 241 8,668 35.9 673 2,790 77.6 75.8 50,001 to 100,000 ............................. 129 9,057 70.4 759 5,901 83.8 90.0 100,001 to 200,000 ........................... 65 9,064 138.8 934 14,300 103.0 80.3 200,001 to 500,000 ........................... 25 7,176 289.0 725 29,189 101.0 105.3 Over 500,000 ....................................

424

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

425

 

Gasoline and Diesel Fuel Update (EIA)

. Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 ....................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ..................... 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ..................... 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ................... 405 16 57 65 7 158 2 29 6 18 45

426

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

427

U.S. Energy Information Administration (EIA) - Residential  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. figure data The decrease in energy consumption in the manufacturing sector was also

428

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Table 1.6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010 Rank Consumption Consumption per Capita Expenditures 1 Expenditures 1 per Capita Prices 1 Trillion Btu Million Btu Million Dollars 2 Dollars 2 Dollars 2 per Million Btu 1 Texas 11,769.9 Wyoming 948.1 Texas 137,532 Alaska 8,807 Hawaii 30.75 2 California 7,825.7 Alaska 898.5 California 117,003 Louisiana 8,661 District of Columbia 26.19 3 Florida 4,381.9 Louisiana 894.4 New York 61,619 Wyoming 7,904 Connecticut 25.63 4 Louisiana 4,065.4 North Dakota 712.6 Florida 60,172 North Dakota 6,740 Vermont 24.20 5 Illinois 3,936.7 Iowa 489.3 Pennsylvania 48,701 Texas 5,446 New Hampshire

429

Energy Reductions Using Next-Generation Remanufacturing Techniques  

SciTech Connect (OSTI)

The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. The quantities of parts used in the analysis are based on our internal production of approximately 158,000 diesel engines in 2007. This leads to roughly 1,000,000 liners (assuming a mixture of 6- and 8-cylinder engines) and 158,000 crankshafts. Using energy intensity factors for casting and forgings, respectively, of 4450 and 5970 Btu-hr/lb along with the energy-induced CO2 generation factor of 0.00038 lbs CO2/Btu, energy savings of over 17 trillion BTUs and CO2 reductions of over 6.5 million lbs could potentially be realized by remanufacturing the above mentioned quantities of crankshafts and liners. This project supported the Industrial Technologies Program's initiative titled 'Industrial Energy Efficiency Grand Challenge.' To contribute to this Grand Challenge, we. pursued an innovative processing approach for the next generation of thermal spray coatings to capture substantial energy savings and green house gas emission reductions through the remanufacturing of steel and aluminum-based components. The primary goal was to develop a new thermal spray coating process that yields significantly enhanced bond strength. To reach the goal of higher coating bond strength, a laser was coupled with a traditional twin-wire arc (TWA) spray gun to treat the component surface (i.e., heat or partially melt) during deposition. Both ferrous and aluminum-based substrates and coating alloys were examined to determine what materials are more suitable for the laser-assisted twin-wire arc coating technique. Coating adhesion was measured by static tensile and dynamic fatigue techniques, and the results helped to guide the identification of appropriate remanufacturing opportunities that will now be viable due to the increased bond strength of the laser-assisted twin-wire arc coatings. The feasibility of the laser-assisted TWA (LATWA) process was successfully demonstrated in this current effort. Critical processing parameters were identified, and when these were properly controlled, a strong, diffusion bond was developed between the substrate and the deposited coating. Consequently, bond strengths were nearly doubled over those typically obtained using conventional grit-blast TWA coatings. Note, however, that successful LATWA processing was limited to ferrous substrates coated with steel coatings (e.g., 1020 and 1080 steel). With Al-based substrates, it was not possible to avoid melting a thin layer of the substrate during spraying, and this layer re-solidified to form a band of intermetallic phases at the substrate/coating interface, which significantly diminished the coating adhesion. The capability to significantly increase the bond strength with ferrous substrates and coatings may open new reman

Sordelet, Daniel; Racek, Ondrej

2012-02-24T23:59:59.000Z

430

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion Btu Percent Million Barrels Quadrillion Btu Percent Trillion Cubic Feet Quadrillion Btu Percent Million Short Tons Quadrillion Btu Percent Quadrillion Btu Percent 2003 R 689 R 4.00 R 33.3 R 94 R 0.35 R 14.9 R 7.08 R 7.81 R 35.5 R 466 R 9.58 R 43.3 R 21.74 R 37.2 2004 R 680 R 3.94 R 33.8 R 105 R .39 R 16.0 R 6.68 R 7.38 R 34.0 R 484 R 9.89 R 43.9 R 21.60 R 37.0

431

1990 Washington State directory of biomass energy facilities  

SciTech Connect (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

432

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

2b 2b Electricity Net Generation by Sector By Sector, 2011 Electric Power Sector by Plant Type, 1989-2011 Industrial and Commercial Sectors, 2011 U.S. Energy Information Administration / Annual Energy Review 2011 223 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). (s) = Less than 0.05 trillion kilowatthours. (ss) = Less than 0.5 billion kilowatthours. Sources: Tables 8.2b-8.2d. 4.0 0.1 (s) Electric Power Industrial Commercial 0 1 2 3 4 5 Trillion Kilowatthours 1989 1992 1995 1998 2001 2004 2007 2010 0 1 2 3 4 5 Trillion Kilowatthours Electricity-Only Plants

433

table5.5_02  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002; 5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.4 1 0 0 TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6 2,105 2 35 -- 5.3 Conventional Boiler Use -- 2,496 12 4 1,271 2 11 -- 5.6

434

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

435

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

436

July 2012 Biomass Program Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Agriculture and Energy Departments Announce New Investments to Drive Innovations in Biofuels and Biobased Products As part of the Obama Administration's all-of-the-above strategy...

437

Biomass Program Monthly News Blast: June  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on topics surrounding the use of biomass as a replacement for petroleum to supply the energy, products, and power markets. Paul Bryan will be attending the conference for the...

438

July 2012 Biomass Program Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bioproducts; June 10-13, 2012; John Ferrell and Joyce Yang; San Diego, California Biogas and Fuel Cells Workshop; June 11-13, 2012; Brian Duff; Golden, Colorado Biomass...

439

Biomass Program Monthly News Blast - May 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012; Travis Tempel; Atlanta, Georgia U.S. Environmental Protection Agency's Biogas Technology Market Summit, May 14, 2012, Brian Duff; Washington, D.C. Biomass R&D...

440

April 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chain & Logistics Conference, May 10-11, 2012, Travis Tempel, Atlanta, Georgia EPA Biogas Technology Market Summit, May 14, 2012, Brian Duff, Washington, DC Biomass R&D...

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Biomass Program Monthly News Blast: August  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The updated report and its supporting data improve our understanding of future biomass markets and will be a critical resource for landowners, businesses, and other potential...

442

Biomass Program Monthly News Blast, October 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ferrell, Steve Thomas, and Bryce Stokes; New Orleans, Louisiana 2012 International Bioenergy and Bioproducts Conference; October 17-19, 2012; Zia Haq; Savannah, Georgia ...

443

Biomass Program Monthly News Blast - March 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Past and Upcoming Events with Biomass Representation International Energy Agency Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

444

Biomass Program Monthly News Blast: May  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass 2011: Replace the Whole Barrel, Supply the Whole Market - The New Horizons of Bioenergy July 26-27, 2011, at the Gaylord National Resort and Convention Center in...

445

February 2012 Biomass Program News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Ethanol Conference, February 22-24, 2012, Howard Marks, Orlando, Florida IEA Bioenergy Task 42 Meeting, February 27-March 3, 2012, Melissa Klembara, Copenhagen,...

446

Biomass Program September 2012 News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2-5, 2012; John Ferrell and Bryce Stokes; New Orleans, Louisiana 2012 International Bioenergy and Bioproducts Conference; Zia Haq; October 17-19, 2012; Savannah, Georgia ...

447

BETO Monthly News Blast, August 2013r  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Canada National Conference; August; 22-23, 2013; Ottawa, Ontario, Canada * International Bioenergy Fair and Conference; September 4-6, 2013; Jyvskyl, Finland * National...

448

Bioenergy Technologies Office May Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mexico * 22nd European Biomass Conference and Exhibition; June 23-26, 2014; Hamburg, Germany * 11th Renewable Energy Finance Forum Wall Street; June 25-26, 2014; New York, New...

449

BETO Monthly News Blast, June 2013  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 2013 Don't Miss this Summer's Big Back-to-Back BETO Events Register now for Biomass 2013 and the Program Management Review This summer, the Bioenergy Technologies Office...

450

LTC vacuum blasting machine (metal): Baseline report  

SciTech Connect (OSTI)

The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

NONE

1997-07-31T23:59:59.000Z

451

Air blast type coal slurry fuel injector  

DOE Patents [OSTI]

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

452

BETO Monthly News Blast, August 2014  

Energy Savers [EERE]

its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between...

453

Spectator response to the participant blast  

SciTech Connect (OSTI)

The interplay between spectator and participant matter in heavy-ion collisions is investigated in the context of a microscopic transport model. Transport simulations show that flow patterns for the participant matter are strongly influenced by the presence of the nearby spectator matter. However, the influence is mutual. During the explosion of the participant zone, the spectator matter acquires a transverse momentum that shows sensitivity to the nuclear incompressibility and to the momentum dependence of the nuclear mean field (MF). An observed change in the net average momentum per nucleon, {Delta}|

|, can be associated with the momentum dependence of the MF. For a momentum-dependent MF and a low impact parameter in a heavy system, the spectators may emerge faster than in the initial state, accelerated by the violent participant explosion. The average excitation energy and the mass of the spectators, in contrast to the momentum, show little sensitivity to the nuclear equation of state.

Shi, L.; Danielewicz, P.; Lacey, R.

2001-09-01T23:59:59.000Z

454

Bioenergy Technologies Office April Monthly News Blast  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about the event, and to find registration information, please visit the Biomass 2014 Web page. Funding Opportunity Announcement: Biological and Chemical Upgrading for Advanced...

455

September 2013 News Blast | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

update, read about our new director, some major staff changes, a new Accomplishments Web page, and more. september2013newsblast.pdf More Documents & Publications October 2013...

456

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

457

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

458

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

459

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

460

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2010;" 8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2886,79,130,5211,69,868

462

" Electricity Sales/Transfers Out",96,4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Selected Energy Sources, 1994" " (Estimates in Trillion Btu)" ,,"RSE" ,,"Row" "Selected Energy Sources","Total","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers In",53,4 " Generation from Noncombustible",," " " Renewable Resources",10,10 " Electricity Sales/Transfers Out",96,4 "Coke and Breeze",449,8 "Residual Fuel Oil",490,3

463

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208 Food Service ................................ 10 28 24 10 42 13 70 2 2 15 217

464

Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1814,3 "Natural Gas",7426,1 "Net Electricity",3035,1 " Purchases",3044,1

465

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

466

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

467

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

468

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

469

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

470

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

471

Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.  

SciTech Connect (OSTI)

Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

Snyder, S. W.; Energy Systems

2010-02-08T23:59:59.000Z

472

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

473

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

474

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1959,10 "Natural Gas",6468,1.3 "Net Electricity",2840,1.4 " Purchases",2882,1.4

475

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

476

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West North","South","East South","West South",,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","New England","Atlantic","Central","Central","Atlantic","Central","Central","Mountain","Pacific","Factors"

477

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

478

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

479

" Generation by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

A49. Total Inputs of Energy for Heat, Power, and Electricity" A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row"

480

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

Note: This page contains sample records for the topic "trillion btu blast" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

482

Released: October 2009  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1433 "Natural Gas",5911 "Net Electricity",2851 " Purchases",2894 " Transfers In",20 " Onsite Generation from Noncombustible Renewable Energy",4 " Sales and Transfers Offsite",67

483

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

484

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

485

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

U.S. Energy Information Administration (EIA) Indexed Site

assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor space In Occupied Floor space In Vacant Floor space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4,590 2,600 2,563 37 39 42 8 Building Floorspace (Square Feet) 1,001 to 5,000 2,532 334 331 3 48 51 6 5,001 to 10,000 946 250 247 3 36 38 6 10,001 to 25,000

486

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

487

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

488

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

489

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

490

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect (OSTI)

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

491

Classes of compounds responsible for mutagenic and cytotoxic activity in tars and oils formed during low BTU gasification of coal  

SciTech Connect (OSTI)

The Lovelace Inhalation Toxicology Research Institute (ITRI), in cooperation with the Morgantown Energy Technology Center (METC), has completed toxicity screening of vapors, liquids and solids formed during operation of an experimental pressurized, stirred-bed, coal gasifier at METC. Vapors collected from the cooled process stream on Tenax resins had no mutagenic activity in the Ames Salmonella assay. Dichloromethane extracts of liquids and solids collected from the effluent or process streams were fractionated by gel chromatography into fractions containing mostly aliphatic compounds; neutral polycyclic aromatic hydrocarbons (PAH); polar (PAH) and heterocyclic compounds; and salts. The polar fraction was partitioned into acids, bases, water soluble compounds and phenols. Bacterial mutagenic activity was highest in the basic fraction with additional activity in the neutral PAHs. Highest cytotoxicity toward both the bacteria and canine alveolar macrophages was in the phenolic fraction. Treatment of the gasifier tars by nitrosation or by acetylation to remove primary aromatic amines (PAA) reduced the bacterial mutagenicity by 50-60%, indicating that some, but not all, of the mutagenicity was due to PAA.

Henderson, R.F.; Bechtold, W.F.; Benson, J.M.; Newton, G.J.; Hanson, R.L.; Brooks, A.L.; Dutcher, J.S.; Royer, R.E.; Hobbs, C.H.

1986-04-01T23:59:59.000Z

492

Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas  

E-Print Network [OSTI]

d = standard deviation INTRODUCTION The United States' vast lignite reserves' energy po- tential, while not commanding the public interest as much as the more "exotic" forms of energy conversion (solar, geothermal, wave energy, etc. ), has been... viewed with in- creasing interest by the technical community. Although a tremendous amount of energy is totalled in this country' s lignite coal reserves (Texas deposits alone are estimated at 100 billion tons [1] ), the energy is low-grade; i. e...

Blacksmith, James Richard

2012-06-07T23:59:59.000Z

493

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Supplies Supplemental Supplies Definitions Key Terms Definition Biomass Gas A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. Blast-furnace Gas The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within steel works. British Thermal Unit (Btu) The quantity of heat required to raise the temperature of 1 pound of liquid water by 1 degree Fahrenheit at the temperature at which water has its greatest density (approximately 39 degrees Fahrenheit). Coke-oven Gas The mixture of permanent gases produced by the carbonization of coal in a coke oven at temperatures in excess of 1,000 degrees Celsius.

494

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). All truths are easy to understand once they are discovered, the point is to discover them. Plato

Claire Soares

2015-01-01T23:59:59.000Z

495

 

Gasoline and Diesel Fuel Update (EIA)

. Natural Gas Consumption (Btu) and Energy Intensities by End Use for . Natural Gas Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Natural Gas Consumption (trillion Btu) Natural Gas Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ....................... 1,928 1,316 332 142 137 44.3 30.3 7.6 3.3 3.2 Building Floorspace (Square Feet) 1,001 to 5,000 ........................ 250 155 35 41 18 81.1 50.4 11.5 13.4 5.9 5,001 to 10,000 ...................... 209 143 32 30 Q 56.5 38.8 8.7 8.2 Q 10,001 to 25,000 .................... 309 248 32 22 8 43.9 35.1 4.6 3.1 1.1 25,001 to 50,000 .................... 258 188 41 12 Q 42.7 31.1 6.8 2.0 Q

496

 

Gasoline and Diesel Fuel Update (EIA)

1A. District Heat Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 1A. District Heat Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total District Heat Consumption (trillion Btu) District Heat Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 636 580 46 1 Q 114.0 103.9 8.3 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ......................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 ....................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ..................... Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ..................... Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ................... Q Q Q Q Q Q Q Q Q Q

497

 

Gasoline and Diesel Fuel Update (EIA)

A. Natural Gas Consumption (Btu) and Energy Intensities by End Use for A. Natural Gas Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total Natural Gas Consumption (trillion Btu) Natural Gas Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 2,100 1,420 348 164 168 43.3 29.3 7.2 3.4 3.5 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 257 161 36 42 18 81.0 50.6 11.3 13.3 5.8 5,001 to 10,000 ....................... 224 152 33 32 7 56.5 38.3 8.4 8.1 1.7 10,001 to 25,000 ..................... 353 273 35 26 19 45.2 34.9 4.5 3.3 2.4 25,001 to 50,000 ..................... 278 202 43 14 Q 42.2 30.6 6.5 2.1 3.0

498

 

Gasoline and Diesel Fuel Update (EIA)

A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 228 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 34 32 Q (*) Q 56.9 52.2 Q (*) Q 5,001 to 10,000 ....................... 36 33 Q (*) Q 49.4 44.7 Q 0.1 Q 10,001 to 25,000 ..................... 28 25 1 (*) Q 26.7 23.8 1.4 0.1 Q 25,001 to 50,000 ..................... 17 16 Q (*) 1 19.1 17.8 Q (*) 0.6 50,001 to 100,000 ................... 29 26 1 Q 1 15.6 14.1 0.7 Q 0.5

499

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

500

 

Gasoline and Diesel Fuel Update (EIA)

. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................ 222 194 17 Q 10 14.7 12.8 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 34 32 Q (*) Q 57.4 52.7 Q (*) Q 5,001 to 10,000 ....................... 36 33 Q (*) Q 50.6 45.8 Q 0.1 Q 10,001 to 25,000 ..................... 27 25 1 (*) Q 28.2 25.4 1.5 0.1 Q 25,001 to 50,000 ..................... 16 15 Q (*) 1 19.7 18.8 Q (*) 0.7 50,001 to 100,000 ................... 26 23 1 Q 1 15.0 13.3 0.8 Q 0.6