National Library of Energy BETA

Sample records for trembly oilfield reno

  1. Oilfield flooding polymer

    DOE Patents [OSTI]

    Martin, Fred D. (Socorro, NM); Hatch, Melvin J. (Socorro, NM); Shepitka, Joel S. (Socorro, NM); Donaruma, Lorraine G. (Syosset, NY)

    1986-01-01

    A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.

  2. Copyright 2005 POSC Intelligent Oilfield Operations

    E-Print Network [OSTI]

    Brock, David

    Copyright © 2005 POSC WITSMLTM and Intelligent Oilfield Operations David Archer MIT Data Center M-Alliance POSC Source: Downes & Mui, "Unleashing the Killer App" #12;Oil fields of the future: real-time oil, London Members + SIG Members: > 80 Oil BP, ChevronTexaco, ExxonMobil, Hydro, ONGC, Pioneer, Shell

  3. Oilfield Equipment Market - Global and U.S. Industry Analysis...

    Open Energy Info (EERE)

    for oilfield equipment. The shift towards unconventional energy resources such as shale gas is also expected to drive the market. This report estimates and forecasts the...

  4. Energy Department Sells Historic Teapot Dome Oilfield | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1950s and 1960s, the oilfield was essentially closed until full development resumed in 1976. In 1977, jurisdiction for the Teapot Dome reserve was transferred from the Navy to the...

  5. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  6. Reno, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLCProjectMazeReno

  7. Reno, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLCProjectMazeRenoTexas:

  8. SPE 159835-PP Event-driven Information Integration for the Digital Oilfield

    E-Print Network [OSTI]

    Hwang, Kai

    SPE 159835-PP Event-driven Information Integration for the Digital Oilfield Om Prasad Patri propose a semantic complex event processing architecture for the digital oilfield that facilitates for the digital oilfield [9] and the E&P business [8] are well recognized. Various integrated operations

  9. University of Nevada, Reno Repetitive Control for Hysteretic Systems

    E-Print Network [OSTI]

    Leang, Kam K.

    Period; R(z) Reference trajectory; Y (z) System output; G(z) Discrete-time linear dynamics model; NUniversity of Nevada, Reno Repetitive Control for Hysteretic Systems: Theory and Application/Dissertation Advisor December, 2011 #12;#12;UNIVERSITY OF NEVADA, RENO THE GRADUATE SCHOOL We recommend

  10. HYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD

    E-Print Network [OSTI]

    in Osage County, Oklahoma. Salt and crude oil from oil well waste pits and accidental releases from oil DESCRIPTION As shown in the site map (figure 1), at Site "B" there is an oil tank battery and a waste pitHYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD BRINE AT THE OSAGE-SKIATOOK PETROLEUM

  11. TRANSIENT EFFECTS IN OILFIELD CEMENTING FLOWS MIGUEL ANGEL MOYERS GONZALEZ

    E-Print Network [OSTI]

    Fournier, John J.F.

    cementing of an oil well. This process involves displacement of a sequence of non-Newtonian fluids alongTRANSIENT EFFECTS IN OILFIELD CEMENTING FLOWS by MIGUEL ANGEL MOYERS GONZ´ALEZ B.Sc., Instituto is in fact well-posed. In chapter 4 we study stability of multi-layer parallel flows, i.e. long fingers

  12. Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of uncertainty and complex fiscal rules in the development planning of offshore oil and gas fields which involve, Offshore Oil and Gas, Multistage Stochastic, Endogenous, Production Sharing Agreements (PSAs) 1

  13. History and Analysis of Distributed Acoustic Sensing (DAS) for Oilfield Applications 

    E-Print Network [OSTI]

    Kimbell, Jeremiah

    2013-05-15

    to environments. Both of these conditions are inherent to the petroleum industry and provide substantial incentive for investigating DAS for oilfield applications....

  14. Monitoring microbial corrosion in large oilfield water systems

    SciTech Connect (OSTI)

    Chen, E.Y.; Chen, R.B.

    1983-03-01

    Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of its size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations and the possible areas for improvement. These suggested improvements either are presently being implemented or will be implemented in the Aramco systems.

  15. Monitoring microbial corrosion in large oilfield water systems

    SciTech Connect (OSTI)

    Chen, E.Y.; Chen, R.B.

    1984-07-01

    Monitoring of microbial corrosion is always difficult because of the sessile nature of bacteria and the lack of meaningful correlation between routine bacteria counts and bacterial activity. This problem is further aggravated in a large oilfield water system because of size and sampling difficulties. This paper discusses some monitoring techniques currently used in the oil industry, their limitations, and possible areas for improvement. These improved techniques are in use or will be implemented in the Aramco systems.

  16. SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD CENTER POC

  17. Towards a Model-based Application Integration Framework for Smart Oilfields Cong Zhang, Amol Bakshi, Viktor Prasanna

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    oilfields are characterized with heterogeneous data and resources, com- plicated business processesTowards a Model-based Application Integration Framework for Smart Oilfields Cong Zhang, Amol Bakshi- duction has led to an industry-wide push to develop smart oilfields for the future. Applications for smart

  18. Paper Presented at 1999 ASME Wind Energy Symposium, Reno Nevada

    E-Print Network [OSTI]

    Paper Presented at 1999 ASME Wind Energy Symposium, Reno Nevada January 11-14, 1998, AIAA-99 Mexico 87185-0708 ABSTRACT Wind energy researchers at Sandia National Laboratories have developed a small, GPS application, spread-spectrum modem INTRODUCTION Wind-energy researchers at the National Wind

  19. Market Risks and Oilfield Ownership - Refining SEC Oil and Gas Disclosures 

    E-Print Network [OSTI]

    Kretzschmar, Gavin Lee; Hatherly, David; Misund, Bard

    2006-01-01

    Our paper uses an extensive sample of 292 oilfields to provide evidence that Securities and Exchange Commission (SEC) supplementary disclosures do not capture the price sensitivities of O&G disclosures implicit in the two ...

  20. Assembly cell layout and Kanban system design for an oilfield services company

    E-Print Network [OSTI]

    Liu, Junying, M. Eng. Massachusetts Institute of Technology

    2010-01-01

    The thesis describes the layout design of new gauge assembly lab for an oilfield services company. A relationship diagram was created to categorize all the workstations and activities in the assembly line. Three layouts ...

  1. Helicopter Surveys for Locating Wells and Leaking Oilfield Infrastructure

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.; Hodges, G. (Fugro Airborne Surveys)

    2006-10-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys

  2. Thermal Stability of Various Chelates that are Used in the Oilfield 

    E-Print Network [OSTI]

    Sokhanvarian, Khatere

    2012-10-24

    bound to one or more nitrogen atoms. Their ability to form stable, water-soluble complexes with a broad range of metal ions makes them versatile in different applications (Means et al. 2003). Various chelates are used in oilfield treatment...-1 THERMAL STABILITY OF VARIOUS CHELATES THAT ARE USED IN THE OILFIELD A Thesis by KHATERE SOKHANVARIAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  3. New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide 

    E-Print Network [OSTI]

    Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

    1991-01-01

    METHOD FOR CLEANING OILFIELD BRINES WITH CARBON DIOXIDE C. T. LITTLE A. F. SEIBERT Research Engineer Technical Manager Amoco Oil Company Separations Research Program Naperville, Illinois The University of Texas Austin, Texas ABSTRACT Water... are used to purify these waters. However, if stricter discharge limits are imposed by the Environmental Protection Agency, the gas flotation method is likely to be inadequate. A new process was developed which utilizes carbon dioxide to clean oilfield...

  4. Reno County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLCProjectMazeReno County,

  5. Seismic reflection imaging of the Mount Rose fault zone, Reno, Nevada

    E-Print Network [OSTI]

    Barrash, Warren

    . Lateral variations and offsets in late Quaternary stratigraphy in South Reno identified on four seismicSeismic reflection imaging of the Mount Rose fault zone, Reno, Nevada Project Award Number: # G09AP expressed or implied, of the U.S. Government. #12;2 Abstract Five new high-resolution seismic reflection

  6. BYLAWS OF THE DEPARTMENT OF CHEMICAL & METALLURGICAL ENGINEERING UNIVERSITY OF NEVADA, RENO

    E-Print Network [OSTI]

    BYLAWS OF THE DEPARTMENT OF CHEMICAL & METALLURGICAL ENGINEERING UNIVERSITY OF NEVADA, RENO;Department of Chemical and Metallurgical Engineering Page 2 University of Nevada, Reno May 24, 2011 I publications or oral presentations, and 4) provide service in the fields of Chemical Engineering

  7. DEPARTMENT OF ELECTRICAL & BIOMEDICAL ENGINEERING (EBME) Bylaws UNIVERSITY OF NEVADA, RENO

    E-Print Network [OSTI]

    DEPARTMENT OF ELECTRICAL & BIOMEDICAL ENGINEERING (EBME) Bylaws UNIVERSITY OF NEVADA, RENO Approved;Department of Electrical and Biomedical Engineering Bylaws Page 2 of 9 University of Nevada, Reno December 30, 2010 PART I - Introduction 1. Authorization The Department of Electrical & Biomedical Engineering (EBME

  8. Pore water evolution in oilfield sandstones: constraints from oxygen isotope microanalyses of quartz cement

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Pore water evolution in oilfield sandstones: constraints from oxygen isotope microanalyses to trace the origin and evolution of pore waters in three distinct reservoirs of the Brae Formation water evolution was reconstructed from the time of deposition of the sandstones in the Upper Jurassic

  9. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect (OSTI)

    Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

    1998-12-31

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  10. Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters 

    E-Print Network [OSTI]

    Furrow, Brendan Eugene

    2005-11-01

    and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods...

  11. Fibrous illite in oilfield sandstones a nucleation kinetic theory of growth

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Fibrous illite in oilfield sandstones ­ a nucleation kinetic theory of growth Mark Wilkinson* and R), but modelling of sandstone-like systems shows that reaction kinetics are very rapid, and not rate-limiting (Berger et al., 1997). Any model for illite growth in sandstones should offer explanations

  12. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  13. Sierra Nevada-Basin and Range Transition Near Reno, Nevada: Two...

    Open Energy Info (EERE)

    Sierra Nevada-Basin and Range Transition Near Reno, Nevada: Two-Stage Development at 12 and 3 Ma Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  14. University of Nevada, Reno Plant Community Invasibility in Riparian Landscapes: Role of Disturbance,

    E-Print Network [OSTI]

    Weisberg, Peter J.

    , diversions, and inter-basin water transfers alter disturbance regimes (flood frequency, magnitude, timingUniversity of Nevada, Reno Plant Community Invasibility in Riparian Landscapes: Role of Disturbance GRACE MORTENSON entitled Plant Community Invasibility in Riparian Landscapes: Role of Disturbance

  15. The Impact of Tax Shocks and Oil Price Volatility on Risk - A Study of North Sea Oilfield Projects 

    E-Print Network [OSTI]

    Kretzschmar, Gavin Lee; Moles, Peter

    2006-01-01

    We examine the impact of market volatility and increased fiscal take on risk in strategic natural resource projects. An increase in 2006 UK oilfield taxation is used as a natural experiment for assessing the impact of a ...

  16. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  17. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    SciTech Connect (OSTI)

    Zhoa Han-Qing

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  18. PV Output Variability Modeling Using Satellite Imagery and Neural Matthew J. Reno1,2

    E-Print Network [OSTI]

    PV Output Variability Modeling Using Satellite Imagery and Neural Networks Matthew J. Reno1, Albuquerque, NM, USA Abstract -- Variability and ramp rates of PV systems are increasingly important to understand and model for grid stability as PV penetration levels rise. Using satellite imagery to identify

  19. Development of a flow injection analysis method for the determination of acrylamide copolymers in oilfield brines

    SciTech Connect (OSTI)

    Taylor, K.C.; Burke, R.A.; Schramm, L.L. [Petroleum Recovery Inst., Calgary, Alberta (Canada); Nasr-El-Din, H.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01

    An automated method for the determination of acrylamide polymers by flow injection analysis (FIA) has been developed and optimized for routine use. The method has been extensively tested for interferences common in oilfield brines. Potential interferences were examined from Na{sup +}, Ca{sup 2+}, Cr{sup 3+}, Al{sup 3+}, Zr{sup 3+}, NH{sub 4}{sup +}, Cl{sup {minus}}, OH{sup {minus}}, CO{sub 3}{sup 2{minus}}, sample coloration, and commonly used surfactants. The analysis is specific for amides, and the sensitivity to concentration of amide groups in the polymer was shown to be constant as the degree of polymer hydrolysis was varied. The range of the method is 0.1 to 100 mg/L. Sample throughput is 30 samples/h with triplicate analysis. Relative standard deviations of 0.2% are readily obtained from standard solutions and 0.5% from complex samples (at 50 mg/L). The method is applicable to the determination of aqueous, acrylamide-based polymers in process streams, surface waters and oilfield brines.

  20. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  1. Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLCProjectMazeRenoTexas:Open

  2. AIAA Paper 2004-1264, Aerospace Sciences Meeting, Reno, NV, Jan., 2004 Information and Knowledge Transfer through

    E-Print Network [OSTI]

    , is thus an information source in an archival journal. This information source must be consumed by others age where paper was the primary means of storing information, and conferences were the primary meansAIAA Paper 2004-1264, Aerospace Sciences Meeting, Reno, NV, Jan., 2004 Information and Knowledge

  3. 46th AIAA Aerospace Sciences Meeting and Exhibit, January 710, 2008/Reno, NV Upstream and downstream influence on the

    E-Print Network [OSTI]

    Martín, Pino

    08544 Statistical analysis of the upstream and downstream flow influence on shock unsteadiness in shock to further study the upstream and downstream flow influence on shock unsteadiness using direct numerical46th AIAA Aerospace Sciences Meeting and Exhibit, January 7­10, 2008/Reno, NV Upstream

  4. ASME Wind Energy Symposium -Held in conjunction with the AIAA Aerospace Sciences Meeting, Reno, Nevada, January 6-9 1997.

    E-Print Network [OSTI]

    ASME Wind Energy Symposium - Held in conjunction with the AIAA Aerospace Sciences Meeting, Reno LOADS TO WIND TURBINE FATIGUE AND RELIABILITY ANALYSIS* Paul S. Veers Wind Energy Technology Department of Energy under contract DE-AC04-94AL85000. Abstract Cyclic loadings produce progressive damage that can

  5. ASME Wind Energy Symposium -Held in conjunction with the AIAA Aerospace Sciences Meeting, Reno, Nevada, January 6-9 1997.

    E-Print Network [OSTI]

    ASME Wind Energy Symposium - Held in conjunction with the AIAA Aerospace Sciences Meeting, Reno LOADS TO WIND TURBINE FATIGUE AND RELIABILITY ANALYSIS* Paul S. Veers Wind Energy Technology Department of occurrences of cycles in each load #12;ASME Wind Energy Symposium - Held in conjunction with the AIAA

  6. 46th Aerospace Sciences Meeting, January 7-10, 2008, Reno, Nevada A Smart Wind Turbine Blade Using Distributed

    E-Print Network [OSTI]

    Nelson, Robert C.

    of "smart" wind turbine blades with integrated sensor-actuator-controller modules to im- prove the performance of wind turbines. The system will be designed to enhance energy capture, and reduce aerodynamic46th Aerospace Sciences Meeting, January 7-10, 2008, Reno, Nevada A Smart Wind Turbine Blade Using

  7. Use and abandonment of surface impoundments for the disposal of oil-field produced waters

    SciTech Connect (OSTI)

    Johnson, D.S. (California Regional Water Quality Board, Fresno (USA))

    1990-05-01

    Surface impoundments, or sumps, are utilized for the disposal of oil-field produced water through percolation and evaporation in California's San Joaquin basin. Environmental concerns have resulted in increased regulation of sumps. Surface disposal of produced waters into unlined sumps is permitted where the quality of the produced water meets the stated criteria in the applicable basin plan as regulated by the local regional water quality control board. In the San Joaquin Basin, surface disposal is initially governed by the Tulare Lake basin plan (5D). A basin plan permits disposal into sumps of produced waters which do not exceed a maximum electrical conductivity, chlorides content, or boron content in areas which overlie useable groundwater. If the produced water exceeds any one of the maximum constituent levels, regulation of surface disposal passes to Title 23, California code of Regulations, sections 2,510-2,601 (subchapter 15). Subchapter 15 regulates the use and abandonment of lined surface impoundments designed to dispose of produced water through evaporation. Subchapter 15 requires the operator to conduct a site hydrogeologic characterization, install a groundwater monitoring system, and construct and enclose the surface impoundment in accordance with specified criteria. Sumps can be utilized in areas which do not meet the criteria of the appropriate basin plan, or subchapter 15, where the operator demonstrates that surface percolation of the produced waters will not degrade underlying useable groundwater. Abandonment of unlined sumps includes removal and disposal of all free liquids, analysis of sludges and soils beneath the sumps, removal of contaminated sludges and soils, analysis of soils after removal of contaminated sludges and soils, backfilling of the sump, and revegetation of the site.

  8. Data-Driven Reservoir Management of a Giant Mature Oilfield in the Middle Mohaghegh, S.D., West Virginia University & Intelligent Solutions, Inc., Gaskari, R. and Maysami, M., Intelligent

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    , time-lapse saturation logs, and well tests. The well tests were used to estimates the static reservoir for a large number of wells indicating the state of water saturation in multiple locations in the reservoirSPE 170660 Data-Driven Reservoir Management of a Giant Mature Oilfield in the Middle East Mohaghegh

  9. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance Federal Aviation Administration – Project 209 Control Tower and Support Building, Reno, Nevada

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-06-30

    Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted an energy audit on the Federal Aviation Administration (FAA) control tower and base building in Reno, Nevada. This report presents the findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) and completed a site visit. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  10. ASME.Reno.paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposals due FebruaryASC-ATP-001 July7-0973 1

  11. El Reno Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010MesoscopyStaffEfficiencyIndustry BringEijc pEkdahlEl

  12. UNEDITED PREPRINT Building a dynamic growth model for trembling

    E-Print Network [OSTI]

    García, Oscar

    ´ia.1 University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada V2N 4Z9. 1

  13. Oilfields of the World. Third edition

    SciTech Connect (OSTI)

    Tiratsoo, E.N.

    1985-01-01

    This third edition (updated to 1984) covers all of the world's major producing areas (both onshore and offshore) on six continents. It offers essential geologic, reserves, and production data on 13 nations that have become commercial oil producers in the last five years: Benin, Cameroon, Congo Republic, Ghana, Ivory Coast, Sudan, Zaire, Greece, The Phillippines, Sharjah, Thailand, Guatemala, and Surinam. Numerous maps display the geologic details of each area. This book also contains full-color maps of the oil and gas fields of the North Sea, Persian Gulf, Mexico, Venezuela, and Brazil.

  14. Rangely Oilfield Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergy Marketing CorpMember Corp Jump

  15. Oilfield Equipment Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdison Co JumpOhio, et al. v.

  16. Rangely Oilfield Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFU Elektronik GmbHRahusRamkyRange Fuels

  17. University of Nevada, Reno Dissertation Title

    E-Print Network [OSTI]

    The shallow S-wave velocity structure is very important for the seismic design of engineered structures of the national seismic hazard map, and seismic-resistant design of buildings. The use of surface waves and facilities, seismic hazard evaluation of a region, comprehensive earthquake preparedness, development

  18. University of Nevada, Reno Financial Statements

    E-Print Network [OSTI]

    to as capital assets, is reflected in the financial statements as depreciation, which amortizes the cost in investments and an increase in capital assets of $6.6 million. · Liabilities increased by $49.3 million due

  19. Reno Roundtable Summary | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidentialThis 3-DMarchLLC Open EnergyLocal Government

  20. Reno, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEast Jump to: navigation, search Name:Renion Biogas

  1. Elevated growth temperatures alter hydraulic characteristics in trembling aspen (Populus tremuloides)

    E-Print Network [OSTI]

    Jackson, Robert B.

    -words: cavitation vulnerability; climate change; embo- lism; poplar; transpiration; water; xylem. INTRODUCTION) and increased evaporative demand and transpiration rates. However, while many studies have examined the impact was allowed to vary, had similar changes in xylem anatomy and function com- pared to cool-grown seedlings

  2. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen

    E-Print Network [OSTI]

    , Coral Gables, FL 33124-4245, USA. 5 School of Natural Resources and Environment, and Department carbon sink and their potential to mitigate the effects of this greenhouse gas. Although no widely- ing availability of mineral nitrogen (N), a concept referred to as progressive nitrogen limitation

  3. Multistage Stochastic Programming Approach for Offshore Oilfield Infrastructure Planning

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of oil or gas. (2) Appraisal: It involves drilling of delineation wells to establish the size and quality the facilities are built and wells are drilled, production starts where gas or water is usually injected and the order to develop them (iii) Deciding which wells and how many are to be drilled in the fields

  4. A method of fabricating coated splices for oilfield applications

    E-Print Network [OSTI]

    Killian, Lauren A. (Lauren Ashley), 1981-

    2005-01-01

    A method is needed to make a critical splice for a downhole tool in the petroleum industry. The goal is to connect two wires, cover the connection with a protective coating, and then assess the integrity of the finished ...

  5. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  6. Global Oilfield Equipment Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliamOhio:Change |Framework forIndustry

  7. Rocky Mountain Oilfield Testing Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan: EnergyRocklin Biomass FacilityRockwallNew

  8. Oilfield Equipment Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdison Co JumpOhio, et al. v.

  9. Oilfield Equipment Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdison Co JumpOhio, et al. v.

  10. Project Aids Development of Legacy Oilfield on Alaska's North Slope |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrderNATIONALofDefine Review Purpose50(S3TEC )(DOE)

  11. Multispectral Imaging At Rangely Oilfield Area (Pickles & Cover, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsourceEnergy Information Martin, Et Al.,Open

  12. CO2 Injection in Kansas Oilfield Could Greatly Increase Production,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86)ContractorsCNG Exports by Truck out

  13. Energy Department Sells Historic Teapot Dome Oilfield | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae model (Journal About DOE Button StaffEnergy

  14. Energy Department Sells Historic Teapot Dome Oilfield | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyInformation FormManufacturing of Aluminum forIndustry |

  15. Propagation of trembling aspen and hybrid poplar for agroforestry: potential benefits of elevated CO2 in the greenhouse

    E-Print Network [OSTI]

    Macdonald, Ellen

    CO2 in the greenhouse Kendall A. Tupker, Barb R. Thomas* and S. Ellen Macdonald Department the usefulness of elevated CO2 in the greenhouse to aid in early selection of genotypes and in the propagation and reclamation across Canada. Introduction Understanding the effects of greenhouse propagation methods

  16. USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno

    E-Print Network [OSTI]

    With increasing amounts of solar energy on the electric grid, understanding the solar variability for different applications for predicting variability or ramp rates at locations with PV plants. For example, if the cloud dispatch could be controlled based on the expected variability and ramp rates from solar power plants

  17. University of Nevada, Reno Year Three Self-Evaluation Report

    E-Print Network [OSTI]

    Handbook B. Nevada System of Higher Education Procedures & Guidelines Manual Table of Contents #12 Materials Plans and Policies 2.15 Recently Completed Major Projects 2.16 In Progress and Anticipated Major degrees in selected fields. Student enrollment in Fall 2012 exceeded 18,000 students, with 15

  18. Conte, Rms B523 + B524 Reno Grant Funded

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    'S House 57 Chancellor's House, 2011 Summer Updates Wiater Harry 5/4/2011 Central Heating Plant 664 Central Heating Plant Mathews John 12/15/2008 Brown House 426 Brown, Accessibility Improvements Morrissey James 6 Knowlton, Rms 1,2,3,7,8 Refurbish Morrissey James 1/17/2011 J. Q. Adams House 355 JQA, 5th Floor Renovation

  19. El Reno, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico:Cerrito,Paso, Texas: EnergyRancho,

  20. Preliminary Site Assessment Of The Redfield Campus, Reno, Nevada, Usa |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology Jump to: navigation,New Mexico | Open

  1. Saving Money in Reno's Wind Tunnels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL INDepartment ofJune 28, 2011and MoneySaving Energyin

  2. National Geothermal Academy Underway at University of Nevada, Reno |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatashaAugust 2014Department

  3. GRC + workshop + GRR + Reno + October | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock Co LtdWiegandGEXAUmwelt undGMRECGPGPMGRC

  4. OpenEI Community - GRC + workshop + GRR + Reno + October

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaen The

  5. USING CLOUD CLASSIFICATION TO MODEL SOLAR VARIABILITY Matthew J. Reno

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinal design andBiofuels for Military andPrinceton

  6. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Global Oilfield Equipment Market Type Term Title Author Replies Last Post sort icon Blog entry Global Oilfield...

  7. * Author currently at Chevron Corp., Houston, TX, USA Intelligent model management and Visualization for smart oilfields

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    development and operations. Such models represent information uncertainty and alternate operational strategies a legacy model catalog in a non-proprietary manner. The system also performs automatic analysis abstraction as an intermediate representation means that our analysis technique can be applied to models

  8. Workflow Instance Detection: Toward A Knowledge Capture Methodology for Smart Oilfields

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    from log files. In this paper, we propose a semantically rich workflow model to capture the semantics model and analyze two cases from the petroleum en- gineering domain in detail. We also present production [2]. In the past few decades, many software ap- plications have been developed to model, simulate

  9. Indication of transpressional tectonics in the Gullfaks oil-field, northern North Sea

    E-Print Network [OSTI]

    Fossen, Haakon

    provides an important control on the seismic inter- pretation. Stratigraphy The Triassic to Paleocene 1988 New seismic data have provided important insights into the tectonic evolution of the Gullfaks area resolution of the seismic data from the area. However, a new 3D survey (ST 8511) with a line spacing of 25 m

  10. An Iterative Aggregation/Disaggregation Approach for the Solution of a Mixed Integer Nonlinear Oilfield

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    to be installed/drilled, as well as the drilling schedule for the wells over the planning horizon. Continuous a number of potential locations for wells (W) to be drilled. Production Platform Well Platform Well into the formulation. Discrete decisions include the selection of production platforms, well platforms and wells

  11. Operational Results for Co-Production of Electricity from Oilfield Operations (Presentation)

    SciTech Connect (OSTI)

    Williams, T.; Johnson, L.; Popovich, N.; Reinhardt, T.

    2012-12-01

    Presentation given to 2012 AAPG about the Coproduction of Geothermal Energy, including strategies, projects, benefits, and results.

  12. Laboratory Analysis of a New Sand Consolidation Material for Oilfield Applications 

    E-Print Network [OSTI]

    Filbrandt, Joseph Daniel

    2012-02-14

    a liquid material which will create a grain to grain contact that will bind individual sand grains together. Most consolidation treatments contain a preflush to clean and wet the surface, the consolidating system to bind the sand grains and give... residual strength, and, finally, an overflush to ensure the formation is still able to produce fluids. With the successful placement of this fluid, the sand grains will be locked in placed so that they will not be produced. The technology has gone...

  13. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    SciTech Connect (OSTI)

    Anderson, J.C.

    1995-02-01

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this study to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.

  14. SPE-170680-MS Predicting Failures from Oilfield Sensor Data using Time Series Shapelets

    E-Print Network [OSTI]

    Hwang, Kai

    with several Electrical Submersible Pumps (ESPs), each instrumented with sensors that continually measure of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part electrical properties of the pump (the streams of sensor data), which are then relayed to a central location

  15. Value Stream Mapping and Improved Cell Layout in an Oilfield Services company

    E-Print Network [OSTI]

    Gupta, Anupam Kumar

    2009-01-01

    This research explores potential improvements in efficiency through improved cell layout and value stream mapping. Analysis of cell layout led to significant reductions in material handling and operator movement along with ...

  16. Distribution network modeling and optimization for rapid and cost-effective deployment of oilfield drilling equipment

    E-Print Network [OSTI]

    Martchouk, Alexander

    2010-01-01

    AAA, a large oil and gas field services company, is in the business of providing drilling services to companies that extract and market hydrocarbons. One of the key success factors in this industry is the ability to provide ...

  17. CO2 interaction with aquifer and seal on geological timescales: the Miller oilfield, UK North Sea 

    E-Print Network [OSTI]

    Lu, Jiemin

    2008-01-01

    Carbon Capture and Storage (CCS) has been identified as a feasible technology to reduce CO2 emissions whilst permitting the continued use of fossil fuels. Injected CO2 must remain efficiently isolated from the atmosphere ...

  18. 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i sEnergy It isRichland| Department of

  19. Variation of xylem vessel diameters in trembling aspen (Populus tremuloides Michx.) across a boreal climate gradient: answers from a reciprocal transplant experiment

    E-Print Network [OSTI]

    Hamann, Andreas

    . Gaussian kernel density estimates support plastic as well as genetic contributions in vessel diameter with vessel diameter and tree height in central Alberta was also found at two other boreal test sites but reversed at a wetter and milder sub-boreal test site. 5. In summary, vessel diameters were highly plastic

  20. University of Nevada, Reno Design and Characterization of Sectored (Patterned) IPMC Actuators

    E-Print Network [OSTI]

    Leang, Kam K.

    of the requirements for the degree of Master of Science in Mechanical Engineering by Joel Jackson Ures Hubbard Dr. Kam the performance of ionic polymer-metal com- posite (IPMCs) propulsors for underwater applications, namely is for creating next-generation artificial fish-like propulsors that can mimic the undulatory, flapping

  1. AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada

    E-Print Network [OSTI]

    Lauder, George V.

    and Flapping Foils M. Bozkurttas* , H. Dong. , R. Mittal Department of Mechanical & Aerospace Engineering. Introduction HIS work is a part of a research program designed to develop a maneuvering propulsor for AUV's (Autonomous Underwater Vehicle) based on the mechanical design and performance of fish fins. Fishes

  2. Reno, NV, 1976). 38. M. C. Reheis and R. Kihl, J. Geophys. Res. 100,

    E-Print Network [OSTI]

    of the Yucca Mountain Unsaturated and Sat- urated Zone Hydrology to Climate Change, 1996 Milestone report 3GCA102M (U.S. Geological Sur- vey­Yucca Mountain Project Branch, Las Vegas, NV, 1997). 42. J. M. Barnola National Laboratory. Part of this work was supported and managed by DOE's Yucca Mountain Site

  3. University of Nevada, Reno Relationships among hydrogeomorphic processes and the distribution, age and stand

    E-Print Network [OSTI]

    Weisberg, Peter J.

    occidentalis, Salix exigua, Salix lutea, and Populus tremuloides) with different ecological amplitudes and life

  4. Aerospace Sciences Meeting and Exhibit AIAA 2006-0025 January 9-12, 2006, Reno, Nevada

    E-Print Network [OSTI]

    Wang, Zhi Jian "ZJ"

    by the 2-D roughness-resolved simulations were compared with experimental data. 1. INTRODUCTION Gas-turbine limits, and the duration of service. Some examples of roughness that can form on turbine material of thermal-barrier coatings depend on the environment from which the air is ingested, the engine operating

  5. Inter-protocol fairness between TCP New Reno and TCP Westwood+

    E-Print Network [OSTI]

    Avrachenkov, Konstantin

    the two protocols depends on one crucial parameter: the ratio between the bottleneck router buffer size have been developed, motivated by a growing heterogeneity of networks such as wireless networks, high]­[7]. Here we show that the router buffer size has a significant influence not only on the efficiency

  6. Quantifying Surface Subsidence along US Highway 50, Reno County, KS using Terrestrial LiDAR

    E-Print Network [OSTI]

    Herrs, Andrew J.

    2010-04-23

    by Brett Bennett of the Kansas Geological Survey. Initial scouting of the study area was done with the help of Bob Henthorne from KDOT. LiDAR acquisition at each project site was accomplished with the help of Nick Laskares, Willy Rittase, Ken Stalder..., Mike Taylor, Lynn Watney, the Hutchinson KDOT maintenance crew, and KDOT’s Salina Regional Geology Department. Kwan Yee Cheng and Richard Styron also helped with plotting data in MATLAB. ArcMap techniques were demonstrated by Prabin Shilpakar from...

  7. Fluid Dynamics Conference and Exhibit AIAA-2005-1280 10-13 January, 2005/ Reno, NV.

    E-Print Network [OSTI]

    Mittal, Rajat

    -flow is a difficult proposition. Turbulent diffusion and dissipation have a significant effect on the size simulations in the past have employed dissipative schemes in conjunction with relatively coarse meshes, which,14 is an approach which is well suited for this type of flow problem. The LES methodology falls somewhere between

  8. Aerosciences Conference, Reno, Nevada Gust Energy Extraction for Mini-and Micro-

    E-Print Network [OSTI]

    Langelaan, Jack W.

    model of a glider with elevators as the sole control input is used for the aircraft and feedback control laws for energy extraction are discussed. Using current measurements of wind speed and gra- dient proposed here seeks to exploit disturbances to enhance range and endurance. Urban environments

  9. DOE - Office of Legacy Management -- U S Bureau of Mines Reno Station - NV

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OHStarTracerlab Inc -TwinUT 01

  10. Sierra Nevada-Basin and Range Transition Near Reno, Nevada: Two-Stage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation,Show MeSolarSierra Nevada

  11. GRR workshop at GRC scheduled for 10/2 in Reno, NV | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware) Jump to:GISGRR Workshop atGRR

  12. EECBG Success Story: Saving Money in Reno's Wind Tunnels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of EnergyDepartmentDepartment of

  13. Microsoft Word - DOE-ID-14-010 Nevada Reno B1-31.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete andGoniometer-based Femtosecond65 SECTION04

  14. Microsoft Word - DOE-ID-14-079 Nevada Reno EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete andGoniometer-based Femtosecond6561 SECTION

  15. Microsoft Word - DOE-ID-15-020 Nevada Reno B2-2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete andGoniometer-based Femtosecond6561 SECTION809

  16. Second Virtual CiSoft Academy; A success! The 2011 CiSoft Academy was

    E-Print Network [OSTI]

    Shahabi, Cyrus

    with the opportunity to gain invaluable insight on Smart Oilfield Technologies (SOFT) for the digital oilfield more [Smart Oilfield Technology] information to Chevron's talent. It is certainly one of the most

  17. The idea of digital oilfields, i.e., with unmanned exploration unities, is a strong trend in the oil & gas

    E-Print Network [OSTI]

    Barbosa, Alberto

    . This paper presents a system called vrois (Portuguese acronym for Remote Visualization of Subsea Installation Graphics and Virtual Reality resources, follow subsea operations in "extended real time" using

  18. Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley-fill Sandstone, Pleasant Prairie Oilfield, Haskell County, Kansas

    E-Print Network [OSTI]

    Senior, Peter

    2012-12-31

    of modeled original oil in place to production data suggests inaccuracy of reservoir models at the scale of individual well drainage areas. Waterflooding of the reservoir has proven successful for >10 years, and remaining oil in place ranges from 7.8&ndash...

  19. USCEngineeringNews Published by the University of Southern California Spring 2005

    E-Print Network [OSTI]

    Zhou, Chongwu

    . Distance Learning Goes International DEN Partners With ChevronTexaco to Offer `Smart Oilfield' Classes. have announced an agreement to offer DEN's "smart oilfield technologies" program to Chevron

  20. Improved understanding of geologic CO2 storage processes requires risk-driven field experiments

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01

    characterization including seismic interpretations. These site-selection criteria suggest that an oilfield

  1. Demo Abstract: A Sensornet-inspired Underwater Acoustic Modem for Wake-up and Data

    E-Print Network [OSTI]

    Heidemann, John

    Soft (the Center for Interactive Smart Oilfield Technologies), a joint venture be- tween the University

  2. Underwater Sensor Networking: Research Challenges and Potential Applications

    E-Print Network [OSTI]

    Heidemann, John

    Corporation, and by CiSoft (Center for Interactive Smart Oilfield Technologies), a Center of Research

  3. Rankbox: An Adaptive Ranking System for Mining Complex Semantic Relationships Using User Feedback

    E-Print Network [OSTI]

    Hwang, Kai

    project, Cen- ter for Interactive Smart Oilfield Technologies (CiSoft), at the University of Southern

  4. USC Engineering began in 1905 Student Population

    E-Print Network [OSTI]

    Southern California, University of

    -Lockheed Martin Quantum Computation Center » Center for Interactive Smart Oilfield Technologies (CiSoft) » Pratt

  5. Perks and Culture Competitive compensation

    E-Print Network [OSTI]

    Ghosh, Joydeep

    of systems to enable Chevron's digital oilfield strategy, such as a system for remotely monitoring production

  6. University of soUthern California fOundEd: USC engineering began in 1905

    E-Print Network [OSTI]

    Zhou, Chongwu

    in aerospace industry. · Center for Interactive Smart Oilfield Technologies (CiSOFT) A USCChevron collaboration

  7. Change Detection in Time Series Data Using Wavelet Footprints

    E-Print Network [OSTI]

    Shahabi, Cyrus

    's Center of Excellence for Research and Aca- demic Training on Interactive Smart Oilfield Technologies (Ci

  8. Semantic web technologies for smart oil field applications Ramakrishna Soma1

    E-Print Network [OSTI]

    Hwang, Kai

    for Interactive Smart Oilfield Technologies at the University of Southern California, Los Angeles[17

  9. Large-Scale Utilization of Saline Groundwater for Irrigation of Pistachios Interplanted with Cotton

    E-Print Network [OSTI]

    Sanden, Blake; Ferguson, Louise; Kallsen, Craig E.; Marsh, Brian; Hutmacher, Robert B.; Corwin, Dennis

    2009-01-01

    by contamination from oilfield leachate water. Severalaquifer by oil field leachate water, the average salinity of

  10. 45th AIAA Aerospace Sciences Meeting AIAA-2007-0874 January 8-11, 2007 Reno, NV

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    size of the resonator (usually the order of 1m for meso-scale CRDS) to several kilometers. Through limitations on the meso-scale CRDS technique. The intensity of the light coupled into and out of the cavity

  11. Advanced seismic imaging for geothermal development John N. Louie*, Nevada Seismological Laboratory, University of Nevada, Reno; Satish K. Pullammanappallil

    E-Print Network [OSTI]

    In the geothermal fields of the Great Basin physiographic province of western North America, drilling success to be the only effective geophysical means of accurately targeting geothermal drilling. At target depths of 1 direct exploration or development within a field, and geothermal exploration drilling in the region has

  12. 44rd Aerospace Sciences Meeting, January 9-12,2006, Reno,NV Aerodynamic Simulation and Shape Optimization for

    E-Print Network [OSTI]

    Jameson, Antony

    algorithms for unstructured meshes, represented by the Airplane Code, and on adjoint based optimization techniques. It seems a particularly opportune moment to review the Airplane Code, because we originally at this Symposium. While much of Boggy's research was focused on experimental studies of supersonic shock wave

  13. 45th AIAA Aerospace Sciences Meeting and Exhibit AIAA-2007-0466 Reno, Nevada, 8 -11 Jan 2007

    E-Print Network [OSTI]

    Seitzman, Jerry M.

    and quenching applied to detailed chemical kinetic models for gaseous and liquid fuels used in gas turbine hydrocarbon-air flames.1 Chemiluminescence from a species can provide information on the concentration of its species show promise for an equivalence ratio sensor in both gaseous and liquid systems.2

  14. 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 1013, Reno, Nevada VLES Study of MUST Experiment

    E-Print Network [OSTI]

    Löhner, Rainald

    the last decade1 . CFD models can provide a precise and detailed prediction of the wind and turbulence modeling in LES16 , hybrid LES/RANS8, 17 . The spatial variations and unsteadiness of the flow in an urban is the Mock Urban Setting Test (MUST) carried out at Dugway Proving Ground. The MUST experiment was designed

  15. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Jan 1013, Reno, Nevada Direct numerical simulation of turbulent jets in crossflow

    E-Print Network [OSTI]

    Mahesh, Krishnan

    simulation of turbulent jets in crossflow Suman Muppidi and Krishnan Mahesh University of Minnesota, Minneapolis, MN, 55455, USA Direct numerical simulations are used to study a round turbulent jet in a laminar crossflow. The velocity ratio of the jet to that of the crossflow is 5.7 and the Reynolds number based

  16. 44th AIAA Aerospace Sciences Meeting and Exhibit, Jan 912, Reno, Nevada Passive scalar mixing in jets in crossflow

    E-Print Network [OSTI]

    Mahesh, Krishnan

    in jets in crossflow Suman Muppidi and Krishnan Mahesh University of Minnesota, Minneapolis, MN, 55455 turbulent jet in a laminar crossflow. The velocity ratio of the jet to that of the crossflow is 5.7, the Schmidt number of the scalar is 1.49, and the jet­exit Reynolds number is 5000. The scalar field is used

  17. Aerospace Sciences Meeting and Exhibit, January 811, 2007, Reno, Nevada An Investigation of the Attainable Efficiency of Flight

    E-Print Network [OSTI]

    Jameson, Antony

    Concorde) to 9.5 (second generation supersonic transport designs). The Lockheed SR71 achieved a lift

  18. Other Participants 2000 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Paul M. Dorman High School , Spartanburgh , SC Punahou Academic High School , Honolulu , HI Reno High School , Reno , NV Shawnee Mission South High School , Shawnee Mission , KS...

  19. An Examination of Cultural Values and Employees' Perceptions of Support on Affective Reaction and the Desire to Participate in a Formal Mentoring Program in an Oilfield Services Corporation 

    E-Print Network [OSTI]

    Hayes, Hanna Bea

    2012-07-16

    of Perceived Organizational Support and Cultural Values ? Russia & Caspian???????????????????????? 126 11 Structural Model of Perceived Organizational Support and Cultural Values ? Eastern Hemisphere???????????????????????... 128 12 Structural...?????????????????????????????? 126 41 Model Fit Indices of Structural Model of Perceived Organizational Support and Cultural Values ? Russia & Caspian???????????????????. 127 42 Summary Table for Perceived Organizational Support and Cultural Values ? Russia & Caspian...

  20. THREE DIMENSIONAL SLOPE STABILITY Timothy D. Stark, Ph.D, PE

    E-Print Network [OSTI]

    A paper submitted to Proceedings of: National Science Foundation Grantees Meeting Reno, Nevada March 27

  1. Follow Futures: @NatureFutures

    E-Print Network [OSTI]

    Loss, Daniel

    the photon! Spilled my tea while thinking about this, because my hands are trembling -- with excitement of alternate dimensions, green aliens o

  2. Date Days OCE Title Presenter / Sponsoring Organization Time Location 1 1/23/13 Wednesday Classroom Success Kate Forynna 6:00PM Downtown Library Rm. 104 Yes

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Unconventional Shale R&D: Flow back/Produced Water Treatment," MAE/ Jason Trembly 1:30PM ESB 201 Yes 36 3

  3. 2010 Society of Petroleum Engineers John Franklin Carll Distinguished

    E-Print Network [OSTI]

    Zhou, Chongwu

    Smart Oilfield Technologies (CiSofT) #12;Olin Hall 500 Los Angeles CA 90089-1451 http Distinguished Service Award in 2005 and the Technology Trans- fer Award for Development of the Smart Oilfield

  4. Anand V. Panangadan University of Southern California

    E-Print Network [OSTI]

    Panangadan, Anand

    ) Earth science (NASA JPL) Oil and gas (Center for Interactive Smart Oilfield Technologies at USC for Interactive Smart Oilfield Technologies (CiSoft), USC This project aims to develop methods to rapidly

  5. Essentials for Modern Data Analysis Systems Mehrdad Jahangiri, Cyrus Shahabi

    E-Print Network [OSTI]

    Shahabi, Cyrus

    on Interactive Smart Oilfield Technologies (CiSoft); CiSoft is a joint University of Southern California

  6. Understanding Spatio-Temporal Uncertainty in Medium Access with ALOHA Protocols

    E-Print Network [OSTI]

    Heidemann, John

    for Interactive Smart Oilfield Technologies (CiSoft). Permission to make digital or hard copies of all or part

  7. Research Challenges and Applications for Underwater Sensor Networking

    E-Print Network [OSTI]

    Heidemann, John

    ., and by Chevron Co. through USC Center for Interactive Smart Oilfield Technologies (CiSoft). the seismic survey

  8. Ultra-Low Duty Cycle MAC with Scheduled Channel Polling Wei Ye, Fabio Silva, and John Heidemann

    E-Print Network [OSTI]

    Heidemann, John

    ., and by Chevron Co. through the USC Center for Interactive Smart Oilfield Technologies (CiSoft). Permission

  9. SHIFT-SPLIT: I/O Efficient Maintenance of Wavelet-Transformed Multidimensional Data

    E-Print Network [OSTI]

    Shahabi, Cyrus

    on Interactive Smart Oilfield Technologies (CiSoft); CiSoft is a joint University of Southern California

  10. Tones for Real: Managing Multipath in Underwater Acoustic Wakeup

    E-Print Network [OSTI]

    Heidemann, John

    and Sensor Networks", and by Chevron Co. through USC Center for Interactive Smart Oilfield Technolo- gies (Ci

  11. Data Muling with Mobile Phones for Sensornets ISI Technical Report ISI-TR-673b

    E-Print Network [OSTI]

    Heidemann, John

    , "Sensor-Internet Sharing and Search" and by CiSoft (Center for Interactive Smart Oilfield Technologies

  12. Demo Abstract: Bringing Sensor Networks Underwater with Low-Power Acoustic Communications

    E-Print Network [OSTI]

    Heidemann, John

    - 0708946, and CNS-0821750, and by CiSoft (the Center for Interactive Smart Oilfield Technologies), a joint

  13. Data Muling with Mobile Phones for Sensornets Information Sciences Institute

    E-Print Network [OSTI]

    Heidemann, John

    -Internet Sharing and Search" and by CiSoft (Center for Interactive Smart Oilfield Technologies), a Center

  14. Congratulation to the USC researchers for their achievement in the DARPA

    E-Print Network [OSTI]

    Hwang, Kai

    at the Center for Interactive Smart Oilfield Technologies (CiSoft), Ajitesh Srivastava (CS PhD), Anand

  15. Underwater Networking Research at USC/ISI John Heidemann Wei Ye Jack Wills

    E-Print Network [OSTI]

    Heidemann, John

    , by a hardware donation from Intel Co., and by Chevron Co. through USC Center for Interactive Smart Oilfield

  16. Frontiers of Energy Resources Sunday,June 28th

    E-Print Network [OSTI]

    Shahabi, Cyrus

    How Information Technology Enables the Digital Oilfield RTH 324 Mr. Jim Crompton 2:30 pm Solar Energy

  17. Low-Power Acoustic Modem for Dense Underwater Sensor Jack Wills, Wei Ye, and John Heidemann

    E-Print Network [OSTI]

    Heidemann, John

    )". It is also partly supported by Chevron Co. through the USC Center for Interactive Smart Oilfield Technologies

  18. Reconfigurable Architectures Workshop (RAW) 2015 Keynote Talk

    E-Print Network [OSTI]

    Vaidyanathan, Ramachandran "Vaidy"

    of the USC-Chevron Center of Excellence for Research and Academic Training on Interactive Smart Oilfield

  19. Time Synchronization for High Latency Acoustic Networks ISI-TR-2005-602

    E-Print Network [OSTI]

    Heidemann, John

    . It is also partly sup- ported by CiSoft (Center for Interactive Smart Oilfield Technolo- gies), a Center

  20. T-Lohi: A New Class of MAC Protocols for Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Heidemann, John

    for Interactive Smart Oilfield Technologies (CiSoft). Permission to make digital or hard copies of all or part

  1. ProDA: A Suite of Web-Services for Progressive Data Analysis

    E-Print Network [OSTI]

    Shahabi, Cyrus

    and Aca- demic Training on Interactive Smart Oilfield Technologies (CiSoft); CiSoft is a joint University

  2. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  3. Long-timescale interaction of CO2 storage with reservoir and seal: Miller and Brae natural analogue fields North Sea

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Research Centre, 58 Exhibition Road, London SW7 2PG Abstract The Miller oilfield may form the first UK

  4. EA-1583: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3 Site-wide Environmental Assessment, Wyoming

  5. 44th AIAA Aerospace Sciences Meeting and Exhibit, January 912, 2006 Reno, Nevada Application of the Time Spectral Method to Periodic

    E-Print Network [OSTI]

    Jameson, Antony

    of the body. Practical examples of this type include helicopter rotor blades in forward flight, rotor and efficient computation of periodic unsteady flows. The algorithm has been validated with both 2D and 3D test

  6. 45th AIAA Aerospace Sciences Meeting & Exhibit, 8-11 Jan, 2007, Reno, NV Euler Solutions of Flow around a Rectangular Wing

    E-Print Network [OSTI]

    Liu, Feng

    helicopter rotor blades and propeller blades interact with following blades causing rotor noise and vibration of the wing are computed by the Euler method and validated by a comprehensive wind-tunnel test data theories was given by Spalart.1 Wind-tunnel tests produce flow fields of good quality and accurate

  7. 45th AIAA Aerospace Science Meeting and Exhibit, 8-11 January 2007, Reno, Nevada Verified Computations of Laminar Premixed Flames

    E-Print Network [OSTI]

    Computations of Laminar Premixed Flames Ashraf N. Al-Khateeb , Joseph M. Powers , and Samuel Paolucci all detailed continuum physics in the re- action zone for one-dimensional steady laminar premixed/or unsteady laminar premixed flame simulations in the literature. I. Introduction It is well understood

  8. 46th AIAA Aerospace Science Meeting and Exhibit, 7-10 January 2008, Reno, Nevada Shock-Fitted Calculation of Unsteady Detonation in

    E-Print Network [OSTI]

    Mexico, 87545, USA Joseph M. Powers , University of Notre Dame, Notre Dame, Indiana, 46556-5637, USA numerical corruption negligible. As a result, mathematically verified solutions for a mixture initially such results was the use of a shock-fitting technique so as to avoid the corrupting influences of common shock

  9. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 Jan 2005, Reno, NV An Unsteady/Flamelet Progress Variable Method for

    E-Print Network [OSTI]

    Pitsch, Heinz

    and velocity fluctuations, temperature, CO2, and CO mole fractions. The results agree reasonably well quantities of all scalar values as function of the filtered mixture fraction, the mixture fraction sub

  10. 44th AIAA Aerospace Sciences Meeting and Exhibit, 9-12 January 2006, Reno, Nevada Accurate Estimates of Fine Scale Reaction Zone

    E-Print Network [OSTI]

    employed in simulations of combustion in engineer- ing devices, it is suggested that one potential dynamics. Another recent study4 which included both computational predictions and observations of pulse

  11. 43rd AIAA Aerospace Sciences Meeting and Exhibit, 10-13 January 2005, Reno, Nevada Highly Accurate Numerical Simulations of Pulsating

    E-Print Network [OSTI]

    that the number of transistors per integrated circuit doubles roughly every year, is a popular embodiment Mexico, 87545, USA Joseph M. Powers University of Notre Dame, Notre Dame, Indiana, 46556-5637, USA) storage capacity, and parallel architecture design. Less celebrated, but perhaps even more important

  12. 45th AIAA Aerospace Sciences Meeting and Exhibit, January 811, 2007/Reno, NV Integrated RANS/LES Computations of an Entire

    E-Print Network [OSTI]

    Alonso, Juan J.

    accurately. Today's use of Computational Fluid Dynamics (CFD) in gas turbine design is usually limited to com, leading to improved predictions of the combustion process,.3 LES flow solvers have been shown in the past

  13. 43rd AIAA Aerospace Sciences Meeting and Exhibit, January 1013, 2005/Reno, NV Preliminary Study of the SGS Time Scales for

    E-Print Network [OSTI]

    Martín, Pino

    , the contribution of the large, energy-carrying structures to momentum and energy transfer is computed exactly. This is in part due to (1) the increased complexity introduced by the need to solve an energy equation, which a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes

  14. 1) Plan of Work: United States Geological Survey Seismic Imaging Study in the Cities of Reno and Sparks, Nevada, June 2009

    E-Print Network [OSTI]

    . Acquisition along the Truckee River Path will extend west from Rock Blvd., run along #12;2 Mill St. between. Survey work, during daylight hours only, will extend along the River west from Rock Blvd., through traffic. The truck-mounted vibrator will creep about 1 mile per day along the River path, street parking

  15. 45th AIAA Aerospace Science Meeting and Exhibit, January 811, 2005/Reno, Nevada Analysis of Shock Motion in STBLI Induced by a

    E-Print Network [OSTI]

    Martín, Pino

    of scram-jet engines and hypersonic vehicles. However, many aspects of the problem such as dynamics Mechanical and Aerospace Engineering Department Princeton University, Princeton, NJ 08540 DNS data of a 24

  16. The 7th World Congress on Biomimetics, Artificial Muscles and Nano-Bio(BAMN2013) August 26-30, Jeju Island, South Korea

    E-Print Network [OSTI]

    Leang, Kam K.

    * Department of Mechanical Engineering, University of Nevada-Reno, Reno, Nevada, USA * Tel: +1.775.784.7782; E fish-like propulsors, robotic manipulators, biomedical devices, and sensors in prosthetic systems[1

  17. Workshop to Examine Outlook for State and Federal Policies to...

    Broader source: Energy.gov (indexed) [DOE]

    RENO, Nev. Experts from around the country will discuss the outlook for state and federal policies to help expand geothermal energy at an all-day workshop scheduled for Reno,...

  18. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  19. Software Tool for Naval Surface Warfare Simulation and Training

    E-Print Network [OSTI]

    Dascalu, Sergiu

    and Engineering 1664 N. Virginia St., MS 171 Reno, NV, 89523, USA E-mail: dascalus@cse.unr.edu Phone: +1 University, MN, USA Department of Computer Science P.O. Box 5838, 103 Watkins Hall Winona, MN 55987, USA E, Reno, Department of Computer Science and Engineering 1664 N. Virginia St., MS 171, Reno, NV, 89523, USA

  20. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for

    E-Print Network [OSTI]

    Kelly, John J.

    species. Quaking aspen (Populus tremuloides), white willow (Salix alba), and sugar maple (Acer saccharum-trembles (Populus tremuloides), des saules blancs (Salix alba) et des érables à sucre (Acer saccharum) dans des

  1. INTERNATIONAL CITY GUIDE FOR THOSE THINKING OF MOVING KOSHY SAMUEL

    E-Print Network [OSTI]

    Strathclyde, University of

    IN DUBAI, UAE JOB: GLOBAL BUSINESS MANAGEMENT FOR OILFIELD SERVICES - SCHLUMBERGER FAVOURITE MEMORY since leaving University? PROGRESSING WELL IN SCHLUMBERGER AND THE WORLD WITH DEVELOPING MY PERSONAL

  2. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    CO (United States) Rocky Flats Field Office, Golden, CO (United States) Rocky Mountain Oilfield Testing Center, Casper, WY (United States) S. M. Stoller (United States) SLAC...

  3. Proceedings of the 40th Annual Simulation Symposium, March 2628, 2007, Norfolk, Virginia, pp. 194203

    E-Print Network [OSTI]

    Rice, Stephen V.

    categorization, is proposed for characterizing resources. Such a characterization, or resource "profile," serves tank), an electronic resource (a web service), and a living resource (an oilfield employee). 1

  4. Special Section Microseismicity: Beyond dots in a box --Introduction

    E-Print Network [OSTI]

    Foulger, G. R.

    in volcanological, geothermal, and mining settings, but one of the key advantages in oilfield monitoring- bore failure · imaging fault and fracture orientations and their reactivation · characterizing seismic

  5. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:2. Production Active oil production occurs from 209 oilfields (CDC-DOGGR 2006). Oil production in California occurs

  6. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:2. Production Active oil production occurs from 209 oilfields (CDC-DOGGR 2006). Oil production in California occurs

  7. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Golden, CO (United States) Rocky Flats Field Office, Golden, CO (United States) Rocky Mountain Oilfield Testing Center, Casper, WY (United States) S. M. Stoller (United States)...

  8. 2013 Annual Planning Summary for the National Energy Technology...

    Office of Environmental Management (EM)

    for the New Brunswick Laboratory 2013 Annual Planning Summary for the Rocky Mountain Oilfield Testing Center 2013 Annual Planning Summary for the Strategic Petroleum Reserve...

  9. Advance Patent Waiver W(A)2012-013

    Broader source: Energy.gov [DOE]

    This is a request by BAKER HUGHES OILFIELD OPERATIONS, INC. for a DOE Advance patent waiver of domestic and foreign patent rights under agreement DE-EE0005505.

  10. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FE0025387 PRA Multiple sites in AK Environmental Resources Management Alaska Inc. (ERM); Loundsbury & Associates, Inc.; Peak Oilfield Services Company, LLC; Maritime Helicopters...

  11. Frontiers of Energy Resources Saturday, June 26th

    E-Print Network [OSTI]

    Shahabi, Cyrus

    the Digital Oilfield RTH 324 Mr.Jim Brink 12:00 pm Lunch EVK 1:30 pm Technology with Sensors RTH 324 Dr

  12. EA-1604: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Potable Water Line at the Rocky Mountain Oilfield Testing Center/Naval Petroleum Reserve No. 3, Natrona County, Wyoming

  13. 5

    E-Print Network [OSTI]

    2009-06-07

    examples of oilfield subsidence include the Wilmington-Long Beach field in ...... rock were saturated with water, which has a compressibility of 5 x lod IMPa, eqn.

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) Rocky Flats Environmental Technology Site, Golden, CO (United States) Rocky Flats Field Office, Golden, CO (United States) Rocky Mountain Oilfield Testing Center, Casper,...

  15. EA-1956: Site-Wide Environmental Assessment for the Divestiture...

    Office of Environmental Management (EM)

    Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming EA-1956: Site-Wide Environmental Assessment...

  16. Project House Dedication - 8 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    ) (11) Burke, N. E., Curtice, S., Little, C.T" and Seibert, A. F" Remoyal of Hydrocar;bons fr;om Oil-Field Brines by Flocculation with Car;bon Dioxide, SPE International Symposium on Oilfield Chemistry, SPE 21046, P 457 (1991). 102 in equilibrium...., Little, C.T., and Seibert, A. F., Remoyal of Hydrocarbons fz;om Oil-Field Brines by Flocculation with Caz;bon Dioxide, SPE International Symposium on Oilfield Chemistry, SPE 21046, P 457 (1991). ESL-IE-91-06-23 Proceedings from the 13th National...

  17. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    E-Print Network [OSTI]

    Birkle, P.

    2009-01-01

    11 to 48 m 3 /d]. Recently, PEMEX initiated an aggressiveand Petróleos Mexicanos (PEMEX, Subdirección Region Norte),oilfield. Thanks to the PEMEX administration for the

  18. Increase Natural Gas Energy Efficiency | OpenEI Community

    Open Energy Info (EERE)

    Due to Increased Investment in Offshore Exploration Projects Combined Heat and Power (CHP) Installation Market to be Driven by Abundant Availability of Natural Gas Oilfield...

  19. Implications of Channelization and

    E-Print Network [OSTI]

    Gray, Matthew

    · Dams · Highways · Irrigation · Levees · Oilfield Canals · Channelization Reasons for Channelization rare Hatchie River burrowing crayfish · TNC "Last Great Place" list BLH Forests · Structurally diverse

  20. Water 2013, 5, 480-504; doi:10.3390/w5020480 ISSN 2073-4441

    E-Print Network [OSTI]

    to characterize geochemical processes in a complex coastal groundwater system and to provide constraints of native groundwater, intruded seawater, non-native injected water, and oil-field brine water. In some with oil-field brines. Groundwater 3 H above 1 tritium unit (TU) was observed only in a few select wells

  1. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Zhou, Chongwu

    for Composites Research and the Center for Interactive Smart Oilfield Technologies. I invite you to inspect to the Mork Family Department's interdisciplinary research juggernaut. The Center for Interactive Smart Oilfield Technologies, funded by Chevron, USC's most successful partnership with indus try, is developing

  2. txH2O: Volume 1, Number 1 (Complete) 

    E-Print Network [OSTI]

    Texas Water Resources Institute

    2005-01-01

    patented capacitive deionization technology ? Finding methods to desalinate brackish and saline groundwater, and treat oilfield- produced water ? Evaluating operational issues related to proposed desalination plants ? Modeling how salinity constraints... and suspended solids ? Developing data about water quality parameters associated with oilfield- produced water ? Assessing whether additional water via desalination may improve long-term peace between Israel and the Gaza Strip Lamar University ? Comparing...

  3. The Future of Desalination in Texas 

    E-Print Network [OSTI]

    Crawford, Amanda

    2005-01-01

    oilfield- produced water ? Evaluating operational issues related to proposed desalination plants ? Modeling how salinity constraints affect usable water yield in river and reservoir systems University of Texas at Austin ? Differentiating traits... that optimize pretreatment processes ? Assessing use of certain membranes to treat waters with high levels of dissolved organic matter and suspended solids ? Developing data about water quality parameters associated with oilfield- produced water...

  4. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    76DP00789",,"Conference",,,"Conference: 3. annual systems simulation, economic analysissolar heating and cooling operational results conference, Reno, NV, USA, 27 Apr...

  5. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    CO (United States) Department of Energy's (DOE) Nuclear Energy (NE) Radioisotope Power Systems (RPS) Program Desert Research Institute, Nevada University, Reno, NV (United...

  6. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS...

  7. Geothermal Site Assessment Using the National Geothermal Data...

    Open Energy Info (EERE)

    Company Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studiesexamples,...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    CO (United States) Department of Energy's (DOE) Nuclear Energy (NE) Radioisotope Power Systems (RPS) Program Desert Research Institute, Nevada University, Reno, NV (United...

  9. Sandia Energy - Sandia Student Wins Best Paper Award at IEEE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Photovoltaic and Distributed Systems Dept. Matthew Reno, a Sandian and an electrical engineering PhD candidate at the Georgia Institute of Technology, was given a Best...

  10. Exploration and Development Techniques for Basin and Range Geothermal...

    Open Energy Info (EERE)

    Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

  11. Why Basin and Range Systems are Hard to Find II- Structural Model...

    Open Energy Info (EERE)

    geothermal reservoir definition and development. Authors David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards and Patrick Stepp Conference GRC Annual Meeting; Reno,...

  12. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS technology...

  13. Search for: All records | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reno, NV (United States) EERE Publication and Product Library East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States) Energy Frontier Research Centers Energy...

  14. 540 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 39, NO. 3, JULY 2014 Monolithic IPMC Fins for Propulsion and

    E-Print Network [OSTI]

    Leang, Kam K.

    and torque, as well as its effectiveness as a fish-fin-like propulsor. The experimental results show be exploited to create novel and efficient propulsors for next-generation underwater robotic vehicles- oratory, Department of Mechanical Engineering, University of Nevada­Reno, Reno, NV 89557-0312 USA. K. J

  15. United States Department of Agriculture Forest Service

    E-Print Network [OSTI]

    of the USDA Forest Service, Tahoe Regional Planning Agency, University of California at Davis, University at Davis, the University of Nevada at Reno, and the Desert Research Institute, Reno, Nevada. #12;Lake Tahoe Senator Harry Reid, President Bill Clinton and Vice President Al Gore

  16. Neotectonics, geodesy, and seismic hazard in the Northern Walker Lane of Western North America: Thirty kilometers of crustal shear and no strike-slip?

    E-Print Network [OSTI]

    , University of Nevada, Reno 89557, United States b Nevada Geodetic Laboratory, Nevada Bureau of Mines and Geology, 89557, United States c Nevada Seismological Laboratory, University of Nevada, Reno 89557, United States a b s t r a c ta r t i c l e i n f o Article history: Received 2 January 2012 Received in revised

  17. M i C tMeasuring Costs presented bypresented by

    E-Print Network [OSTI]

    M i C tMeasuring Costs presented bypresented by Arlee Reno, Senior Vice PresidentArlee Reno, Senior leadership you can trust. #12;Measuring Costs Objective of presentation: cover all aspects of costs Costs are generally considered to be the costs of the transportation facilitytransportation facility Most "benefits

  18. ModelML: a Markup Language for Automatic Model Synthesis Cong Zhang Amol Bakshi Viktor K. Prasanna

    E-Print Network [OSTI]

    Hwang, Kai

    are developed based on an exhaustive characterization of the underlying domain, and are used by the designer Management (IAM) project at the Chevron- funded Center for Interactive Smart Oilfield Technologies

  19. The American Association of Petroleum Geologists Bulletin V 63, No. 6 (June 1979), P. 870-885. 6 Figs,

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    of the stratigraphic distribution of both known oil and giant oil-field reser- voirs by many workers has indicated characterize this period but three stand out that are relevant to exploration for giant oil fields (i

  20. Episodes, Vol. 32, no. 3 by Zhijun Jina

    E-Print Network [OSTI]

    Wang, Yang

    , Tallahassee, FL 32306-4100, USA d Daqing oilfield Branch Company, PetroChina, Heilongjiang 163712, China e, characterized by a typical `two-layer' structural pattern. The lower layer consists of a late Jurassic

  1. PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Canadian Research Knowledge Network

    E-Print Network [OSTI]

    Hossain, M. Enamul

    experiments for simulating a given oilfield operation. Dimensional analysis is used to derive scaling groups. A scaled model is designed on the basis of the principle of similarity. Such a model is characterized

  2. INTRODUCTION The evolution of permeability and porosity in porous, sedimentary

    E-Print Network [OSTI]

    of experiments designed to characterize the coupled mechanical and hydraulic properties of rock due reservoir rock in the North Sea oilfield. The sandstone is a pale fawn, medium- to coarse-grained (250

  3. DEVELOPMENT OF A POLITICAL SCIENCE THESAURUS

    E-Print Network [OSTI]

    Cerny, Barbara A.

    2013-01-01

    12 r~l3. 28. 30 MB.32 Ml3.35 (By resources) Oil resourcesOffshore oil resources Oilfields Shale oil resources Natural gas resources Offshore

  4. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    Production, 1993 3. Crude Oil Production, 1993 4. Naturaland fall of Chinese oil production in the 1980s, in Energy1980-1992 13. Crude Oil Production by Oilfield, 1950-1994^

  5. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    2B.9. China's Crude Oil Production by Oilfield, 1950-2006Indicators of Crude Oil Production, 1970-2006 Table 2B.11.2006 Figure 2B.5. Crude Oil Production by Region, 1950-2006

  6. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-for 44.8% of China’s total oil production in 2006, a drop ofgas, a by-product of oil production, has been used primarily

  7. China Energy Primer

    E-Print Network [OSTI]

    Ni, Chun Chun

    2010-01-01

    42 Figure 2-11 Crude Oil Production by Oilfield (1980-Stabilize the increase in crude oil production and implementSinopec CNOOC China’s crude oil production increased from

  8. China Energy Databook - Rev. 4

    E-Print Network [OSTI]

    Sinton Editor, J.E.

    2010-01-01

    Production, 1993 3. Crude Oil Production, 1993 4. Natural1980-1992 13. Crude Oil Production by Oilfield, 1950-1994^Technical Indicators of Crude Oil Production, 1970-1992 15.

  9. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    Table 2B.9. China's Crude Oil Production by Oilfield, 1950-Indicators of Crude Oil Production, 1970-2006 Table 2B.11.2006 Figure 2B.5. Crude Oil Production by Region, 1950-2006

  10. Multi-echelon inventory optimization for an oil services company

    E-Print Network [OSTI]

    Chalapong, Michael

    2011-01-01

    In the oilfield services industry, healthy margins and the criticality of product availability have often over shadowed the need for operational efficiency. Although those factors have not changed, the emergence of stronger ...

  11. A Human news summaries 1 B Mechanical Turk task 3

    E-Print Network [OSTI]

    Taskar, Ben

    -running conflict. Russia-Japan-China-oil-pipeline MOSCOW: Russia said it had ordered the construction of an oil pipeline from its huge Siberian oilfields to the Pacific Ocean opposite Japan, in a move to boost export

  12. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect (OSTI)

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  13. Genesis of fault hosted carbonate fracture cements in a naturally high CO2 province, South Viking Graben, UK North Sea 

    E-Print Network [OSTI]

    Lee, David Robert

    2013-07-01

    The Late Jurassic Brae oilfields in the South Viking Graben of the northern North Sea contain naturally high concentrations of carbon dioxide (up to 35 mol %). Fields immediately adjacent to the graben bounding fault ...

  14. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01

    known to exacerbate corrosion of pipeline surfaces (3, 27).Canada. Abstract Corrosion of metallic oilfield pipelines bypipeline failure. In fact, it has long been known that microbes contribute to corrosion

  15. Vertically Loaded Anchor: Drag Coefficient, Fall Velocity, and Penetration Depth using Laboratory Measurements 

    E-Print Network [OSTI]

    Cenac, William

    2011-08-08

    The offshore oilfield industry is continuously developing unique and break-through technologies and systems to extract hydrocarbons from ever increasing ocean depths. Due to the extreme depths being explored presently, large anchors are being...

  16. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Hochberg, Michael

    or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most (e.g., in deep- sea oil-fields) or disaster prevention [1]. Wireless acoustic communication

  17. I I

    Office of Scientific and Technical Information (OSTI)

    e" Practical Hot Oiling and Hot Watering for Paraffin Control* A.J.Mansure SandiaNational Laboratories K.M. Barker Petrolite ABSTRACT One of the common oil-field wellbore problems...

  18. High-energy photon transport modeling for oil-well logging

    E-Print Network [OSTI]

    Johnson, Erik D., Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Nuclear oil well logging tools utilizing radioisotope sources of photons are used ubiquitously in oilfields throughout the world. Because of safety and security concerns, there is renewed interest in shifting to ...

  19. Performance evaluation of starch based polymer for enhanced oil recovery 

    E-Print Network [OSTI]

    Skurner, James Andrew

    1997-01-01

    Ever since the first petroleum well was drilled, water production has been a deterring force in maximizing an oilfield's hydrocarbon reserves. To satisfy the ever increasing global demand for petroleum, many different techniques for enhancing oil...

  20. Analysis of Desalination Processes for Treatment of Produced Water for Re-use as Irrigation Water 

    E-Print Network [OSTI]

    Bradt, Laura

    2012-04-20

    options in desalination plants include chemical, physical, and biological methods to create water for consumption and use. This research project defines the contaminants found in produced water and develops two oilfield water hypothetical cases. A...

  1. Fracture Detection and Water Sweep Characterization Using Single-well Imaging, Vertical Seismic Profiling and Cross-dipole Methods in Tight and Super-k Zones, Haradh II, Saudi Arabia 

    E-Print Network [OSTI]

    Aljeshi, Hussain Abdulhadi A.

    2012-07-16

    This work was conducted to help understand a premature and irregular water breakthrough which resulted from a waterflooding project in the increment II region of Haradh oilfield in Saudi Arabia using different geophysical methods. Oil wells cannot...

  2. Simulation Study for Improving Seawater Polymer Flood Performance in Stratified High Temperature Reservoirs 

    E-Print Network [OSTI]

    Niu, Geng

    2014-12-10

    Polymer flood has achieved technical and commercial success, especially for its large-scale application in the Daqing oilfield in China. However, previous field tests indicated polymer flood was not economically successful for high temperature...

  3. IGEOFLUIDS _

    E-Print Network [OSTI]

    gas/water contact is currently at a depth of 2450 m in. Field A and 2500 m ...... Constraining the oil charge history ofthe South Pepper oilField from the analysis of ...

  4. Pseudokarst topography in a humid environment caused by contaminant-induced colloidal dispersion 

    E-Print Network [OSTI]

    Sassen, Douglas Spencer

    2004-09-30

    with traditional piping erosion. In areas of sinkholes, geophysical measurements of apparent electrical conductivity delineated anomalously high conductivity levels that are interpreted as a brine release from a nearby oil-field waste injection well...

  5. Dissolution of Barite Scale using Chelating Agents 

    E-Print Network [OSTI]

    Shende, Aniket Vishwanath

    2012-07-16

    Barium sulfate scaling can cause many oilfield problems leading to loss of well productivity and well abandonment. Currently, diethylene triamine pentaacetic acid (DTPA) is used, along with synergist oxalic acid and potassium hydroxide, to remove...

  6. Flow assurance and multiphase pumping 

    E-Print Network [OSTI]

    Nikhar, Hemant G.

    2009-05-15

    ????????????????????????????????????????. xvii NOMENCLATURE???????????????????????????????????????. xviii 1. INTRODUCTION??????????????????????????????????????? 1 2. LITERATURE REVIEW???????????????????????????????????.. 5 Deepwater Oilfields???????????????????????????????????.. 7 Flow...????????????????????????????????.. 71 Limited Energy Reservoirs and Deep Waters???????????????????? 71 5. SOLIDS FORMATION AND DEPOSITION??????????????????????????. 72 Gas Hydrates??????????????????????????????????????? 72 Field Problems??????????????????????????????????????. 74...

  7. The Results (Lessons Learned) of More than 110 Energy Audits for Manufacturers by the Louisiana Industrial Assessment Center 

    E-Print Network [OSTI]

    Kozman, T.; Davies, T.; Reynolds, C.; O'Quin, R.; DaCosta, J.; Galti, T.; Pechon, C.; Stutes, K.

    2005-01-01

    and conducted its first industrial energy assessment in December 2000. In this paper we present the results of this energy assessment and those of 112 more through August 2004. By industrial type, these assessments were for: Oilfield Equipment Manufacturing (23...

  8. Comparative analysis of remaining oil saturation in waterflood patterns based on analytical modeling and simulation 

    E-Print Network [OSTI]

    Azimov, Anar Etibar

    2006-08-16

    in oilfield operations, making the method very attractive. The areal distribution technique estimates two major uncertainties: vertical loss of injected water into nontarget areas or areal loss into surrounding patterns, and injected water for gas fill...

  9. Molecular Simulation Study of Diverting Materials Used in Matrix Acidizing 

    E-Print Network [OSTI]

    Sultan, Abdullah S.

    2010-10-12

    Recently there has been a great deal of attention in the oilfield industry focused on the phenomenal properties of viscoelastic surfactants (VES). The interest is motivated by their applications as switchable smart fluids, their surface tension...

  10. Application of Membranes to Treatment of Water Based Exploration and Production Wastes 

    E-Print Network [OSTI]

    Olatubi, Oluwaseun Alfred

    2010-10-12

    Produced water and spent drilling fluids from petroleum operations represent a significant expense to companies developing new energy reserves. These spent fluids, seldom recycled, offer a viable source of water resources for oil-field reuse. A...

  11. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01

    West, C. : Highlighting heavy oil, Oilfield Rev. , 34–53,and enhancement of Mo-heavy oil interaction, Fuel, 83,sticky extra-heavy crude oil that is “unconventional”,

  12. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01

    in barrels per day Year Cantarell Other oilfields TotalOil: What the fall in Cantarell’s production means. ” 12To make matters worse Cantarell’s output is beginning to

  13. Increasing Return on Assets through insourcing logistics

    E-Print Network [OSTI]

    Ghose, Devjit

    2012-01-01

    Insourcing and vertical integration often allow companies to gain competitive advantage by exercising a greater degree of control over their supply chain. In the case of ABC Oilfield Services, insourcing the transportation ...

  14. Robust and Real-Time Image Stabilization and Rectification Dan Koppel1

    E-Print Network [OSTI]

    Wang, Yuan-Fang

    mechanical vibration and ground disturbance. Canceling a small amount of image jitter due to platform due to platform vibration and hand tremble is not a very difficult task, canceling a large amount image jitter due to the operator/platform vibration or flutter to arrive at a steady display

  15. UC Cooperative Extension works with fire safe councils to reduce wildfires

    E-Print Network [OSTI]

    Nader, Glenn A; De Lasaux, Michael

    2015-01-01

    Smith E. 1999. Living with Fire: A Guide for the Homeowner.tension, Reno, NV. The Yuba fire stopped at the Middlebrookand surface fuels following fire hazard reduction treatment.

  16. Operational Issues at the Environmental Restoration Disposal...

    Office of Environmental Management (EM)

    Reno, NV 89512 Division of Hydrologic Sciences (775) 673-7314, F- (775) 673-7363 Bill.Albright@dri.edu EDUCATION B.S., University of California, Davis - 1976 (Environmental...

  17. CX-007768: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    General Infrastructure to Enhance Nuclear Materials Research and Education at the University of Nevada, Reno CX(s) Applied: B3.6 Date: 11/28/2011 Location(s): Nevada Offices(s): Nuclear Energy, Idaho Operations Office

  18. Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 Exploring the Relationship between Geothermal Resources and

    E-Print Network [OSTI]

    Faulds, James E.

    Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 - 1 - Exploring the Relationship between Geothermal Resources and Geodetically Inferred Faults Slip Rates in the Great Basin Laboratory University of Nevada, Reno Keywords: geothermal, energy resources, Great Basin, GPS, geodesy

  19. Mountain Sheep in the Sky: Orion's Belt in Great Basin Mythology

    E-Print Network [OSTI]

    Fowler, Catherine S

    1995-01-01

    2, pp. 146-152 (1995). Mountain Sheep in the Sky: Orion'sNevada, Reno, NV 89557-0006. Mountain Sheep in the Sky is ain the great himt for the Mountain Sheep. Muhwinti, Leader (

  20. Application of a New Structural Model and Exploration Technologies...

    Open Energy Info (EERE)

    Energy, University of Nevada, Reno Funding Opportunity Announcement DE-FOA-0000109 DOE Funding Level (total award amount) 5,000,000.00 Awardee Cost Share 6,126,664.00...

  1. Gene Flow in Scrub Jays: Frequency and Direction of Movement

    E-Print Network [OSTI]

    Peterson, A. Townsend

    1991-11-01

    between coastal and interior Scrub Jay populations. Locality Museum nohef. Description East-west movement NV, Granite Mountains NV, Sutcliffe NV, Ormsby Co., Kings Cyn. NV, Reno NV, Gardnerville CA, Inyo Co., west wall, Owens Valley CA...

  2. CX-003412: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Next Generation Biodiesel from Food WasteCX(s) Applied: A9, B3.6Date: 08/16/2010Location(s): Reno, NevadaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. Characterization of Corrosion Products and Microbes on Various Types of Metal Coupons Using Beamline 1.4.3

    E-Print Network [OSTI]

    Characterization of Corrosion Products and Microbes on Various Types of Metal Coupons Using of California, Irvine and Mackay School of Mines, University of Nevada, Reno Microbes primarily exist in complex

  4. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  5. CX-012720: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    X-Ray Diffraction System to Enhance the Nuclear Materials Research and Education – University of Nevada Reno CX(s) Applied: B1.31Date: 41843 Location(s): NevadaOffices(s): Nuclear Energy

  6. Climate change in the Tahoe basin: regional trends, impacts and drivers

    E-Print Network [OSTI]

    Coats, Robert

    2010-01-01

    fire. Ecology 47:636–639 Climatic Change (2010) 102:435–466large-scale climatic Climatic Change (2010) 102:435–466explained by lawn Climatic Change (2010) 102:435–466 a Reno

  7. Proceedings of AIAA Aerospace Sciences 20th ASME Wind Energy Symposium

    E-Print Network [OSTI]

    Sweetman, Bert

    Proceedings of AIAA Aerospace Sciences 20th ASME Wind Energy Symposium January 8­11, 2001, Reno, NV and offshore structure communities. In applying probabilistic models to design wind tur- bines, a number

  8. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    E-Print Network [OSTI]

    Apte, Michael; Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang

    2008-01-01

    Phoenix Raleigh RedBluff Reno Riverside Sacramento SaltLakeCity SanAntonio SanDiego Seattle Sunnyvale Washington Heating Cooling Fan Total Heating (kWh) (

  9. Performance of Small Grain Varieties in Texas 1949-57. 

    E-Print Network [OSTI]

    Atkins, I. M.; Gardenhire, J. H.; Weibel, K. B.; Porter, K. B.; Lahr, K.A.

    1958-01-01

    seeding' Kearney Pueblo Reno Cordova3 Ward Harbine" Rogers" Spring seeding Spring seeding Alamo New Nortex4 Cordova Wintex Mustang Texan AREA 2 Crockett Concho Ponca \\,Yestar Fall seeding Fall seeding Comanche Mustang New Nortex4 Cordova... Wintex Wichita Bronco Cimarron Harbine Kearney Triumph Rogers Reno Quanah6 Ward Texan Spring seeding Alamo Mustang Spring seeding Cordova New ~ortex~ AREA 3 Quanah Ponca Crockett Concho Fall seeding Comanche Mustang Bronco Triumph New...

  10. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    SciTech Connect (OSTI)

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 2003, p. 55035511 Vol. 69, No. 9 0099-2240/03/$08.00 0 DOI: 10.1128/AEM.69.9.55035511.2003

    E-Print Network [OSTI]

    Bennett, Philip

    aquifers, typically associated with geothermal regions and oil-field ba- sins, which play an important role on the phy- logeny of bacterial community 16S rRNA genes characterized filamentous microbial mats from libraries, most clones were affiliated with un- characterized environmental groups within the "Epsilonpro

  12. Jeffrey G. Paine October 2012

    E-Print Network [OSTI]

    Yang, Zong-Liang

    . G., and Collins, E. W., 2010, Characterizing oil field salinization using airborne, surface to characterize unsaturated flow in an arid setting: Ground Water, v. 37, no. 2, p. 296­304. Paine, J. G, Identifying oil-field salinity sources with airborne and ground-based geophysics: a West Texas example

  13. Towards Dynamic Data-Driven Management of the Ruby Gulch Waste Repository

    E-Print Network [OSTI]

    Parashar, Manish

    .versteeg@inl.gov Abstract. Previous work in the Instrumented Oil-Field DDDAS project has enabled a new generation of data-driven, interactive and dynamically adaptive strategies for subsurface characterization and oil reservoir man- agement-driven, interactive and dynamically adaptive strategies for subsurface characterization and reservoir management

  14. Broadband dispersion extraction using simultaneous sparse penalization

    E-Print Network [OSTI]

    Saligrama, Venkatesh

    the borehole and thus dispersion analysis is of considerable interest to the geophysical and oilfield services community. A brief survey of borehole acoustic waves and their use in mechanical characterization is a function of frequency. This function characterizes the mode and is referred to as a dispersion curve

  15. NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission

    E-Print Network [OSTI]

    NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From Sacramento, CA 95814 Subject: Filing of Notice of Decision in compliance with Public Resources Code Section oilfield for use in enhanced oil recovery. Modification Description: Modify air quality conditions AQ-17

  16. J Supercomput (2007) 41: 109117 DOI 10.1007/s11227-006-0031-2

    E-Print Network [OSTI]

    Southern California, University of

    2007-01-01

    to identify reservoir simulation models that best match the oilfield production history. Subsequently, the selected models are used to forecast future productions with uncertainty estimates. The parallelization to reduce uncertainty and allow real-time reservoir management. History matching is an inverse problem

  17. This information is updated annually by member(s) of the community. Questions or comments regarding this information can be directed to

    E-Print Network [OSTI]

    MacMillan, Andrew

    , University of Alberta, Edmonton, AB Canada T6G 2C9 Ph: 780-492-0678 Toll Free: 1-866-492-0678 Fax: 780-rich area, serving oilfield, coal mines and lumber industries and agriculture. Work Family&Events Community Events Calendar Farmers Market: Fridays: 10:30am ­ 2:00pm @ Friendship Centre Library Museum

  18. A review of trends in MIC. [Microbiologically influenced corrosion

    SciTech Connect (OSTI)

    Farquhar, G.B. (Saudi Aramco, CSD/CCD, Dhahran (Saudi Arabia))

    1993-01-01

    A review of current trends in microbiologically influenced corrosion (MIC) is presented from the viewpoint of the practicing corrosion engineer employed in the petroleum industry. The principal responsibility of this individual is not to identify, count, or even kill microorganisms, but to effectively control corrosion in the oilfield. Extensive references document the technology's advances.

  19. Center for Underground Infrastructure Research and Education The University of Texas at Arlington

    E-Print Network [OSTI]

    Huang, Haiying

    , Frank has been involved in many different drilling disciplines including oilfield, water well, HDD, tunneling, microtunneling, auger boring and foundations drilling. Frank was instrumental in developing drilling practices and principles for HDD and has worked closely with rig manufacturers. Frank has held

  20. ADCHEM 2006 International Symposium on Advanced Control of Chemical Processes

    E-Print Network [OSTI]

    Skogestad, Sigurd

    enables production from low-pressure reservoirs over long distances, and may increase the daily oil the oil production for the Tordis subsea oilfield located at the Norwegian Continental Shelf, a subsea are better exploited. Compression and pumping enable a lower wellhead pressure, and hence an increased

  1. Kinetics of swelling under constraint Qihan Liu, Agathe Robisson, Yucun Lou, and Zhigang Suo

    E-Print Network [OSTI]

    Suo, Zhigang

    an experimental setup to measure the contact load as a function of time. The experimental data are well in oilfields, e.g., as self-healing cements1­3 and swellable packers.4­7 In an application, the elastomer is selected to imbibe a certain kind of fluid (water, oil, or natural gas), called the solvent. Whenever

  2. SPE-153271-PP Semiautomatic, Semantic Assistance to Manual Curation of Data in Smart

    E-Print Network [OSTI]

    Hwang, Kai

    are continuously generated in smart oilfields from swarms of sensors. On one hand, increasing amounts of such data data mainly lies in the fact that data is stored in large repositories carrying no metadata to describe with missing metadata, with terms from a domain ontology, which constantly evolves supervised by domain experts

  3. Modeling and Computational Strategies for Optimal Development Planning of Offshore

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Modeling and Computational Strategies for Optimal Development Planning of Offshore Oilfields for offshore oil and gas fields as a basis to include the generic fiscal rules with ringfencing provisions-integer programming. 1 Introduction Offshore oil and gas field development planning has received significant attention

  4. Petroleum Engineering 310 Reservoir Fluids

    E-Print Network [OSTI]

    of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition

  5. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  6. Optimizing Natural Gas Use: A Case Study 

    E-Print Network [OSTI]

    Venkatesan, V. V.; Schweikert, P.

    2007-01-01

    by the management of an Oil-Field Chemical plant located in a mid-southern state in the US. This site has two sections of process plants with an additional Research & Development section. The site also has plans to expand with additional process & storage facilities...

  7. Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells 

    E-Print Network [OSTI]

    Eboagwu, Uche

    2012-10-19

    Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water...

  8. PII S0016-7037(01)00579-8 The origin and evolution of base metal mineralising brines and hydrothermal fluids,

    E-Print Network [OSTI]

    Banks, David

    that the major element chemistry of these fluids is comparable with that of evolved oil-field brines, and fluids of mineralising palaeoflu- ids is a complex function of the basin chemistry, subsequent modifications due to water by the evaporation of seawater or a seawater­meteoric water mixture past the point of halite precipitation. The major

  9. Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials

    E-Print Network [OSTI]

    , a pseudoplastic shear-thinning xanthan gum solution and an elastoviscoplastic invert-emulsion drilling fluid to achieve particular performance with complex fluids. For example, oilfield drilling fluids are often formulated to be yield stress fluids to meet the needs of an intermittent drilling process. While drilling

  10. Peak Oil, Peak Energy Mother Nature Bats Last

    E-Print Network [OSTI]

    Sereno, Martin

    no oil in basaltic ocean floor or granitic basement #12;(Used to be!) Second Largest Oilfield Cantarell://www.eia.doe.gov/emeu/cabs/Mexico/Oil.html named after Yucatan fisherman Rudecindo Cantarell, who discovered an oil seep! Chicxulub crater Cantarell Complex #12;from ASPO Colin Campbell, 2009 THE GROWING GAP Regular Conventional Oil (the main

  11. Reducing False Alarms with Multi-modal Sensing for Pipeline Blockage (Extended)

    E-Print Network [OSTI]

    Heidemann, John

    oilfield has many kilometers of distribution flowlines that collect crude oil extracted from wellhead by studying a specific application: blockages in oil flowline common in cold weather. We use pipe skin to collect data, detect prob- lems, and take actions in the physical world. Small and inexpensive, sensornets

  12. Subsea Solution for Anti-Slug Control of Multiphase Risers* E. Jahanshahi1, S. Skogestad1, M. Lieungh2

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Subsea Solution for Anti-Slug Control of Multiphase Risers* E. Jahanshahi1, S. Skogestad1, M-slug control of multi-phase risers at offshore oil-fields. With new advances in the subsea tech- nology-side valve. However, a subsea choke valve placed at the well-head can not be used for preventing the riser

  13. Report: Communications

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable Summary RenoDepartment

  14. Report: Community Outreach

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable Summary RenoDepartmentCOMMUNITY OUTREACH

  15. Report: Discretionary Budgeting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable Summary RenoDepartmentCOMMUNITY

  16. United States Office of Radiation & EPA 402-R-99-002 Environmental Protection Indoor Air (6602J) October 1999

    E-Print Network [OSTI]

    or application. Rather, these terms reflect common industry usage. This report should be viewed only into the document. EPA would like to thank the following external reviewers: Dr. Erling Brostuer, Colorado School of Mines, Energy, Minerals, and Environment Program; Dr. Glen Miller, University of Nevada, Reno; and Diann

  17. Laser-Plasma Wakefield Acceleration with Higher Order Laser Modes

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser-Plasma Wakefield Acceleration with Higher Order Laser Modes C.G.R. Geddes , E. Cormier. Nevada, Reno and U.C. Berkeley Abstract. Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson

  18. HEPC Peer Institutions West Virginia University -Main Campus

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    HEPC Peer Institutions West Virginia University - Main Campus 2008-09 Data HEPC Peer Institutions of Massachusetts-Amherst Univ of Missouri-Columbia University of Nevada-Reno Univ of New Mexico-Main Campus College Navigator #12;HEPC Peer Institutions West Virginia University - Main Campus 2010-11 Data HEPC Peer

  19. Temperature dependence of electron transfer in coupled quantum wells Amlan Majumdara)

    E-Print Network [OSTI]

    Rokhinson, Leonid

    ,2 These two-terminal detectors when integrated with time-multiplexed readout circuits greatly simplify focal Laboratory, Adelphi, Maryland 20783 J. L. Reno Sandia National Laboratories, Albuquerque, New Mexico 87185 L with elec- tron tunneling rate rb). In earlier designs with ta 50 Å tb 500 Å, the condition ra rb resulted

  20. USDA Forest Service Gen. Tech. Rep. PSW-GTR-181. 2002. 911 A Case Study of Habitat Conservation Plans

    E-Print Network [OSTI]

    and Henning C. Stabins2 Abstract Forest practices on private industrial timberlands have steadily progressed and Management of Dead Wood in Western Forests, November 2-4, 1999, Reno, Nevada. 2 Director, Fish and Wildlife.hicks@plumcreek.com and henning.stabins@plumcreek.com) #12;Habitat Conservation Plans and Industrial Forest Lands Case Study

  1. Plastic Hinging Behavior of Reinforced Concrete Bridge Columns

    E-Print Network [OSTI]

    Firat Alemdar, Zeynep

    2010-04-27

    of the seismic performance of four-span large-scale bridge systems at the University of Nevada Reno that details deformations in column hinging regions during response to strong shaking events. In order to evaluate the plastic hinging regions, a photogrammetric...

  2. Proceedings of ASME Turbo Expo 2005 Power for Land, Sea and Air

    E-Print Network [OSTI]

    Pennycook, Steve

    , and are attractive for distributed generation (DG), combined heat and power (CHP), and possibly combined cycleProceedings of ASME Turbo Expo 2005 Power for Land, Sea and Air June 6-9, 2005, Reno, Nevada Paper GT2005-68927 OVERVIEW OF CREEP STRENGTH AND OXIDATION OF HEAT-RESISTANT ALLOY SHEETS AND FOILS

  3. TRUCKEE MEADOWS FLOOD CONTROL PROJECT, NEVADA 17 December 2013

    E-Print Network [OSTI]

    US Army Corps of Engineers

    TRUCKEE MEADOWS FLOOD CONTROL PROJECT, NEVADA 17 December 2013 ABSTRACT: The Truckee Meadows Flood economically infeasible. In 1996, local communities requested that flooding problems in Truckee Meadows-sensitive, and technically feasible flood risk management and related recreation for the Cities of Reno and Sparks, Nevada

  4. Presented at 2000 ASME Wind Energy Symposium/38th AIAA Aerospace Sciences Meeting and Exhibit

    E-Print Network [OSTI]

    Mexico ABSTRACT Wind-energy researchers at Sandia National Laboratories have developed a new, lightPresented at 2000 ASME Wind Energy Symposium/38th AIAA Aerospace Sciences Meeting and Exhibit Reno-LINKED DATA ACQUISITION SYSTEM*§ Dale E. Berg , Mark A. Rumsey Wind Energy Technology Department Sandia

  5. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    Company, Salt Lake City, UT 84104 3 ORMAT Nevada Inc., Reno NV 89511 4 Schlumberger, Data and Consulting mineral grains, drilling induced fractures, and natural fractures. This paper describes selected geologic was drilled and then logged and analyzed using a multi-disciplinary approach to help evaluate the geothermal

  6. CURRICULUM VITAE Lawrence Michael Hanks

    E-Print Network [OSTI]

    Hanks, Lawrence M.

    . California, Davis MS (1982) Dept. of Biology, Univ. Nevada, Reno. RW Rust, advisor. Thesis title: Foraging Richard Atkinson's Report to the Board of Regents, Univ. California (1996) Elected to full membership, Benefits from the USDA-Land Grand Partnership Report (IV 2001) Awarded designation as Helen Corley Petit

  7. United States Department of Agriculture Forest Service

    E-Print Network [OSTI]

    , Tahoe Regional Planning Agency, University of California at Davis, University of Nevada at Reno and Research Station, the Tahoe Regional Planning Agency, the University of California at Davis, the University, President Bill Clinton and Vice President Al Gore visited the Lake Tahoe basin to discuss issues surrounding

  8. SANDIA REPORT SAND2013-5238

    E-Print Network [OSTI]

    in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six-Scale Solar Projects in the Southwestern United States Geoffrey T. Klise, Vincent C. Tidwell, Marissa D. Reno

  9. Statistical Properties of the Cluster Dynamics of the Systems of Statistical Mechanics

    E-Print Network [OSTI]

    Sinai, Yakov

    , Russia Mathematics Department of Princeton University, Princeton, NJ 08544, USA and Landau Institute of Theoretical Physics, Moscow, Russia § Department of Mathematics and Statistics, University of Nevada, Reno, NV mechanics which can be considered as a small perturbation of an ideal gas and undergoes the so

  10. Curriculum Vitae of Rudy Setiono Contact information

    E-Print Network [OSTI]

    Setiono, Rudy

    and Systems (NeSy'13), 3 - 9 August, 2013, Beijing, China . The 12th Pacific Rim International Conference, Workshop on Feature Selection in Data Mining, 21-24 June, 2010, Hyderabad, India. The 11th Pacific Rim Mining, 30 April - 2 May, 2009, Reno, USA. PRICAI 2008, The Tenth Pacific Rim International Conference

  11. U.S. ITER LIMITER MODULE DESIGN* R.F. Mattas, M. Billone, and A. Hassanein

    E-Print Network [OSTI]

    Harilal, S. S.

    and L. Green Westinghouse Science and Technology Center 1310 Beulah Rd. Pittsburgh, PA 15235 E. Mogahed $ ~ l ~ ~OF n i f $ - ` m19 * Work supported by the Office of Fusion Energy, US. Departrnen)'%'Energy Energy, June 16- 20,1996, in Reno, Nevada. #12;DISCLAIMER This report was prepared as an account of work

  12. WIPP Employee Inducted Into Mine Rescue Hall of Fame- WIPP Teams Recognized at National Competition

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M., August 2, 2013 - Long-time Waste Isolation Pilot Plant (WIPP) employee Gary Kessler was inducted into the Metal/Non-Metal National Mine Rescue Hall of Fame on Aug. 1, 2013 at the biennial mine rescue competition in Reno, Nevada.

  13. Scripted Artificially Intelligent Basic Online Tactical Simulation Jesse D. Phillips+

    E-Print Network [OSTI]

    Dascalu, Sergiu

    Scripted Artificially Intelligent Basic Online Tactical Simulation Jesse D. Phillips+ Roger V.+ Department of Computer Science and Engineering+ CAVCaM University of Nevada, Reno Desert Research Institute of the concepts. This paper presents details of the idea, specification, design, and functionality of the Scripted

  14. 4th International Conference on Earthquake Engineering Taipei, Taiwan

    E-Print Network [OSTI]

    Lynch, Jerome P.

    4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No Center for Research on Earthquake Engineering (NCREE) in Taiwan. Emphasis is placed on using simulation on Earthquake Engineering, Taipei, Taiwan 2 Prof., University of Nevada, Reno, Nevada, USA 3 Assoc. Prof

  15. Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea and Air

    E-Print Network [OSTI]

    Seitzman, Jerry M.

    Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea and Air June 6-9, 2005, Reno) plants enable combustion of coal, biomass, and other solid or liquid fuels while still maintaining high-rich mixtures; many low emissions gas-turbine approach require lean premixed combustion. There is also

  16. TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links

    E-Print Network [OSTI]

    a congested router is indeed the likely reason of packet loss; on a wireless link, on the other hand, a noisyTCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links Saverio Mascolo congestion window algorithm that improves upon the performance of TCP Reno in wired as well as wireless

  17. Risks and Risk Governance in Unconventional Shale Gas Development

    E-Print Network [OSTI]

    Jackson, Robert B.

    Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

  18. CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core

    E-Print Network [OSTI]

    Raggio Parkway, Reno, Nevada 89512-1095, USA ABSTRACT. One common assumption in interpreting ice-core CO2 records is that diffusion in the ice does not affect the concentration profile. However, this assumption/Ar and Kr/Ar), electrical conductivity and Ca2+ ion concentrations to show that substantial CO2 diffusion

  19. Measuring Transactions Costs from Observed Behavior: Market Choices in Peru

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Measuring Transactions Costs from Observed Behavior: Market Choices in Peru Renos Vakis, Elisabeth Sadoulet, and Alain de Janvry October 2003 Abstract Farmers incur proportional and fixed transactions costs these transactions costs. When opportunities exist to sell a crop on alternative markets, the observed choice

  20. Keywords: Congestion Control, Congestion Notification, FECN, enhanced FECN, BCN, and DCN

    E-Print Network [OSTI]

    Jain, Raj

    control has traditionally been handled at the transport (TCP) layer [15]. TCP NewReno, TCP SACK, and TCP Vegas for wired networks, I-TCP, MTCP and Freeze TCP for wireless networks, TCP-F, ELFN, and ATCP for ad developed that control all traffic regardless of the transport (or even network) protocol. Datacenter

  1. Author's personal copy Fractional conservation of mass

    E-Print Network [OSTI]

    Meerschaert, Mark M.

    . Meerschaert b,* a University of Nevada, Reno, United States b Michigan State University, A415 Wells Hall, East in parameters (e.g., hydraulic conductivity) that should be scale-invariant. Ó 2008 Elsevier Ltd. All rights works quite well for the materials and processes that it was originally designed to describe

  2. Observation of Chiral Heat Transport in the Quantum Hall Regime G. Granger,1

    E-Print Network [OSTI]

    Eisenstein, Jim

    Observation of Chiral Heat Transport in the Quantum Hall Regime G. Granger,1 J. P. Eisenstein,1 and J. L. Reno2 1 Condensed Matter Physics, California Institute of Technology, Pasadena, California; published 23 February 2009) Heat transport in the quantum Hall regime is investigated using micron

  3. Aerospace Sciences Meeting & Exhibit

    E-Print Network [OSTI]

    Mittal, Rajat

    41st Aerospace Sciences Meeting & Exhibit 6-9 January 2003 / Reno, NV AIAA 2003-0636 A Jet Formation Criterion for Synthetic Jet Actuators Yogen Utturkar, Ryan Holman, Rajat Mittal, Bruce Carroll-0636 A Jet Formation Criterion for Synthetic Jet Actuators Yogen Utturkar,1£ Ryan Holman,1£ Rajat Mittal,2

  4. Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. AMA A A98-16092

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc. AMA A A98-16092 AIAA 98-15, 1998 / Reno, NV For permission to copy or republish, contact the American Institute of Aeronautics Institute of Aeronautics and Astronautics, Inc. AIAA-98-0171 ANALYSIS OFHYPERSONICVISCOUS FLOW ABOUT BLUFF

  5. The Flame Trilogy 

    E-Print Network [OSTI]

    Bonds, M.

    1999-01-01

    partner. Hutch ignored her, shouldering toward the side of the pool. Judy swam ahead, climbing out to help pull Starsky onto the concrete. Hutch accepted that much help, but when she put her hands on the still-trembling figure, he glared at her. "Leave... to put pressure on the man who lay hurting and depressed. Now he thought back about lost opportunities, fumbled moments and decided he should keep the secret locked inside himself forever. He didn't want to hold Starsky back from the life he...

  6. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. An overview of the nondestructive inspection techniques for coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-11-01

    Coiled steel tubing and pipe in the diameter range 20--90 mm (0.75--3.5 in.) are replacing conventional oilfield materials for a variety of purposes including workovers, drilling, production tubing, umbilicals, and flowlines. They offer all the advantages of long tubes with no threaded connections. Because coiled tubing is being produced to high quality standards, it is lasting longer than ever before, and the need has arisen for careful nondestructive inspection at frequent intervals to determine accumulated damage to the string and the need for repair. Currently, derating of used coiled tubing using nondestructive testing (NDT) is not performed. While NDT devices for oilfield tubulars have been well documented, little has been written regarding the NDT of coiled tubing. This paper outlines the current NDT methods used during the manufacture of new tubing and the inspection of used coiled tubing.

  8. Chemical Additive Selection in Matrix Acidizing 

    E-Print Network [OSTI]

    Weidner, Jason 1981-

    2011-05-09

    critical detail of weak acid chemistry. One concern when using any acid in oilfield operations is the corrosion of well tubulars. Thus operators often choose to pump corrosion inhibitor, a chemical additive electrostatically attracted... to the negative charge of the well casing or production tubing, to decrease the rate at which the acid accesses well tubular surfaces (Crowe and Minor 1985). A typical working concentration of corrosion inhibitor is 1-2 wt% of injected acid (Smith et al. 1978...

  9. An assessment of subsea production systems 

    E-Print Network [OSTI]

    Devegowda, Deepak

    2005-02-17

    with greater efficiency in compact cyclonic separators. There have been some field installations of compact electric coalescers made by Kvaerner Oilfield Products notably in the FPSO vessel ?Petrojarl1? and has been in operation since July 2002. Not only... or new FPSO?s or TLPs, there is an increased electric power requirement that does really add to the CAPEX and in actuality, the reduced footprint offered by subsea boosting equipment is offset by the increased area required for power generation...

  10. Research Initiative Will Demonstrate Low Temperature Geothermal Electrical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject DevelopsforReporting OccupationalPower Generation Systems Using Oilfield

  11. SCANNED IG-0623

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD CENTER

  12. SCE - Non-Residential Energy Efficiency Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD CENTERSCE

  13. SCHNEIDER ELECTRIC 2015 WORLD ENERGY ENGINEERING CONGRESS | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAIN OILFIELD

  14. Report: EM Acquisition and Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable Summary

  15. www.sciencemag.org/cgi/content/full/321/5890/824/DC1 Supporting Online Material for

    E-Print Network [OSTI]

    Reif, John H.

    www.sciencemag.org/cgi/content/full/321/5890/824/DC1 Supporting Online Material for Programming DNA) and annealed in a water bath in a styrofoam box by cooling from 90 C to 23 C over a period of 24 to 72 hours-state laser (CrystaLaser, Reno, NV). The Cy3 emission was detected by a 60×, 1.2 NA water immersion objective

  16. Nevada`s role in the hydrogen economy

    SciTech Connect (OSTI)

    Vaeth, T.

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  17. The U.S. Department of Energy Office of Indian Energy Policy and Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of PennsylvaniaLBNL-2258EAlbuquerque, NewLasReno,

  18. The U.S. Department of Energy Office of Indian Energy Policy and Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of PennsylvaniaLBNL-2258EAlbuquerque, NewLasReno,The

  19. Archuleta County CO Lineaments

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-01-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Archuleta Lineaments Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable “plumbing system” that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature. Spatial Domain: Extent: Top: 4132831.990103 m Left: 311979.997741 m Right: 331678.289280 m Bottom: 4116067.165795 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. Physical vacuum is a special superfluid medium

    E-Print Network [OSTI]

    Sbitnev, Valeriy I

    2015-01-01

    The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is non-zero); (b) the pressure gradient contains an added term describing the quantum entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr\\"odinger equation describing behavior of a particle into the vacuum being as a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zeroth average viscosity. The non-zero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The long-lived vortex has a non-zero core where the vortex velocity vanishes.

  1. Navier-Stokes equation describes the movement of a special superfluid medium

    E-Print Network [OSTI]

    Valeriy I. Sbitnev

    2015-04-28

    The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is nonzero); (b) the pressure gradient contains an added term describing the entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr\\"odinger equation describing behavior of a particle into the vacuum, where the vacuum is a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zero average viscosity. The nonzero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The vortex has a non-zero core where the vortex velocity vanishes. Its organization is discussed with the point of view of the Calabi-Yau manifold.

  2. Navier-Stokes equation describes the movement of a special superfluid medium

    E-Print Network [OSTI]

    Sbitnev, Valeriy I

    2015-01-01

    The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is nonzero); (b) the pressure gradient contains an added term describing the entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr\\"odinger equation describing behavior of a particle into the vacuum, where the vacuum is a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zero average viscosity. The nonzero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The vortex has a non-zero core where the vortex velocity vanishes. Its organization is discussed with the point of view of the Calabi-Yau manifold.

  3. Physical vacuum is a special superfluid medium

    E-Print Network [OSTI]

    Valeriy I. Sbitnev

    2015-02-05

    The Navier-Stokes equation contains two terms which have been subjected to slight modification: (a) the viscosity term depends of time (the viscosity in average on time is zero, but its variance is non-zero); (b) the pressure gradient contains an added term describing the quantum entropy gradient multiplied by the pressure. Owing to these modifications, the Navier-Stokes equation can be reduced to the Schr\\"odinger equation describing behavior of a particle into the vacuum being as a superfluid medium. Vortex structures arising in this medium show infinitely long life owing to zeroth average viscosity. The non-zero variance describes exchange of the vortex energy with zero-point energy of the vacuum. Radius of the vortex trembles around some average value. This observation sheds the light to the Zitterbewegung phenomenon. The long-lived vortex has a non-zero core where the vortex velocity vanishes.

  4. Trapped-ion Lissajous trajectories

    E-Print Network [OSTI]

    R. F. Rossetti; G. D. de Moraes Neto; J. Carlos Egues; M. H. Y. Moussa

    2015-02-25

    Here we present a protocol for generating Lissajous curves with a trapped ion by engineering Rashba- and the Dresselhaus-type spin-orbit interactions in a Paul trap. The unique anisotropic Rashba $\\alpha_{x}$, $\\alpha_{y}$ and Dresselhaus $\\beta_{x}$, $\\beta_{y}$ couplings afforded by our setup also enables us to obtain an "unusual" Zitterbewegung, i.e., the semiconductor analog of the relativistic trembling motion of electrons, with cycloidal trajectories in the absence of magnetic fields. We have also introduced bounded SO interactions, confined to an upper-bound vibrational subspace of the Fock states, as an additional mechanism to manipulate the Lissajous motion of the trapped ion. Finally, we accounted for dissipative effects on the vibrational degrees of freedom of the ion and find that the Lissajous trajectories are still robust and well defined for realistic parameters.

  5. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  6. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  7. North Dakota Energy Workforce Development

    SciTech Connect (OSTI)

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  8. Corrosion degradation mechanisms in coiled tubing

    SciTech Connect (OSTI)

    Kane, R.D.; Cayard, M.S.

    1994-12-31

    This paper reviews the historical aspects related to the development of coiled tubing for oilfield drilling, logging, workover and production operations. It focuses on the metallurgical and process variables of coiled tubing and their interrelationship with aspects of the downhole service environment and the resultant corrosion performance. Special emphasis is placed on (1) operating conditions that can lead to excessive corrosion and/or cracking damage and corrosion fatigue and (2) metallurgical and processing parameters which can be controlled to maximize coiled tubing resistance to corrosion degradation.

  9. An experimental study of the solubility and thermodynamic properties of nickel in the system NIO + HCL + H?O 

    E-Print Network [OSTI]

    Lin, Saulwood

    1984-01-01

    springs on the East Pacific Rise (Edmond et al. , 1979 a, b; Craig et al. , 1980), the Salton Sea (Helgeson, 1968); geothermal water (Ellis and Mahon, 1977); and oil-field brines (Carpenter et al. , 1974) indicate that aqueous solutions involved... for the dissociated part in order to obtain the concentrations of the HCI' at temperature and pressure of the runs. From equation (1), the concentration of HCI is given by m(HCI') ' = m(CI) ' m(H ) ' / KHCF (3) asuming the activity coefficients are unity. Assuming...

  10. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

  11. Sitewide environmental assessment EA-1236 for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    1998-04-01

    The Proposed Action includes the following principal elements: (1) The accelerated plugging and abandoning of uneconomic wells over the next six years. Uneconomic wells are operating wells which can no longer cover their direct and indirect costs. DOE estimates that there are 900 wells to be plugged and abandoned over the next six years, leaving approximately 200 wells for transfer by 2003. (2) Complete reclamation and restoration of abandoned sites. Restoration would include dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production. Soil contaminated by hydrocarbons would be biologically treated. Roads, facilities, batteries, and well sites would be ripped up, recontoured, disked and seeded with native vegetation. (3) The continued development of the Rocky Mountain Oilfield Testing Center (RMOTC) through the establishment of a consortium of university, state and private institutions. RMOTC would continue to provide facilities and support to government and private industry for testing and evaluating new oilfield and environmental technologies. Based on the findings of the EA, DOE has determined that the proposal does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement is not required.

  12. A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits

    SciTech Connect (OSTI)

    Yin, Yanshu

    2013-12-15

    The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

  13. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    SciTech Connect (OSTI)

    Stan McCool; Tony Walton; Paul Willhite; Mark Ballard; Miguel Rondon; Kaixu Song; Zhijun Liu; Shahab Ahmend; Peter Senior

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increased with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.

  14. Naval Petroleum Reserves in California site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.

  15. Report: EM Communications

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications August 24, 2006

  16. Report: EM Communications

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications August 24,

  17. Report: EM Energy Park Initiative

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications August 24,

  18. Report: EM Human Capital Initiatives

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications August 24,HUMAN

  19. Report: EM Management Analysis and Strategic Vision-Casting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications August

  20. Report: EM Quality Assurance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications AugustEM

  1. Report: EM Strategic Planning

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM Communications

  2. Report: Employee Recruitment and Retention

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM CommunicationsSECOND

  3. Report: Human Capital Discussion and Observations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEM CommunicationsSECONDHuman

  4. Report: Small Business, Acquisition, and Project Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEMREPORT TO THE

  5. Report: Technical Uncertainty and Risk Reduction

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable SummaryEMREPORT TO THETECHNICAL

  6. Response (09/26/2012)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno RoundtableResearch &ResidentialRespond to the

  7. Response (11/23/2011)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno RoundtableResearch &ResidentialRespond to the

  8. Response (11/26/2008)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno RoundtableResearch &ResidentialRespond to

  9. Response (7/8/2009)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno RoundtableResearch &ResidentialRespond toJ u l

  10. Richard Burroughs | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools Teach Energy EssentialsRichard

  11. Risk Analysis and Decision-Making Under Uncertainty: A Strategy and its

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools Teach EnergyRichardApplications

  12. Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools TeachRita M.

  13. Rocky Flats Environmental Technology Site Archived Soil & Groundwater

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools TeachRitaMaster Reports |

  14. Roosting Spot for These Nocturnal Mammals is Just Batty | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools TeachRitaMaster Reports

  15. Rules and Directives applicable to Nuclear Facilities Oversight

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode Island Schools TeachRitaMaster| Rules and

  16. SRP_Senior_Management_Handbook_1_29_13v2

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-E

  17. SSAB Chairs Meeting Agenda for October 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-EOCTOBER 2-3, 2012 *

  18. SSAB Conference Calls - March 24, 2011 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-EOCTOBER 2-3, 2012SSAB

  19. SSAB Meeting Agenda for April 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-EOCTOBER 2-3,

  20. SSAB Meeting Summary for April 2012

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-EOCTOBER 2-3,The Carson

  1. SSAB Meeting Summary for October 20, 2011

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlan Training1-EOCTOBER 2-3,The Carson

  2. Safety Design Strategy Standard Review Plan (SRP) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlanSafety Design Strategy Standard

  3. Savannah River Site Removes Dome, Opening Reactor for Recovery Act

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlanSafety

  4. Scott Stout | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlanSafety0 products, representingBowl

  5. Sensitivity and Uncertainty Analysis | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhodeDepartment ofSecretaryiscongressSensitivity and

  6. September 2008 EMAB Recommendation Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhodeDepartmentSeparation Programs Releases

  7. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  8. TODs Result in Efficient Use of Land and Infrastructure 

    E-Print Network [OSTI]

    Morphis, A.

    2011-01-01

    9 7,110 Southwestern Pennsylvania Commission Pittsburgh, PA 10 6,489 Regional Transportation Commission of Washoe County Reno, NV 11 6,384 Puget Sound Regional Council Seattle, WA 12 6,189 Sacramento Area Council of Governments Sacramento, CA 13... 6,016 Council of Fresno County Governments Fresno, CA 14 5,522 Yuma MPO Yuma, AZ 15 5,151 Association of Monterey Bay Area Governments Salinas, CA 16 4,838 Tulare County Association of Governments Visalia, CA 17 4,608 Southeast Michigan COG...

  9. The United Illuminating Company - ZREC and LREC Long Term Contracts |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOfficeMatt RogersnowReno,

  10. The War of the Currents: AC vs. DC Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOfficeMatt RogersnowReno,Department ofElectrical

  11. The Women of Idaho National Laboratory's Space Nuclear Team | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE- Non-ResidentialAlliantPGE andOfficeMatt RogersnowReno,DepartmentEnergy

  12. The United States Nuclear Regulatory Commission and the United States Department Of Energy Public Meeting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed for EssentialAnchorage, Alaska,Reno,Savings for1 2

  13. Maintaining a competitive geothermal industry

    SciTech Connect (OSTI)

    Zodiaco, V.P.

    1996-04-10

    I come to this geothermal business with over 30 years of experience in the power generation industry. I have earned my spurs (so to speak) in the electric utility, nuclear power, coal and the gas-fired cogeneration power businesses. I have been employed by Oxbow Power for the past seven years and for the past 18 months I have been based in Reno and responsible for the operation, maintenance and management of Oxbow`s domestic power projects which include three geothermal and two gas-fired facilities. The Oxbow Power Group (consisting principally of Oxbow Power Corporation, Oxbow Geothermal Corporation, Oxbow Power of Beowawe, Oxbow Power International and Oxbow Power Services, Inc.) is based in West Palm Beach, Florida, and has regional offices in Reno, Hong Kong and Manila to support on-line geothermal projects in Nevada, other domestic power projects and a geothermal plant under construction in the Philippines. Oxbow Power employs approximately 30 professionals in the development and management of power projects and over 100 supervisors and technicians in the operation and maintenance of power facilities. Current ownership in independent power projects total 340 MW in the United States and 47 MW under construction in the Philippines. Oxbow is currently negotiating additional projects in several Asian and Central American countries.

  14. Shallow (2-meter) temperature surveys in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Colorado 2m Survey Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54” outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below. Spatial Domain: Extent: Top: 4490310.560635 m Left: 150307.008238 m Right: 433163.213617 m Bottom: 4009565.915398 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  15. Understanding the Impact of Open-Framework Conglomerates on Water-Oil Displacements: Victor Interval of the Ivishak Reservoir, Prudhoe Bay Field, Alaska

    E-Print Network [OSTI]

    Gershenzon, Naum I; Ritzi, Robert W; Dominic, David F

    2014-01-01

    The Victor Unit of the Ivishak Formation in the Prudhoe Bay Oilfield is characterized by high net-to-gross fluvial sandstones and conglomerates. The highest permeability is found within sets of cross-strata of open-framework conglomerate (OFC). They are preserved within unit bar deposits and assemblages of unit bar deposits within compound (braid) bar deposits. They are thief zones limiting enhanced oil recovery. We incorporate recent research that has quantified important attributes of their sedimentary architecture within preserved deposits. We use high-resolution models to demonstrate the fundamental aspects of their control on oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. We found that when the pressure gradient is oriented perpendicular to the paleoflow direction, the total oil production and the water breakthrough time are larger, and remaining oil saturation is smaller, than when it is oriented parallel to paleoflow. The pressure differe...

  16. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2004-11-01

    Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

  17. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  18. The use of coiled tubing during the Wytch Farm extended reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1994-12-31

    The largest onshore oilfield in Western Europe is situated in an environmentally sensitive coastal area on the south coast of England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing some 80 million barrels of recoverable oil. In 1991, the decision was made to access these reserves through extended reach drilling (ERD) from an existing onshore well-site. This development is currently underway, with three out of a planned eleven wells already drilled and producing. This paper will describe the application of Coiled Tubing in the logging and completion phases of the ERD wells drilled to date.

  19. New design of a guidelineless horizontal tree for deepwater ESP wells

    SciTech Connect (OSTI)

    Olijnik, L.A.; Vigesa, S.; Paula, M.T.R.; Figueiredo, M.W. de; Rutherford, H.W.

    1996-12-31

    This paper presents the new design of a horizontal tree for deepwater installation, as a key piece of equipment for application of a Electrical Submersible Pump in Subsea Wells. The production from subsea wells equipped with ESPs is a reality since October/94 with the first installation in Campos Basin. The horizontal tree adds simplicity to workover operations expected to be two to three times more frequency when compared to natural flow or gas lifted wells. The design and fabrication of the deepwater horizontal tree is a result of a Technological Cooperation Agreement. The design incorporates new solutions, mainly in diverless guidelineless connection of power cables and flowlines using the vertical connection system. The guidelineless horizontal subsea tree is fully prepared to be integrated on the new manifolds being designed for the Brazilian deepwater oilfields. The applications of the horizontal trees in subsea ESP wells reduce intervention cost, increasing economical attractiveness and scenarios for the applications of this new boosting technology.

  20. Geothermal energy at Long Beach Naval Shipyard and Naval Station and at Seal Beach Naval Weapons Station, California. Final report

    SciTech Connect (OSTI)

    Higgins, C.T.; Chapman, R.H.

    1984-01-01

    The purpose of this project was to determine and evaluate sources of geothermal energy at two military bases in southern California, the Long Beach Naval Shipyard and Naval Station and the Seal Beach Naval Weapons Station. One part of the project focused on the natural geothermal characteristics beneath the naval bases. Another part focused on the geothermal energy produced by oilfield operations on and adjacent to each base. Results of the study are presented here for the US Department of the Navy to use in its program to reduce its reliance on petrolem by the development of different sources of energy. The study was accomplished under a cooperative agreement between the US Department of Energy's San Francisco Operations Office and the Department of the Navy's Naval Weapons Center, China Lake, California, for joint research and development of geothermal energy at military installations.

  1. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    SciTech Connect (OSTI)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  2. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  3. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  4. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  5. New Strategies for Finding Abandoned Wells at Proposed Geologic Storage Sites for CO2

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.

    2007-09-01

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys.

  6. Final sitewide environmental assessment for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    1998-04-01

    The Secretary of Energy is authorized to produce the Naval Petroleum Reserves No. 3 (NPR-3) at its maximum efficient rate (MER) consistent with sound engineering practices, for a period extending to April 5, 2000 subject to extension. Production at NPR-3 peaked in 1981 and has declined since until it has become a mature stripper field, with the average well yielding less than 2 barrels per day. The Department of Energy (DOE) has decided to discontinue Federal operation of NPR-3 at the end of its life as an economically viable oilfield currently estimated to be 2003. Although changes in oil and gas markets or shifts in national policy could alter the economic limit of NPR-3, it productive life will be determined largely by a small and declining reserve base. DOE is proposing certain activities over the next six years in anticipation of the possible transfer of NPR-3 out of Federal operation. These activities would include the accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the continued development of the Rocky Mountain Oilfield Testing Center (RMOTC). DOE has prepared this environmental assessment that analyzes the proposed plugging and abandonment of wells, field restoration and development of RMOTC. Based on the analysis in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). The preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  7. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    SciTech Connect (OSTI)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  8. The Problem of Motion: The Statistical Mechanics of Zitterbewegung

    E-Print Network [OSTI]

    Kevin H. Knuth

    2014-12-19

    Around 1930, both Gregory Breit and Erwin Schroedinger showed that the eigenvalues of the velocity of a particle described by wavepacket solutions to the Dirac equation are simply $\\pm$c, the speed of light. This led Schroedinger to coin the term Zitterbewegung, which is German for "trembling motion", where all particles of matter (fermions) zig-zag back-and-forth at only the speed of light. The result is that any finite speed less than $c$, including the state of rest, only makes sense as a long-term average that can be thought of as a drift velocity. In this paper, we seriously consider this idea that the observed velocities of particles are time-averages of motion at the speed of light and demonstrate how the relativistic velocity addition rule in one spatial dimension is readily derived by considering the probabilities that a particle is observed to move either to the left or to the right at the speed of light.

  9. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    SciTech Connect (OSTI)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  10. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  11. CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES

    SciTech Connect (OSTI)

    Professor Bruce R. Kusse; Professor David A. Hammer

    2007-04-18

    This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

  12. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    SciTech Connect (OSTI)

    Intrator, Thomas P.; Bauer, Bruno; Fernandez, Juan C.; Daughton, William S.; Flippo, Kirk A.; Weber, Thomas; Awe, Thomas J.; Kim, Yong Ho

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  13. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  14. Advanced Separation Consortium

    SciTech Connect (OSTI)

    NONE

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  15. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  16. P- and S-body wave tomography of the state of Nevada.

    SciTech Connect (OSTI)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  17. Paleoclimatic significance of lake level fluctuations in the Lahontan Basin. [Pyramid Lake, Nevada

    SciTech Connect (OSTI)

    Benson, L.V.

    1980-08-01

    An energy flux balance model has been developed which treats evaporation as a function of air temperature, surface water temperature, precipitable water aloft, the amount, height, and type of sky cover, and the optical air mass. The model has been used to estimate the mean historical evaporation rate for Pyramid Lake, Nevada, using as input climatic data from the Reno area averaged over the period 1950 to 1975. Estimated and measured values of the mean annual evaporation rate were found to be in good agreement. The model was used to simulate changes in the level, the surface area and the volume of paleo Lake Lahontan. In particular, possible climatic states responsible for past high stands (1270 and 1330 m) were investigated. A conservative range of discharge values was used in the calculations. Results of the simulations indicate the fundamental importance of sky cover in the creation and destruction of large lake systems.

  18. [Climate implications of terrestrial paleoclimate]. Quaternary Sciences Center, Desert Research Institute annual report, fiscal year 1994/1995

    SciTech Connect (OSTI)

    Wigand, P.E.

    1995-12-31

    The objective of this study is to collect terrestrial climate indicators for paleoclimate synthesis. The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal. To this end personnel at the Quaternary Sciences Center of the Desert Research Institute in Reno, Nevada are conducting the following activities: Analyses of packrat middens; Analysis of pollen samples; and Determination of vegetation climate relationships.

  19. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia

    2015-01-02

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.

  20. Gulf Petro Initiative

    SciTech Connect (OSTI)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects of flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.

  1. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  2. Cost-effective design of scale-inhibitor squeeze treatments using a mathematical model

    SciTech Connect (OSTI)

    Kokal, S.L.; Raju, K.U.; Bayona, H.

    1996-05-01

    Scale formation and deposition in production facilities is a challenging problem faced by the oil industry. Their deposition leads to operational problems, safety hazards, and an overall decrease in production efficiency. Downhole scale-inhibitor squeeze treatments provide the most common and effective means of preventing the formation of oilfield scale deposits. This paper presents an analysis and design study of field-inhibitor squeeze treatments. A mathematical model was used to simulate inhibitor-squeeze return data from several Saudi Aramco wells. A wide range of sensitivities in squeeze treatments were investigated, including inhibitor concentration, inhibitor volume, overflush size, and shut-in time. An optimization of the squeeze injection parameters was carried out with the numerical simulator. This optimization was based on squeeze performance as well as on economic criteria. The results indicate that the optimized treatment strategy is very well-specific and depends on the water production rates and operational parameters, like the scale-inhibitor concentration and volume and the amount of overflush. Recommendations are made for optimizing (in terms of cost effectiveness) the squeeze-treatment design.

  3. Oil and diplomacy: the evolution of American foreign policy in Saudi Arabia, 1933-1945

    SciTech Connect (OSTI)

    Casillas, R.J.

    1983-01-01

    This study examines the transformation of American foreign policy in Saudi Arabia between the years 1933 and 1945. At the beginning of this period American-Saudi relations were negligible. However, by the end of World War II in 1945, American policy-makers had concluded that the Saudi Kingdom was a nation vital to America's long-term economic and strategic interests. This remarkable official about face was the result of several factors including the potential of Saudi Arabian oilfields, the shifting priorities of Washington policy-makers and the lobbying efforts of a Saudi-based American commercial concern, the Arabian American Oil Company (ARAMCO). ARAMCO entered Saudi Arabia in 1933. As the only all-American oil concession in the Middle East they feared European, especially British, interference in their operations. To forestall this possibility, real or imagined, the oilmen turned to Washington for help. Although official assistance was not immediately forthcoming, ARAMCO did find support in the Near Eastern Affairs Division (NEA) of the Department of State.

  4. Cost effective design of scale inhibitor squeeze treatments using a mathematical model

    SciTech Connect (OSTI)

    Kokal, S.L.; Raju, K.U.; Bayona, H. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01

    Scale formation and deposition in production facilities is a challenging problem faced by the oil industry. Their deposition leads to operational problems, safety hazards and an overall decrease in production efficiency. Downhole scale inhibitor squeeze treatments provide the most common and effective means of preventing the formation of oilfield scale deposits. This paper presents an analysis and design study of field inhibitor squeeze treatments. A mathematical model was used to simulate inhibitor squeeze return data from several Saudi Aramco wells. A wide range of sensitivities in squeeze treatments were investigated including inhibitor concentration, inhibitor volume, overflush size, shut-in time, etc. An optimization of the squeeze injection parameters was carried out using the numerical simulator. This optimization was based on squeeze performance as well as on economic criteria. The results indicate that the optimized treatment strategy is very well specific and depends on the water production rates, and operational parameters like the scale inhibitor concentration and volume and the amount of overflush. Recommendations are made for optimizing (in terms of cost effectiveness) the squeeze treatment design.

  5. The perils and pitfalls of business in Russia

    SciTech Connect (OSTI)

    Spears, R.B.

    1995-09-01

    It is not for the lack of trying that few Western oil companies have profitable operations in Russia. Quite the contrary. Every oil company with a thirst for opportunity has searched that once-forbidden region for deals. This gold rush was triggered by an apparent crying need or Western know-how and capital, but appearances in Russia often widely differ from reality. Hype of early oil ventures set a false tone of promise, but company and company came home poorer and wiser. The gold rush went bust. Now in the fourth year of the West`s involvement in Russia`s oilfields, operators are soberly evaluating their prospects. Even while signals are encouraging the West, like a reduction in export tariffs and some progress on contract law, a remarkable event is occuring that throws out many Western arguments for continuing involvement and investment: On their own, the Russians are arresting their production decline and have increased output. This will have immediate and long term effects on Westerners. First, it lends credibility to Russian voices demanding that Mother Russia not sign away its precious resources to foreigners. Second, it encourages trade barriers to protect domestic industry. Third, it weakens the bargaining position of Westerners. Fourth, it reduces the options available to Western operators. What remains will be E&P opportunities where Western technology and capital really can play a role-complex reservoirs, hostile environments-but poor contract terms.

  6. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  7. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  8. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  9. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect (OSTI)

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  10. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    SciTech Connect (OSTI)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

  11. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. [Bechtel Petroleum, Elk Hills, CA (United States)

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  12. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  13. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect (OSTI)

    Allan, M.E.; Wilson, M.L.; Wightman, J. (Bechtel Petroleum, Elk Hills, CA (United States))

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  14. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  15. Mineral industries of Australia, Canada, and Oceania (including a discussion of Antarctica's mineral resources). Mineral perspective

    SciTech Connect (OSTI)

    Kimbell, C.L.; Lyday, T.Q.; Newman, H.H.

    1985-12-01

    The Bureau of Mines report gives the mineral industry highlights of two of the world's major mineral producing countries, Australia and Canada, and seven Pacific island nations or territories--Fiji, New Caledonia, New Zealand, Papua New Guinea, Republic of Nauru, Solomon Islands, and Vanuatu. The mineral resources of Antarctica are also discussed. Because of the size of the Australian and Canadian mineral industries, summary reviews are presented for each of the States, Provinces, or Territories. The most current information available from all nations is given on major minerals or mineral-commodity production, share of world production, and reserves. Reported also are significant mining companies, locations and capacities of their main facilities, and their share of domestic production. Other information is provided on mineral-related trade with the United States, government mineral policy, energy production-consumption and trade, the mining industry labor force, and prospects for the mineral industry. Maps show the locations of selected mineral deposits, oilfields and gasfields, mines, and processing facilities including iron and steel plants, nonferrous smelters and refineries, and cement plants, as well as infrastructure pertinent to the mineral industry.

  16. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    SciTech Connect (OSTI)

    Kantsyrev, V. L. Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources – planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  17. Total absorption spectroscopy study of ?²Rb decay: A major contributor to reactor antineutrino spectrum shape [Total absorption spectroscopy study of ?²Rb: A major contributor to reactor antineutrino flux

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore »the fission of ²³?,²?¹Pu and ²³?,²³?U, and whose beta decay properties might deserve new measurements. Among these nuclei, ?²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ?²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ?²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  18. Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site

    SciTech Connect (OSTI)

    Lew, J.; Snipes, R. [Environmental Management and Enrichment Facilities, Oak Ridge, TN (United States); Tamura, T.

    1996-12-31

    The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants.

  19. Duplex Ultrasonography in Assessing Restenosis of Renal Artery Stents

    SciTech Connect (OSTI)

    Bakker, Jeannette [Department of Radiology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Beutler, Jaap J. [Department of Nephrology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Elgersma, Otto E.H. [Department of Radiology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Lange, Eduard E. de [Department of Radiology, University of Virginia Health Sciences Center, Charlottesville, VA 22908 (United States); Kort, Gerard A.P. de; Beek, Frederik J. A. [Department of Radiology, University Hospital Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    1999-11-15

    Purpose: To determine the accuracy and optimal threshold values of duplex ultrasonography (US) in assessing restenosis of renal artery stents. Methods: Twenty-four consecutive patients with 33 renal arteries that had previously been treated with placement of a Palmaz stent underwent duplex US prior to intraarterial digital subtraction angiography (DSA), which was the reference standard. Diagnostic accuracy of in-stent peak systolic velocity (PSV) and reno-aortic ratio (RAR = PSV renal stent/PSV aorta) in detecting > 50% in-stent restenosis were evaluated by the receiver operating characteristic curve. Sensitivity and specificity were determined using the optimal threshold values, and using published threshold values: RAR > 3.5 and in-stent PSV > 180 cm/sec. Results: Six examinations were technically inadequate. Nine stents had residual or restenosis > 50% at DSA. The two duplex parameters were equally accurate since areas under the curves were similar (0.943). With optimal threshold values of 226 cm/sec for PSV and 2.7 for RAR, sensitivities and specificities were 100% and 90%, and 100% and 84%, respectively. Using the published duplex criteria resulted in sensitivities and specificities of 100% and 74% for PSV, and 50% and 89% for RAR. Conclusion: Duplex US is a sensitive modality for detecting in-stent restenosis if laboratory-specific threshold values are used.

  20. How to convert gradually to oil-refinery hydrocracking

    SciTech Connect (OSTI)

    Basta, N.

    1986-01-06

    Over the past ten years, demand for refined petroleum products has been relatively constant, primarily because of worldwide conservation efforts. In fact, the demand for residual fuels has actually declined, while the market for gasoline has risen just slightly. Only middle distillates, which have seen a moderate increase since 1975, will continue to rise slowly over the next several years, says UOP Inc., a Des Plaines, Illinois, division of Allied-Signal Inc. This rise, coupled with the decline in resid demand, dictates the need for conversion capacity that will be capable of selectively producing distillate products. Traditionally, this need has been filled by hydrocracking gas oils to distillates. However, full conversion to hydrocracking requires high capital investment, which may not be possible in today's competitive refining industry. As a solution to this problem, UOP has developed a staged approach to distillate production, which allows the refiner both to phase in capital costs and to increase production over a number of years, says Mark Reno, manager of hydrocracking process development. The staged approach involves (1) constructing a mild-hydrocracking (MHC) unit that would produce less distillate, but at a lower cost; (2) upgrading to full conversion at a later date. The aldready-installed MHC equipment would be used with only minor modifications. UOP offers its own mild/full hydrocracking technology, called unibon; the firm says it can also convert a customer's existing hydrotreating equipment.

  1. Second Generation Waste Package Design Study

    SciTech Connect (OSTI)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-06-28

    The following describes the objectives of Project Activity 023 “Second Generation Waste Package Design Study” under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion testenvironments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity.

  2. Reference worldwide model for antineutrinos from reactors

    E-Print Network [OSTI]

    Marica Baldoncini; Ivan Callegari; Giovanni Fiorentini; Fabio Mantovani; Barbara Ricci; Virginia Strati; Gerti Xhixha

    2015-02-16

    Antineutrinos produced at nuclear reactors constitute a severe source of background for the detection of geoneutrinos, which bring to the Earth's surface information about natural radioactivity in the whole planet. In this framework we provide a reference worldwide model for antineutrinos from reactors, in view of reactors operational records yearly published by the International Atomic Energy Agency (IAEA). We evaluate the expected signal from commercial reactors for ongoing (KamLAND and Borexino), planned (SNO+) and proposed (Juno, RENO-50, LENA and Hanohano) experimental sites. Uncertainties related to reactor antineutrino production, propagation and detection processes are estimated using a Monte Carlo based approach, which provides an overall site dependent uncertainty on the signal in the geoneutrino energy window on the order of 3%. We also implement the off-equilibrium correction to the reference reactor spectra associated with the long-lived isotopes and we estimate a 2.4% increase of the unoscillated event rate in the geoneutrino energy window due to the storage of spent nuclear fuels in the cooling pools. We predict that the research reactors contribute to less than 0.2% to the commercial reactor signal in the investigated 14 sites. We perform a multitemporal analysis of the expected reactor signal over a time lapse of 10 years using reactor operational records collected in a comprehensive database published at www.fe.infn.it/antineutrino.

  3. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    SciTech Connect (OSTI)

    Smith, Ken

    2007-11-26

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report.

  4. Community Environmental Monitoring Program (CEMP) Data related to Air, Soil, and Water Monitoring around the Nevada Test Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Community Environmental Monitoring Program (CEMP) is a network of 29 monitoring stations located in communities surrounding and downwind of the Nevada Test Site (NTS) that monitor the airborne environment for manmade radioactivity that could result from NTS activities. The network stations, located in Nevada, Utah, and California are comprised of instruments that collect a variety of environmental radiological and meteorological data. The emphasis of the CEMP is to monitor airborne radioactivity and weather conditions, and make the results available to the public. Instrumentation that records these data is connected to a datalogger, and real-time radiation levels or weather conditions can immediately and easily be seen on a display at each station. These data are transmitted via direct or wireless internet connection, landline or cellular phone, or satellite transmission to DRI's Western Regional Climate Center in Reno, Nevada, and are updated as frequently as every 10 minutes on the World Wide Web at http://www.cemp.dri.edu. DOE and DRI also publish the results of the monitoring program and distribute these reports throughout the network community. The reports provide summaries of average values for each station and the entire network, and show deviations from the expected range values. [Copied from the CEMP website (Introduction) at http://www.cemp.dri.edu/cemp/moreinfo.html

  5. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    SciTech Connect (OSTI)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  6. Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,189,000 South boundary: approximately 4,170,000 West boundary: approximately 330,000 East boundary: approximately 351,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  7. Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-11-01

    Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado By Richard “Rick” Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,500,000 South boundary: approximately 4,480,000 West boundary: approximately 330,000 East boundary: approximately 358,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRI’s GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

  8. Advanced secondary recovery demonstration for the Sooner Unit. Progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Sippel, M.A.; Cammon, T.J.

    1995-09-30

    The objective of this project is to increase production from the Cretaceous ``D`` Sand in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3-D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and recompleting some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstrated technologies. The success of this project and effective technology transfer should prompt-re-appraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin. Three wells have been drilled by the project based on 3-D seismic and integrated reservoir characterization study. Oil production has increased in September to 54.0 m{sup 3}/D (340 bopd) after the completion of the SU 21-16-9. Combination-attribute maps from 3-D seismic data closely predicted the net-pay thickness of the new well. Inter-well tracer tests with sodium bromide indicate a high-permeability channel between two wells. An oral presentation was made at the Rocky Mountain AAPG meeting in Reno, NV.

  9. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  10. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect (OSTI)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  11. FY05 Targeted Technology Transfer to US Independents

    SciTech Connect (OSTI)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

  12. Treating Coalbed Natural Gas Produced Water for Beneficial Use By MFI Zeolite Membranes

    SciTech Connect (OSTI)

    Robert Lee; Liangxiong Li

    2008-03-31

    Desalination of brines produced from oil and gas fields is an attractive option for providing potable water in arid regions. Recent field-testing of subsurface sequestration of carbon dioxide for climate management purposes provides new motivation for optimizing efficacy of oilfield brine desalination: as subsurface reservoirs become used for storing CO{sub 2}, the displaced brines must be managed somehow. However, oilfield brine desalination is not economical at this time because of high costs of synthesizing membranes and the need for sophisticated pretreatments to reduce initial high TDS and to prevent serious fouling of membranes. In addition to these barriers, oil/gas field brines typically contain high concentrations of multivalent counter cations (eg. Ca{sup 2+} and SO{sub 4}{sup 2-}) that can reduce efficacy of reverse osmosis (RO). Development of inorganic membranes with typical characteristics of high strength and stability provide a valuable option to clean produced water for beneficial uses. Zeolite membranes have a well-defined subnanometer pore structure and extreme chemical and mechanical stability, thus showing promising applicability in produced water purification. For example, the MFI-type zeolite membranes with uniform pore size of {approx}0.56 nm can separate ions from aqueous solution through a mechanism of size exclusion and electrostatic repulsion (Donnan exclusion). Such a combination allows zeolite membranes to be unique in separation of both organics and electrolytes from aqueous solutions by a reverse osmosis process, which is of great interest for difficult separations, such as oil-containing produced water purification. The objectives of the project 'Treating Coalbed Natural Gas Produced Water for Beneficial Use by MFI Zeolite Membranes' are: (1) to conduct extensive fundamental investigations and understand the mechanism of the RO process on zeolite membranes and factors determining the membrane performance, (2) to improve the membranes and optimize operating conditions to enhance water flux and ion rejection, and (3) to perform long-term RO operation on tubular membranes to study membrane stability and to collect experimental data necessary for reliable evaluations of technical and economic feasibilities. Our completed research has resulted in deep understanding of the ion and organic separation mechanism by zeolite membranes. A two-step hydrothermal crystallization process resulted in a highly efficient membrane with good reproducibility. The zeolite membranes synthesized therein has an overall surface area of {approx}0.3 m{sup 2}. Multichannel vessels were designed and machined for holding the tubular zeolite membrane for water purification. A zeolite membrane RO demonstration with zeolite membranes fabricated on commercial alpha-alumina support was established in the laboratory. Good test results were obtained for both actual produced water samples and simulated samples. An overall 96.9% ion rejection and 2.23 kg/m{sup 2}.h water flux was achieved in the demonstration. In addition, a post-synthesis modification method using Al{sup 3+}-oligomers was developed for repairing the undesirable nano-scale intercrystalline pores. Considerable enhancement in ion rejection was achieved. This new method of zeolite membrane modification is particularly useful for enhancing the efficiency of ion separation from aqueous solutions because the modification does not need high temperature operation and may be carried out online during the RO operation. A long-term separation test for actual CBM produced water has indicated that the zeolite membranes show excellent ion separation and extraordinary stability at high pressure and produced water environment.

  13. Improved methods for water shutoff. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    Seright, R.S.

    1997-11-01

    In the US, more than 20 billion barrels of water are produced each year during oilfield operations. There is a tremendous economic incentive to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. In an earlier project, the authors determined that the ability of blocking agents to reduce permeability to water much more than that to oil is critical to the success of these blocking treatments in production wells if zones are not protected during placement of the blocking agent. This research project has three objectives: (1) to identify chemical blocking agents that will during placement, flow readily through fractures without penetrating significantly into porous rock and without screening out or developing excessive pressure gradients and at a predictable and controllable time, become immobile and resist breakdown upon exposure to moderate to high pressure gradients; (2) to identify schemes that optimize placement of blocking agents; and (3) to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that of another phase (e.g., oil or gas). Chapter 2 examines the validity of using water/oil ratio plots to distinguish between coning and channeling water production mechanisms. Chapter 3 develops a method to size gelant treatments in hydraulically fractured production wells. Chapter 4 identifies characteristics of naturally fractured reservoirs where gel treatments have the greatest potential. Chapter 5 reports experimental results from studies of gel properties in fractures. Finally, Chapter 6, the authors investigate the mechanism responsible for gels reducing the permeability to water more than that to oil.

  14. Isothermal evaporation process simulation using the Pitzer model for the Quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meng, Lingzong; Gruszkiewicz, Miroslaw S.; Deng, Tianlong; Guo, Yafei; Li, Dan

    2015-08-05

    In this study, the Pitzer thermodynamic model for solid-liquid equilibria in the quinary system LiCl–NaCl–KCl–SrCl2–H2O at 298.15 K was constructed by selecting the proper parameters for the subsystems in the literature. The solubility data of the systems NaCl–SrCl2–H2O, KCl–SrCl2–H2O, LiCl–SrCl2–H2O, and NaCl–KCl–SrCl2–H2O were used to evaluate the model. Good agreement between the experimental and calculated solubilities shows that the model is reliable. The Pitzer model for the quinary system at 298.15 K was then used to calculate the component solubilities and conduct computer simulation of isothermal evaporation of the mother liquor for the oilfield brine from Nanyishan district in themore »Qaidam Basin. The evaporation-crystallization path and sequence of salt precipitation, change in concentration and precipitation of lithium, sodium, potassium, and strontium, and water activities during the evaporation process were demonstrated. The salts precipitated from the brine in the order : KCl, NaCl, SrCl2?6H2O, SrCl2?2H2O, and LiCl?H2O. The entire evaporation process may be divided into six stages. In each stage the variation trends for the relationships between ion concentrations or water activities and the evaporation ratio are different. This result of the simulation of brines can be used as a theoretical reference for comprehensive exploitation and utilization of this type of brine resources.« less

  15. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  16. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  17. Downhole Vibration Monitoring and Control System

    SciTech Connect (OSTI)

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE funding.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  19. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  20. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  1. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    SciTech Connect (OSTI)

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  2. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  3. Innovative techniques for the description of reservoir heterogeneity using tracers. Second technical annual progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Pope, G.A.; Sepehrnoori, K.

    1992-12-31

    This second annual report on innovative uses of tracers for reservoir characterization contains four sections each describing a novel use of oilfield tracers. The first section describes and illustrates the use of a new single-well tracer test to estimate wettability. This test consists of the injection of brine containing tracers followed by oil containing tracers, a shut-in period to allow some of the tracers to react, and then production of the tracers. The inclusion of the oil injection slug with tracers is unique to this test, and this is what makes the test work. We adapted our chemical simulator, UTCHEM, to enable us to study this tracer method and made an extensive simulation study to evaluate the effects of wettability based upon characteristic curves for relative permeability and capillary pressure for differing wetting states typical of oil reservoirs. The second section of this report describes a new method for analyzing interwell tracer data based upon a type-curve approach. Theoretical frequency response functions were used to build type curves of ``transfer function`` and ``phase spectrum`` that have dimensionless heterogeneity index as a parameter to characterize a stochastic permeability field. We illustrate this method by analyzing field tracer data. The third section of this report describes a new theory for interpreting interwell tracer data in terms of channeling and dispersive behavior for reservoirs. Once again, a stochastic approach to reservoir description is taken. The fourth section of this report describes our simulation of perfluorocarbon gas tracers. This new tracer technology developed at Brookhaven National Laboratory is being tested at the Elk Hills Naval Petroleum Reserve No. 1 in California. We report preliminary simulations made of these tracers in one of the oil reservoirs under evaluation with these tracers in this field. Our compostional simulator (UTCOMP) was used for this simulation study.

  4. Precarious Rock Methodology for Seismic Hazard: Physical Testing, Numerical Modeling and Coherence Studies

    SciTech Connect (OSTI)

    Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.

    2006-09-29

    This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.

  5. Democratic neutrino mass matrix from generalized Fridberg-Lee model with the perturbative solar mass splitting

    E-Print Network [OSTI]

    N. Razzaghi

    2015-05-17

    We propose a phenomenological model of the Dirac neutrino mass matrix based on the Fridberg-Lee neutrino mass model at a special point. In this case, the Fridberg-Lee model reduces to the Democratic mass matrix with the $S_3$ permutation family symmetry. The Democratic mass matrix has an experimentally unfavored degenerate mass spectrum on the base of tribimaximal mixing matrix. We rescue the model to find a nondegenerate mass spectrum by adding the breaking mass term as preserving the twisted Fridberg-Lee symmetry. The tribimaximal mixing matrix can be also realized. Exact tribimaximal mixing leads to $\\theta_{13}=0$. However, the results from Daya Bay and RENO experiments have established a nonzero value for $\\theta_{13}$. Keeping the leading behavior of $U$ as tribimaximal, we use Broken Democratic neutrino mass model. We characterize a perturbation mass matrix which is responsible for a nonzero $\\theta_{13}$ along with CP violation, besides the solar neutrino mass splitting has been resulted from it. We consider this work in two stages: In the first stage, we obtain the perturbation mass matrix with real components which breaks softly the $\\mu-\\tau$ symmetry and this leads to a nonzero value for $\\theta_{13}$. In the second stage, we extend the perturbation mass matrix to a complex symmetric matrix which leads to CP violation. Therefore obtain a realistic neutrino mixing matrix with $\\theta_{23}=45^\\circ$. We obtain the solar mass splitting, the ordering of the neutrino masses is inverted. Using only two sets of the experimental data, we can fix all of the parameters of mass matrix and predict the masses of neutrinos and phases. These predictions include the following: $m_{1}\\approx(4.82-4.93)10^{-2}eV $, $|m_2|\\approx(4.90-5.01)10^{-2} eV$, $m_3\\approx0$ and, $\\phi\\approx(0.687^\\circ-10.31^\\circ)$ as the origin of the Majorana phases.

  6. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  7. Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters

    SciTech Connect (OSTI)

    Denise Baclawski

    2010-03-08

    The University of Nevada, Reno Fire Science Academy (FSA) applied for grant funding to develop and deliver programs for municipal, rural, and volunteer firefighters. The FSA specializes in preparing responders for a variety of emergency events, including flammable liquid fires resulting from accidents, intentional acts, or natural disasters. Live fire training on full scale burnable props is the hallmark of FSA training, allowing responders to practice critical skills in a realistic, yet safe environment. Unfortunately, flammable liquid live fire training is often not accessible to municipal, rural, or volunteer firefighters due to limited department training budgets, even though most department personnel will be exposed to flammable liquid fire incidents during the course of their careers. In response to this training need, the FSA developed a course during the first year of the grant (Year One), Responding to Terrorist Incidents in Your Community: Flammable-Liquid Fire Fighting Techniques for Municipal and Rural Firefighters. During the three years of the grant, a total of 2,029 emergency responders received this training. In Year Three, two new courses, a train-the-trainer for Responding to Terrorist Incidents in Your Community and Management of Large-Scale Disasters for Public Officials were developed and pilot tested during the Real-World Disaster Management Conference held at the FSA in June of 2007. Two research projects were conducted during Years Two and Three. The first, conducted over a two year period, evaluated student surveys regarding the value of the flammable liquids training received. The second was a needs assessment conducted for rural Nevada. Both projects provided important feedback and a basis for curricula development and improvements.

  8. Walk the Talk. Integrated Sustainability Initiative

    SciTech Connect (OSTI)

    Sagebiel, John

    2014-09-30

    The overall objective of this project was to demonstrate, through a series of real-world applications of existing technology, the benefits to the University of Nevada, Reno and the community, of various sustainability efforts. The project was very successful and has stimulated the Campus to take on more projects after seeing the successes of those initial ones funded through this project. The three areas of this work could broadly be described as energy efficiency, renewable energy and recycling. Under the first project, the campus did several projects replacing or changing heating and cooling systems, using state funding. The DOE funding initially funded the replacement of lights in one campus parking garage with LED lights. Subsequently, the campus facilities group recognized how effective this was and leveraged funds to do the other two garages. Similarly with the renewable energy project, once the first system was installed and working well, the campus committed funds to more than double that system. Lastly, the recycling efforts expanded the use and awareness on campus and led the campus to begin using a single-stream recycling program once it became available in this area, hopefully leading to more participation by the campus community. Thus, overall the project areas each did what they were intended to do, which was to demonstrate the usefulness of these sustainability programs and thus encourage the campus to do more. All this great work helps the campus’ goals overall, but without additional effort would not reach beyond the campus. This was the objective of the education and outreach effort. The combination of events, websites, and videos enabled us to reach many key decision makers and at the same time provide a long-term presence on the web that we can use to further educate people. The overall goals were met or exceeded and will continue to pay dividends into the future.

  9. Optimizing Fracture Treatments in a Mississippian "Chat" Reservoir, South-Central Kansas

    SciTech Connect (OSTI)

    K. David Newell; Saibal Bhattacharya; Alan Byrnes; W. Lynn Watney; Willard Guy

    2005-10-01

    This project is a collaboration of Woolsey Petroleum Corporation (a small independent operator) and the Kansas Geological Survey. The project will investigate geologic and engineering factors critical for designing hydraulic fracture treatments in Mississippian ''chat'' reservoirs. Mississippian reservoirs, including the chat, account for 159 million m3 (1 billion barrels) of the cumulative oil produced in Kansas. Mississippian reservoirs presently represent {approx}40% of the state's 5.6*106m3 (35 million barrels) annual production. Although geographically widespread, the ''chat'' is a heterogeneous reservoir composed of chert, cherty dolomite, and argillaceous limestone. Fractured chert with micro-moldic porosity is the best reservoir in this 18- to 30-m-thick (60- to 100-ft) unit. The chat will be cored in an infill well in the Medicine Lodge North field (417,638 m3 [2,626,858 bbls] oil; 217,811,000 m3 [7,692,010 mcf] gas cumulative production; discovered 1954). The core and modern wireline logs will provide geological and petrophysical data for designing a fracture treatment. Optimum hydraulic fracturing design is poorly defined in the chat, with poor correlation of treatment size to production increase. To establish new geologic and petrophysical guidelines for these treatments, data from core petrophysics, wireline logs, and oil-field maps will be input to a fracture-treatment simulation program. Parameters will be established for optimal size of the treatment and geologic characteristics of the predicted fracturing. The fracturing will be performed and subsequent wellsite tests will ascertain the results for comparison to predictions. A reservoir simulation program will then predict the rate and volumetric increase in production. Comparison of the predicted increase in production with that of reality, and the hypothetical fracturing behavior of the reservoir with that of its actual behavior, will serve as tests of the geologic and petrophysical characterization of the oil field. After this feedback, a second well will be cored and logged, and procedure will be repeated to test characteristics determined to be critical for designing cost-effective fracture treatments. Most oil and gas production in Kansas, and that of the Midcontinent oil industry, is dominated by small companies. The overwhelming majority of these independent operators employ less than 20 people. These companies have limited scientific and engineering expertise and they are increasingly needing guidelines and technical examples that will help them to not be wasteful of their limited financial resources and petroleum reserves. To aid these operators, the technology transfer capabilities of the Kansas Geological Survey will disseminate the results of this study to the local, regional, and national oil industry. Internet access, seminars, presentations, and publications by Woolsey Petroleum Company and Kansas Geological Survey geologists and engineers are anticipated.

  10. Results of Performance Tests Performed on the John Watts Casing Connection on 7" Pipe

    SciTech Connect (OSTI)

    John D. Watts

    1999-08-01

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his threaded connection developed for oilfield oil and gas service. This particular test required the application of a variety of loads including axial tension and compression, internal pressure (gas), external pressure (water), bending and both low and elevated temperature. These loads were used to determine the sealing and structural limits of the connection. The connection design tested had tapered threads with 10 threads per inch. A square thread form and a round thread form were tested. The square thread form had a 2{sup o} load flank and 15{sup o} stab flank. The round thread had a 0{sup o} load flank and 20{sup o} stab flank. Most of the testing was performed on the round thread form. Both a coupled connection design and an integral connection design were tested. The coupling was a pin by pin (male) thread, with the pipe having a box (female) thread. Both designs have outside and inside diameters that are flush with the pipe body. Both designs also contain a small external shoulder. The test procedure selected for this evaluation was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test was performed with four coupled samples and included most of these loads. Two integral samples were also included for limit load testing ISO makeup/breakout tests are divided into three types--initial makeup, IML1, repeated makeup within the same sample, MBL, and repeated makeup using several samples called round robin, RR. IMU and MBL were performed in this project. The ISO sealing and structural procedure is divided into four primary tests and identified as Series A, B, C and Limit Load (failure). Series A and B test to 95% actual yield of the pipe and Series C uses 90% of actual yield. Samples 1 and 3 were tested to Series A and the loads are shown in Figure 1. For these samples, the axial compression was limited to 75% pipe body yield, which was set by Mr. Watts at the beginning of the test. Samples 2 and 4 were tested to Series B with loads shown in Figure 2. This series included 20 degrees per 100 feet bending but no external pressure. Due to premature leaks, no samples were subjected to Series C which included mechanical and thermal cycles. Samples 5 and 6 were tested to failure. The project started with the selection and purchase of a popular size of oilfield pipe, which was 7-inch OD, 32 pound per foot, P-110 casing. While the connections were being threaded, material tensile tests were performed to get the actual strength of the 7-inch pipe. The first samples contained a square thread form. Excessive galling was experienced during the first series of makeup/breakout tests and Mr. Watts decided to change the thread form and remachine the samples. The second samples had a round thread form and performed very well in the makeup/breakout tests. Basically no galling occurred of any consequence. Samples 1 and 3 were to be tested with external water (ISO Series A) while samples 2 and 4 were to be tested with bending (ISO Series B, no external pressure). Testing of all four samples started with tension and internal gas pressure. During this initial pressure testing, samples 1, 3 and 4 developed leaks and the test was stopped before any external pressure or bending was applied. Sample 2 successfully tested to ISO Load Point 5 which included bending before developing a leak. Figure 3 shows the loads at which the samples leaked and the relative pipe body performance capability. Sample 1 and end A of sample 2 held a high pressure while samples 3, 4 and end B of sample 2 leaked at relatively low pressures. All of these leaks were with nitrogen gas pressure. After reviewing the results, it was believed that several conditions may have contributed to the prema

  11. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  12. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 hasmore »been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less

  13. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    SciTech Connect (OSTI)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated immobile gel within the fracture) was much narrower than the width of the fracture. The potential of various approaches were investigated for improving sweep in parts of the Daqing Oil Field that have been EOR targets. Possibilities included (1) gel treatments that are directed at channeling through fractures, (2) colloidal dispersion gels, (3) reduced polymer degradation, (4) more viscous polymer solutions, and (5) foams and other methods. Fractures were present in a number of Daqing wells (both injectors and producers). Because the fractures were narrow far from the wellbore, severe channeling did not occur. On the contrary, fractures near the wellbore aided reservoir sweep. In the February 2006 issue of the Journal of Petroleum Technology, a 'Distinguished-Author-Series' paper claimed that a process using aqueous colloidal dispersion gels (CDG gels) performed superior to polymer flooding. Unfortunately, this claim is misleading and generally incorrect. Colloidal dispersion gels, in their present state of technological development, should not be advocated as an improvement to, or substitute for, polymer flooding.

  14. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    SciTech Connect (OSTI)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.

  15. Initial results from seismic monitoring at the aquistore CO2 storage site, Saskatchewan, Canada

    SciTech Connect (OSTI)

    White, D. J. [Geological Survey of Canada, Ottawa (Canada); Roach, L. A.N. [Geological Survey of Canada, Ottawa (Canada); Roberts, B. [Geological Survey of Canada, Ottawa (Canada); Daley, T. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.

  16. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  17. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    SciTech Connect (OSTI)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types of chemical/ water buffers before and after the SPI mix ensured that pre-gelled SPI mix got out into the formation before setting into a gel. SPI gels were found to be 3 to 10 times stronger than any commercially available cross-linked polyacrylamide gels based on Penetrometer and Bulk Gel Shear Testing. Because of SPI’s unique chemistry with CO{sub 2}, both laboratory and later field tests demonstrated that multiple, smaller volume SPI treatments maybe more effective than one single large SPI treatment. CO{sub 2} injectivities in injection well in both fields were reduced by 33 to 70% indicating that injected CO{sub 2} is now going into new zones. This reduction has lasted 1+ year in Field A. Oil production increased and CO{sub 2} production decreased in 5 Field A production wells, offsets to Well #1 injector, for a total of about 2,250 m{sup 3} (600,000 gallons/ 14,250 bbls) of incremental oil production- a $140 / SPI bbl return. Treated marginal production well, Field A Well #2, immediately began showing increased oil production totaling 238 m{sup 3} (63,000 gallons/ 1500 BBLs) over 1 year and an immediate 81% reduced gas-oil ratio.

  18. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT-GENERATION INTEGRATED RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Scott R. Reeves

    2005-04-01

    Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide substantial benefits for effective oilfield management. By doing so, the predictive reliability of reservoir flow models, which are routinely used as the basis for investment decisions involving hundreds of millions of dollars and designed to recover millions of barrels of oil, can be significantly improved. Even a small improvement in incremental recovery for high-value assets can result in important contributions to bottom-line profitability. Today's standard practice for developing a 3D reservoir description is to use seismic inversion techniques. These techniques make use of geostatistics and other stochastic methods to solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its acoustic response to that actually observed in the field. This method has several inherent flaws, such as: (1) The resulting models are highly non-unique; multiple equiprobable realizations are produced, meaning (2) The results define a distribution of possible outcomes; the best they can do is quantify the uncertainty inherent in the modeling process, and (3) Each realization must be run through a flow simulator and history matched to assess it's appropriateness, and therefore (4) The method is labor intensive and requires significant time to complete a field study; thus it is applied to only a small percentage of oil and gas producing assets. A new approach to achieve this objective was first examined in a Department of Energy (DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of that study was to evaluate whether robust relationships between data at vastly different scales of measurement could be established using virtual intelligence (VI) methods. The proposed workflow required that three specific relationships be established through use of artificial neural networks (ANN's): core-to-log, log-to-crosswell seismic, and crosswell-to-surface seismic. One of the key attributes of the approach, which should result in the creation of high resolution reservoir characterization with greater accuracy and with less uncertainty than today's methods, is the inclusion of borehole seismic (such as crosswell and/or vertical seismic profiling--VSP) in the data collection scheme. Borehole seismic fills a critical gap in the resolution spectrum of reservoir measurements between the well log and surface seismic scales, thus establishing important constraints on characterization outcomes. The results of that initial study showed that it is, in fact, feasible to establish the three critical relationships required, and that use of data at different scales of measurement to create high-resolution reservoir characterization is possible. Based on the results of this feasibility study, in September 2001, the DOE, again through ARI, launched a subsequent two-year government-industry R&D project to further develop and demonstrate the technology. The goals of this project were to: (1) Make improvements to the initial methodology by incorporating additional VI technologies (such as clustering), using core measurements in place of magnetic resonance image (MRI) logs, and streamlining the workflow, among others. (2) Demonstrate the approach in an integrated manner at a single field site, and validate it via reservoir modeling or other statistical methods.

  19. Membrane Technology for Produced Water in Lea County

    SciTech Connect (OSTI)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also proven to generate higher water flux, based on the series of experiments conducted. Laboratory tests at NMT demonstrated that an unprecedented water flux of 1300 l/m2/hr (where typical flux is on the order of 0-3 l/m{sup 2}/hr) can be achieved from a properly designed membrane module. The patent pending NMT system, which was designed and developed at NMT was successful in reducing the possibility for concentration polarization and thereby increasing the permeate water flux, while still maintaining a high salt rejection rate of 96% or greater. For feed solutions having a dissolved contaminant concentration greater than 10,000 ppm, preliminary economic analysis demonstrates that a well-designed FO process will outperform an RO process. Most produced water generated in SENM has TDS higher than 10,000 ppm. Therefore, it is logical to use FO to desalinate the water. Since the issues associated with concentration polarization has only recently been solved by our mechanically enhanced membrane module, the level of system maturity is not at the same level as that for RO. Our efforts going forward will be directed at taking the technology to a higher level of system maturity. With the superior cost effectiveness for FO, it is imperative that this technology reach a point that is competitive with RO in order to meet the expanding need for water for industries in SENM. NMT seeks to demonstrate the greater cost effectiveness by proving the process through a scaled up model. To ensure success, NMT feels it is important to demonstrate this technology in a larger system, (~ 100,000 GPD), before venturing to the commercial scale. This will build confidence in the process with the commercial sector. In addition, it will be possible to develop some of the operational processes around renewable energy sources for the scaled up model. This will further lower the operating costs and enhance the environmentally clean aspect of the process.

  20. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  1. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect (OSTI)

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses were used to better understand porosity and permeability trends in the region and to characterize barriers and define flow units. Diagenetic alterations that impact porosity and permeability include development of quartz overgrowths, sutured quartz grains, dissolution of feldspar grains, formation of clay mineral coatings on grains, and calcite cementation. Many of these alterations are controlled by facies. Mapping efforts identified distinct flow units in the northern part of the field showing that the Pennsylvanian Bridgeport consists of a series of thick incised channel fill sequences. The sandstones are about 75-150 feet thick and typically consist of medium grained and poorly sorted fluvial to distributary channel fill deposits at the base. The sandstones become indistinctly bedded distributary channel deposits in the main part of the reservoir before fining upwards and becoming more tidally influenced near their top. These channel deposits have core permeabilities ranging from 20 md to well over 1000 md. The tidally influenced deposits are more compartmentalized compared to the thicker and more continuous basal fluvial deposits. Fine grained sandstones that are laterally equivalent to the thicker channel type deposits have permeabilities rarely reaching above 250 md. Most of the unrecovered oil in Lawrence Field is contained in Pennsylvanian Age Bridgeport sandstones and Mississippian Age Cypress sandstones. These reservoirs are highly complex and compartmentalized. Detailed reservoir characterization including the development of 3-D geologic and geocellular models of target areas in the field were completed to identify areas with the best potential to recover remaining reserves including unswept and by-passed oil. This project consisted of tasks designed to compile, interpret, and analyze the data required to conduct reservoir characterization for the Bridgeport and Cypress sandstones in pilot areas in anticipation of expanded implementation of ASP flooding in Lawrence Field. Geologic and geocellular modeling needed for reservoir characterization and res

  2. IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT

    SciTech Connect (OSTI)

    Burton, Andrew J.; Zak, Donald R.; Kubiske, Mark E.; Pregitzer, Kurt S.

    2014-06-30

    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to “progressive N limitation”. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas

  3. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect (OSTI)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung and x-ray line radiation from K-shell fluorescence. Integrated experiments, which combine target compression with short-pulse laser heating, yield additional information on target heating efficiency. This indirect way of studying the underlying behavior of the electrons must be validated with computational modeling to understand the physics and improve the design. This program execution required a large, well-organized team and it was managed by a joint Collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). The Collaboration was formed 8 years ago to understand the physics issues of the Fast Ignition concept, building on the strengths of each partner. GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). Since RHED physics is pursued vigorously in many countries, international researchers have been an important part of our efforts to make progress. The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. The experimental program was carried out using the Titan laser at the Jupiter Laser Facility at LLNL, the OMEGA and OMEGA EP lasers at LLE and the Texas Petawatt laser (TPW) at UT Austin. Modeling has been pursued on large computing facilities at LLNL, OSU, and UCSD using codes developed (by us and others) within the HEDLP program, commercial codes, and by leveraging existing supercomputer codes developed by the NNSA ICF program. This Consortium brought together all the components—resources, facilities, and personnel—necessary to accomplish its aggressive goals. The ACE Program has been strongly collaborative, taking advantage of the expertise of the participating institutions to provide a research effort

  4. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    SciTech Connect (OSTI)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    2006-12-15

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: • directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. •Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5?m. •Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60?m, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5?m, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. •Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. •Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. •S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. •In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with

  5. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

  6. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-?m after >100-?m propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. Th

  7. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect (OSTI)

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different

  8. PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring

    SciTech Connect (OSTI)

    Mukul Sharma; Steven Bryant; Chun Huh

    2008-03-31

    There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a fa

  9. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    SciTech Connect (OSTI)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste