National Library of Energy BETA

Sample records for treatment remediation demonstration

  1. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect (OSTI)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  2. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges (acid leaching demo). Technology Demonstration, November 1995-September 1997

    SciTech Connect (OSTI)

    1997-02-07

    The U.S. Army Environmental C%`enter in partnership with the Naval Facilities Engineering Services Center and the U.S. Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first using a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5-10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the worldwide search that was performed to identify vendors of soil remediation equipment and/or contractors who have successfully completed similar remediation projects. A number of information sources, including experts at government and RD institutions, libraries, professional journals, on-line services, academia and industry contacts were used to complete this report. Should the reader be interested in other environmental problems or other technologies not considered for this report, a listing of Internet sites searched during the effort is included and provides ample coverage of the remediation technologies available. The mention of trade names or commercial products in this report should not be constituted as endorsement or recommendation for use.

  3. CONSTRUCTED FARM WETLANDS (CFWs) FOR REMEDIATION OF FARMYARD RUNOFF: WATER TREATMENT EFFICIENCY, ECOLOGICAL

    E-Print Network [OSTI]

    CONSTRUCTED FARM WETLANDS (CFWs) FOR REMEDIATION OF FARMYARD RUNOFF: WATER TREATMENT EFFICIENCY higher than river water quality targets. Its ecological value is poor due to its high pollution and low, Aberdeen, AB15 8QH, UK E-mail: fabrice.gouriveau@ed.ac.uk Summary: This research evaluates the treatment

  4. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L.; Lowe, K.S.; Murdoch, L.D.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  5. Summary - Building C-400 Thermal Treatment Remedial Design Report...

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External...

  6. Engineering design and test plan for demonstrating DETOX treatment of mixed wastes

    SciTech Connect (OSTI)

    Goldblatt, S.; Dhooge, P.

    1995-03-01

    DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

  7. Vitrification and solidification remedial treatment and disposal costs

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-03-12

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450,000 m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes a detailed study done to: compare the economics of the solidification and vitrification processes, determine if the stigma assigned to vitrification is warranted and, determine if investing millions of dollars into vitrification development, along with solidification development, at the Fernald is warranted.

  8. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  9. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect (OSTI)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  10. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-09-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE`s predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  11. Evaluation of surface water treatment and discharge options for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Goyette, M.L.; MacDonell, M.M.

    1992-01-01

    The US Department of Energy (DOE), under its Environmental Restoration and Waste Management Program, is responsible for conducting response actions at the Weldon Spring site in St. Charles County, Missouri. The site consists of two noncontiguous areas: (1) the chemical plant area, which includes four raffinate pits and two small ponds, and (2) a 3.6-ha (9-acre) quarry located about 6.4 km (4 mi) southwest of the chemical plant area. Both of these areas became chemically and radioactively contaminated as a result of processing and disposal activities that took place from the 1940s through 1960s. The Weldon Spring site, located about 48 km (30 mi) west of St. Louis, is listed on the National Priorities List of the US Environmental Protection Agency. Nitroaromatic explosives were processed by the Army at the chemical plant area during the 1940s, and radioactive materials were processed by DOE's predecessor agency (the Atomic Energy Commission) during the 1950s and 1960s. Overall remediation of the Weldon Spring site is being addressed through the Weldon Spring Site Remedial Action Project, and it consists of several components. One component is the management of radioactively and chemically contaminated surface water impoundments at the chemical plant area -- i.e., the four raffinate pits, Frog Pond, and Ash Pond which was addressed under a separate action and documented in an engineering evaluation/cost analysis report. This report discusses the evaluation of surface water treatment at the Weldon Spring site.

  12. Toxic remediation

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alamed County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  13. Demonstration of physical separation/leaching methods for the remediation of heavy metals contaminated soils at small arms ranges. Final report, November 1995--September 1997

    SciTech Connect (OSTI)

    1997-09-01

    The US Army Environmental Center in partnership with the Naval Facilities Engineering Services Center and the US Army Engineer Waterways Experiment Station demonstrated Physical Separation/Leaching methods for the remediation of small arms range soils. The demonstration occurred at Fort Polk, Louisiana. The primary objective was to demonstrate and evaluate the technical capability and document the cost effectiveness of the physical separation/leaching family of technologies. The secondary objective was to identify technology sources, provide implementation guidance and transfer the technology to the user. After conducting a world-wide search, two vendors were selected to demonstrate two variations of the physical separation/leaching technologies. The first used a process based on acetic (weak) acid chemistry and the second based on hydrochloric (strong) acid chemistry. Following completion of the bench treatability studies, each vendor performed a full scale (5--10 tons per hour, 1000 tons total) demonstration of their respective technologies. This report documents the demonstration including site planning, lessons learned and recommendations for additional developmental work.

  14. REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

    2007-08-15

    On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

  15. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  16. The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies 

    E-Print Network [OSTI]

    Strasser, J.; Mannapperuma, J.

    1995-01-01

    and has demonstrated that membrane processes like MF, UF, NF and RO can successfully be applied to remove BOD and TSS from process streams, often recovering valuable solids, reducing sewer charges and meeting environmental regulations....

  17. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    SciTech Connect (OSTI)

    Berry, J.B.; Bloom, G.A. [Oak Ridge National Lab., TN (United States); Kuchynka, D.J. [Science Applications International Corp., Gaithersburg, MD (United States)

    1994-06-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper.

  18. Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes

    SciTech Connect (OSTI)

    Roesener, W.S.; Mason, J.B.; Ryan, K.; Bryson, S.; Eldredge, H.B.

    2006-07-01

    In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

  19. DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adamson, D.; Poirier, M.; Steeper, T.

    2009-12-03

    In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

  20. Buried waste integrated demonstration FY 94 deployment plan

    SciTech Connect (OSTI)

    Hyde, R.A.; Walker, S.; Garcia, M.M.

    1994-05-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

  1. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  2. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  3. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  4. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  5. Groundwater remediation at a former oil service site 

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29

    As an intern with URS Corporation, I participated in several remediation and wastewater treatment projects during the year 2004. A groundwater remediation project was selected to present in this record of study for my Doctor of Engineering degree...

  6. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  7. Demonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant. Final report

    SciTech Connect (OSTI)

    1995-01-01

    This report describes the design, construction, and testing of membrane aeration panels at the Marsh Creek wastewater treatment plant (WWTP) in Geneva, NY. The operators at the Geneva plant have undertaken a long-term program to upgrade wastewater treatment processes and lower operating costs. The aging mechanical surface aerators at the Marsh Creek treatment plant were replaced by a state-of-the-art membrane panel system. This fine-bubble diffused air system offers higher oxygen transfer efficiency than surface aerators or other types of fine-bubble diffused-air systems. The project had four objectives: to decrease the amount of electricity used at the plant for aeration; to enable the plant`s existing aeration basins to accommodate higher organic loads and/or nitrify the wastewater should the need arise; to provide an even distribution of dissolved oxygen within the aeration basins to enhance biological wastewater treatment activity; and to provide technical data to assess the performance of the membrane panel system versus other forms of wastewater aeration.

  8. Selecting Mold Remediation Contractors 

    E-Print Network [OSTI]

    Renchie, Don L.

    2005-10-05

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  9. IMPROVED APPROACHES TO DESIGN OF POLYMER GEL TREATMENTS IN MATURE OIL FIELDS: FIELD DEMONSTRATION IN DICKMAN FIELD, NESS COUNTY, KANSAS

    SciTech Connect (OSTI)

    Ronald Fowler

    2004-11-30

    This report describes the results of the one-year project entitled ''Improved Approaches to Design of Polymer Gel Treatments in Mature Oil Fields: Field Demonstration in Dickman Field, Ness County, Kansas''. The project was a 12-month collaboration of Grand Mesa Operating Company (a small independent), TIORCO Inc. (a company focused on improved recovery technology) and the University of Kansas. The study undertook tasks to determine an optimum polymer gel treatment design in Mississippian reservoirs, demonstrate application, and evaluate the success of the program. The project investigated geologic and engineering parameters and cost-effective technologies required for design and implementation of effective polymer gel treatment programs in the Mississippian reservoir in the Midcontinent. The majority of Mississippian production in Kansas occurs at or near the top of the Mississippian section just below the regional sub-Pennsylvanian unconformity and karst surface. Dickman Field with the extremely high water cuts and low recovery factors is typical of Mississippian reservoirs. Producibility problems in these reservoirs include inadequate reservoir characterization, drilling and completion design problems, and most significantly extremely high water cuts and low recovery factors that place continued operations at or near their economic limits. Geologic, geophysical and engineering data were integrated to provide a technical foundation for candidate selection and treatment design. Data includes core, engineering data, and 3D seismic data. Based on technical and economic considerations a well was selected for gel-polymer treatment (Grand Mesa Operating Company Tilley No.2). The treatment was not successful due to the small amount of polymer that could be injected. Data from the initial well and other candidates in the demonstration area was analyzed using geologic, geophysical and engineering data. Based on the results of the treatment and the integrated reservoir characterization it was determined that a second polymer-gel treatment could not be justified. The Mississippian reservoir at Dickman Field is much more complex than originally anticipated with numerous reservoir compartments and potential attic oil beneath the irregular Mississippian karst. It appears that remaining oil in place could be best recovered using improved oil recovery techniques such as target infill drilling and horizontal wells.

  10. A Membrane Process for Industrial Water Treatment: From Bench to Pilot Demonstration

    SciTech Connect (OSTI)

    Eric S. Peterson; Bill Cleary; Michael Hackett; Jessica Trudeau

    2005-01-01

    A rotary membrane filtration system was used to separate die lubricant from a manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by factors of 20 to 25, carbon oxygen demand by 1.5 to 2, and total organic carbon by 0.6, while the biological oxygen demand remained constant. The rotary membranes were not fouled as badly as static membranes, and the rotary membrane flux levels were consistently higher and more stable than those of the static membranes tested. Field testing demonstrated that the rotary ultrafilter can concentrate the die lubricant, remove the glycerin component, and produce a die lubricant suitable for in-plant recycling. The recycling system operated for 6 weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that when recycled die lubricant was used, the die casting scrap was reduced from 8.4 to 7.8%. Rotary ultrafiltration presents significant opportunities that can be evaluated further.

  11. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  12. Toxic Remediation System And Method

    DOE Patents [OSTI]

    Matthews, Stephen M. (Alameda County, CA); Schonberg, Russell G. (Santa Clara County, CA); Fadness, David R. (Santa Clara County, CA)

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  13. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  14. In Situ Remediation Integrated Program: FY 1994 program summary

    SciTech Connect (OSTI)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  15. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect (OSTI)

    Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T. [Los Alamos National Lab., NM (United States); Ross, T.J. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

  16. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  17. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  18. Pinellas Remediation Agreement Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Legal Driver(s) CERCLA Atomic Energy Act of 1954, as amended Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the...

  19. Selecting Mold Remediation Contractors (Spanish) 

    E-Print Network [OSTI]

    Renchie, Don L.

    2007-10-08

    Texas has strict regulations that govern mold remediation companies. Before contracting for mold remediation work, consumers should know what the law requires of remediation companies and what such contracts should contain....

  20. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  1. Field Demonstration of the Performance of Wastewater Treatment Solution (WTS®) to Reduce Phosphorus and other Substances from Dairy Lagoon Effluent 

    E-Print Network [OSTI]

    Mukthar, Saqib; Rahman, Shafiqur; Gregory, Lucas

    2009-01-01

    technology (i.e. wastewater treatment solution, WTS®) was evaluated, which may assist dairy farmers in reducing P from lagoon effluent. In many cases, this effluent is applied to waste application fields (WAF) as irrigation water. Therefore, reducing P...

  2. EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

  3. Best Demonstrated Available Technology (BDAT) for pollution control and waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the most advanced equipment and processes for pollution control and waste treatment according to the guidelines set by the Environmental Protection Agency (EPA). Citations discuss biological, thermal, physical, and chemical prosesses for the technology innovation, economic productivity, and environmental protection. Standards and regulations for gaseous, liquid, and solid pollution are included. Also discussed are water pollution control, food and pharmaceutical wastes, effluent treatment, and materials recovery. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  4. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  5. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    SciTech Connect (OSTI)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon tetrachloride, technetium-99, iodine-129, nitrate [as NO{sub 3}], trichloroethene [TCE], total chromium, tritium), plus uranium; (3) Assumptions underlying the predictive simulations, including the phased implementation of the final full remedy; (4) Approximate number, locations, and rates of extraction and injection wells; and (5) Predicted amounts of contaminant mass extracted and influent concentrations at individual extraction wells for each COC and for uranium. This document is a companion report to pre-conceptual design document (DOE/RL-2008-56). Together these documents describe the sequential, progressive development of the modeling analyses and design basis for the 200-ZP-1 OU remedy.

  6. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  7. Technology development activities supporting tank waste remediation

    SciTech Connect (OSTI)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  8. CLOSEOUT REPORT REMEDIAL ACTION

    E-Print Network [OSTI]

    FINAL CLOSEOUT REPORT REMEDIAL ACTION AREA OF CONCERN 6 BUILDING 650 RECLAMATION FACILITY SUMP York 11973 REGISTERED TO ISO 14001 #12;AOC 6 BUILDING 650 RECLAMATION FACILITY SUMP AND SUMP OUTFALL .................................................................................9 2.6.1 Final Radiological Status Survey Design

  9. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  10. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect (OSTI)

    Regan, A.H.; Roybal, W.T.; Ortega, R.; Palomares, M.; Rees, D.E.; Tischler, D.

    1996-06-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors have developed an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants. The authors have conducted a number of benchtop experiments involving RF/microwave energy deposition and vapor extraction on controlled contaminated soil samples with successful removal of the contaminants. This paper will describe the experimental hardware utilized, the experiments performed, the chemical analysis performed pre- and post-energy application, and results. In the experiments, two different halogenated liquids were used to contaminate the soil: carbon tetrachloride and 1,1,1-trichloroethane.

  11. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  12. SCFA lead lab technical assistance at Oak Ridge Y-12 national security complex: Evaluation of treatment and characterization alternatives of mixed waste soil and debris at disposal area remedial action DARA solids storage facility (SSF)

    E-Print Network [OSTI]

    Hazen, Terry

    2002-01-01

    Bioremediation – tilling top layer with tractor, add fertilizer & water;Bioremediation (In Situ and Ex Situ) • In Situ Remediation • Waterwater would be required for either anaerobic or aerobic degradation. Bioremediation

  13. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  14. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  15. Demonstration of optimization techniques for groundwater plume remediation

    E-Print Network [OSTI]

    Finsterle, Stefan

    2000-01-01

    of contaminants during steam flooding, which can be partlydangerous side-effect of steam flooding, a penalty term is

  16. Tank Waste Remediation System optimized processing strategy

    SciTech Connect (OSTI)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  17. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  18. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    SciTech Connect (OSTI)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  19. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  20. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  1. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  2. Methodology to remediate a mixed waste site

    SciTech Connect (OSTI)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  3. Uranium soils integrated demonstration: Soil characterization project report

    SciTech Connect (OSTI)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  4. Environmental Response to Remedial Actions at the Weldon Spring Site--An Environmental Success Story

    SciTech Connect (OSTI)

    Meier, J. A.; Welton, T. D.

    2002-02-27

    Environmental remediation activities have been ongoing at the Weldon Spring Site for over a decade, beginning with small interim response actions and culminating in completion of surface cleanup as represented by closure of the 17 hectare (42-acre) on-site disposal cell. As remedial actions have incrementally been accomplished, the occurrence of site-related contaminants in on and off-site environmental media have effectively been reduced. The DOE-WSSRAP has demonstrated success through the effective reduction or elimination of site related water and airborne contaminants along multiple migration pathways. This paper briefly describes the remedial measures affected at Weldon Spring, and quantifies the environmental responses to those remedial measures.

  5. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect (OSTI)

    Swita, W.R.

    1998-01-05

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

  6. FOAM: NOVEL DELIVERY TECHNOLOGY FOR REMEDIATION OF VADOSE ZONE ENVIRONMENTS

    SciTech Connect (OSTI)

    Jansik, Danielle P.; Wellman, Dawn M.; Mattigod, Shas V.; Zhong, Lirong; Wu, Yuxin; Foote, Martin; Zhang, Z. F.; Hubbard, Susan

    2011-07-05

    Deep vadose zone environments can be a primary source and pathway for contaminant migration to groundwater. These environments present unique characterization and remediation challenges that necessitate scrutiny and research. The thickness, depth, and intricacies of the deep vadose zone, combined with a lack of understanding of the key subsurface processes (e.g., biogeochemical and hydrologic) affecting contaminant migration, make it difficult to create validated conceptual and predictive models of subsurface flow dynamics and contaminant behavior across multiple scales. These factors also make it difficult to design and deploy sustainable remedial approaches and monitor long-term contaminant behavior after remedial actions. Functionally, the methods for addressing contamination must remove and/or reduce transport of contaminants. This problem is particularly challenging in the arid western United States where the vadose zone is hundreds of feet thick, rendering transitional excavation methods exceedingly costly and ineffective. Delivery of remedial amendments is one of the most challenging and critical aspects for all remedy-based approaches. The conventional approach for delivery is through injection of aqueous remedial solutions. However, heterogeneous deep vadose zone environments present hydrologic and geochemical challenges which limit the effectiveness. Because the flow of solution infiltration is dominantly controlled by gravity and suction, injected liquid preferentially percolates through highly permeable pathways, by-passing low-permeability zones which frequently contain the majority of contamination. Moreover, the wetting front can readily mobilize and enhance contaminant transport to the underlying aquifer prior to stabilization. Development of innovative, in-situ technologies may be the only way to meet remedial action objectives and long-term stewardship goals. Surfactants can be used to lower the liquid surface tension and create stabile foams, which readily penetrate low permeability zones. Although surfactant foams have been utilized for subsurface mobilization efforts in the oil and gas industry, so far, the concept of using foams as a delivery mechanism for transporting remedial amendments into deep vadose zone environments to stabilize metal and long-lived radionuclide contaminants has not been explored. Foam flow can be directed by pressure gradients, rather than being dominated by gravity; and, foam delivery mechanisms limit the volume of water (< 5% vol.) required for remedy delivery and emplacement, thus mitigating contaminant mobilization. We will present the results of a numerical modeling and integrated laboratory- / intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e. advanced geophysical techniques and advanced predictive biomarkers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments.

  7. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  9. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  10. Salmon Site Remedial Investigation Report, Main Body

    SciTech Connect (OSTI)

    US DOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  11. Salmon Site Remedial Investigation Report, Exhibit 5

    SciTech Connect (OSTI)

    USDOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

  12. Installation of an innovative remedial technology

    SciTech Connect (OSTI)

    Hines, B. [CDM Federal Programs Corp., Kevil, KY (United States)

    1995-12-31

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  13. Remediation of old environmental liabilities in the Nuclear Research Institute Rez plc

    SciTech Connect (OSTI)

    Podlaha, J. [Nuclear Research Institute Rez plc (Czech Republic)

    2007-07-01

    The Nuclear Research Institute Rez plc (NRI) is a leading institution in all areas of nuclear R and D in the Czech Republic. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at research nuclear reactors and many other topics. The NRI operates two research nuclear reactors, many facilities as a hot cell facility, research laboratories, technology for radioactive waste (RAW) management, radionuclide irradiators, an electron accelerator, etc. After 50 years of activities in the nuclear field, there are some environmental liabilities that shall be remedied in the NRI. There are three areas of remediation: (1) decommissioning of old obsolete facilities (e.g. decay tanks, RAW treatment technology, special sewage system), (2) treatment of RAW from operation and dismantling of nuclear facilities, and (3) elimination of spent fuel from research nuclear reactors operated by the NRI. The goal is to remedy the environmental liabilities and eliminate the potential negative impact on the environment. Based on this postulate, optimal remedial actions have been selected and recommended for the environmental remediation. Remediation of the environmental liabilities started in 2003 and will be finished in 2012. Some liabilities have already been successfully remedied. The most significant items of environmental liabilities are described in the paper together with information about the history, the current state, the progress, and the future activities in the field of remediation of environmental liabilities in the NRI. (authors)

  14. The development and testing of technologies for the remediation of mercury-contaminated soils, Task 7.52. Topical report, December 1992--December 1993

    SciTech Connect (OSTI)

    Stepan, D.J.; Fraley, R.H.; Charlton, D.S.

    1994-02-01

    The release of elemental mercury into the environment from manometers that are used in the measurement of natural gas flow through pipelines has created a potentially serious problem for the gas industry. Regulations, particularly the Land Disposal Restrictions (LDR), have had a major impact on gas companies dealing with mercury-contaminated soils. After the May 8, 1993, LDR deadline extension, gas companies were required to treat mercury-contaminated soils by designated methods to specified levels prior to disposal in landfills. In addition, gas companies must comply with various state regulations that are often more stringent than the LDR. The gas industry is concerned that the LDRs do not allow enough viable options for dealing with their mercury-related problems. The US Environmental Protection Agency has specified the Best Demonstrated Available Technology (BDAT) as thermal roasting or retorting. However, the Agency recognizes that treatment of certain wastes to the LDR standards may not always be achievable and that the BDAT used to set the standard may be inappropriate. Therefore, a Treatability Variance Process for remedial actions was established (40 Code of Federal Regulations 268.44) for the evaluation of alternative remedial technologies. This report presents evaluations of demonstrations for three different remedial technologies: a pilot-scale portable thermal treatment process, a pilot-scale physical separation process in conjunction with chemical leaching, and a bench-scale chemical leaching process.

  15. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods aremore »often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation. « less

  16. Innovative mathematical modeling in environmental remediation

    SciTech Connect (OSTI)

    Yeh, Gour T. [Taiwan Typhoon and Flood Research Institute (Taiwan); National Central Univ. (Taiwan); Univ. of Central Florida (United States); Gwo, Jin Ping [Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Siegel, Malcolm D. [Sandia National Laboratories, Albuquerque, NM (United States); Li, Ming-Hsu [National Central Univ. (Taiwan); ; Fang, Yilin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Zhang, Fan [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Luo, Wensui [Inst. of Tibetan Plateau Research, Chinese Academy of Sciences (China); Yabusaki, Steven B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-05-01

    There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.

  17. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  18. Field Demonstration of the Performance of the L4DB® Microbial Treatment System to Reduce Phosphorus and Other Substances from Dairy Lagoon Effluent 

    E-Print Network [OSTI]

    Mukthar, S.; Rahman, S.; Gregory, L.

    2009-01-01

    TP concentration for IR effluent. Overall, no clear soluble reactive phosphorus (SRP) reduction trends were observed for any sampling locations. Similar to the effect on TP, the L4DB® treatment was effective in reducing total Kjeldahl nitrogen (TKN...

  19. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup Feature Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's...

  20. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  1. Demonstrating a Market-Based Approach to the Reclamation of Mined Lands in West Virginia

    SciTech Connect (OSTI)

    Goodrich-Mahoney, John; Donnelly, Ellen

    2009-12-31

    This project demonstrated that developing environmental credits on private land—including abandoned mined lands—is dependent on a number of factors, some of them beyond the control of the project team. In this project, acid mine drainage (AMD) was successfully remediated through the construction of a passive AMD treatment system. Extensive water quality sampling both before and after the installation of the passive AMD treatment system showed that the system achieved removal efficiencies and pollutant loading reductions for acidity, iron, aluminum and manganese that were consistent with systems of similar size and design. The success of the passive AMD treatment system should have resulted in water credits if the project had not been terminated. Developing carbon sequestration credits, however, was much more complex and was not achieved in this project. The primary challenge that the project team encountered in meeting the full project objectives was the unsuccessful attempt to have the landowner sign a conservation easement for his property. This would have allowed the project team to clear and reforest the site, monitor the progress of the newly planted trees, and eventually realize carbon sequestration credits once the forest was mature. The delays caused by the lack of a conservation easement, as well as other factors, eventually resulted in the reforestation portion of the project being cancelled. The information in this report will help the public make more informed decisions regarding the potential of using water and carbon, and other credits to support the remediation of minded lands through out the United States. The hope is that by using credits that more mined lands with be remediated.

  2. Demonstration Scale Projects Michael Cooney

    E-Print Network [OSTI]

    investigated the application of anaerobic digestion to primary clarifier treatment as a means to lower bulk packing material in anaerobic digesters. #12;Demonstration Scale Projects Michael Cooney With a grant from the DOE, a 3,000 gallon anaerobic

  3. Environmental Restoration and Performance-Based Remediation....

    Broader source: Energy.gov (indexed) [DOE]

    Policy Flash Environmental Restoration and Performance-Based Remediation. . . More Documents & Publications Oversight of Performance-based Contracts CRAD, Performance-Based...

  4. X-701B Groundwater Remedy Portsmouth Ohio

    Office of Environmental Management (EM)

    toward remedial objectives at a similar cost. In this example, the alternative to a surface cap was blending solid oxidant into the subsurface beneath the former basin to...

  5. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

  6. Recommendation 192: Comments on Remediation Effectiveness Report

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendations and Comments on the Draft 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation.

  7. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  8. Interstate Technology & Regulatory Council (ITRC) Remediation...

    Office of Environmental Management (EM)

    & Publications December 11-12, 2014 - Technical Exchange Meeting - Las Vegas, Nevada October 13, 2015 Webinar - EPA Radiation Risk Assessment Approach Attenuation Based Remedies...

  9. Nanocatalysts for Diesel Engine Emissions Remediation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocatalysts for Diesel Engine Emissions Remediation Zeolite-Based Nanocatalysts Offer Enhanced Catalyst Performance and Durability Each year, the United States consumes a large...

  10. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect (OSTI)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  11. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  12. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  14. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    SciTech Connect (OSTI)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

  15. Tank waste remediation system compensatory measure removal

    SciTech Connect (OSTI)

    MILLIKEN, N.J.

    1999-05-18

    In support of Fiscal Year 1998 Performance Agreement TWR1.4.3, ''Replace Compensatory Measures,'' the Tank Waste Remediation System is documenting the completion of field modifications supporting the removal of the temporary exemptions from the approved Tank Waste Remediation System Technical Safety Requirements (TSRs), HNF-SD-WM-TSR-006. These temporary exemptions or compensatory measures expire September 30, 1998.

  16. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  17. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  18. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  19. Electrolytic remediation of chromated copper arsenate wastes

    E-Print Network [OSTI]

    Stern, Heather A. G. (Heather Ann Ganung)

    2006-01-01

    While chromated copper arsenate (CCA) has proven to be exceptionally effective in protecting wood from rot and infestation, its toxic nature has led to the problem of disposal of CCA-treated lumber and remediation of waters ...

  20. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  1. JV Task 59-Demonstration of Accelerated In Situ Contaminant Degradation by Vacuum-Enhanced Nutrient Distribution

    SciTech Connect (OSTI)

    Jaroslav Solc

    2007-03-15

    The Energy & Environmental Research Center (EERC) conducted remediation of hydrocarbon-contaminated soils and groundwater at a former Mohler Oil site in Bismarck, North Dakota. The remedial strategy was based on the application of two innovative concepts: (1) design and deployment of the mobile extraction, treatment, and injection units to overcome site limitations associated with urban settings in high-traffic areas and (2) vacuum-controlled nutrient injection within and on the periphery of an induced hydraulic and pneumatic depression. Combined contaminant recovery since the beginning of the project in June 2003 totals over 13,600 lb ({approx}6,170 kg) of hydrocarbons, equivalent to 2176 gallons (8236 l) of product. In situ delivery of 1504 Ib (682 kg) of ionic nitrate and 540 Ib (245 kg) of dissolved oxygen translates into further reduction of about 489 Ib (222 kg) of benzene for the same period and provides for long-term stimulation of the natural attenuation process. In addition to contaminant recovered by extraction and reduced by in situ biodegradation, a total of 4136 Ib (1876 kg) of oxygen was delivered to the saturated zone, resulting in further in situ reduction of an estimated 1324 lb (600 kg) of dissolved-phase hydrocarbons. Based on the results of the EERC demonstration, the North Dakota Department of Health approved site abandonment and termination of the corrective action.

  2. SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION

    SciTech Connect (OSTI)

    Kohn, J.; Nichols, R.; Looney, B.

    2011-05-12

    The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

  3. INDEPENDENT REVIEW OF THE X-701B GROUNDWATER REMEDY, PORTSMOUTH, OHIO: TECHNICAL EVALUATION AND RECOMMENDATIONS

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Costanza, J.; Rossabi, J.; Early, T.; Skubal, K.; Magnuson, C.

    2008-12-15

    The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-22) to provide independent technical experts to evaluate past and ongoing remedial activities at the Portsmouth facility that were completed to address TCE contamination associated with the X-701B groundwater plume and to make recommendations for future efforts. The Independent Technical Review team was provided with a detailed and specific charter. The charter requested that the technical team first review the past and current activities completed for the X-701B groundwater remedy for trichloroethene (TCE) in accordance with a Decision Document that was issued by Ohio EPA on December 8, 2003 and a Work Plan that was approved by Ohio EPA on September 22, 2006. The remedy for X-701B divides the activities into four phases: Phase I - Initial Source Area Treatment, Phase II - Expanded Source Area Treatment, Phase III - Evaluation and Reporting, and Phase IV - Downgradient Remediation and Confirmation of Source Area Treatment. Phase I of the remedy was completed during FY2006, and DOE has now completed six oxidant injection events within Phase II. The Independent Technical Review team was asked to evaluate Phase II activities, including soil and groundwater results, and to determine whether or not the criteria that were defined in the Work Plan for the Phase II end point had been met. The following criteria are defined in the Work Plan as an acceptable Phase II end point: (1) Groundwater samples from the identified source area monitoring wells have concentrations below the Preliminary Remediation Goal (PRG) for TCE in groundwater, or (2) The remedy is no longer effective in removing TCE mass from the source area. In addition, the charter specifies that if the Review Team determines that the Phase II endpoint has not been reached, then the team should address the following issues: (1) If additional injection events are recommended, the team should identify the type of injection and target soil horizon for these injections; (2) Consider the feasibility of declaring Technical Impracticability and proceeding with the RCRA Cap for the X-701B; and (3) Provide a summary of other cost-effective technologies that could be implemented (especially for the lower Gallia). The Independent Technical Review team focused its evaluation solely on the X-701B source zone and contaminant plume. It did not review current or planned remedial activities at other plumes, waste areas, or landfills at the Portsmouth site, nor did it attempt to integrate such activities into its recommendations for X-701B. However, the ultimate selection of a remedy for X-701B by site personnel and regulators should take into account potentially synergistic efforts at other waste areas. Assessment of remedial alternatives in the context of site-wide management practices may reveal opportunities for leveraging and savings that would not otherwise be identified. For example, the cost of source-zone excavation or construction of a permeable reactive barrier at X-701B might be substantially reduced if contaminated soil could be buried on site at an existing or planned landfill. This allowance would improve the feasibility and competitiveness of both remedies. A comprehensive examination of ongoing and future environmental activities across the Portsmouth Gaseous Diffusion Plant is necessary to optimize the selection and timing of X-701B remediation with respect to cleanup efficiency, safety, and economics. A selected group of technical experts attended the technical workshop at the Portsmouth Gaseous Diffusion Plant from November 18 through 21, 2008. During the first day of the workshop, both contractor and DOE site personnel briefed the workshop participants and took them on a tour of the X-701B site. The initial briefing was attended by representatives of Ohio EPA who participated in the discussions. On subsequent days, the team reviewed baseline data and reports, were provided additional technical information from site personne

  4. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  5. Remediation of Soil at Nuclear Sites

    SciTech Connect (OSTI)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-03-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

  6. Remediation of soil at nuclear sites

    SciTech Connect (OSTI)

    R. Holmes; C. Boardman; R. Robbins; R. Fox; B. J. Mincher

    2000-02-28

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  7. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  8. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    SciTech Connect (OSTI)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.

  9. Building C-400 Thermal Treatment 90% Remedial Design Report and...

    Office of Environmental Management (EM)

    Effect of temperature and pore size on the hydraulic properties and flow of a hydrocarbon oil in the subsurface, Journal of Contaminant Hydrology, 16:55-86, 1994. Davis, E.L., Hot...

  10. Geophysical monitoring of foam used to deliver remediation treatments

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:CompressionSciTechwithin the vadose zone (Journal

  11. Geophysical monitoring of foam used to deliver remediation treatments

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |productionPatent:CompressionSciTechwithin the vadose zone

  12. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC27,Inc. ||

  13. Remedial action planning for Trench 1

    SciTech Connect (OSTI)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.

    1998-07-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

  14. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  15. Process safety management and interim or remedial action plans

    SciTech Connect (OSTI)

    Boss, M.J.; Henney, D.A.; Heitzman, V.K. [HWS Consulting Group, Inc., Omaha, NE (United States); Day, D.W. [Army Corps of Engineers, Omaha, NE (United States)

    1996-12-31

    Remedial Actions, including Interim Remedial Activities, often require the use of treatment facilities or stabilization techniques using on-site chemical processes. As such, the 29 CFR 1910.119 Process Safety Management (PSM) of Highly Hazardous Chemicals (PSM Standard) and the USEPA regulations for Risk Management Planning require that these chemicals and their attendant potential hazards be identified. A Hazard and Operation (HAZOP) study, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis, or equivalent graphic presentation of processes must be completed. These studies form a segment of the Process Hazard Analysis (PHA). HAZOP addresses each system and each element of a system that could deviate from normal operations and thus cause a hazard. A full assessment of each process is produced by looking at the hazards, consequences, causes and personnel protection needed. Many variables must be considered when choosing the appropriate PHA technique including the size of the plant, the number of processes, the types of processes, and the types of chemicals used. A mixture of these techniques may be required to adequately transmit information about the process being evaluated.

  16. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  17. Light Duty Utility Arm System applications for tank waste remediation

    SciTech Connect (OSTI)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy`s (DOE`s) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE`s underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE`s environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE`s environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design.

  18. Bioventing approach to remediate a gasoline contaminated subsurface. Book chapter

    SciTech Connect (OSTI)

    Kampbell, D.H.; Wilson, J.T.; Griffin, C.J.

    1992-01-01

    Bioventing is a subsurface process using an air stream to enhance biodegradation of oily contaminants. Two pilot-scale bioventing systems were installed at a field site. Process operations began in October 1990. The field site is located at an air station. A spill in 1969 of about 100,000 kilograms aviation gasoline was caused by a broken underground transfer line. A major portion of the spilled product still persists as an oily-phase residue in a 80x360 meter plume. The subsurface is a uniform beach sand with the ground water level near five meters. Prior to startup of the venting systems, a grass cover was established and a nutrient solution was dispersed throughout the unsaturated subsurface. Subsurface air flow patterns are being determined with a tracer gas of sulfur hexafloride. Soil gas, core material, and underground water are being monitored to determine the extent of remediation. Objectives of the study are to demonstrate that surface emissions of gasoline are minimal, oily residue will be reduced to <100 mg fuel carbon/Kg core material, and the process will be applicable to full-scale remediation. Flow rate is based on a calculated residence time of 24 hours. Surface emission of fuel hydrocarbons have not exceeded 1 micrograms/liter soil gas.

  19. IH Report # 04-011 April 2004 Mold Remediation

    E-Print Network [OSTI]

    IH Report # 04-011 April 2004 STANFORD UNIVERSITY Mold Remediation This document is designed to help zone and building managers address general mold remediation issues in buildings on campus. For larger areas (greater than 10 sq. feet) of mold contamination, contact EH&S before beginning remediation

  20. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    i Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis Submitted May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis peroxygens for remediation of contaminated soil and groundwater" along with 5 papers describing part

  1. LIST OF CONTRACTORS TO SUPPORT ANTHRAX REMEDIATION

    E-Print Network [OSTI]

    by the Northwest Regional Technology Center for Homeland Security List of Contractors to Support Anthrax operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 #12;1 ListLIST OF CONTRACTORS TO SUPPORT ANTHRAX REMEDIATION May 2010 Prepared for the Interagency Biological

  2. Probabilistic risk analysis of groundwater remediation strategies

    E-Print Network [OSTI]

    Bolster, Diogo

    Probabilistic risk analysis of groundwater remediation strategies D. Bolster,1 M. Barahona,1 M uncertainty quantification and risk analysis. When these modeling components are ignored, the failure is emerging that risk analysis must be an integral part of decision making in subsurface hydrology, its

  3. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  4. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  5. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect (OSTI)

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

  6. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  7. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  8. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  9. Demonstration of optimization techniques for groundwater plume remediation using iTOUGH2

    E-Print Network [OSTI]

    Finsterle, Stefan

    2004-01-01

    of contaminants during steam flooding, which can be partlydangerous side-effect of steam flooding, a penalty term is

  10. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

  11. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  12. Success of the Melton Valley Watershed Remediation at the ORNL - 12351

    SciTech Connect (OSTI)

    Adler, David; Wilkerson, Laura [DOE, Oak Ridge Operations (United States); Sims, Lynn; Ketelle, Richard; Garland, Sid [Oak Ridge/Restoration Service, Inc. - UCOR/RSI (United States)

    2012-07-01

    The source remediation of the Melton Valley (MV) Watershed at the U.S. Department of Energy's (DOE's) Oak Ridge National Laboratory was completed 5 years ago (September 2006). Historic operations at the laboratory had resulted in chemical and radionuclide contaminant releases and potential risks or hazards within 175 contaminated units scattered across an area of 430 hectares (1062 acres) within the watershed. Contaminated areas included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pit/trenches, hydrofracture wells, leak and spill spites, inactive surface structures, and contaminated soil and sediments. The remediation of the watershed was detailed in the MV Interim Action Record of Decision (ROD) and included a combination of actions encompassing containment, isolation, stabilization, removal, and treatment of sources within the watershed and established the monitoring and land use controls that would result in protection of human health. The actions would take place over 5 years with an expenditure of over $340 M. The MV remedial actions left hazardous wastes in-place (e.g., buried wastes beneath hydraulic isolation caps) and cleanup at levels that do not allow for unrestricted access and unlimited exposure. The cleanup with the resultant land use would result in a comprehensive monitoring plan for groundwater, surface water, and biological media, as well as the tracking of the land use controls to assure their completion. This paper includes an overview of select performance measures and monitoring results, as detailed in the annual Remediation Effectiveness Report and the Five-Year Report. (authors)

  13. Subsurface barrier demonstration test strategy and performance specification

    SciTech Connect (OSTI)

    Treat, R.L.; Cruse, J.M.

    1994-05-01

    This document was developed to help specify a major demonstration test project of subsurface barrier systems supporting the Tank Waste Remediation System (TWRS) Program. The document focuses discussion on requirements applicable to demonstration of three subsurface barrier concepts: (1) Injected Material, (2) Cryogenic, and (3) Desiccant. Detailed requirements are provided for initial qualification of a technology proposal followed by the pre-demonstration and demonstration test requirements and specifications. Each requirement and specification is accompanied by a discussion of the rationale for it. The document also includes information on the Hanford Site tank farms and related data; the related and currently active technology development projects within the DOE`s EM-50 Program; and the overall demonstration test strategy. Procurement activities and other preparations for actual demonstration testing are on hold until a decision is made regarding further development of subsurface barriers. Accordingly, this document is being issued for information only.

  14. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  15. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Rhia, Brian D. (Augusta, GA)

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  16. Thixotropic gel for vadose zone remediation

    DOE Patents [OSTI]

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  17. Portsmouth Remediation Scope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergyPartnershipSite Background »PortsmouthRemediation

  18. Authorized Limit Evaluation of Spent Granular Activated Carbon Used for Vapor-Phase Remediation at the Lawrence Livermore National Laboratory Livermore, California

    SciTech Connect (OSTI)

    Devany, R; Utterback, T

    2007-01-11

    This report provides a technical basis for establishing radiological release limits for granular activated carbon (GAC) containing very low quantities of tritium and radon daughter products generated during environmental remediation activities at Lawrence Livermore National Laboratory (LLNL). This evaluation was conducted according to the Authorized Limit procedures specified in United States Department of Energy (DOE) Order 5400.5, Radiation Protection of the Public and the Environment (DOE, 1993) and related DOE guidance documents. The GAC waste is currently being managed by LLNL as a Resource Conservation and Recovery Act (RCRA) mixed waste. Significant cost savings can be achieved by developing an Authorized Limit under DOE Order 5400.5 since it would allow the waste to be safely disposed as a hazardous waste at a permitted off-site RCRA treatment and disposal facility. LLNL generates GAC waste during vapor-phase soil remediation in the Trailer 5475 area. While trichloroethylene and other volatile organic compounds (VOCs) are the primary targets of the remedial action, a limited amount of tritium and radon daughter products are contained in the GAC at the time of disposal. As defined in DOE Order 5400.5, an Authorized Limit is a level of residual radioactive material that will result in an annual public dose of 100 milliroentgen-equivalent man per year (mrem/year) or less. In 1995, DOE issued additional release requirements for material sent to a landfill that is not an authorized low-level radioactive waste disposal facility. Per guidance, the disposal site will be selected based on a risk/benefit assessment under the As-Low-As-Reasonably-Achievable (ALARA) process while ensuring that individual doses to the public are less than 25 mrem in a year, ground water is protected, the release would not necessitate further remedial action for the disposal site, and the release is coordinated with all appropriate authorities. The 1995 release requirements also state that Authorized Limits may be approved by DOE field office managers without DOE headquarters (EH-1) approval if a reasonably conservative dose assessment demonstrates that: (1) Public doses will not exceed one mrem per year individually or 10 person-rem/year collectively; (2) Appropriate record keeping and data collection procedures are in place; (3) Copies of the release evaluation and procedures are properly maintained; and (4) Coordination with all applicable state and federal agencies is documented. Based on the above guidelines, this report uses one mrem/year for individual members of the public and 10 person-rem/year for the collective population as upper-bound doses for the determination of Authorized Limits.

  19. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  20. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  1. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program.

  2. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.

  3. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  4. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) [sup 99]Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD.

  5. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT

    Office of Legacy Management (LM)

    SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and...

  6. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Broader source: Energy.gov (indexed) [DOE]

    Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research...

  7. Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaboration to Enable a Carbon-Neutral Energy Economy Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Hydrogen permeability and Integrity of hydrogen...

  8. Unique environmental remediation project on steep canyon successfully...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recently completed a remediation project that involved removing contaminated rock and soil from the parking lot of a busy shopping center. July 29, 2015 A telescoping crane...

  9. CH2M HILL Plateau Remediation Company are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HILL Plateau Remediation Company are safely removing contaminated equipment from the Plutonium Finishing Plant once used to produce plutonium during the Cold War at the Hanford...

  10. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Utah Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

  11. ANNUAL REPORT FOR THE FINAL GROUNDWATER REMEDIATION, TEST AREA NORTH, OPERABLE UNIT 1-07B, FISCAL YEAR 2009

    SciTech Connect (OSTI)

    FORSYTHE, HOWARD S

    2010-04-14

    This Annual Report presents the data and evaluates the progress of the three-component remedy implemented for remediation of groundwater contamination at Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory Site. Overall, each component is achieving progress toward the goal of total plume remediation. In situ bioremediation operations in the hot spot continue to operate as planned. Progress toward the remedy objectives is being made, as evidenced by continued reduction in the amount of accessible residual source and decreases in downgradient contaminant flux, with the exception of TAN-28. The injection strategy is maintaining effective anaerobic reductive dechlorination conditions, as evidenced by complete degradation of trichloroethene and ethene production in the biologically active wells. In the medial zone, the New Pump and Treat Facility operated in standby mode. Trichloroethene concentrations in the medial zone wells are significantly lower than the historically defined concentration range of 1,000 to 20,000 ?g/L. The trichloroethene concentrations in TAN-33, TAN-36, and TAN-44 continue to be below 200 ?g/L. Monitoring in the distal zone wells outside and downgradient of the plume boundary demonstrate that some plume expansion has occurred, but less than the amount allowed in the Record of Decision Amendment. Additional data need to be collected for wells in the monitored natural attenuation part of the plume to confirm that the monitored natural attenuation part of the remedy is proceeding as predicted in the modeling.

  12. Remediation and management of degraded lands

    SciTech Connect (OSTI)

    Wong, M.H.; Wong, J.W.C.; Baker, A.J.M. [eds.

    1999-11-01

    This book presents the program of the first International Conference on the Remediation and Management of Degraded lands. The book has three sections: mine management and rehabilitation, the management of derelict lands, and soil contamination and reclamation. The 34 chapters present a proactive, solution based approach to the rehabilitation of natural resources. Topics of discussions include the following: the multidisciplinary approach practiced by the Australian Center for Minesite Rehabilitation Research; the relationship between biofuel harvesting and Hong Kong`s continuing upland degradation; and experiments with the effectiveness of EDTA/HCI to remove contaminants from soil.

  13. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  14. MAJORANA Demonstrator Motivation

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    1 #12;OVERVIEW MAJORANA Demonstrator Motivation Neutrinoless double beta decay Search for axions: MAJORANA Collaboration #12;NEUTRINOLESS DOUBLE BETA DECAY Emission of 2 electrons from Ge-76 and application to neutrinoless double beta decay search in Ge- 76." Journal of Instrumentation 6 (2011).13 #12

  15. January 2008 AND DEMONSTRATION

    E-Print Network [OSTI]

    January 2008 AND DEMONSTRATION Partnership of: Sugar Beet Growers Michigan Sugar Company Michigan, disability, political beliefs, sexual orientation, marital status, family status or veteran status. #12;The involving Michigan State University, Michigan Sugar Company, producers and agri-business. The Sugarbeet

  16. Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations

    SciTech Connect (OSTI)

    Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

    2010-04-30

    Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the site history and data and organizing the information into a conceptual model and findings to assist in evaluating the potential of alternative remediation technologies. Examples of the key conceptual findings of the EM-32 review team were: (1) The Gallia represents the most practical target for deployment of in situ remediation treatment reagents - injection/extraction focused in this zone would provide maximum lateral impacts with minimal potential risk of failure or adverse collateral impacts. (2) The slow release of TCE from clay and sandstone into the Gallia represent a long term source of TCE that can re-contaminate the Gallia in the future - technologies that effectively treat the permeable portions of the Gallia, but do not leave residual treatment capacity in the system are unlikely to achieve long term remedial action objectives. CDM, the site contractor, provided important and useful information documenting the status and preliminary results of the on-site technology alternative evaluation. In the CDM evaluation, potential technologies were either retained (or screened out) in two preliminary evaluation phases and a detailed evaluation was performed on the five alternatives that were retained into the final 'detailed analysis' phase. The five alternatives that were included in the detailed analysis were: (1) hydraulic fracturing with EHC (a solid bioremediation amendment), (2) enhanced anaerobic bioremediation, (3) in situ chemical oxidation, (4) electrical resistance heating, and (5) reactive barriers. In several cases, two or three variants were separately evaluated. The review team found the CDM effort to be generally credible and reasonable. Thus, the review team focused on providing additional considerations and inputs to Portsmouth and on amending and refining the alternatives in ways that might improve performance and/or reduce costs. The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-32) to provide an independent technical panel to review previous and o

  17. Electrokinetic demonstration at the unlined chromic acid pit

    SciTech Connect (OSTI)

    Lindgren, E.R.; Hankins, M.G.; Mattson, E.D.; Duda, P.M.

    1998-01-01

    Heavy-metal contaminated soils are a common problem at Department of Energy (DOE)-operated sites and privately owned facilities throughout the nation. One emerging technology which can remove heavy metals from soil in situ is electrokinetics. To conduct electrokinetic (EK) remediation, electrodes are implanted into the ground, and a direct current is imposed between the electrodes. Metal ions dissolved in the soil pore water migrate towards an electrode where they can be removed. The electrokinetic program at Sandia National Laboratories (SNL) has been focusing on electrokinetic remediation for unsaturated soils. A patent was awarded for an electrokinetic electrode system designed at SNL for applications to unsaturated soils. Current research described in this report details an electrokinetic remediation field demonstration of a chromium plume that resides in unsaturated soil beneath the SNL Chemical Waste Landfill (CWL). This report describes the processes, site investigation, operation and monitoring equipment, testing procedures, and extraction results of the electrokinetic demonstration. This demonstration successfully removed chromium contamination in the form of chromium(VI) from unsaturated soil at the field scale. After 2700 hours of operation, 600 grams of Cr(VI) was extracted from the soil beneath the SNL CWL in a series of thirteen tests. The contaminant was removed from soil which has moisture contents ranging from 2 to 12 weight percent. This demonstration was the first EK field trial to successfully remove contaminant ions from and soil at the field scale. Although the new patented electrode system was successful in removing an anionic contaminant (i.e., chromate) from unsaturated sandy soil, the electrode system was a prototype and has not been specifically engineered for commercialization. A redesign of the electrode system as indicated by the results of this research is suggested for future EK field trials.

  18. Development of an integrated in-situ remediation technology. Topical report for task No. 7 entitled: Development of degradation processes, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Brackin, M.J.; Heitkamp, M.A.; Ho, Sa V. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into {open_quotes}treatment zones{close_quotes} where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology.

  19. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  20. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  1. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  2. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-06-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  3. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-11-15

    The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  4. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-12-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  5. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  6. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  7. Automatic lighting controls demonstration

    SciTech Connect (OSTI)

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  8. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1991-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

  9. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

  10. Chapter 2. Assessment and Remediation of Residential Lead Exposure

    E-Print Network [OSTI]

    Chapter 2. Assessment and Remediation of Residential Lead Exposure Prepared by Thomas D. Matte, MD of Residential Lead Exposure Table 2.1. Summary of Recommendations for Assessment and Remediation of Residential Lead Exposure Make prompt and effective environmental management for children with EBLLs the highest

  11. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  12. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  13. In-situ remediation system for volatile organic compounds with deep recharge mechanism

    DOE Patents [OSTI]

    Jackson, Jr., Dennis G. (Augusta, GA); Looney, Brian B. (Aiken, SC); Nichols, Ralph L. (Augusta, SC); Phifer, Mark A. (Augusta, SC)

    2001-01-01

    A method and apparatus for the treatment and remediation of a contaminated aquifer in the presence of an uncontaminated aquifer at a different hydraulic potential. The apparatus consists of a wellbore inserted through a first aquifer and into a second aquifer, an inner cylinder within the wellbore is supported and sealed to the wellbore to prevent communication between the two aquifers. Air injection is used to sparge the liquid having the higher static water level and, to airlift it to a height whereby it spills into the inner cylinder. The second treatment area provides treatment in the form of aeration or treatment with a material. Vapor stripped in sparging is vented to the atmosphere. Treated water is returned to the aquifer having the lower hydraulic potential.

  14. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  15. Creating Clarity for the Process of Managing Residents through Remediation, Probation and Termination

    E-Print Network [OSTI]

    2015-01-01

    Remediation, Probation and Termination Murano T, Lypson M,remediation, probation and termination (RPT), as well as theobservation period. 4. Termination: when a resident is

  16. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  17. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  18. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  19. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  20. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  1. Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Hughes, B.M.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky.

  2. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  3. Expedited approach to a carbon tetrachloride spill interim remedial action

    SciTech Connect (OSTI)

    Cowdery, C.; Primrose, A.; Uhland, J.; Castaneda, N.

    1998-07-01

    Monitored natural attenuation was selected as an interim measure for a carbon tetrachloride spill site where source removal or in situ treatment cannot currently be implemented due to the surrounding infrastructure. Rather than delay action until the site is more accessible to an interim action, this more expedited approach would support a final action. Individual Hazard Substance Site (IHSS) 118.1 is a former underground storage tank at Rocky Flats Environmental Technology Site (RFETS) that stored carbon tetrachloride for process use. Inadvertent releases associated with filling and failure of the tank system resulted in an accumulation of carbon tetrachloride in a bedrock depression around a group of former process waste tanks. Access to the source of contamination is obstructed by numerous utilities, the process waste tanks, and other components of the site infrastructure that limit the ability to conduct an effective remedial action. A preremedial field investigation was conducted in September 1997 to identify and delineate the extent of the dense nonaqueous phase liquid (DNAPL) in the subsurface. Data collected from the investigation revealed that natural processes might be limiting the migration of contaminants from the source area.

  4. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facility’s Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPF’s proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  5. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  6. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect (OSTI)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  7. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    SciTech Connect (OSTI)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary; Arey, Jimi

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be located inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for various flow and load scenarios. (authors)

  8. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  9. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect (OSTI)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  10. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE`s Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  11. Biological assessment for the remedial action at the chemical plant area of the Weldon Spring site

    SciTech Connect (OSTI)

    Hlohowskyj, I.; Dunn, C.P.

    1992-11-01

    The Weldon Spring site in St.Charles County, Missouri, became contaminated during the 1940s through the 1960s as a result of explosives production by the US Army and uranium and thorium processing by the predecessor agency of the US Department of Energy (DOE). The site is listed on the National Priorities List of the US Environmental Protection Agency, and DOE is responsible for its cleanup. Contaminants are present in soil, surface water, and aquatic sediments. Alternatives identified for site remediation are no action (included as baseline for comparison), treatment and disposal of the wastes at the Weldon Spring site, and on-site treatment followed by off-site disposal at either a commercial facility near Clive, Utah, or at DOE's Hanford site near Richland, Washington. In accordance with the requirements of the Endangered Species Act, this biological assessment has been prepared to evaluate the potential effects of proposed remedial action alternatives on federal listed (endangered or threatened) and candidate species at the respective sites. The assessment includes consideration of the environmental setting at each site; the federal listed and candidate species that could occur at each site; the construction, excavation, and treatment activities under each alternative; and the amount of land area affected at each site.

  12. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect (OSTI)

    Hahn, Pil-Soo; Vesterlind, Magnus [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)] [Division of Radiation, Transport and Waste Safety, International Atomic Energy Agency, PO Box 100, A-1400 Vienna (Austria)

    2013-07-01

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  13. Integrated Systems-Based Approach to Monitoring Environmental Remediation

    SciTech Connect (OSTI)

    Bunn, Amoret L.; Truex, Michael J.; Oostrom, Martinus; Carroll, Kenneth C.; Wellman, Dawn M.

    2013-02-24

    The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. Remediation strategies for some of the existing contamination use techniques that mitigate risk, but leave contaminants in place. Monitoring to verify remedy performance and long-term mitigation of risk is a key element for implementing these strategies and can be a large portion of the total cost of remedy implementation. Especially in these situations, there is a need for innovative monitoring approaches that move away from the cost and labor intensive point-source monitoring. A systems-based approach to monitoring design focuses monitoring on controlling features and processes to enable effective interpretation of remedy performance.

  14. Integrated Systems-Based Approach to Monitoring Environmental Remediation - 13211

    SciTech Connect (OSTI)

    Truex, Mike; Oostrom, Mart; Carroll, K.C.; Bunn, Amoret; Wellman, Dawn [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)] [Pacific Northwest National Laboratory (PNNL), Richland, Washington (United States)

    2013-07-01

    The US Department of Energy (DOE) is responsible for risk reduction and cleanup of its nuclear weapons complex. Remediation strategies for some of the existing contamination use techniques that mitigate risk, but leave contaminants in place. Monitoring to verify remedy performance and long-term mitigation of risk is a key element for implementing these strategies and can be a large portion of the total cost of remedy implementation. Especially in these situations, there is a need for innovative monitoring approaches that move away from the cost and labor intensive point-source monitoring. A systems-based approach to monitoring design focuses monitoring on controlling features and processes to enable effective interpretation of remedy performance. (authors)

  15. Voluntary Protection Program Onsite Review, Savannah River Remediation...

    Energy Savers [EERE]

    the evaluation of Savannah River Remediation, LLC (SRR), at the Savannah River Site in South Carolina during the period of November 4-13, 2014, and provides the Associate Under...

  16. Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity

    Broader source: Energy.gov [DOE]

    College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS), where she continues a 31-year family legacy on site.

  17. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) On June 6, 1997, the U.S. Department of...

  18. Environmental Remediation Strategic Planning of Fukushima Nuclear Accident

    SciTech Connect (OSTI)

    Onishi, Yasuo

    2011-12-01

    Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

  19. In Situ Iron Oxide Emplacement for Groundwater Arsenic Remediation 

    E-Print Network [OSTI]

    Abia, Thomas Sunday

    2012-02-14

    Iron oxide-bearing minerals have long been recognized as an effective reactive media for arsenic-contaminated groundwater remediation. This research aimed to develop a technique that could facilitate in situ oxidative precipitation of Fe3+ in a soil...

  20. Environmental Assessment for the Accelerated Tank Closure Demonstration Project

    SciTech Connect (OSTI)

    N /A

    2003-06-16

    The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

  1. Least-Cost Groundwater Remediation Design Using Uncertain Hydrogeological Information

    SciTech Connect (OSTI)

    Pinder, George F.

    1999-06-01

    The research conducted by at the Research Center for Groundwater Remediation Design at the University of Vermont funded by the Department of Energy continues to focus on the implementation of a new method of including uncertainty into the optimal design of groundwater remediation systems. The uncertain parameter is the hydraulic conductivity of an aquifer. The optimization method utilized for this project is called robust optimization. The uncertainty of the hydraulic conductivity is described by a probability density function, PDF.

  2. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  3. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    SciTech Connect (OSTI)

    Post, Thomas C. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States)] [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); Strom, Dean [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States)] [Washington Closure Hanford LLC, 2620 Fermi Avenue, Richland, WA 99354 (United States); Beulow, Laura [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)] [U.S. Environmental Protection Agency, 309 Bradley Boulevard, Suite 115, Richland, WA 99352 (United States)

    2013-07-01

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 and 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)

  4. Treatment of radionuclide contaminated soils

    SciTech Connect (OSTI)

    Pettis, S.A.; Kallas, A.J.; Kochen, R.L.; McGlochlin, S.C.

    1988-06-01

    Rockwell, International, Rocky Flats Plants, is committed to remediating within the scope of RCRA/CERCLA, Solid Waste Managements Units (SWMUs) at Rocky Flats found to be contaminated with hazardous substances. SWMUs fund to have radionuclide (uranium, plutonium, and/or americium) concentrations in the soils and/or groundwater that exceed background levels or regulatory limits will also be included in this remediation effort. This paper briefly summarizes past and present efforts by Rockwell International, Rocky Flats Plant, to identify treatment technologies appropriate for remediating actinide contaminated soils. Many of the promising soil treatments evaluated in Rocky Flats' laboratories during the late 1970's and early 1980's are currently being revisited. These technologies are generally directed toward substantially reducing the volume of contaminated soils, with the subsequent intention of disposing of a small remaining concentrated fraction of contaminated soil in a facility approved to receive radioactive wastes. Treatment processes currently will be treated to remove actinides, and recycled back to the process. Past investigations have included evaluations of dry screening, wet screening, scrubbing, ultrasonics, chemical oxidation, calcination, desliming, flotation, and heavy-liquid density separation. 8 refs., 2 figs.

  5. Evaluation of the proposed pilot groundwater pump and treat demonstration for the Paducah Gaseous Diffusion Plant. Environmental Restoration Program

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Hale, T.B.; Huff, D.D.; Nickelson, M.D.; Rightmire, C.T.

    1992-11-01

    This report contains the evaluation and recommendations of a Groundwater Corrective Actions Review Team. The primary goal is to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at Paducah, Kentucky. A key distinction recognized by the review team is that the proposed project is intended to be a full-scale hydraulic containment of contaminants migrating from the sources of the plume, not plume remediation. The key questions incorporated into this plan are whether (1) dense, nonaqueous-phase liquids (DNAPLS) are present in the Regional Gravel Aquifer (RGA) at the source of the plume and (2) {sup 99}Tc removal must be included as part of any groundwater treatment process. The first question cannot be answered until the contaminant sources are better defined; the second question requires further risk assessment and/or a policy decision by DOE. Technical evaluation by the review team suggests that the recommended course of action be to modify the proposed work plan to include accurate identification of the sources of contaminants and vertical distribution of contaminants within the Northwest plume before a decision is made on the preferred source-control option. If DNAPLs are not present in the RGA, removal or containment of the sources is recommended. If DNAPLs are present, then hydraulic containment will be required. Finally, the review team recognizes that it is necessary to initiate a more comprehensive analysis of sitewide remediation needs to create links between action taken for the Northwest plume and action taken for other contamination sites at PGPD.

  6. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  7. Application of computational fluid dynamics to the biopile treatment of hydrocarbon contaminated soil 

    E-Print Network [OSTI]

    Wu, Tong

    2009-06-30

    Biopiles are a common treatment for the ex-situ remediation of contaminated soil. Much research has been carried out on understanding and modelling of bioremediation techniques related to biopiles, but hitherto no study ...

  8. New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase...

  9. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  10. Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties

    SciTech Connect (OSTI)

    Not Available

    1985-03-01

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

  11. INDEPENDENT TECHNICAL REVIEW OF THE C-400 INTERIM REMEDIAL PROJECT PHASE I RESULTS, PADUCAH, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B.; Rossabi, J.; Stewart,L.; Richards, W.

    2010-10-29

    The groundwater and soil in the vicinity of the C-400 Building at the Paducah Gaseous Diffusion Plant (PGDP), is contaminated with substantial quantities of industrial solvents, primarily trichoroethene (TCE). This solvent 'source' is recognized as a significant challenge and an important remediation target in the overall environmental cleanup strategy for PGDP. Thus, the cleanup of the C-400 TCE Source is a principal focus for the Department of Energy (DOE) and its contractors, and for PGDP regulators and stakeholders. Using a formal investigation, feasibility study and decision process, Electrical Resistance Heating (ERH) was selected for the treatment of the soil and groundwater in the vicinity of C-400. ERH was selected as an interim action to remove 'a significant portion of the contaminant mass of TCE at the C-400 Cleaning Building area through treatment' with the longer term goal of reducing 'the period the TCE concentration in groundwater remains above its Maximum Contaminant Level (MCL).' ERH is a thermal treatment that enhances the removal of TCE and related solvents from soil and groundwater. The heterogeneous conditions at PGDP, particularly the high permeability regional gravel aquifer (RGA), are challenging to ERH. Thus, a phased approach is being followed to implement this relatively expensive and complex remediation technology. Conceptually, the phased approach encourages safety and efficiency by providing a 'lessons learned' process and allowing appropriate adjustments to be identified and implemented prior to follow-on phase(s) of treatment. More specifically, early deployment targeted portions of the challenging RGA treatment zone with relatively little contamination reducing the risk of adverse collateral impacts from underperformance in terms of heating and capture. Because of the importance and scope of the C-400 TCE source remediation activities, DOE chartered an Independent Technical Review (ITR) in 2007 to assess the C-400 ERH plans prior to deployment and a second ITR to evaluate Phase I performance in September 2010. In this report, these ITR efforts are referenced as the '2007 ITR' and the 'current ITR', respectively. The 2007 ITR document (Looney et al., 2007) provided a detailed technical evaluation that remains relevant and this report builds on that analysis. The primary objective of the current ITR is to provide an expedited assessment of the available Phase I data to assist the PGDP team as they develop the lessons learned from Phase I and prepare plans for Phase II.

  12. Environmental Remediation Activities in Japan Following the Fukushima Dai-ichi Reactor Incident - 12603

    SciTech Connect (OSTI)

    Lively, J.W.; Kelley, J.L.; Marcial, M.R. [AMEC Environment and Infrastructure (United States); Yashio, Shoko; Kuriu, Nobou; Kamijo, Hiroaki; Jotatsu, Kato [Obayashi Corporation (Japan)

    2012-07-01

    In March 2011, the Fukushima Dai-ichi reactor power plant was crippled by the Great Pacific earthquake and subsequent tsunami. Much of the focus in the news was on the reactor site itself as the utility company (TEPCO), the Japanese government, and experts from around the world worked to bring the damaged plants into a safe shutdown condition and stem the release of radioactivity to the environment. Most of the radioactivity released was carried out to sea with the prevailing winds. Still, as weather patterns changed and winds shifted, a significant plume of radioactive materials released from the plant deposited in the environment surrounding the plant, contaminating large land areas of the Fukushima Prefecture. The magnitude of the radiological impact to the surrounding environmental is so large that the Japanese government has had to reevaluate the meaning of 'acceptably clean'. In many respects, 'acceptably clean' cannot be a one-size-fits-all standard. The economics costs of such an approach would make impossible what is already an enormous and costly environmental response and remediation task. Thus, the Japanese government has embarked upon an approach that is both situation-specific and reasonably achievable. For example, the determination of acceptably clean for a nursery school or kindergarten play yard may be different from that for a parking lot. The acceptably clean level of residual radioactivity in the surface soil of a rice paddy is different from that in a forested area. The recognized exposure situation (scenario) thus plays a large role in the decision process. While sometimes complicated to grasp or implement, such an approach does prioritize national resources to address environment remediation based upon immediate and significant risks. In addition, the Japanese government is testing means and methods, including advanced or promising technologies, that could be proven to be effective in reducing the amount of radioactivity in the environment beyond a fixed, concentration based limit. Essentially, the definition of acceptably clean includes the concept of reasonably achievable, given the available technology, means and methods, and the cost to implement such. The Japanese government recently issued three technology demonstration contracts expressly designed to test and evaluate the available technologies, means, and methods, which, if implemented, might produce the greatest risk reduction from environmental contamination for the best value. One of the Japanese contract holders, Obayashi JV, has teamed with AMEC to demonstrate the applicability and capabilities of the Orion ScanPlot{sup SM} and ScanSort{sup SM} technologies in radiologically impacted towns both inside and immediately outside the 20 km restricted zone. This presentation provides some unique images and informative insight into the environmental radioactive impacts in and around the exclusion zone. It will provide a look at one element of the Japanese government?s efforts to achieve the greatest risk reduction that is reasonably achievable. The Orion ScanPlot{sup SM} and ScanSort{sup SM} are being used with success on the Japan Town Demonstration Project to assess pre-remedial action contamination levels, document the post-remedial action contamination levels and to precisely measure and segregate excavated soils based on their radioactive content and the prescribed segregation limits (DCS). Initial results suggest that these technologies could provide capabilities to the remedial action efforts that would result in considerable improvements in field data certainty and compliance with remedial objectives while reducing overall costs. (authors)

  13. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  14. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    E-Print Network [OSTI]

    Bernard, S.

    2009-01-01

    Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  16. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  17. Duct Remediation Program: Material characterization and removal/handling

    SciTech Connect (OSTI)

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Remediation efforts were successfully performed at Rocky Flats to locate, characterize, and remove plutonium holdup from process exhaust ducts. Non-Destructive Assay (NDA) techniques were used to determine holdup locations and quantities. Visual characterization using video probes helped determine the physical properties of the material, which were used for remediation planning. Assorted equipment types, such as vacuum systems, scoops, brushes, and a rotating removal system, were developed to remove specific material types. Personnel safety and material handling requirements were addressed throughout the project.

  18. Demonstrating the Greenhouse Effect Demonstrate how the greenhouse effect works.

    E-Print Network [OSTI]

    Johnson, Cari

    Demonstrating the Greenhouse Effect Demonstrate how the greenhouse effect works. Difficulty / Time represents the greenhouse layer, which is composed of such gases as carbon dioxide, water vapor, methane, nitrous oxide, and many others. The temperature was warmer initially for the non-greenhouse effect

  19. Performance of a feasibility study for remediation of WAG 6 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kubarewicz, J.; Pfeffer, J. [CH2M Hill, Oak Ridge, TN (United States); Garland, S.B. II [Oak Ridge National Lab., TN (United States); Riddle, S.P. [USDOE Oak Ridge Field Office, TN (United States); Branscom, K.S. [Radian Corp., Oak Ridge, TN (United States)

    1992-10-01

    This paper describes the process of preparing a feasibility study (FS) for remediation of a low-level radioactive waste (LLW) disposal site at Oak Ridge National Laboratory (ORNL). ORNL conducts research and development and is one of three DOE-owned facilities on the Oak Ridge Reservation (ORR). Waste Area Grouping (WAG) 6 is located in Melton Valley, approximately 2 miles southwest of the plant in Roane County, Tennessee. WAG 6 includes Solid Waste Storage Area (SWSA) 6, which is still used for shallow land burial of LLW and nonradioactive materials and was the primary focus of the FS. SWSA 6 covers 68 acres, 19 of which contain wastes such as low-level radioactive liquids, solids, sludges, asbestos, and biological and associated laboratory wastes. During the first 15 years of operation, the site also received chemical wastes, but since 1986, it has been used only for LLW. Until 1986, wastes were placed in unlined trenches and auger holes, but since then, wastes have been disposed in greater confinement disposal silos, lined pipe wells and auger holes, and above-ground tumulus units. A list of the sitewide alternatives initially developed for WAG 6 remediation is presented. The alternatives combined capping, structural stabilization (dynamic compaction/grouting), waste consolidation, and groundwater collection/treatment components. In situ vitrification was also considered for areas with significant long-life source inventories.

  20. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  1. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  2. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  3. Tank waste remediation system program plan

    SciTech Connect (OSTI)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  4. Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park

    Broader source: Energy.gov [DOE]

    The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

  5. Voluntary Protection Program Onsite Review, Soil and Groundwater Remediation Project- March 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Soil and Groundwater Remediation Project is performing at a level deserving DOE-VPP recognition.

  6. Savannah River Remediation, College Create Job Opportunities for Graduates

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Savannah River Remediation (SRR), the liquid waste contractor for the EM program at the Savannah River Site (SRS), requires workers with unique skills to protect employees from radiation as the company works safely toward completing its mission.

  7. Biogeochemical Considerations Related To The Remediation Of I-129 Plumes

    SciTech Connect (OSTI)

    Kaplan, D. I.; Yeager, C.; Denham, M. E.; Zhang, S.; Xu, C.; Schwehr, K. A.; Li, H. P.; Brinkmeyer, R.; Santschi, P. H.

    2012-09-24

    The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

  8. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  9. Managing Complex Environmental Remediation amidst Aggressive Facility Revitalization Milestones

    SciTech Connect (OSTI)

    Richter Pack, S. [PMP Science Applications International Corporation, Oak Ridge, TN (United States)

    2008-07-01

    Unlike the final closure projects at Rocky Flats and Fernald, many of the Department of Energy's future CERCLA and RCRA closure challenges will take place at active facilities, such as the Oak Ridge National Laboratory (ORNL) central campus. ORNL has aggressive growth plans for a Research Technology Park and cleanup must address and integrate D and D, soil and groundwater remediation, and on-going and future business plans for the Park. Different planning and tracking tools are needed to support closures at active facilities. To support some large Airport redevelopment efforts, we created tools that allowed the Airline lease-holder to perform environmental remediation on the same schedule as building D and D and new building construction, which in turn allowed them to migrate real estate from unusable to usable within an aggressive schedule. In summary: The FIM and OpenGate{sup TM} spatial analysis system were two primary tools developed to support simultaneous environmental remediation, D and D, and construction efforts at an operating facility. These tools helped redevelopers to deal with environmental remediation on the same schedule as building D and D and construction, thereby meeting their goals of opening gates, restarting their revenue streams, at the same time complying with all environmental regulations. (authors)

  10. Discrimination algorithms for the remediation of unexploded ordnance

    E-Print Network [OSTI]

    Oldenburg, Douglas W.

    Discrimination algorithms for the remediation of unexploded ordnance by Laurens Sander Beran B of discriminating between buried unexploded ordnance (UXO) and non-hazardous metallic clutter. Magnetic data ac by a conductor. Model parameters estimated with inversion can be input into a discrimination algorithm whose out

  11. Description of the Formerly Utilized Sites Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The background and the results to date of the Department of Energy program to identify and evaluate the radiological conditions at sites formerly utilized by the Corps of Engineers' Manhattan Engineer District (MED) and the US Atomic Energy Commission (AEC) are summarized. The sites of concern were federally, privately, and institutionally owned and were used primarily for research, processing, and storage of uranium and thorium ores, concentrates, or residues. Some sites were subsequently released for other purposes without radiological restriction. Surveys have been conducted since 1974 to document radiological conditions at such sites. Based on radiological surveys, sites are identified in this document that require, or are projected to require, remedial action to remove potential restrictions on the use of the property due to the presence of residual low-level radioactive contamination. Specific recommendations for each site will result from more detailed environmental and engineering surveys to be conducted at those sites and, if necessary, an environmental impact assessment or environmental impact statement will be prepared. Section 3.0 describes the current standards and guidelines now being used to conduct remedial actions. Current authority of the US Department of Energy (DOE) to proceed with remedial actions and the new authority required are summarized. A plan to implement the Formerly Utilized Sites Remedial Action Program (FUSRAP) in accordance with the new authority is presented, including the objectives, scope, general approach, and a summary schedule. Key issues affecting schedule and cost are discussed.

  12. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect (OSTI)

    NONE

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  13. In-Situ Thermal Remediation of Contaminated Soil1

    E-Print Network [OSTI]

    Lapin, Sergey

    Chapter 1 In-Situ Thermal Remediation of Contaminated Soil1 Written by Huaxiong Huang,2 Serguei Lapin and Rex Westbrook 1.1 Background Recently, a method for removing contaminants from soil (several as follows. Over a period of several weeks, electrical energy is introduced to the contaminated soil using

  14. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, Robert W. (Naperville, IL); Frank, James R. (Glen Ellyn, IL); Feng, Xiandong (West Richland, WA)

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  15. Remediation of arsenic-contaminated soils and groundwaters

    DOE Patents [OSTI]

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  16. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  17. Recovery Act Begins Box Remediation Operations at F Canyon

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico.

  18. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect (OSTI)

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  19. A Demonstration of the System Assessment Capability (SAC) Rev. 1 Software for the Hanford Remediation Assessment Project

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Kincaid, Charles T.; Nichols, William E.; Wurstner, Signe K.

    2006-11-06

    The System Assessment Capability (SAC) is a suite of interrelated computer codes that provides the capability to conduct large-scale environmental assessments on the Hanford Site. Developed by Pacific Northwest National Laboratory for the Department of Energy, SAC models the fate and transport of radioactive and chemical contaminants, starting with the inventory of those contaminants in waste sites, simulating transport through the environment, and continuing on through impacts to the environment and humans. Separate modules in the SAC address inventory, release from waste forms, water flow and mass transport in the vadose zone, water flow and mass transport in the groundwater, water flow and mass transport in the Columbia River, air transport, and human and ecological impacts. The SAC supports deterministic analyses as well as stochastic analyses using a Monte Carlo approach, enabling SAC users to examine the effect of uncertainties in a number of key parameters. The initial assessment performed with the SAC software identified a number of areas where both the software and the analysis approach could be improved. Since that time the following six major software upgrades have been made: (1) An air pathway model was added to support all-pathway analyses. (2) Models for releases from glass waste forms, buried graphite reactor cores, and buried naval reactor compartments were added. (3) An air-water dual-phase model was added to more accurately track the movement of volatile contaminants in the vadose zone. (4) The ability to run analyses was extended from 1,000 years to 10,000 years or longer after site closure. (5) The vadose zone flow and transport model was upgraded to support two-dimensional or three-dimensional analyses. (6) The ecological model and human risk models were upgraded so the concentrations of contaminants in food products consumed by humans are produced by the ecological model. This report documents the functions in the SAC software and provides a number of example applications for Hanford problems. References to theory documents and user guides are provided as well as links to a number of published data sets that support running analyses of interest to Hanford cleanup efforts.

  20. The effects of a stannous chloride-based remediation system in a mercury contaminated stream

    SciTech Connect (OSTI)

    Mathews, Teresa J [ORNL; Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Smith, John G [ORNL; Miller, Carrie L [ORNL; Peterson, Mark J [ORNL

    2015-01-01

    Remediation of mercury (Hg)-contaminated watersheds is often challenging because of the complex nature of Hg biogeochemistry. Stream ecosystems have been shown to be particularly susceptible to Hg contamination and bioaccumulation in fish. Decreasing total Hg loading to stream systems, however, has shown variable performance in decreasing Hg concentrations in fish tissues. In this study, we assess the impacts of an innovative treatment system in reducing releases of Hg to a small stream system in the southeastern United States. The treatment system, installed in 2007, removes Hg from water using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations in the receiving stream, Tims Branch, decreased from > 100 to ~10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70 % at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to MeHg production and bioaccumulation. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream with minimal impacts on the environment due to the increased Sn in the system.

  1. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  2. Oppenheimer's Box of Chocolates: Remediation of the Manhattan Project Landfill at Los Alamos National Laboratory - 12283

    SciTech Connect (OSTI)

    Allen, Donald L.; Ramsey, Susan S.; Finn, Kevin P.; Chaloupka, Allan B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    Material Disposal Area B (MDA B) is the oldest radioactive waste disposal facility at Los Alamos National Laboratory. Operated from 1944-48, MDA B was the disposal facility for the Manhattan Project. Recognized as one of the most challenging environmental remediation projects at Los Alamos, the excavation of MDA B received $110 million from the American Recovery and Reinvestment Act of 2009 to accelerate this complex remediation work. Several factors combined to create significant challenges to remediating the landfill known in the 1940's as the 'contaminated dump'. The secrecy surrounding the Manhattan Project meant that no records were kept of radiological materials and chemicals disposed or of the landfill design. An extensive review of historical documents and interviews with early laboratory personnel resulted in a list of hundreds of hazardous chemicals that could have been buried in MDA B. Also, historical reports of MDA B spontaneously combusting on three occasions -with 50-foot flames and pink smoke spewing across the mesa during the last incident in 1948-indicated that hazardous materials were likely present in MDA B. To complicate matters further, though MDA B was located on an isolated mesa in the 1940's, the landfill has since been surrounded by a Los Alamos commercial district. The local newspaper, hardware store and a number of other businesses are located directly across the street from MDA B. This close proximity to the public and the potential for hazardous materials in MDA B necessitated conducting remediation work within protective enclosures. Potential chemical hazards and radiological inventory were better defined using a minimally intrusive sampling method called direct push technology (DPT) prior to excavation. Even with extensive sampling and planning the project team encountered many surprises and challenges during the project. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. More than three years of effort by the LANL project team went into the planning for remediation of Material Disposal Area B. Hundreds of historical documents were reviewed; retired personnel were extensively interviewed and noninvasive techniques were used to characterize the site. The information collected was incorporated into the safety requirements, cost estimate, schedule and primary execution plan for the project. Ultimately the waste volume managed by the project approached 40000 m{sup 3}, more than double the original project estimate. This increase had a major impact on both project cost and schedule. Nuclear safety requirements for the project were based on an estimated MDA B radionuclide inventory of 12 PE-Ci. When excavation was complete over 123 PE-Ci had been removed from the trenches. The radionuclide inventory at MDA B was an order of magnitude higher than estimated. Work at MDA B could not have proceeded without the safety basis exemption from DOE-HQ. The one area where planning did not fail to meet reality was safety. There were no serious worker injuries and the minor injuries recorded were those common to construction type activities. Extensive monitoring along the site boundary demonstrated that no hazardous chemicals were released and radiological dose to the public was within administrative limits. (authors)

  3. Apparatus and method for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

    2002-01-01

    An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  4. Method and system for extraction of chemicals from aquifer remediation effluent water

    DOE Patents [OSTI]

    McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

    2003-01-01

    A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

  5. Research, Development, Demonstration, and Deployment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development, Demonstration, and Deployment Research, Development, Demonstration, and Deployment The Bioenergy Technologies Office's research, development, demonstration,...

  6. Thermal and chemical remediation of mixed wastes

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Swift, William M. (Downers Grove, IL)

    1997-01-01

    A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

  7. Thermal and chemical remediation of mixed wastes

    DOE Patents [OSTI]

    Nelson, P.A.; Swift, W.M.

    1997-12-16

    A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

  8. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  9. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect (OSTI)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.

  10. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect (OSTI)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  11. LIMB demonstration project extension and Coolside demonstration: A DOE assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2000-04-30

    The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

  12. Status of the MAJORANA DEMONSTRATOR

    E-Print Network [OSTI]

    Cuesta, C; Arnquist, I J; Avignone, F T; Baldenegro-Barrera, C X; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2015-01-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, ...

  13. Status of the MAJORANA DEMONSTRATOR

    E-Print Network [OSTI]

    C. Cuesta; N. Abgrall; I. J. Arnquist; F. T. Avignone III; C. X. Baldenegro-Barrera; A. S. Barabash; F. E. Bertrand; A. W. Bradley; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; P. -H. Chu; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; T. Gilliss; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; I. S. Guinn; V. E. Guiseppe; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; B. R. Jasinski; K. J. Keeter; M. F. Kidd; S. I. Konovalov; R. T. Kouzes; B. D. LaFerriere; J. Leon; J. MacMullin; R. D. Martin; R. Massarczyk; S. J. Meijer; S. Mertens; J. L. Orrell; C. O'Shaughnessy; A. W. P. Poon; D. C. Radford; J. Rager; K. Rielage; R. G. H. Robertson; E. Romero-Romero; B. Shanks; M. Shirchenko; N. Snyder; A. M. Suriano; D. Tedeschi; J. E. Trimble; R. L. Varner; S. Vasilyev; K. Vetter; K. Vorren; B. R. White; J. F. Wilkerson; C. Wiseman; W. Xu; E. Yakushev; C. -H. Yu; V. Yumatov; I. Zhitnikov

    2015-07-28

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.

  14. Alcohol Transportation Fuels Demonstration Program

    SciTech Connect (OSTI)

    Kinoshita, C.M. (ed.)

    1990-01-01

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  15. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  16. Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-06-29

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

  17. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Irvine, Kevin (Huntsville, AL); Berger, Paul (Rome, NY); Comstock, Robert (Bel Air, MD)

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  18. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  19. Filter!Demonstration Microwave!Office

    E-Print Network [OSTI]

    Filter!Demonstration in Microwave!Office muse #12;Objectives · Demonstrate!project!setup!in!Microwave

  20. Isotope Specific Remediation Media and Systems - 13614

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States)] [Kurion, Inc. Oak Ridge, Tennessee 37831 (United States); Morita, Keisuke [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)] [Japan Atomic Energy Agency, Tokai Research and Development Center, Fukushima Project Team, Tokai-mura, Ibaraki-ken, 319-1195 (Japan)

    2013-07-01

    On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. While, of course, most of the outcome of this unprecedented natural and manmade disaster was a negative, both in Japan and worldwide, there have been some extremely invaluable lessons learned and new emergency recovery technologies and systems developed. As always, the mother of invention is necessity. Among these developments has been the development and full-scale implementation of proven isotope specific media (ISMs) with the intent of surgically removing specific hazardous isotopes for the purpose of minimizing dose to workers and the environment. The first such ISMs to be deployed at the Fukushima site were those removing cesium (Cs-137) and iodine (I-129). Since deployment on June 17, 2011, along with treated cooling water recycle, some 70% of the curies in the building liquid wastes have been removed by the Kurion system alone. The current levels of cesium are now only 2% of the original levels. Such an unprecedented, 'external cooling system' not only allowed the eventual cold shut down of the reactors in mid-December, 2011, but has allowed workers to concentrate on the cleanup of other areas of the site. Water treatment will continue for quite some time due to continued leakage into the buildings and the eventual goal of cleaning up the reactors and fuel pools themselves. With the cesium removal now in routine operation, other isotopes of concern are likely to become priorities. One such isotope is that of strontium, and yttrium (Sr-90 and Y-90), which is still at original levels causing further dose issues as well as impediments to discharge of the treated waste waters. For over a year now, a new synthetic strontium specific media has been under development and testing both in our licensed facility in Oak Ridge, Tennessee, but also in confirmatory tests by the Japan Atomic Energy Agency (JAEA) in Japan for Tokyo Electric Power Company (TEPCO). The tests have proven quite successful, even in high salt conditions, and, with loading and dose calculations being completed, will be proposed to add to the existing cesium system. There is no doubt, as high gamma isotopes are removed, other recalcitrant isotopes such as this will require innovative removal media, systems and techniques. Also coming out of this international effort are other ISM media and systems that can be applied more broadly to both Commercial Nuclear Power Plants (NPPs) as well as in Department of Energy (DOE) applications. This cesium and strontium specific media has further been successfully tested in 2012 at a Magnox station in the UK. The resulting proposed mitigation systems for pond and vault cleanup look quite promising. An extremely unusual ISM for carbon 14 (C-14), nickel (Ni-63) and cesium (Cs-137) has been developed for Diablo Canyon NPP for dose reduction testing in their fuel pool. These media will be deployed in Submersible Media Filter (SMF) and Submersible Columns (SC) systems adapted to standard Tri-Nuclear{sup R} housings common in the U.S. and UK. External Vessel Systems (mini-Fukushima) have also been developed as a second mitigation system for D and D and outages. Finally, technetium (Tc- 99) specific media developed for the Waste Treatment Plant (WTP) recycle or condensate (secondary) waste streams (WM 2011) are being further perfected and tested for At-Tank Tc-99 removal, as well as At Tank Cs media. In addition to the on-going media development, systems for deploying such media have developed over the last year and are in laboratory- and full-scale testing. These systems include the fore mentioned Submersible Media Filters (SMF), Submersible Columns (SC) and external pilot- and full-scale, lead-lag, canister systems. This paper will include the media development and testing, as well as that of the deployment systems themselves. (authors)

  1. Nano Catalysts for Diesel Engine Emission Remediation

    SciTech Connect (OSTI)

    Narula, Chaitanya Kumar; Yang, Xiaofan; Debusk, Melanie Moses; Mullins, David R; Mahurin, Shannon Mark; Wu, Zili

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging conditions were provided by our collaborators at John Deere Power Systems. Among various zeolites reported here, CuFe-SSZ-13 offers the best NO{sub x} conversion activity in 150-650 C range and is hydrothermally stable when tested under accelerated aging conditions. It is important to note that Cu-SSZ-13 is now a commercial catalyst for NO{sub x} treatment on diesel passenger vehicles. Thus, our catalyst performs better than the commercial catalyst under fast SCR conditions. We initially focused on fast SCR tests to enable us to screen catalysts rapidly. Only the catalysts that exhibit high NO{sub x} conversion at low temperatures are selected for screening under varying NO{sub 2}:NO{sub x} ratio. The detailed tests of CuFe-SSZ-13 show that CuFe-SSZ-13 is more effective than commercial Cu-SSZ-13 even at NO{sub 2}:NO{sub x} ratio of 0.1. The mechanistic studies, employing stop-flow diffuse reflectance FTIR spectroscopy (DRIFTS), suggest that high concentration of NO{sup +}, generated by heterobimetallic zeolites, is probably responsible for their superior low temperature NO{sub x} activity. The results described in this report clearly show that we have successfully completed the first step in a new emission treatment catalyst which is synthesis and laboratory testing employing simulated exhaust. The next step in the catalyst development is engine testing. Efforts are in progress to obtain follow-on funding to carry out scale-up and engine testing to facilitate commercialization of this technology.

  2. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  3. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  4. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  5. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1995-05-10

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  6. Level 1 remedial investigation work plan, 300 Area Process Ponds

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This report discusses the objectives of the site characterization for the 300 Area Process Ponds which are to identify and quantify contamination at the ponds and to estimate their potential impact on human health and the environment. The results of the site characterization will be used to identify any future actions related to contamination at the site and to identify any additional data requirements needed to support selection of a remedial action. 9 refs., 12 figs., 8 tabs.

  7. 1994 Fernald field characterization demonstration program data report

    SciTech Connect (OSTI)

    Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Cromer, M.V. [Spectra Research Inst., Albuquerque, NM (United States); Newman, G.C. [GRAM, Inc., Albuquerque, NM (United States); Beiso, D.A. [Los Alamos Technical Associates, Inc., NM (United States)

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  8. LIMB Demonstration Project Extension and Coolside Demonstration. [Final report

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  9. Long term performance of different radon remedial methods in Sweden

    E-Print Network [OSTI]

    Clavensjoe, B

    2002-01-01

    The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

  10. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  11. Hanford site tank waste remediation system programmatic environmental review report

    SciTech Connect (OSTI)

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  12. ADVANCED STRIPPER GAS PRODUCED WATER REMEDIATION

    SciTech Connect (OSTI)

    Harry Bonner; Roger Malmquist

    2003-11-01

    Natural gas and oil production from stripper wells also produces water contaminated with hydrocarbons, and in most locations, salts and trace elements. The hydrocarbons are not generally present in concentrations that allow the operator to economically recover these liquids. Produced liquids, (Stripper Gas Water) which are predominantly water, present the operator with two options; purify the water to acceptable levels of contaminates, or pay for the disposal of the water. The project scope involves testing SynCoal as a sorbent to reduce the levels of contamination in stripper gas well produced water to a level that the water can be put to a productive use. Produced water is to be filtered with SynCoal, a processed sub-bituminous coal. It is expected that the surface area of and in the SynCoal would sorb the hydrocarbons and other contaminates and the effluent would be usable for agricultural purposes. Test plan anticipates using two well locations described as being disparate in the level and type of contaminates present. The loading capacity and the rate of loading for the sorbent should be quantified in field testing situations which include unregulated and widely varying liquid flow rates. This will require significant flexibility in the initial stages of the investigation. The scope of work outlined below serves as the guidelines for the testing of SynCoal carbon product as a sorbent to remove hydrocarbons and other contaminants from the produced waters of natural gas wells. A maximum ratio of 1 lb carbon to 100 lbs water treated is the initial basis for economic design. While the levels of contaminants directly impact this ratio, the ultimate economics will be dictated by the filter servicing requirements. This experimental program was intended to identify those treatment parameters that yield the best technological practice for a given set of operating conditions. The goal of this research was to determine appropriate guidelines for field trials by accurately characterizing the performance of SynCoal over a full range of operating conditions.

  13. Radiation Protection Considerations at USACE Formerly Utilized Sites Remedial Action Program (FUSRAP) Projects

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initially authorized by Congress in 1974. FUSRAP was enacted to address residual radioactive contamination associated with numerous sites across the U.S. at which radioactive material (primarily Uranium ores and related milling products) had been processed in support of the nation's nuclear weapons program dating back to the Manhattan Project and the period immediately following World War II. In October 1997, Congress transferred the management of this program from the Department of Energy to the United States Corp of Engineers. Through this program, the Corps addresses the environmental remediation of certain sites once used by DOE's predecessor agencies, the Manhattan Engineer District and the Atomic Energy Commission. The waste at FUSRAP sites consists mainly of low levels of uranium, thorium and radium, along with some mixed wastes. Upon completion of remedial activities, these sites are transferred to DOE for long-term stewardship activities. This paper presents and contrasts the radiological conditions and recent monitoring results associated with five large ongoing FUSRAP projects including Maywood, N.J.; the Linde site near Buffalo, N.Y.; Colonie in Albany N.Y. and the St Louis, Mo. airport and downtown sites. The radiological characteristics of soil and debris at each site and respective regulatory clean up criteria is presented and contrasted. Some differences are discussed in the radiological characteristics of material at some sites that result in variations in radiation protection monitoring programs. Additionally, summary data for typical personnel radiation exposure monitoring results are presented. In summary: 1. The FUSRAP projects for which data and observations are reported in this paper are considered typical of the radiological nature of FUSRAP sites in general. 2. These sites are characterized by naturally occurring uranium and thorium series radionuclides in soil and debris, at concentrations typically < E4 pCi/ gram total activity. 3. Although external exposure rates are generally low resulting in few exposures above background, occasional 'hot spots' are observed in the 1- 10 mR / hr range or higher. However personnel and general area external exposure monitoring programs consistently demonstrate very low potential for external exposure at theses sites. 4. Potential for airborne exposure is controlled by wetting and misting techniques during excavation and movement of materials. Air sampling and bioassay programs confirm low potential for airborne exposure of workers at these sites. 5. Radiation protection and health physics monitoring programs as implemented at these sites ensure that exposures to personal are maintained ALARA. (authors)

  14. Twenty-Five Years of Ecological Recovery of East Fork Poplar Creek: Review of Environmental Problems and Remedial Actions

    SciTech Connect (OSTI)

    Smith, John G; Loar, James M; Stewart, Arthur J

    2011-01-01

    In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy s Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated oncethrough cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody s biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.

  15. Sandia National Laboratories: Training and Technology Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Technology Demonstration Area Training and Technology Demonstration Area Sandia's Training and Technology Demonstration Area (TTD) showcases technologies that can be...

  16. Coherent electron cooling demonstration experiment

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  17. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H. (CONSOL, Inc., Pittsburgh, PA (United States))

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO[sub 2] removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO[sub 2] removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20[degree]F approach to adiabatic saturation temperature ([del]T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO[sub 2] removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, [del]T = 20--22[degree]F, and 70% SO[sub 2] removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO[sub 2] emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  18. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H. [CONSOL, Inc., Pittsburgh, PA (United States)

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO{sub 2} removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO{sub 2} removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20{degree}F approach to adiabatic saturation temperature ({del}T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO{sub 2} removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, {del}T = 20--22{degree}F, and 70% SO{sub 2} removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO{sub 2} emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  19. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  20. Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program

    Broader source: Energy.gov [DOE]

    *Editor's note: This article is cross-posted from Savannah River Remediation's website, where it was posted on September 28, 2012.

  1. EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

  2. Versatile microbial surface-display for environmental remediation and biofuels production

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2008-01-01

    engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

  3. Hardboiled Performance and Affective Intimacy: Remediations of Racism in the Cenk Batu Tatorte

    E-Print Network [OSTI]

    Breger, Claudia

    2014-01-01

    Intimacy: Remediations of Racism in the Cenk Batu Tatorteremediation with respect to racism in contemporary Germany.and mainstreaming, of anti-Muslim racism. 5 In this social

  4. Voluntary Protection Program Onsite Review, CHPlateau Remediation Contract Hanford Site- March 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether Plateau Remediation Contract Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  8. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Environmental Management (EM)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

  9. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  10. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  11. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  12. Apparatus and process for water treatment

    DOE Patents [OSTI]

    Phifer, Mark A. (North Augusta, SC); Nichols, Ralph L. (North Augusta, SC)

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  13. Demonstration of integrated optimization software

    SciTech Connect (OSTI)

    NONE

    2008-01-01

    NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

  14. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  15. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  16. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  17. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  18. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  19. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  20. Activities of HPS standards committee in environmental remediation

    SciTech Connect (OSTI)

    Stencel, J.R.; Chen, S.Y.

    1994-12-31

    The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

  1. Adaptive management: a paradigm for remediation of public facilities

    SciTech Connect (OSTI)

    Janecky, David R; Whicker, Jeffrey J; Doerr, Ted B

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

  2. 100-D/H Remedial Investigation/ Feasibility Study /Proposed Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPO Retirees withEnergy Special4 Mickey Remedial

  3. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect (OSTI)

    Leino, R.; Corle, S.

    1995-10-01

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  4. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a depth of 45 feet. TCE in the test sites. Based on the successful field tests (Phases I and IIa), the ROD was prepared and the Lasagna{trademark} alternative was selected for remediation of TCE contaminated soils at the cylinder testing site Solid Waste Management Unit 91(SWMU 91). Bechtel Jacobs Company LLC contracted CDM to construct and operate a full-scale Lasagna{trademark} remediation system at the site (Phase IIb). Construction began in August 1999 and the operational phase was initiated in December 1999. The Lasagna{trademark} system was operated for two years and reduced the average concentration of TCE in SWMU 91 soil from 84 ppm to less than 5.6 ppm. Verification sampling was conducted during May, 2002. Results of the verification sampling indicated the average concentration of TCE in SWMU 91 soil was 0.38 ppm with a high concentration of 4.5 ppm.

  5. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    SciTech Connect (OSTI)

    Swita, W.R.

    1998-01-09

    This document provides a summary of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost), developed to demonstrate Readiness-to-Proceed (RTP) in support of the TWRS Phase 1B mission. This Updated Baseline is the proposed TWRS plan to execute and measure the mission work scope. This document and other supporting data demonstrate that the TWRS Project Hanford Management Contract (PHMC) team is prepared to fully support Phase 1B by executing the following scope, schedule, and cost baseline activities: Deliver the specified initial low-activity waste (LAW) and high-level waste (HLW) feed batches in a consistent, safe, and reliable manner to support private contractors` operations starting in June 2002; Deliver specified subsequent LAW and HLW feed batches during Phase 1B in a consistent, safe, and reliable manner; Provide for the interim storage of immobilized HLW (IHLW) products and the disposal of immobilized LAW (ILAW) products generated by the private contractors; Provide for disposal of byproduct wastes generated by the private contractors; and Provide the infrastructure to support construction and operations of the private contractors` facilities.

  6. TRANSCONTINENTAL PRINTING INC.: FULL SCALE DEMONSTRATION OF A

    E-Print Network [OSTI]

    #12;TRANSCONTINENTAL PRINTING INC.: FULL SCALE DEMONSTRATION OF A TREATMENT TECHNOLOGY TO REDUCE Prevention Section Environment Canada 224 West Esplanade North Vancouver, B.C. V7M 3H7 #12;Transcontinental at the Transcontinental Printing facility in Delta, BC. At the time of writing, Transcontinental was the only printing

  7. Scheduling the Remediation of Port Hope: Logistical and Regulatory Challenges of a Multiple Site Urban Remediation Project - 13119

    SciTech Connect (OSTI)

    Ferguson Jones, Andrea; Lee, Angela; Palmeter, Tim

    2013-07-01

    The Port Hope Project is part of the larger CAN$1.28 billion Port Hope Area Initiative (PHAI), a community-based program for the development and implementation of a safe, local, long-term management solution for historic Low-Level Radioactive Waste (LLRW) in the Municipalities of Port Hope and Clarington, Ontario, Canada. Atomic Energy of Canada (AECL) is the Project Proponent, Public Works and Government Services (PWGSC) is managing the procurement of services and the MMM Group Limited - Conestoga Rovers and Associates Joint Venture (MMM-CRA Joint Venture) is providing detailed design and construction oversight and administration services for the Project. The Port Hope Project includes the construction of a long-term waste management facility (LTWMF) in the Municipality of Port Hope and the remediation of 18 (eighteen) large-scale LLRW, numerous small-scale sites still being identified and industrial sites within the Municipality. The total volume to be remediated is over one million cubic metres and will come from sites that include temporary storage sites, ravines, beaches, parks, private commercial and residential properties and vacant industrial sites all within the urban area of Port Hope. Challenges that will need to be overcome during this 10 year project include: - Requirements stipulated by the Environmental Assessment (EA) that affect Project logistics and schedule. - Coordination of site remediation with the construction schedule at the LTWMF. - Physical constraints on transport routes and at sites affecting production rates. - Despite being an urban undertaking, seasonal constrains for birds and fish (i.e., nesting and spawning seasons). - Municipal considerations. - Site-specific constraints. - Site interdependencies exist requiring consideration in the schedule. Several sites require the use of an adjacent site for staging. (authors)

  8. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect (OSTI)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this project were related to the economy and the budget cutbacks required during the project duration, which resulted in fewer bus drivers than expected the ultimate shut down of the City’s downtown bus operations.

  9. Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About Us Shirley Ann Jackson,Delivery and14 StrengtheningSuccess

  10. Remedial extraction and catalytic hydrodehalogenation for treatment of soils contaminated by halogenated hydrophobic organic compounds 

    E-Print Network [OSTI]

    Wee, Hun Young

    2009-05-15

    for the extraction of 1,2,4,5-tetrachlorobenzne (TeCB) or pentachlorophenol (PCP) from contaminated soil. Palladium-catalyzed hydrodehalogenation (HDH) was applied for destroying TeCB or PCP in mixtures of water and ethanol in a batch mode. The experimental results...

  11. Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01 Audit| Department of Energy Building America427 Rev.

  12. Building C-400 Thermal Treatment 90% Remedial Design Report and Site

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at the Edge of aCamberly Homes -

  13. Analysis of SPR salt cavern remedial leach program 2013.

    SciTech Connect (OSTI)

    Weber, Paula D.; Gutierrez, Karen A.; Lord, David L.; Rudeen, David Keith

    2013-09-01

    The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, the deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.

  14. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    SciTech Connect (OSTI)

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  15. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  16. Risk assessment in the DOE Assurance Program for Remedial Action

    SciTech Connect (OSTI)

    Marks, S.; Cross, F.T.; Denham, D.H.; Kennedy, W.E.; Stenner, R.D.

    1985-08-01

    This document provides information obtained during the performance of risk assessment tasks in support of the Assurance Program for Remedial Action (APRA) sponsored by the Office of Operational Safety of the Department of Energy. We have presented a method for the estimation of projected health effects at properties in the vicinity of uranium mill tailing piles due to transported tailings or emissions from the piles. Because radon and radon daughter exposure is identified as the principal factor contributing to health effects at such properties, the basis for estimating lung cancer risk as a result of such exposure is discussed in detail. Modeling of health risk due to a secondary pathway, ingestion of contaminated, home-grown food products, is also discussed since it is a potentially important additional source of exposure in certain geographic locations. Risk assessment methods used in various mill tailings reports are reviewed. The protocols for radiological surveys conducted in DOE-sponsored remedial action programs are critically reviewed with respect to their relevance to the needs of health risk estimation. The relevance of risk assessment to the APRA program is discussed briefly.

  17. Missouri State information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Missouri. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature chairmen, and a summary of recent relevant legislative action; a description of the organization and structure of local governments affected by remedial action at the St. Louis area sites; a summary of relevant local ordinances and regulations; an identification of relevant public interest groups; a list of radio stations, television stations, and newspapers that provide public information to the St. Louis area or to Jefferson City; and the full text of relevant statutes and regulations.

  18. Unique Construction and Social Experiences in Residential Remediation Sites - 13423

    SciTech Connect (OSTI)

    Jung, Paul; Scarborough, Rebecca [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)] [Sevenson Environmental Services, Inc. 2749 Lockport Road, Niagara Falls, NY 14305 (United States)

    2013-07-01

    Sevenson Environmental Services, Inc., (Sevenson) has performed several radiological remediation projects located in residential urban areas. Over the course of these projects, there has been a wide variety of experiences encountered from construction related issues to unique social situations. Some of the construction related issues included the remediation of interior basements where contaminated material was located under the footers of the structure or was used in the mortar between cinder block or field stone foundations. Other issues included site security, maintaining furnaces or other utilities, underpinning, backfilling and restoration. In addition to the radiological hazards associated with this work there were occupational safety and industrial hygiene issues that had to be addressed to ensure the safety and health of neighboring properties and residents. The unique social situations at these job sites have included arson, theft/stolen property, assault/battery, prostitution, execution of arrest warrants for residents, discovery of drugs and paraphernalia, blood borne pathogens, and unexploded ordnance. Some of these situations have become a sort of comical urban legend throughout the organization. One situation had historical significance, involving the demolition of a house to save a tree older than the Declaration of Independence. All of these projects typically involve the excavation of early 20. century items such as advertisement signs, various old bottles (milk, Listerine, perfume, whisky) and other miscellaneous common trash items. (authors)

  19. REMEDIATION OF HIGH WATER CONTENT GEOMATERIALS: A REVIEW OF GEOTEXTILE FILTER PERFORMANCE

    E-Print Network [OSTI]

    Aydilek, Ahmet

    REMEDIATION OF HIGH WATER CONTENT GEOMATERIALS: A REVIEW OF GEOTEXTILE FILTER PERFORMANCE Ahmet H-Madison, Madison, Wisconsin, USA ABSTRACT Remediation of contaminated high water content geomaterials for selection of geotextile filters; however, they are not directly applicable to high water content

  20. VEGETATED ROOFS FOR URBAN ECOSYSTEM REMEDIATION: PERFORMANCE AND POLICY IN THE TANYARD BRANCH WATERSHED

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    VEGETATED ROOFS FOR URBAN ECOSYSTEM REMEDIATION: PERFORMANCE AND POLICY IN THE TANYARD BRANCH the urbanization process. This study evaluated the performance and feasibility of using vegetated or green roof systems for urban ecosystem remediation. The stormwater retention performance of a thin-layer green roof

  1. Minnesota Pollution Control Agency Public Meeting -5/19/2011 Remedial Investigation of UMore Park East

    E-Print Network [OSTI]

    Netoff, Theoden

    Minnesota Pollution Control Agency Public Meeting - 5/19/2011 Remedial Investigation of UMore Park MINNESOTA POLLUTION CONTROL AGENCY University of Minnesota Remedial Investigation of UMore Park East Dakota Trail Rosemount, Minnesota Speakers: Gary Krueger Minnesota Pollution Control Agency Janet Dalgleish

  2. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  3. Effect of propene on the remediation of NOx from engine exhausts

    E-Print Network [OSTI]

    Kushner, Mark

    exhausts has been investigated in recent years due to its potential for remediating NOx in emissions. INTRODUCTION Increasingly stringent regulations on the emission levels of NOx in automotive exhausts has led99FL-472 Effect of propene on the remediation of NOx from engine exhausts Rajesh Dorai Department

  4. A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera

    E-Print Network [OSTI]

    1 A Hydraulic Capture Application for Optimal Remediation Design K. R. Fowlera , C. T. Kelley b , C Carolina Chapel Hill, NC 27599-7400, USA The goal of a hydraulic capture model for remediation purposes is desirable and often influences the choice of solution method. In this paper we present two hydraulic capture

  5. Remediation of PAH contaminated soils: Application of a solidliquid two-phase partitioning bioreactor

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    Remediation of PAH contaminated soils: Application of a solid­liquid two-phase partitioning Available online 21 July 2008 keywords: Solid-phase absorption Biodegradation PAHs Bioremediation Soil scale for the remediation of soil contaminated with a model mixture of polycyclic aromatic hydrocarbons

  6. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    SciTech Connect (OSTI)

    Wood, D.E.

    1991-12-31

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  7. The effect of CO2 on the plasma remediation of NxOy Ann C. Gentilea)

    E-Print Network [OSTI]

    Kushner, Mark

    The effect of CO2 on the plasma remediation of NxOy Ann C. Gentilea) and Mark J. Kushnerb repetitively pulsed dielectric barrier discharges. As combustion effluents contain large percentages of CO2, in this paper we discuss the consequences of CO2 in the gas mixture on the efficiency of remediation

  8. Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Defining groundwater remediation objectives with cost-1 benefit analysis: does it work?2 3 J at the local (site) level. This paper questions whether12 CBA is relevant for evaluating groundwater management the cost of groundwater14 protection and remediation measures at the regional (water body) level. It also

  9. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect (OSTI)

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  10. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect (OSTI)

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  11. Independent Oversight Review, Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance- April 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of Richland Operations Office and CH2M Hill Plateau Remediation Company and Mission Support Alliance Conduct of Operations

  12. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect (OSTI)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  13. Innovative DOE Technology Demonstrates Potential for Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential...

  14. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  15. Energy Department Announces Offshore Wind Demonstration Awardees...

    Office of Environmental Management (EM)

    Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth...

  16. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding...

  17. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  18. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  19. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  20. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  1. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Office of Environmental Management (EM)

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  2. Demonstration of base catalyzed decomposition process, Navy Public Works Center, Guam, Mariana Islands

    SciTech Connect (OSTI)

    Schmidt, A.J.; Freeman, H.D.; Brown, M.D.; Zacher, A.H.; Neuenschwander, G.N.; Wilcox, W.A.; Gano, S.R.; Kim, B.C.; Gavaskar, A.R.

    1996-02-01

    Base Catalyzed Decomposition (BCD) is a chemical dehalogenation process designed for treating soils and other substrate contaminated with polychlorinated biphenyls (PCB), pesticides, dioxins, furans, and other hazardous organic substances. PCBs are heavy organic liquids once widely used in industry as lubricants, heat transfer oils, and transformer dielectric fluids. In 1976, production was banned when PCBs were recognized as carcinogenic substances. It was estimated that significant quantities (one billion tons) of U.S. soils, including areas on U.S. military bases outside the country, were contaminated by PCB leaks and spills, and cleanup activities began. The BCD technology was developed in response to these activities. This report details the evolution of the process, from inception to deployment in Guam, and describes the process and system components provided to the Navy to meet the remediation requirements. The report is divided into several sections to cover the range of development and demonstration activities. Section 2.0 gives an overview of the project history. Section 3.0 describes the process chemistry and remediation steps involved. Section 4.0 provides a detailed description of each component and specific development activities. Section 5.0 details the testing and deployment operations and provides the results of the individual demonstration campaigns. Section 6.0 gives an economic assessment of the process. Section 7.0 presents the conclusions and recommendations form this project. The appendices contain equipment and instrument lists, equipment drawings, and detailed run and analytical data.

  3. Superfund Record of Decision (EPA Region 10): Northwest Transformer-Mission Pole, Whatcom County, WA. (First remedial action), (Amendment), September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-09-30

    The 1.6-acre Northwest Transformer - Mission Pole site, is former transformer storage and salvage facility, is 2 miles south of Everson in Whatcom County, Washington. The site is bordered by low-density residential areas to the north and east, and farmland to the south. Storage and salvage operations were conducted in an onsite barn where PCB-contaminated dielectric fluid was drained from the transformers prior to dismantling. A 1989 Record of Decision (ROD) addressed remediation through excavation, consolidation, and onsite treatment using in-situ vitrification. The ROD amends the 1989 ROD and provides a change in the remedy for soil due to excessive cost. The primary contaminant of concern affecting the soil is PCB, an organic. The selected amended remedial action for the ROD includes incincerating approximately 70 cubic yards of soil contaminated with PCBs at levels greater than or equal to 50 mg/kg at a TSCA-approved facility and landfilling approximately 1,500 cubic yards of soil contaminated with PCBs at levels greater than or equal to 1 mg/kg and less than 50 mg/kg offsite at a TSCA-approved facility.

  4. Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

  5. Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Hranac, K.C.; Chromec, F.W.; Fiehweg, R.; Hopkins, J.

    1998-07-01

    This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

  6. Pennsylvania state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    none,

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and State levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Pennsylvania. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

  7. Tank waste remediation system functions and requirements document

    SciTech Connect (OSTI)

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  8. A systematic look at Tank Waste Remediation System privatization

    SciTech Connect (OSTI)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction.

  9. Florida state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    1981-02-27

    This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the federal and state levels, the pertinent programs they administer, each affected state legislature, and current federal and state legislative and regulatory initiatives. This volume is a compilation of information about the State of Florida. It contains a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations.

  10. Iowa state information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    1981-02-09

    This volume is one of a series produced under contract with the DOE, By Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of Iowa. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; the full test of relevant statutes and regulations.

  11. Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance

    SciTech Connect (OSTI)

    James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

    2006-08-01

    Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI).

  12. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  13. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  14. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    SciTech Connect (OSTI)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  16. Documenting cost and performance for environmental remediation projects: Department of Energy Office of Environmental Management

    SciTech Connect (OSTI)

    NONE

    1996-08-08

    The purpose of this DOE guide is to facilitate the use of consistent procedures to document cost and performance information for projects involving the remediation of media contaminated with hazardous and radioactive wastes. It provides remedial action project managers with a standardized set of data to document completed remediation projects. Standardized reporting of data will broaden the utility of the information, increase confidence in the effectiveness of future remedial technologies, and enhance the organization, storage and retrieval of relevant information for future cleanup projects. The foundation for this guide was laid down by the Federal Remediation Technologies Roundtable (FRTR) in their publication, Guide to Documenting Cost and Performance for Remediation Projects, EPA-542-B- 95-002. Member agencies of the FRTR include the US EPA, the US DOD, the US DOE, and the US DOI. All the member agencies are involved in site remediation projects and anticipate following the guidance provided in the above reference. Therefore, there is much to be gained for DOE to be consistent with the other member agencies as it will be easier to compare projects across different agencies and also to learn from the experiences of a wider spectrum of prior completed projects.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  19. Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program - 12189

    SciTech Connect (OSTI)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken; Gillespie, Joey; Widdop, Michael; none,

    2012-02-26

    The U.S. Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to address residual radiological contamination at sites where work was performed for the Manhattan Engineer District and U.S. Atomic Energy Commission. Initially, FUSRAP activities began with a records search for sites that had the potential to contain residual radiological contamination; 46 sites were identified that were eligible for and required remediation. Remedial action began in 1979. In 1997, Congress assigned responsibility for the remediation of FUSRAP sites to the U.S. Army Corps of Engineers (USACE). DOE retains responsibility for determining if sites are eligible for FUSRAP remediation and for providing long-term surveillance and maintenance (LTS&M) of remediated FUSRAP sites. DOE LTS&M activities are designed to ensure that FUSRAP sites remain protective of human health and the environment and to preserve knowledge regarding FUSRAP sites. Additional elements include eligibility determinations, transition of remediated sites from USACE to DOE, LTS&M operations such as inspections and institutional controls management, stakeholder support, preservation of records, and real property and reuse. DOE maintains close coordination with USACE and regulators to ensure there is no loss of protectiveness when sites transition to DOE for LTS&M.

  20. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  2. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    SciTech Connect (OSTI)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is also presented.

  3. A comparison of the RCRA Corrective Action and CERCLA Remedial Action Processes

    SciTech Connect (OSTI)

    Traceski, Thomas T.

    1994-02-01

    This document provides a comprehensive side-by-side comparison of the RCRA corrective action and the CERCLA remedial action processes. On the even-numbered pages a discussion of the RCRA corrective action process is presented and on the odd-numbered pages a comparative discussion of the CERCLA remedial action process can be found. Because the two programs have a difference structure, there is not always a direct correlation between the two throughout the document. This document serves as an informative reference for Departmental and contractor personnel responsible for oversight or implementation of RCRA corrective action and CERCLA remedial action activities at DOE environmental restoration sites.

  4. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report

    SciTech Connect (OSTI)

    Lee Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  5. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE`s preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public`s role in helping DOE and the EPA to make the final decision on a remedy.

  6. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request

    SciTech Connect (OSTI)

    L. Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  7. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh; Jeon, Jong -Rok; Chang, Yoon -Seok

    2015-04-01

    The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate during the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 × 10-5 ?g g-1 to 9.5 × 10-5 ?g g-1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.

  8. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh; Jeon, Jong -Rok; Chang, Yoon -Seok

    2015-02-03

    The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate duringmore »the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 × 10-5 ?g g-1 to 9.5 × 10-5 ?g g-1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.« less

  9. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect (OSTI)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  10. Contaminant treatment method

    DOE Patents [OSTI]

    Shapiro, Andrew Philip (Schenectady, NY); Thornton, Roy Fred (Schenectady, NY); Salvo, Joseph James (Schenectady, NY)

    2003-01-01

    The present invention provides a method for treating contaminated media. The method comprises introducing remediating ions consisting essentially of ferrous ions, and being peroxide-free, in the contaminated media; applying a potential difference across the contaminated media to cause the remediating ions to migrate into contact with contaminants in the contaminated media; chemically degrading contaminants in the contaminated media by contact with the remediating ions; monitoring the contaminated media for degradation products of the contaminants; and controlling the step of applying the potential difference across the contaminated media in response to the step of monitoring.

  11. Graphite electrode arc melter demonstration Phase 2 test results

    SciTech Connect (OSTI)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; O`Connor, W.K.; Oden, L.L.; Turner, P.C.

    1996-06-01

    Several U.S. Department of Energy organizations and the U.S. Bureau of Mines have been collaboratively conducting mixed waste treatment process demonstration testing on the near full-scale graphite electrode submerged arc melter system at the Bureau`s Albany (Oregon) Research Center. An initial test series successfully demonstrated arc melter capability for treating surrogate incinerator ash of buried mixed wastes with soil. The conceptual treatment process for that test series assumed that buried waste would be retrieved and incinerated, and that the incinerator ash would be vitrified in an arc melter. This report presents results from a recently completed second series of tests, undertaken to determine the ability of the arc melter system to stably process a wide range of {open_quotes}as-received{close_quotes} heterogeneous solid mixed wastes containing high levels of organics, representative of the wastes buried and stored at the Idaho National Engineering Laboratory (INEL). The Phase 2 demonstration test results indicate that an arc melter system is capable of directly processing these wastes and could enable elimination of an up-front incineration step in the conceptual treatment process.

  12. Microwave off-gas treatment apparatus and process

    DOE Patents [OSTI]

    Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Wicks, George G. (North Aiken, SC)

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  13. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  14. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01

    biobarrier treatment, compost/mulch, EOS, and EHC (areduction in phase 1 Compost/Mulch/Gravel biobarrierselected sampling times in EOS- amended soil/Compost/Mulch

  15. Lower Three Runs Remediation Safety Preparation Strategy - 13318

    SciTech Connect (OSTI)

    Mackay, Alexander; Fryar, Scotty; Doane, Alan [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Building 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site. It is a large blackwater stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 20 mile stretch of Lower Three Runs Stream that narrows and provides a limited buffer of US DOE property along the stream and flood-plain. Based on data collected during the years 2009 and 2010 under American Recovery and Re-investment Act funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. In agreement with the Environmental Protection Agency and the South Carolina Department of Health and Environmental Control, three areas were identified for remediation [1] (SRNS April 2012). A comprehensive safety preparation strategy was developed for safe execution of the LTR remediation project. Contract incentives for safety encouraged the contractor to perform a complete evaluation of the work and develop an implementation plan to perform the work. The safety coverage was controlled to ensure all work was observed and assessed by one person per work area within the project. This was necessary due to the distances between the fence work and three transects being worked, approximately 20 miles. Contractor Management field observations were performed along with DOE assessments to ensure contractor focus on safe performance of the work. Dedicated ambulance coverage for remote worker work activities was provided. This effort was augmented with access to medical evacuation services. The areas where the work was performed were remote and difficult to get emergency vehicles to in a timely manner in case of an accident. Satellite phones were utilized due to intermittent phone coverage. High visibility vests were utilized to enable any hunters in the area to see the workers; due to the limited buffer areas along the stream route. An innovative approach to providing the necessary protection for workers during periods of extreme heat and humidity was also employed, which included the use of 'heat islands' with fans and crew trailers and ice vests for workers. (authors)

  16. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect (OSTI)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy...

  18. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  19. Webinar: National Hydrogen Learning Demonstration Status

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, "National Hydrogen Learning Demonstration Status," originally presented on February 6, 2012.

  20. Webinar: Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, Hydrogen Storage Materials Database Demonstration, originally presented on December 13, 2011.

  1. SSL Demonstration: Central Park, New York City

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL pathway lighting demonstration in Central Park in New York City.

  2. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart...

  3. EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

  4. Comics to Film (and Back Again): A Study in Stylistic Remediation from 1978-2009

    E-Print Network [OSTI]

    Morton, Drew Anthony

    2012-01-01

    Special (1989). Figure 5.2: Cinematic Remediation in Batman:adaptation of the graphic/cinematic frame. Paper presentedShadows of the Bat: The Cinematic Saga of the Dark Knight.

  5. Innovative technology for expedited site remediation of extensive surface and subsurface contamination

    SciTech Connect (OSTI)

    Audibert, J.M.E.; Lew, L.R.

    1994-12-31

    Large scale surface and subsurface contamination resulted from numerous releases of feed stock, process streams, waste streams, and final product at a major chemical plant. Soil and groundwater was contaminated by numerous compounds including lead, tetraethyl lead, ethylene dibromide, ethylene dichloride, and toluene. The state administrative order dictated that the site be investigated fully, that remedial alternative be evaluated, and that the site be remediated within a year period. Because of the acute toxicity and extreme volatility of tetraethyl lead and other organic compounds present at the site and the short time frame ordered by the regulators, innovative approaches were needed to carry out the remediation while protecting plant workers, remediation workers, and the public.

  6. Applications of an Electrostatic High-Voltage Tether to Radiation Belt Remediation

    E-Print Network [OSTI]

    Applications of an Electrostatic High-Voltage Tether to Radiation Belt Remediation by Christopher F.1.1 Magnetic Mirrors and the Van Allen Belts........................... 10 1.1.2 The Loss Cone

  7. Remedial investigation/feasibility study for the David Witherspoon, Inc., 901 Site, Knoxville, Tennessee: Volume 1

    SciTech Connect (OSTI)

    1996-10-01

    This remedial investigation (RI)/feasibility study (FS) supports the selection of remedial actions for the David Witherspoon, Inc. 901 Maryville Pike Site in Knoxville, Tennessee. Operations at the site, used as a recycling center, have resulted in past, present, and potential future releases of hazardous substances in to the environment. This Site is a Tennessee Superfund site. A phased approach was planned to (1) gather existing data from previous investigations managed by the Tenn. Dept. of Environment and Conservation; (2) perform a preliminary RI, including risk assessments, and an FS with existing data to identify areas where remedial action may be necessary; (3) gather additional field data to adequately define the nature and extent of risk-based contaminants that present identifiable threats to human and/or ecological receptors; and (4) develop remedial action alternatives to reduce risks to acceptable levels.

  8. Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

    2006-09-21

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

  9. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    SciTech Connect (OSTI)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  10. A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    SciTech Connect (OSTI)

    Knudsen, S.D.; Sattler, A.R.; Staller, G.E.

    1999-05-13

    Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work.

  11. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  12. Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)

    E-Print Network [OSTI]

    Kushner, Mark

    Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

  13. Microbial dynamics during intrinsic remediation of oil contaminated coastal wetland sediments (a microcosm study) 

    E-Print Network [OSTI]

    Thornburg, Nathaniel David

    2001-01-01

    was observed throughout the experiment, illustrating that oil was being intrinsically remediated. Kinetic analysis showed that the aliphatic and aromatic hydrocarbons had a half-life of 18 and 56 days, respectively. While MPN and GC-MS analysis showed...

  14. Operations to be Performed in the Waste Package Dry Remediation Cell

    SciTech Connect (OSTI)

    Norman E. Cole; Randy K. Elwood

    2003-10-01

    Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

  15. Smouldering Combustion of Organic Liquids in Porous Media for Remediating NAPL-contaminated Soils 

    E-Print Network [OSTI]

    Pironi, Paolo

    2010-01-01

    This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments ...

  16. Remediation by inspiration : artist-driven models for environmental clean-up

    E-Print Network [OSTI]

    Fain, Jessica (Jessica Elizabeth)

    2011-01-01

    While often seen as utilitarian and technical, environmental remediation efforts have significant cultural, social and physical impacts. Accordingly, they demand responses that utilize a multi-disciplinary approach to the ...

  17. Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived

    E-Print Network [OSTI]

    Clement, Prabhakar

    Remediation of Uranium-contaminated Groundwater by Sorption onto Hydroxyapatite Derived from of CFHA to remove uranium (U(VI)) from aqueous phase was investigated using both batch and column experi

  18. Bacterial influence on uranium oxidation reduction reactions : implications for environmental remediation and isotopic composition

    E-Print Network [OSTI]

    Mullen, Lisa Maureen

    2007-01-01

    The bacterial influence on the chemistry and speciation of uranium has some important impacts on the environment, and can be exploited usefully for the purposes of environmental remediation of uranium waste contamination. ...

  19. EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah

    Broader source: Energy.gov [DOE]

    The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy’s (DOE’s) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The surface remediation alternatives analyzed in the EIS include on-site disposal of the contaminated materials and off-site disposal at one of three alternative locations in Utah using one or more transportation options: truck, rail, or slurry pipeline.

  20. Small-Scale Forward Smouldering Experiments for Remediation of Coal Tar in Inert Media 

    E-Print Network [OSTI]

    Pironi, Paolo; Switzer, Christine; Rein, Guillermo; Gerhard, Jason; Torero, Jose L; Fuentes, Andres

    2009-01-01

    This paper presents a series of experiments conducted to assess the potential of smouldering combustion as a novel technology for remediation of contaminated land by water-immiscible organic compounds. The results from ...

  1. Three new treatments for adults with anorexia nervosa are being used in specialist eating disorders services

    E-Print Network [OSTI]

    Applebaum, David

    Three new treatments for adults with anorexia nervosa are being used in specialist eating disorders performance before and after cognitive remediation in anorexia nervosa A pilot case series. Psychological Medicine, ( ) - Money C et al. A brief emotion focused intervention for inpatients with anorexia nervosa

  2. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    SciTech Connect (OSTI)

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  3. Conceptual development of a continuous burning system for oil spill remediation 

    E-Print Network [OSTI]

    Venkataramaiah, Ramesh H.

    1992-01-01

    CONCEPTUAL DEVELOPMENT OF A CONTINUOUS BURNING SYSTEM FOR OIL SPILL REMEDIATION A Thesis RAMESH H. VENKATARAMAIAH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1992 Major Subject: Civil Engineering CONCEPTUAL DEVELOPMENT OF A CONTINUOUS BURNING SYSTEM FOR OIL SPILL REMEDIATION A Thesis by RAMESH H. VENKATARAMAIAH Approved as to style and content by: oy W. Harm, Jr. (Chair...

  4. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach will accelerate the tank waste remediation program plan and facilitate meeting the regulatory requirements for the remediation of the Hanford tank wastes. Consequently, the DOE Office of River Protection and CH2MHill Hanford Group identified bulk vitrification as one of the technologies to be investigated in FY03 through a demonstration program [2]. In October 2002, CH2MHill issued a request for proposal for the process development testing, engineering and data package for a non-radioactive (cold) pilot bulk vitrification process, and pre-conceptual engineering of a production bulk vitrification system. With AMEC in the lead, AMEC and NUKEM responded with a proposal. Pacific Northwest National Laboratory (PNNL) will support the proposed project as a key subcontractor by providing equipment, facilities, and personnel to support small-scale testing, including the testing on samples of actual tank wastes. This paper will provide an overview of the pre-treatment and bulk vitrification process, summarize the technical benefits the approach offers, and describe the demonstration program that has been developed for the project.

  5. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect (OSTI)

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  6. Uranium Mill Tailings Remedial Action Program. Annual status report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The purpose, scope, history, requirements, and management organization of the UMTRA Program are summarized in the Introduction. The remainder of the report describes progress made during the past year (F 1980) and discusses future plants and activities. Early emphasis has been on the four highest-priority sites because of their proximity to population centers. These sites are: (1) Canonsburg, Pennsylvania; (2) Salt Lake City, Utah; (3) Durango, Colorado; and (4) Shiprock, New Mexico (Navajo Reservation). To date, twenty-five vicinity properties near the Canonsburg site and two such properties near the Salt Lake City site have been designated for remedial action. A research effort was undertaken at a major vicinity property, the Mountain States Supply Company in Salt Lake City, to study the effects of heating-and-ventilating-system modification on indoor radon-daughter concentrations. A cooperative agreement was executed between DOE and the Commonwealth of Pennsylvania. A similar agreement with the State of Utah is expected to be executed in early FY 1981. Further, it is expected that additional cooperative agreements will be negotiated during FY 1981 with the States of Colorado and Wyoming and the Navajo Nation. It is expected that the processing site at Canonsburg, PA (the Canonsburg Industrial Park) will be acquired during FY 1981. Draft Environmental Impact Statements for the four highest-priority sites will be completed during FY 1981.

  7. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  8. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  9. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803); Kaback, Dawn S. (1932 Cottonwood Dr., Aiken, SC 29803); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  10. Electro-osmotic infusion for joule heating soil remediation techniques

    DOE Patents [OSTI]

    Carrigan, Charles R. (Tracy, CA); Nitao, John J. (Castro Valley, CA)

    1999-01-01

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  11. Chalcogen-Based Aerogels as Sorbents for Radionuclide Remediation

    SciTech Connect (OSTI)

    Riley, Brian J.; Chun, Jaehun; Um, Wooyong; Lepry, William C.; Matyas, Josef; Olszta, Matthew J.; Li, Xiaohong; Polychronopoulou, Kyriaki; Kanatzidis, Mercouri G.

    2013-06-13

    The efficient capture of radionuclides having long half-lives such as technetium-99 (99Tc), uranium-238 (238U), and iodine-129 (129I) is pivotal to prevent their transport into groundwater and/or release into the atmosphere. While different sorbents have been considered for capturing each of them, in the current work, a new nanostructured chalcogen-based aerogel, called a chalcogel, is shown to be very effective to capture ionic forms of 99Tc and 238U, as well as nonradioactive gaseous iodine (i.e., a surrogate for 129I), irrespective of the sorbent polarity. Some of the chalcogels performed better than others but the PtGeS sorbent performed the best with capture efficiencies of 98% and 99.4% for 99Tc and 238U, respectively. All sorbents showed >99% capture efficiency for iodine over the test duration. This unified sorbent would be an attractive option in environmental remediation for various radionuclides associated with legacy wastes from nuclear weapons production, wastes from nuclear power production, or potential future nuclear fuel reprocessing.

  12. Federal government information handbook: formerly utilized sites remedial action program

    SciTech Connect (OSTI)

    Not Available

    1980-12-31

    This volume is one of a series produced under contract with the DOE, by Politech Corporation to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Formerly Utilized Sites Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the Federal Government. It contains a summary of the organization and responsibilities of agencies within the executive branch of the Federal government which may be relevant to FUSRAP activities; a brief summary of relevant Federal statutes and regulations; a description of the structure of the US Congress, identification of the officers, relevant committees and committee chairmen; a description of the Federal legislative process; a summary of legislation enacted and considered in the recently-adjourned 96th Congress; a description of the Federal budgetary process; a summary of the Carter Administration's comprehensive radioactive waste management program; and excerpts from the text of relevant federal statutes and regulations.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  14. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  15. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  16. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  18. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    SciTech Connect (OSTI)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to be less expensive than filtration of micron-scale particles, further contributing to the affordability of a community-scale water treatment center.

  19. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Qafoku, Nikolla; Williams, Mark D.; McKinley, James P.; Wang, Zheming; Bargar, John; Faurie, Danielle K.; Resch, Charles T.; Phillips, Jerry L.

    2010-12-01

    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase.

  20. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

  1. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Energy Savers [EERE]

    Sapphire Energy, Inc. Demonstration-Scale Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and...

  2. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked...

  3. Borrego springs microgrid demonstration project (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    demonstration project SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades - beginning with its innovations in automation and...

  4. Technical Demonstration and Economic Validation of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic Validation of...

  5. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    lamps in the existing CFL downlights at St. Anthony Hospital in Gig Harbor, WA. Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony Hospital More Documents...

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  7. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small-...

  8. The Smithsonian American Art Museum GATEWAY Demonstration

    Broader source: Energy.gov [DOE]

    View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld.

  9. Systems Integration Research, Development, and Demonstration

    Broader source: Energy.gov [DOE]

    To achieve the SunShot goals, DOE Systems Integration activities are focused on these key research, development, and demonstration areas:

  10. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  11. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  12. DOE's Advanced Coal Research, Development, and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous...

  13. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  14. Test and Demonstration Assets of New Mexico

    SciTech Connect (OSTI)

    2008-03-31

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  15. NewPage Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  16. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  17. Summary - X-701B Groundwater Remedy, Portsmouth, Ohio

    Office of Environmental Management (EM)

    injection of long-lived oxidant solution, and modified pump-and-treat followed by a passive technique such as wetland treatment would be an example of a simple combination of...

  18. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  19. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  20. Gas cylinder disposal pit remediation waste minimization and management

    SciTech Connect (OSTI)

    Alas, C.A. [Sandia National Labs., Albuquerque, NM (United States); Solow, A.; Criswell, C.W.; Spengler, D. [Roy F. Weston, Inc., Albuquerque, NM (United States); Brannon, R.; Schwender, J.M.; Eckman, C.K.; Rusthoven, T. [ETSC Government Services, Inc., Schaumburg, IL (United States)

    1995-02-01

    A remediation of a gas cylinder disposal pit at Sandia National Laboratories, New Mexico has recently been completed. The cleanup prevented possible spontaneous releases of hazardous gases from corroded cylinders that may have affected nearby active test areas at Sandia`s Technical Area III. Special waste management, safety, and quality plans were developed and strictly implemented for this project. The project was conceived from a waste management perspective, and waste minimization and management were built into the planning and implementation phases. The site layout was planned to accommodate light and heavy equipment, storage of large quantities of suspect soil, and special areas to stage and treat gases and reactive chemicals removed from the pit, as well as radiation protection areas. Excavation was a tightly controlled activity using experienced gas cylinder and reactive chemical specialists. Hazardous operations were conducted at night under lights, to allow nearby daytime operations to function unhindered. The quality assurance plan provided specific control of, and documentation for, critical decisions, as well as the record of daily operations. Both hand and heavy equipment excavation techniques were utilized. Hand excavation techniques were utilized. Hand excavation techniques allows sealed glass containers to be exhumed unharmed. In the end, several dozen thermal batteries; 5 pounds (2.3 kg) of lithium metal; 6.6 pounds (3.0 kg) of rubidium metal; several kilograms of unknown chemicals; 140 cubic yards (107 cubic meters) of thorium-contaminated soil; 270 cubic yards (205 cubic meters) of chromium-contaminated soil; and 450 gas cylinders, including 97 intact cylinders containing inert, flammable, toxic, corrosive, or oxidizing gases were removed and effectively managed to minimize waste.

  1. Tank waste remediation system multi-year work plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

  2. Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

  3. Examination of Housing Price Impacts on Residential Properties Before and After Superfund Remediation Using Spatial Hedonic Modeling 

    E-Print Network [OSTI]

    Mhatre, Pratik Chandrashekhar

    2010-10-12

    examines the extent and size of the economic impact of Superfund sites on surrounding single-family residential properties before and after remediation in Miami-Dade County and examines trends for contemporaneous sociodemographic changes. The study combines... significantly increases as distance to the nearest contaminated Superfund iv increases. Following remediation, this negative impact declined and housing values increased significantly in neighborhoods with remedied Superfund sites albeit more so in low housing...

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  5. RCRA Facility Investigation/Remedial Investigation Report with the Baseline Risk Assessment for the 716-A Motor Shops Seepage Basin

    SciTech Connect (OSTI)

    Palmer, E.

    1997-08-25

    This document describes the RCRA Facility Investigation/Remedial Investigation/Baseline Risk Assessment of the 716-A Motor Shops Seepage Basin.

  6. Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides - 12025

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark; Cantrell, Kirk J.; Dresel, P. Evan

    2012-07-01

    Deep vadose zone contamination is a significant issue facing the U.S. Department of Energy's (DOE) Office of Environmental Management (EM). Contamination in the deep vadose zone is isolated from exposure such that direct contact is not a factor in risk to human health and the environment. Transport of deep vadose zone contamination and discharge to the groundwater creates the potential for exposure and risk to receptors, so limiting flux to groundwater is key for protection of groundwater resources. Remediation approaches for the deep vadose zone need to be considered within the regulatory context, targeted at mitigating the source of contamination and reducing contaminant flux to groundwater. Processes for deep vadose zone metal and radionuclide remediation are discussed, as well as challenges and opportunities for implementation. It may be useful to consider the risk and challenges with leaving contaminants in place as part of a flux-control remedy in comparison with risks associated with contaminant removal and final disposition elsewhere. Understanding and quantifying the ramifications of contaminant removal and disposition options are therefore warranted. While this review suggests that some additional development work is needed for deep vadose zone remediation techniques, the benefits of applying vadose zone remediation for groundwater protection are compelling and worthy of continued development. (authors)

  7. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ``vicinity properties (VP),`` are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A).

  8. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  9. Weldon Spring Site Remedial Action Project: Report from the DOE voluntary protection program onsite review, November 17--21, 1997

    SciTech Connect (OSTI)

    1998-01-28

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Review Team`s findings from the five-day onsite evaluation of the Weldon Spring Site Remedial Action Project (WSSRAP), conducted November 17--21, 1997. The site was evaluated against the program requirements contained in ``US Department of Energy Voluntary Protection Program, Part 1: Program Elements`` to determine its success in implementing the five tenets of DOE-VPP. DOE-VPP consists of three programs, with names and functions similar to those in OSHA`s VPP. These programs are STAR, MERIT, and DEMONSTRATION. The STAR program is the core of DOE-VPP. The program is aimed at truly outstanding protectors of employee safety and health. The MERIT program is a steppingstone for contractors and subcontractors that have good safety and health programs but need time and DOE guidance to achieve STAR status. The DEMONSTRATION program is rarely used; it allows DOE to recognize achievements in unusual situations about which DOE needs to learn more before determining approval requirements for the STAR status.

  10. Marketing Plan for Demonstration and Validation Assets

    SciTech Connect (OSTI)

    2008-05-30

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  11. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe...

  12. NREL: Continuum Magazine - Energy Efficient Demonstration Proves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrate substantial savings for the Navy. A photo of a yellow house with a red roof in a tropical climate. A palm tree sits to the right of the house. Enlarge image...

  13. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

  14. Demonstration of chalcogenide glass racetrack microresonators

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As[subscript 2]S[subscript ...

  15. Teaching a robot manipulation skills through demonstration

    E-Print Network [OSTI]

    Lieberman, Jeff I. (Jeff Ian), 1978-

    2004-01-01

    An automated software system has been developed to allow robots to learn a generalized motor skill from demonstrations given by a human operator. Data is captured using a teleoperation suit as a task is performed repeatedly ...

  16. Result Demonstration: A Method That Works 

    E-Print Network [OSTI]

    Boleman, Chris; Dromgoole, Darrell A.

    2007-05-24

    The result demonstration is one of the most effective ways to transfer research-based knowledge to agricultural producers or to any audience. This publication explains the factors affecting a learner's decision to adopt an innovation and the five...

  17. Demonstration Assessment of LED Freezer Case Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Host Site: Albertsons Grocery, Eugene, Oregon Final Report prepared in support of the U.S. DOE Solid...

  18. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-07-08

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  19. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Department of Physics, University of South Dakota, Vermillion, SD (United States); Abgrall, N.; Chan, Y-D.; Hegai, A.; Mertens, S.; Poon, A. W. P.; Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone III, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA and Oak Ridge National Laboratory, Oak Ridge, TN (United States); Barabash, A. S.; Konovalov, S. I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-06-24

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  20. Demonstration and Deployment Strategy Workshop: Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  1. Lessons Learned from Microgrid Demonstrations Worldwide

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  2. Demonstration and Deployment Strategy Workshop: Summary

    SciTech Connect (OSTI)

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  3. Possible demonstration of ionization cooling using absorbers...

    Office of Scientific and Technical Information (OSTI)

    cooling may play an important role in reducing the phase space volume of muons for a future muon-muon collider. We describe a possible experiment to demonstrate transverse...

  4. Calderon Cokemaking Process/Demonstration Project

    SciTech Connect (OSTI)

    None

    1998-04-08

    This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

  5. National Hydrogen Learning Demonstration Status (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-02-01

    This presentation discusses U.S. DOE Learning Demonstration Project goals, fuel cell vehicle and H2 station deployment status, and technical highlights of vehicle and infrastructure analysis results and progress.

  6. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  7. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  8. 3M's Motor Challenge Showcase Demonstration Project 

    E-Print Network [OSTI]

    Schultz, S. C.

    1996-01-01

    . The Motor Challenge is a U. S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase...

  9. 3M's Motor Challenge Showcase Demonstration Project 

    E-Print Network [OSTI]

    Schultz, S. C.

    1998-01-01

    Challenge is a U.S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase Project...

  10. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  11. What is the Federal Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Federal Demonstration Project is a cooperative effort between a number of universities, a private research institute, and several federal agencies to increase research productivity by eliminating unnecessary administrative procedures and by streamlining and standardizing needed controls. The Project aims to locate responsibility for decision-making as close as possible to principal investigators while maintaining necessary institutional and agency oversight to ensure accountability. By freeing researchers from some of their paperwork burden, more efficient research administration systems will enable investigators to spend more of their time doing science and engineering. The Federal Demonstration Project is an outgrowth of an earlier activity sponsored by five major federal R D agencies at the Florida State University System and the University of Miami. In Florida, the focus was on standardizing and streamlining procedures for administering research grants after the grants had been awarded to the universities. (See Attachment 1 for descriptions of the demonstrations carried out under the Florida Demonstration Project). In May 1988, the most successful of the demonstrated procedures were approved by the US Office of Management and Budget for use in grants awarded by any federal agency to any research organization. The new procedures give agencies authority to waive requirements that grantees obtain federal approval prior to taking a number of administrative actions with respect to grant management. The FDP institutions together with the participating federal agencies are designing and demonstrating innovative research administration procedures and are assessing the impact of those new procedures.

  12. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  13. Linking deposit morphology and clogging in subsurface remediation: Final Technical Report

    SciTech Connect (OSTI)

    Mays, David C. [University of Colorado Denver

    2013-12-11

    Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary modeling has identified the deposit radius of gyration as a candidate variable to account for clogging as a function of (1) colloid accumulation and (2) deposit morphology.

  14. Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S. [General Electric Research and Development, Schenectady, NY (United States)

    1997-04-01

    Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna{trademark} process.

  15. Results of Remediation and Verification Sampling for the 600-270 Horseshoe Landfill

    SciTech Connect (OSTI)

    W. S. Thompson

    2005-12-14

    This report presents the results of the 2005 remedial action and verification soil sampling conducted at the 600-270 waste site after removal of soil containing residual concentrations of dichlorodiphenyl trichloroethane and its breakdown products dichlorodiphenyl dichloroethylene and dichlorodiphenyl dichloroethane. The remediation was performed in response to post-closure surface soil sampling performed between 1998 and 2003 that indicated the presence of residual DDT contamination exceeding the Record of Decision for the 1100 Area National Priorities List site cleanup criteria of 1 mg/kg that was established for the original 1994 cleanup activities.

  16. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  18. NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111118 111 2011, The Author(s)

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    are commonly used to mitigate the risk of hydrocarbon-contaminated aquifers. Recent research on the effectsNGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111­118 111 © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j

  19. NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 0000 1 2012, The Author(s)

    E-Print Network [OSTI]

    Clement, Prabhakar

    NGWA.org Ground Water Monitoring & Remediation 00, no. 0/ xxxx 0000/pages 00­00 1 © 2012, The Author(s) Ground Water Monitoring & Remediation © 2012, National Ground Water Association. doi: 10.1111/j1745­6592.2012.01392.x Modeling Dehalococcoides sp. Augmented Bioremediation in a Single Fracture

  20. Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis

    SciTech Connect (OSTI)

    Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

    1995-12-01

    A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

  1. Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}7.2 entitled ``Field scale test`` (January 10, 1996--December 31, 1997)

    SciTech Connect (OSTI)

    Athmer, C.; Ho, S.V.; Hughes, B.M.

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.

  2. Development of an integrated in-situ remediation technology. Topical report for Task {number_sign}3.2 entitled, ``Modeling and iron dechlorination studies`` (September 26, 1994--August 31, 1997)

    SciTech Connect (OSTI)

    Shapiro, A.P.; Sivavec, T.M.; Principe, J.M. [General Electric Research and Development, Schenectady, NY (United States)

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is complete. The present Topical Report for Task {number_sign}3.2 summarizes the modeling and dechlorination research conducted by General Electric Research and Development.

  3. Alcohol Transportation Fuels Demonstration Program. Phase 1

    SciTech Connect (OSTI)

    Kinoshita, C.M. [ed.

    1990-12-31

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  4. Evaluation of critical pathways, radionuclides, and remedial measures for reducing the radiological dose to returning populations at a former nuclear test site

    SciTech Connect (OSTI)

    Robison, W. L., LLNL

    1997-11-01

    Bikini Island, the major residence island at Bikini Atoll, was contaminated with radioactive fallout as a result of the BRAVO test conducted on March 1, 1954. We have identified the critical radionuclides and supplied radiological data needed to develop dose estimates for all possible exposure pathways. These estimates show that the major dose to returning populations would result from ingestion of cesium-137 (137 Cs) in locally grown terrestrial foods where the predicted population average effective dose exceeds current federal guidelines. Consequently, we designed several long-term field experiments to develop and evaluate methods to reduce the 137 Cs content in locally grown foods.This paper gives a general outline of the remediation experiments with a more detailed description of a preferred combined option. Our comparative evaluation on various remedial methods show that the combined option--potassium treatment of the entire islands with limited excavation of soil in village an d housing areas--will be effective in reducing the dose to about 10% of pretreatment levels, and offers very significant benefits with respect to adverse environmental impacts as well as savings in overall costs, time, and required expert resources.

  5. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    SciTech Connect (OSTI)

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.; Hazen, T.C.; Kaback, D.S.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of the demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.

  6. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    SciTech Connect (OSTI)

    Tremaine, Diana [Science and Ecology Corporation, Knoxville, Tennessee, 37931 (United States); Douglas, Steven G. [B and W Y-12, Oak Ridge, Tennessee, 37831 (United States)

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success of these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1,514,000 liters of wastewater to levels that met the waste acceptance criteria for the on-site West End [wastewater] Treatment Facility (WETF). This paper describes the storm sewer cleaning and lining process and the methods used to process the mercury-contaminated sludge and wastewater, as well as several 'lessons learned' that would be relevant to any future projects involving storm sewer cleaning and debris remediation. (authors)

  7. Background model for the Majorana Demonstrator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Oak Ridge National Lab.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; et al

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example usingmore »powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.« less

  8. Background model for the Majorana Demonstrator

    SciTech Connect (OSTI)

    Cuesta, C. [Univ. of Washington, Seattle, WA (United States); Abgrall, N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aguayo, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Avignone, F. T. [Univ. of South Carolina, Columbia, SC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barabash, A. S. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boswell, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brudanin, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Busch, M. [Duke Univ., Durham, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Byram, D. [Univ. of South Dakota, Vermillion, SD (United States); Caldwell, A. S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chan, Y -D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Christofferson, C. D. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Combs, D. C. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Detwiler, J. A. [Univ. of Washington, Seattle, WA (United States); Doe, P. J. [Univ. of Washington, Seattle, WA (United States); Efremenko, Yu. [Univ. of Tennessee, Knoxville, TN (United States); Egorov, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Ejiri, H. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Elliott, S. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fast, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Finnerty, P. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Fraenkle, F. M. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giovanetti, G. K. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Goett, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gruszko, J. [Univ. of Washington, Seattle, WA (United States); Guiseppe, V. [Univ. of South Carolina, Columbia, SC (United States); Gusev, K. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Hallin, A. [Univ. of Alberta, Edmonton, AB (Canada); Hazama, R. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Hegai, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Henning, R. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Hoppe, E. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howard, S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Howe, M. A. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Keeter, K. J. [Black Hills State Univ., Spearfish, SD (United States); Kidd, M. F. [Tennessee Technological Univ., Cookeville, TN (United States); Kochetov, O. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Konovalov, S. I. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kouzes, R. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); LaFerriere, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leon, J. [Univ. of Washington, Seattle, WA (United States); Leviner, L. E. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Loach, J. C. [Shanghai Jiao Tong Univ. (China)

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.

  9. THE MAJORANA DEMONSTRATOR: OVERVIEW AND STATUS UPDATE

    SciTech Connect (OSTI)

    Keeter, K.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Cuesta, C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, Matthew P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; O'Shaughnessy, Mark D.; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Strain, J.; Suriano, Anne-Marie; Swift, Gary; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2013-04-12

    The MAJORANA DEMONSTRATOR is being constructed at the Sanford Underground Research Facility (SURF) in Lead, SD by the MAJORANA Collaboration to demonstrate the feasibility of a tonne-scale neutrinoless double beta decay experiment based on 76Ge. The observation of neutrinoless double beta decay would indicate that neutrinos can serve as their own antiparticles, thus proving neutrinos to be Majorana particles, and would give information on neutrino masses. Attaining sensitivities for neutrino masses in the inverted hierarchy region requires large tonne-scale detectors with extremely low backgrounds. The DEMONSTRATOR project will show that sufficiently low backgrounds are achievable. A brief description of the detector and a status update on the construction will be given, including the work done at BHSU on acid-etching of Pb shielding bricks.

  10. Operational results of National Solar Demonstration Projects

    SciTech Connect (OSTI)

    Waite, E.V.

    1981-01-01

    Included in the National Solar Demonstration Program are examples of earth-sheltered, passive solar designs. The data obtained from these sites presents an interesting look at what is both technically and economically feasible. Data from four demonstration sites that are members of the National Solar Data Network are utilized to present an economic and technical analyses of a group of four sites. Three of these sites are earth sheltered residential structures, the fourth is a commercial passive structure. This sample of four demonstration sites is not intended to provide a statistical representation of passive earth sheltered structures, but rather, an example of the type of information available through the National Solar Data Program and how this information may be utilized.

  11. Final report for the cryogenic retrieval demonstration

    SciTech Connect (OSTI)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft[sup 3] of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 [times] 9 [times] 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  12. Final report for the cryogenic retrieval demonstration

    SciTech Connect (OSTI)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft{sup 3} of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ``cold test pit`` that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 {times} 9 {times} 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub`s proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  13. 2011 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2011-03-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2011 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the watershed scale, such as contaminant trends at surface water integration points (IFs). Long-term stewardship (LTS) information used in this report is collected, compiled, and tracked by the WRRP in conjunction with the Bechtel Jacobs Company LLC (BJC) Surveillance and Maintenance (S&M) program, the BJC Radiation Protection Organization at East Tennessee Technology Park (ETTP), ETTP Environmental Compliance Program, B&W Y-12 Liquid Waste Treatment Operations, and UT Battelle Facilities Management Division. Additionally, documentation verifying the implementation of administrative land use controls (LUCs) [i.e., property record restrictions, property record notices, zoning notices, and excavation/penetration permit (EPP) program] is also obtained from many sources throughout the fiscal year (FY), including County Register of Deeds offices for property record restrictions and property record notices, City Planning Commission for zoning notices, and BJC project engineers for EPP program verification. Copies of this documentation are obtained by the WRRP and maintained with the project RER files.

  14. JEA successfully completes world's largest CFB demonstration

    SciTech Connect (OSTI)

    NONE

    2005-09-30

    JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

  15. Learning Demonstration Interim Progress Report -- July 2010

    SciTech Connect (OSTI)

    Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

    2010-09-01

    This report discusses key results based on data through December 2009 from the U.S. Department of Energy's (DOE) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. The report serves to help transfer knowledge and lessons learned within various parts of DOE's hydrogen program, as well as externally to other stakeholders. It is the fourth such report in a series, with previous reports being published in July 2007, November 2007, and April 2008.

  16. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1995-12-31

    This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  17. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  18. Modeling Hepatitis C treatment policy.

    SciTech Connect (OSTI)

    Kuypers, Marshall A.; Lambert, Gregory Joseph; Moore, Thomas W.; Glass, Robert John,; Finley, Patrick D.; Ross, David [Clinical Public Health Group, Veterans Health Administration, Washington, D.C.; Chartier, Maggie

    2013-09-01

    Chronic infection with Hepatitis C virus (HCV) results in cirrhosis, liver cancer and death. As the nation's largest provider of care for HCV, US Veterans Health Administration (VHA) invests extensive resources in the diagnosis and treatment of the disease. This report documents modeling and analysis of HCV treatment dynamics performed for the VHA aimed at improving service delivery efficiency. System dynamics modeling of disease treatment demonstrated the benefits of early detection and the role of comorbidities in disease progress and patient mortality. Preliminary modeling showed that adherence to rigorous treatment protocols is a primary determinant of treatment success. In depth meta-analysis revealed correlations of adherence and various psycho-social factors. This initial meta-analysis indicates areas where substantial improvement in patient outcomes can potentially result from VA programs which incorporate these factors into their design.

  19. ELMERAVENUENEIGHBORHOOD RETROFIT DEMONSTRATION Water Augmentation Study

    E-Print Network [OSTI]

    Napp, Nils

    a neighborhood can safely capture rainwater and add it to the aquifer. Taken together, our community improvements demonstrates a variety of sustainable strategies: under street infiltration galleries, open bottom catch basins 20 acres, allowing rainwater from more than 60 acres of land to safely make its way back

  20. Quidi Vidi Lake Hydro Power Demonstration Project

    E-Print Network [OSTI]

    Bruneau, Steve

    Quidi Vidi Lake Hydro Power Demonstration Project Presented by Eugene G. Manning, B. Eng Candidate walking trail Comprised of a micro hydro generator a wind turbine and a solar array, metered and interpreted This presentation describes the preliminary work on the micro hydro component of the installation